[TG3]: Set minimal hw interrupt mitigation.
[linux-2.6/verdex.git] / arch / arm / common / rtctime.c
blob72b03f201eb946f97c9f419090d683ece6ea5bc1
1 /*
2 * linux/arch/arm/common/rtctime.c
4 * Copyright (C) 2003 Deep Blue Solutions Ltd.
5 * Based on sa1100-rtc.c, Nils Faerber, CIH, Nicolas Pitre.
6 * Based on rtc.c by Paul Gortmaker
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
12 #include <linux/module.h>
13 #include <linux/kernel.h>
14 #include <linux/time.h>
15 #include <linux/rtc.h>
16 #include <linux/poll.h>
17 #include <linux/proc_fs.h>
18 #include <linux/miscdevice.h>
19 #include <linux/spinlock.h>
20 #include <linux/device.h>
22 #include <asm/rtc.h>
23 #include <asm/semaphore.h>
25 static DECLARE_WAIT_QUEUE_HEAD(rtc_wait);
26 static struct fasync_struct *rtc_async_queue;
29 * rtc_lock protects rtc_irq_data
31 static DEFINE_SPINLOCK(rtc_lock);
32 static unsigned long rtc_irq_data;
35 * rtc_sem protects rtc_inuse and rtc_ops
37 static DECLARE_MUTEX(rtc_sem);
38 static unsigned long rtc_inuse;
39 static struct rtc_ops *rtc_ops;
41 #define rtc_epoch 1900UL
43 static const unsigned char days_in_month[] = {
44 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
47 #define LEAPS_THRU_END_OF(y) ((y)/4 - (y)/100 + (y)/400)
48 #define LEAP_YEAR(year) ((!(year % 4) && (year % 100)) || !(year % 400))
50 static int month_days(unsigned int month, unsigned int year)
52 return days_in_month[month] + (LEAP_YEAR(year) && month == 1);
56 * Convert seconds since 01-01-1970 00:00:00 to Gregorian date.
58 void rtc_time_to_tm(unsigned long time, struct rtc_time *tm)
60 int days, month, year;
62 days = time / 86400;
63 time -= days * 86400;
65 tm->tm_wday = (days + 4) % 7;
67 year = 1970 + days / 365;
68 days -= (year - 1970) * 365
69 + LEAPS_THRU_END_OF(year - 1)
70 - LEAPS_THRU_END_OF(1970 - 1);
71 if (days < 0) {
72 year -= 1;
73 days += 365 + LEAP_YEAR(year);
75 tm->tm_year = year - 1900;
76 tm->tm_yday = days + 1;
78 for (month = 0; month < 11; month++) {
79 int newdays;
81 newdays = days - month_days(month, year);
82 if (newdays < 0)
83 break;
84 days = newdays;
86 tm->tm_mon = month;
87 tm->tm_mday = days + 1;
89 tm->tm_hour = time / 3600;
90 time -= tm->tm_hour * 3600;
91 tm->tm_min = time / 60;
92 tm->tm_sec = time - tm->tm_min * 60;
94 EXPORT_SYMBOL(rtc_time_to_tm);
97 * Does the rtc_time represent a valid date/time?
99 int rtc_valid_tm(struct rtc_time *tm)
101 if (tm->tm_year < 70 ||
102 tm->tm_mon >= 12 ||
103 tm->tm_mday < 1 ||
104 tm->tm_mday > month_days(tm->tm_mon, tm->tm_year + 1900) ||
105 tm->tm_hour >= 24 ||
106 tm->tm_min >= 60 ||
107 tm->tm_sec >= 60)
108 return -EINVAL;
110 return 0;
112 EXPORT_SYMBOL(rtc_valid_tm);
115 * Convert Gregorian date to seconds since 01-01-1970 00:00:00.
117 int rtc_tm_to_time(struct rtc_time *tm, unsigned long *time)
119 *time = mktime(tm->tm_year + 1900, tm->tm_mon + 1, tm->tm_mday,
120 tm->tm_hour, tm->tm_min, tm->tm_sec);
122 return 0;
124 EXPORT_SYMBOL(rtc_tm_to_time);
127 * Calculate the next alarm time given the requested alarm time mask
128 * and the current time.
130 * FIXME: for now, we just copy the alarm time because we're lazy (and
131 * is therefore buggy - setting a 10am alarm at 8pm will not result in
132 * the alarm triggering.)
134 void rtc_next_alarm_time(struct rtc_time *next, struct rtc_time *now, struct rtc_time *alrm)
136 next->tm_year = now->tm_year;
137 next->tm_mon = now->tm_mon;
138 next->tm_mday = now->tm_mday;
139 next->tm_hour = alrm->tm_hour;
140 next->tm_min = alrm->tm_min;
141 next->tm_sec = alrm->tm_sec;
144 static inline int rtc_read_time(struct rtc_ops *ops, struct rtc_time *tm)
146 memset(tm, 0, sizeof(struct rtc_time));
147 return ops->read_time(tm);
150 static inline int rtc_set_time(struct rtc_ops *ops, struct rtc_time *tm)
152 int ret;
154 ret = rtc_valid_tm(tm);
155 if (ret == 0)
156 ret = ops->set_time(tm);
158 return ret;
161 static inline int rtc_read_alarm(struct rtc_ops *ops, struct rtc_wkalrm *alrm)
163 int ret = -EINVAL;
164 if (ops->read_alarm) {
165 memset(alrm, 0, sizeof(struct rtc_wkalrm));
166 ret = ops->read_alarm(alrm);
168 return ret;
171 static inline int rtc_set_alarm(struct rtc_ops *ops, struct rtc_wkalrm *alrm)
173 int ret = -EINVAL;
174 if (ops->set_alarm)
175 ret = ops->set_alarm(alrm);
176 return ret;
179 void rtc_update(unsigned long num, unsigned long events)
181 spin_lock(&rtc_lock);
182 rtc_irq_data = (rtc_irq_data + (num << 8)) | events;
183 spin_unlock(&rtc_lock);
185 wake_up_interruptible(&rtc_wait);
186 kill_fasync(&rtc_async_queue, SIGIO, POLL_IN);
188 EXPORT_SYMBOL(rtc_update);
191 static ssize_t
192 rtc_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
194 DECLARE_WAITQUEUE(wait, current);
195 unsigned long data;
196 ssize_t ret;
198 if (count < sizeof(unsigned long))
199 return -EINVAL;
201 add_wait_queue(&rtc_wait, &wait);
202 do {
203 __set_current_state(TASK_INTERRUPTIBLE);
205 spin_lock_irq(&rtc_lock);
206 data = rtc_irq_data;
207 rtc_irq_data = 0;
208 spin_unlock_irq(&rtc_lock);
210 if (data != 0) {
211 ret = 0;
212 break;
214 if (file->f_flags & O_NONBLOCK) {
215 ret = -EAGAIN;
216 break;
218 if (signal_pending(current)) {
219 ret = -ERESTARTSYS;
220 break;
222 schedule();
223 } while (1);
224 set_current_state(TASK_RUNNING);
225 remove_wait_queue(&rtc_wait, &wait);
227 if (ret == 0) {
228 ret = put_user(data, (unsigned long __user *)buf);
229 if (ret == 0)
230 ret = sizeof(unsigned long);
232 return ret;
235 static unsigned int rtc_poll(struct file *file, poll_table *wait)
237 unsigned long data;
239 poll_wait(file, &rtc_wait, wait);
241 spin_lock_irq(&rtc_lock);
242 data = rtc_irq_data;
243 spin_unlock_irq(&rtc_lock);
245 return data != 0 ? POLLIN | POLLRDNORM : 0;
248 static int rtc_ioctl(struct inode *inode, struct file *file, unsigned int cmd,
249 unsigned long arg)
251 struct rtc_ops *ops = file->private_data;
252 struct rtc_time tm;
253 struct rtc_wkalrm alrm;
254 void __user *uarg = (void __user *)arg;
255 int ret = -EINVAL;
257 switch (cmd) {
258 case RTC_ALM_READ:
259 ret = rtc_read_alarm(ops, &alrm);
260 if (ret)
261 break;
262 ret = copy_to_user(uarg, &alrm.time, sizeof(tm));
263 if (ret)
264 ret = -EFAULT;
265 break;
267 case RTC_ALM_SET:
268 ret = copy_from_user(&alrm.time, uarg, sizeof(tm));
269 if (ret) {
270 ret = -EFAULT;
271 break;
273 alrm.enabled = 0;
274 alrm.pending = 0;
275 alrm.time.tm_mday = -1;
276 alrm.time.tm_mon = -1;
277 alrm.time.tm_year = -1;
278 alrm.time.tm_wday = -1;
279 alrm.time.tm_yday = -1;
280 alrm.time.tm_isdst = -1;
281 ret = rtc_set_alarm(ops, &alrm);
282 break;
284 case RTC_RD_TIME:
285 ret = rtc_read_time(ops, &tm);
286 if (ret)
287 break;
288 ret = copy_to_user(uarg, &tm, sizeof(tm));
289 if (ret)
290 ret = -EFAULT;
291 break;
293 case RTC_SET_TIME:
294 if (!capable(CAP_SYS_TIME)) {
295 ret = -EACCES;
296 break;
298 ret = copy_from_user(&tm, uarg, sizeof(tm));
299 if (ret) {
300 ret = -EFAULT;
301 break;
303 ret = rtc_set_time(ops, &tm);
304 break;
306 case RTC_EPOCH_SET:
307 #ifndef rtc_epoch
309 * There were no RTC clocks before 1900.
311 if (arg < 1900) {
312 ret = -EINVAL;
313 break;
315 if (!capable(CAP_SYS_TIME)) {
316 ret = -EACCES;
317 break;
319 rtc_epoch = arg;
320 ret = 0;
321 #endif
322 break;
324 case RTC_EPOCH_READ:
325 ret = put_user(rtc_epoch, (unsigned long __user *)uarg);
326 break;
328 case RTC_WKALM_SET:
329 ret = copy_from_user(&alrm, uarg, sizeof(alrm));
330 if (ret) {
331 ret = -EFAULT;
332 break;
334 ret = rtc_set_alarm(ops, &alrm);
335 break;
337 case RTC_WKALM_RD:
338 ret = rtc_read_alarm(ops, &alrm);
339 if (ret)
340 break;
341 ret = copy_to_user(uarg, &alrm, sizeof(alrm));
342 if (ret)
343 ret = -EFAULT;
344 break;
346 default:
347 if (ops->ioctl)
348 ret = ops->ioctl(cmd, arg);
349 break;
351 return ret;
354 static int rtc_open(struct inode *inode, struct file *file)
356 int ret;
358 down(&rtc_sem);
360 if (rtc_inuse) {
361 ret = -EBUSY;
362 } else if (!rtc_ops || !try_module_get(rtc_ops->owner)) {
363 ret = -ENODEV;
364 } else {
365 file->private_data = rtc_ops;
367 ret = rtc_ops->open ? rtc_ops->open() : 0;
368 if (ret == 0) {
369 spin_lock_irq(&rtc_lock);
370 rtc_irq_data = 0;
371 spin_unlock_irq(&rtc_lock);
373 rtc_inuse = 1;
376 up(&rtc_sem);
378 return ret;
381 static int rtc_release(struct inode *inode, struct file *file)
383 struct rtc_ops *ops = file->private_data;
385 if (ops->release)
386 ops->release();
388 spin_lock_irq(&rtc_lock);
389 rtc_irq_data = 0;
390 spin_unlock_irq(&rtc_lock);
392 module_put(rtc_ops->owner);
393 rtc_inuse = 0;
395 return 0;
398 static int rtc_fasync(int fd, struct file *file, int on)
400 return fasync_helper(fd, file, on, &rtc_async_queue);
403 static struct file_operations rtc_fops = {
404 .owner = THIS_MODULE,
405 .llseek = no_llseek,
406 .read = rtc_read,
407 .poll = rtc_poll,
408 .ioctl = rtc_ioctl,
409 .open = rtc_open,
410 .release = rtc_release,
411 .fasync = rtc_fasync,
414 static struct miscdevice rtc_miscdev = {
415 .minor = RTC_MINOR,
416 .name = "rtc",
417 .fops = &rtc_fops,
421 static int rtc_read_proc(char *page, char **start, off_t off, int count, int *eof, void *data)
423 struct rtc_ops *ops = data;
424 struct rtc_wkalrm alrm;
425 struct rtc_time tm;
426 char *p = page;
428 if (rtc_read_time(ops, &tm) == 0) {
429 p += sprintf(p,
430 "rtc_time\t: %02d:%02d:%02d\n"
431 "rtc_date\t: %04d-%02d-%02d\n"
432 "rtc_epoch\t: %04lu\n",
433 tm.tm_hour, tm.tm_min, tm.tm_sec,
434 tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday,
435 rtc_epoch);
438 if (rtc_read_alarm(ops, &alrm) == 0) {
439 p += sprintf(p, "alrm_time\t: ");
440 if ((unsigned int)alrm.time.tm_hour <= 24)
441 p += sprintf(p, "%02d:", alrm.time.tm_hour);
442 else
443 p += sprintf(p, "**:");
444 if ((unsigned int)alrm.time.tm_min <= 59)
445 p += sprintf(p, "%02d:", alrm.time.tm_min);
446 else
447 p += sprintf(p, "**:");
448 if ((unsigned int)alrm.time.tm_sec <= 59)
449 p += sprintf(p, "%02d\n", alrm.time.tm_sec);
450 else
451 p += sprintf(p, "**\n");
453 p += sprintf(p, "alrm_date\t: ");
454 if ((unsigned int)alrm.time.tm_year <= 200)
455 p += sprintf(p, "%04d-", alrm.time.tm_year + 1900);
456 else
457 p += sprintf(p, "****-");
458 if ((unsigned int)alrm.time.tm_mon <= 11)
459 p += sprintf(p, "%02d-", alrm.time.tm_mon + 1);
460 else
461 p += sprintf(p, "**-");
462 if ((unsigned int)alrm.time.tm_mday <= 31)
463 p += sprintf(p, "%02d\n", alrm.time.tm_mday);
464 else
465 p += sprintf(p, "**\n");
466 p += sprintf(p, "alrm_wakeup\t: %s\n",
467 alrm.enabled ? "yes" : "no");
468 p += sprintf(p, "alrm_pending\t: %s\n",
469 alrm.pending ? "yes" : "no");
472 if (ops->proc)
473 p += ops->proc(p);
475 return p - page;
478 int register_rtc(struct rtc_ops *ops)
480 int ret = -EBUSY;
482 down(&rtc_sem);
483 if (rtc_ops == NULL) {
484 rtc_ops = ops;
486 ret = misc_register(&rtc_miscdev);
487 if (ret == 0)
488 create_proc_read_entry("driver/rtc", 0, NULL,
489 rtc_read_proc, ops);
491 up(&rtc_sem);
493 return ret;
495 EXPORT_SYMBOL(register_rtc);
497 void unregister_rtc(struct rtc_ops *rtc)
499 down(&rtc_sem);
500 if (rtc == rtc_ops) {
501 remove_proc_entry("driver/rtc", NULL);
502 misc_deregister(&rtc_miscdev);
503 rtc_ops = NULL;
505 up(&rtc_sem);
507 EXPORT_SYMBOL(unregister_rtc);