2 * linux/arch/arm/mach-versatile/core.c
4 * Copyright (C) 1999 - 2003 ARM Limited
5 * Copyright (C) 2000 Deep Blue Solutions Ltd
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 #include <linux/config.h>
22 #include <linux/init.h>
23 #include <linux/device.h>
24 #include <linux/dma-mapping.h>
25 #include <linux/sysdev.h>
26 #include <linux/interrupt.h>
28 #include <asm/system.h>
29 #include <asm/hardware.h>
33 #include <asm/mach-types.h>
34 #include <asm/hardware/amba.h>
35 #include <asm/hardware/amba_clcd.h>
36 #include <asm/hardware/icst307.h>
38 #include <asm/mach/arch.h>
39 #include <asm/mach/flash.h>
40 #include <asm/mach/irq.h>
41 #include <asm/mach/time.h>
42 #include <asm/mach/map.h>
43 #include <asm/mach/mmc.h>
49 * All IO addresses are mapped onto VA 0xFFFx.xxxx, where x.xxxx
52 * Setup a VA for the Versatile Vectored Interrupt Controller.
54 #define VA_VIC_BASE IO_ADDRESS(VERSATILE_VIC_BASE)
55 #define VA_SIC_BASE IO_ADDRESS(VERSATILE_SIC_BASE)
57 static void vic_mask_irq(unsigned int irq
)
60 writel(1 << irq
, VA_VIC_BASE
+ VIC_IRQ_ENABLE_CLEAR
);
63 static void vic_unmask_irq(unsigned int irq
)
66 writel(1 << irq
, VA_VIC_BASE
+ VIC_IRQ_ENABLE
);
69 static struct irqchip vic_chip
= {
72 .unmask
= vic_unmask_irq
,
75 static void sic_mask_irq(unsigned int irq
)
78 writel(1 << irq
, VA_SIC_BASE
+ SIC_IRQ_ENABLE_CLEAR
);
81 static void sic_unmask_irq(unsigned int irq
)
84 writel(1 << irq
, VA_SIC_BASE
+ SIC_IRQ_ENABLE_SET
);
87 static struct irqchip sic_chip
= {
90 .unmask
= sic_unmask_irq
,
94 sic_handle_irq(unsigned int irq
, struct irqdesc
*desc
, struct pt_regs
*regs
)
96 unsigned long status
= readl(VA_SIC_BASE
+ SIC_IRQ_STATUS
);
99 do_bad_IRQ(irq
, desc
, regs
);
104 irq
= ffs(status
) - 1;
105 status
&= ~(1 << irq
);
107 irq
+= IRQ_SIC_START
;
109 desc
= irq_desc
+ irq
;
110 desc
->handle(irq
, desc
, regs
);
115 #define IRQ_MMCI0A IRQ_VICSOURCE22
116 #define IRQ_AACI IRQ_VICSOURCE24
117 #define IRQ_ETH IRQ_VICSOURCE25
118 #define PIC_MASK 0xFFD00000
120 #define IRQ_MMCI0A IRQ_SIC_MMCI0A
121 #define IRQ_AACI IRQ_SIC_AACI
122 #define IRQ_ETH IRQ_SIC_ETH
126 void __init
versatile_init_irq(void)
128 unsigned int i
, value
;
130 /* Disable all interrupts initially. */
132 writel(0, VA_VIC_BASE
+ VIC_INT_SELECT
);
133 writel(0, VA_VIC_BASE
+ VIC_IRQ_ENABLE
);
134 writel(~0, VA_VIC_BASE
+ VIC_IRQ_ENABLE_CLEAR
);
135 writel(0, VA_VIC_BASE
+ VIC_IRQ_STATUS
);
136 writel(0, VA_VIC_BASE
+ VIC_ITCR
);
137 writel(~0, VA_VIC_BASE
+ VIC_IRQ_SOFT_CLEAR
);
140 * Make sure we clear all existing interrupts
142 writel(0, VA_VIC_BASE
+ VIC_VECT_ADDR
);
143 for (i
= 0; i
< 19; i
++) {
144 value
= readl(VA_VIC_BASE
+ VIC_VECT_ADDR
);
145 writel(value
, VA_VIC_BASE
+ VIC_VECT_ADDR
);
148 for (i
= 0; i
< 16; i
++) {
149 value
= readl(VA_VIC_BASE
+ VIC_VECT_CNTL0
+ (i
* 4));
150 writel(value
| VICVectCntl_Enable
| i
, VA_VIC_BASE
+ VIC_VECT_CNTL0
+ (i
* 4));
153 writel(32, VA_VIC_BASE
+ VIC_DEF_VECT_ADDR
);
155 for (i
= IRQ_VIC_START
; i
<= IRQ_VIC_END
; i
++) {
156 if (i
!= IRQ_VICSOURCE31
) {
157 set_irq_chip(i
, &vic_chip
);
158 set_irq_handler(i
, do_level_IRQ
);
159 set_irq_flags(i
, IRQF_VALID
| IRQF_PROBE
);
163 set_irq_handler(IRQ_VICSOURCE31
, sic_handle_irq
);
164 vic_unmask_irq(IRQ_VICSOURCE31
);
166 /* Do second interrupt controller */
167 writel(~0, VA_SIC_BASE
+ SIC_IRQ_ENABLE_CLEAR
);
169 for (i
= IRQ_SIC_START
; i
<= IRQ_SIC_END
; i
++) {
170 if ((PIC_MASK
& (1 << (i
- IRQ_SIC_START
))) == 0) {
171 set_irq_chip(i
, &sic_chip
);
172 set_irq_handler(i
, do_level_IRQ
);
173 set_irq_flags(i
, IRQF_VALID
| IRQF_PROBE
);
178 * Interrupts on secondary controller from 0 to 8 are routed to
180 * Interrupts from 21 to 31 are routed directly to the VIC on
181 * the corresponding number on primary controller. This is controlled
182 * by setting PIC_ENABLEx.
184 writel(PIC_MASK
, VA_SIC_BASE
+ SIC_INT_PIC_ENABLE
);
187 static struct map_desc versatile_io_desc
[] __initdata
= {
188 { IO_ADDRESS(VERSATILE_SYS_BASE
), VERSATILE_SYS_BASE
, SZ_4K
, MT_DEVICE
},
189 { IO_ADDRESS(VERSATILE_SIC_BASE
), VERSATILE_SIC_BASE
, SZ_4K
, MT_DEVICE
},
190 { IO_ADDRESS(VERSATILE_VIC_BASE
), VERSATILE_VIC_BASE
, SZ_4K
, MT_DEVICE
},
191 { IO_ADDRESS(VERSATILE_SCTL_BASE
), VERSATILE_SCTL_BASE
, SZ_4K
* 9, MT_DEVICE
},
192 #ifdef CONFIG_MACH_VERSATILE_AB
193 { IO_ADDRESS(VERSATILE_GPIO0_BASE
), VERSATILE_GPIO0_BASE
, SZ_4K
, MT_DEVICE
},
194 { IO_ADDRESS(VERSATILE_IB2_BASE
), VERSATILE_IB2_BASE
, SZ_64M
, MT_DEVICE
},
196 #ifdef CONFIG_DEBUG_LL
197 { IO_ADDRESS(VERSATILE_UART0_BASE
), VERSATILE_UART0_BASE
, SZ_4K
, MT_DEVICE
},
200 { PCI_MEMORY_VADDR
, PHYS_PCI_MEM_BASE
, SZ_16M
, MT_DEVICE
},
201 { PCI_CONFIG_VADDR
, PHYS_PCI_CONFIG_BASE
, SZ_16M
, MT_DEVICE
},
202 { PCI_V3_VADDR
, PHYS_PCI_V3_BASE
, SZ_512K
, MT_DEVICE
},
203 { PCI_IO_VADDR
, PHYS_PCI_IO_BASE
, SZ_64K
, MT_DEVICE
},
207 void __init
versatile_map_io(void)
209 iotable_init(versatile_io_desc
, ARRAY_SIZE(versatile_io_desc
));
212 #define VERSATILE_REFCOUNTER (IO_ADDRESS(VERSATILE_SYS_BASE) + VERSATILE_SYS_24MHz_OFFSET)
215 * This is the Versatile sched_clock implementation. This has
216 * a resolution of 41.7ns, and a maximum value of about 179s.
218 unsigned long long sched_clock(void)
220 unsigned long long v
;
222 v
= (unsigned long long)readl(VERSATILE_REFCOUNTER
) * 125;
229 #define VERSATILE_FLASHCTRL (IO_ADDRESS(VERSATILE_SYS_BASE) + VERSATILE_SYS_FLASH_OFFSET)
231 static int versatile_flash_init(void)
235 val
= __raw_readl(VERSATILE_FLASHCTRL
);
236 val
&= ~VERSATILE_FLASHPROG_FLVPPEN
;
237 __raw_writel(val
, VERSATILE_FLASHCTRL
);
242 static void versatile_flash_exit(void)
246 val
= __raw_readl(VERSATILE_FLASHCTRL
);
247 val
&= ~VERSATILE_FLASHPROG_FLVPPEN
;
248 __raw_writel(val
, VERSATILE_FLASHCTRL
);
251 static void versatile_flash_set_vpp(int on
)
255 val
= __raw_readl(VERSATILE_FLASHCTRL
);
257 val
|= VERSATILE_FLASHPROG_FLVPPEN
;
259 val
&= ~VERSATILE_FLASHPROG_FLVPPEN
;
260 __raw_writel(val
, VERSATILE_FLASHCTRL
);
263 static struct flash_platform_data versatile_flash_data
= {
264 .map_name
= "cfi_probe",
266 .init
= versatile_flash_init
,
267 .exit
= versatile_flash_exit
,
268 .set_vpp
= versatile_flash_set_vpp
,
271 static struct resource versatile_flash_resource
= {
272 .start
= VERSATILE_FLASH_BASE
,
273 .end
= VERSATILE_FLASH_BASE
+ VERSATILE_FLASH_SIZE
,
274 .flags
= IORESOURCE_MEM
,
277 static struct platform_device versatile_flash_device
= {
281 .platform_data
= &versatile_flash_data
,
284 .resource
= &versatile_flash_resource
,
287 static struct resource smc91x_resources
[] = {
289 .start
= VERSATILE_ETH_BASE
,
290 .end
= VERSATILE_ETH_BASE
+ SZ_64K
- 1,
291 .flags
= IORESOURCE_MEM
,
296 .flags
= IORESOURCE_IRQ
,
300 static struct platform_device smc91x_device
= {
303 .num_resources
= ARRAY_SIZE(smc91x_resources
),
304 .resource
= smc91x_resources
,
307 #define VERSATILE_SYSMCI (IO_ADDRESS(VERSATILE_SYS_BASE) + VERSATILE_SYS_MCI_OFFSET)
309 unsigned int mmc_status(struct device
*dev
)
311 struct amba_device
*adev
= container_of(dev
, struct amba_device
, dev
);
314 if (adev
->res
.start
== VERSATILE_MMCI0_BASE
)
319 return readl(VERSATILE_SYSMCI
) & mask
;
322 static struct mmc_platform_data mmc0_plat_data
= {
323 .ocr_mask
= MMC_VDD_32_33
|MMC_VDD_33_34
,
324 .status
= mmc_status
,
330 static const struct icst307_params versatile_oscvco_params
= {
339 static void versatile_oscvco_set(struct clk
*clk
, struct icst307_vco vco
)
341 unsigned long sys_lock
= IO_ADDRESS(VERSATILE_SYS_BASE
) + VERSATILE_SYS_LOCK_OFFSET
;
342 #if defined(CONFIG_ARCH_VERSATILE_PB)
343 unsigned long sys_osc
= IO_ADDRESS(VERSATILE_SYS_BASE
) + VERSATILE_SYS_OSC4_OFFSET
;
344 #elif defined(CONFIG_MACH_VERSATILE_AB)
345 unsigned long sys_osc
= IO_ADDRESS(VERSATILE_SYS_BASE
) + VERSATILE_SYS_OSC1_OFFSET
;
349 val
= readl(sys_osc
) & ~0x7ffff;
350 val
|= vco
.v
| (vco
.r
<< 9) | (vco
.s
<< 16);
352 writel(0xa05f, sys_lock
);
353 writel(val
, sys_osc
);
357 static struct clk versatile_clcd_clk
= {
359 .params
= &versatile_oscvco_params
,
360 .setvco
= versatile_oscvco_set
,
366 #define SYS_CLCD_MODE_MASK (3 << 0)
367 #define SYS_CLCD_MODE_888 (0 << 0)
368 #define SYS_CLCD_MODE_5551 (1 << 0)
369 #define SYS_CLCD_MODE_565_RLSB (2 << 0)
370 #define SYS_CLCD_MODE_565_BLSB (3 << 0)
371 #define SYS_CLCD_NLCDIOON (1 << 2)
372 #define SYS_CLCD_VDDPOSSWITCH (1 << 3)
373 #define SYS_CLCD_PWR3V5SWITCH (1 << 4)
374 #define SYS_CLCD_ID_MASK (0x1f << 8)
375 #define SYS_CLCD_ID_SANYO_3_8 (0x00 << 8)
376 #define SYS_CLCD_ID_UNKNOWN_8_4 (0x01 << 8)
377 #define SYS_CLCD_ID_EPSON_2_2 (0x02 << 8)
378 #define SYS_CLCD_ID_SANYO_2_5 (0x07 << 8)
379 #define SYS_CLCD_ID_VGA (0x1f << 8)
381 static struct clcd_panel vga
= {
395 .vmode
= FB_VMODE_NONINTERLACED
,
399 .tim2
= TIM2_BCD
| TIM2_IPC
,
400 .cntl
= CNTL_LCDTFT
| CNTL_LCDVCOMP(1),
404 static struct clcd_panel sanyo_3_8_in
= {
406 .name
= "Sanyo QVGA",
418 .vmode
= FB_VMODE_NONINTERLACED
,
423 .cntl
= CNTL_LCDTFT
| CNTL_LCDVCOMP(1),
427 static struct clcd_panel sanyo_2_5_in
= {
429 .name
= "Sanyo QVGA Portrait",
440 .sync
= FB_SYNC_HOR_HIGH_ACT
| FB_SYNC_VERT_HIGH_ACT
,
441 .vmode
= FB_VMODE_NONINTERLACED
,
445 .tim2
= TIM2_IVS
| TIM2_IHS
| TIM2_IPC
,
446 .cntl
= CNTL_LCDTFT
| CNTL_LCDVCOMP(1),
450 static struct clcd_panel epson_2_2_in
= {
452 .name
= "Epson QCIF",
464 .vmode
= FB_VMODE_NONINTERLACED
,
468 .tim2
= TIM2_BCD
| TIM2_IPC
,
469 .cntl
= CNTL_LCDTFT
| CNTL_LCDVCOMP(1),
474 * Detect which LCD panel is connected, and return the appropriate
475 * clcd_panel structure. Note: we do not have any information on
476 * the required timings for the 8.4in panel, so we presently assume
479 static struct clcd_panel
*versatile_clcd_panel(void)
481 unsigned long sys_clcd
= IO_ADDRESS(VERSATILE_SYS_BASE
) + VERSATILE_SYS_CLCD_OFFSET
;
482 struct clcd_panel
*panel
= &vga
;
485 val
= readl(sys_clcd
) & SYS_CLCD_ID_MASK
;
486 if (val
== SYS_CLCD_ID_SANYO_3_8
)
487 panel
= &sanyo_3_8_in
;
488 else if (val
== SYS_CLCD_ID_SANYO_2_5
)
489 panel
= &sanyo_2_5_in
;
490 else if (val
== SYS_CLCD_ID_EPSON_2_2
)
491 panel
= &epson_2_2_in
;
492 else if (val
== SYS_CLCD_ID_VGA
)
495 printk(KERN_ERR
"CLCD: unknown LCD panel ID 0x%08x, using VGA\n",
504 * Disable all display connectors on the interface module.
506 static void versatile_clcd_disable(struct clcd_fb
*fb
)
508 unsigned long sys_clcd
= IO_ADDRESS(VERSATILE_SYS_BASE
) + VERSATILE_SYS_CLCD_OFFSET
;
511 val
= readl(sys_clcd
);
512 val
&= ~SYS_CLCD_NLCDIOON
| SYS_CLCD_PWR3V5SWITCH
;
513 writel(val
, sys_clcd
);
515 #ifdef CONFIG_MACH_VERSATILE_AB
517 * If the LCD is Sanyo 2x5 in on the IB2 board, turn the back-light off
519 if (fb
->panel
== &sanyo_2_5_in
) {
520 unsigned long versatile_ib2_ctrl
= IO_ADDRESS(VERSATILE_IB2_CTRL
);
523 ctrl
= readl(versatile_ib2_ctrl
);
525 writel(ctrl
, versatile_ib2_ctrl
);
531 * Enable the relevant connector on the interface module.
533 static void versatile_clcd_enable(struct clcd_fb
*fb
)
535 unsigned long sys_clcd
= IO_ADDRESS(VERSATILE_SYS_BASE
) + VERSATILE_SYS_CLCD_OFFSET
;
538 val
= readl(sys_clcd
);
539 val
&= ~SYS_CLCD_MODE_MASK
;
541 switch (fb
->fb
.var
.green
.length
) {
543 val
|= SYS_CLCD_MODE_5551
;
546 val
|= SYS_CLCD_MODE_565_BLSB
;
549 val
|= SYS_CLCD_MODE_888
;
556 writel(val
, sys_clcd
);
559 * And now enable the PSUs
561 val
|= SYS_CLCD_NLCDIOON
| SYS_CLCD_PWR3V5SWITCH
;
562 writel(val
, sys_clcd
);
564 #ifdef CONFIG_MACH_VERSATILE_AB
566 * If the LCD is Sanyo 2x5 in on the IB2 board, turn the back-light on
568 if (fb
->panel
== &sanyo_2_5_in
) {
569 unsigned long versatile_ib2_ctrl
= IO_ADDRESS(VERSATILE_IB2_CTRL
);
572 ctrl
= readl(versatile_ib2_ctrl
);
574 writel(ctrl
, versatile_ib2_ctrl
);
579 static unsigned long framesize
= SZ_1M
;
581 static int versatile_clcd_setup(struct clcd_fb
*fb
)
585 fb
->panel
= versatile_clcd_panel();
587 fb
->fb
.screen_base
= dma_alloc_writecombine(&fb
->dev
->dev
, framesize
,
589 if (!fb
->fb
.screen_base
) {
590 printk(KERN_ERR
"CLCD: unable to map framebuffer\n");
594 fb
->fb
.fix
.smem_start
= dma
;
595 fb
->fb
.fix
.smem_len
= framesize
;
600 static int versatile_clcd_mmap(struct clcd_fb
*fb
, struct vm_area_struct
*vma
)
602 return dma_mmap_writecombine(&fb
->dev
->dev
, vma
,
604 fb
->fb
.fix
.smem_start
,
605 fb
->fb
.fix
.smem_len
);
608 static void versatile_clcd_remove(struct clcd_fb
*fb
)
610 dma_free_writecombine(&fb
->dev
->dev
, fb
->fb
.fix
.smem_len
,
611 fb
->fb
.screen_base
, fb
->fb
.fix
.smem_start
);
614 static struct clcd_board clcd_plat_data
= {
616 .check
= clcdfb_check
,
617 .decode
= clcdfb_decode
,
618 .disable
= versatile_clcd_disable
,
619 .enable
= versatile_clcd_enable
,
620 .setup
= versatile_clcd_setup
,
621 .mmap
= versatile_clcd_mmap
,
622 .remove
= versatile_clcd_remove
,
625 #define AACI_IRQ { IRQ_AACI, NO_IRQ }
626 #define AACI_DMA { 0x80, 0x81 }
627 #define MMCI0_IRQ { IRQ_MMCI0A,IRQ_SIC_MMCI0B }
628 #define MMCI0_DMA { 0x84, 0 }
629 #define KMI0_IRQ { IRQ_SIC_KMI0, NO_IRQ }
630 #define KMI0_DMA { 0, 0 }
631 #define KMI1_IRQ { IRQ_SIC_KMI1, NO_IRQ }
632 #define KMI1_DMA { 0, 0 }
635 * These devices are connected directly to the multi-layer AHB switch
637 #define SMC_IRQ { NO_IRQ, NO_IRQ }
638 #define SMC_DMA { 0, 0 }
639 #define MPMC_IRQ { NO_IRQ, NO_IRQ }
640 #define MPMC_DMA { 0, 0 }
641 #define CLCD_IRQ { IRQ_CLCDINT, NO_IRQ }
642 #define CLCD_DMA { 0, 0 }
643 #define DMAC_IRQ { IRQ_DMAINT, NO_IRQ }
644 #define DMAC_DMA { 0, 0 }
647 * These devices are connected via the core APB bridge
649 #define SCTL_IRQ { NO_IRQ, NO_IRQ }
650 #define SCTL_DMA { 0, 0 }
651 #define WATCHDOG_IRQ { IRQ_WDOGINT, NO_IRQ }
652 #define WATCHDOG_DMA { 0, 0 }
653 #define GPIO0_IRQ { IRQ_GPIOINT0, NO_IRQ }
654 #define GPIO0_DMA { 0, 0 }
655 #define GPIO1_IRQ { IRQ_GPIOINT1, NO_IRQ }
656 #define GPIO1_DMA { 0, 0 }
657 #define RTC_IRQ { IRQ_RTCINT, NO_IRQ }
658 #define RTC_DMA { 0, 0 }
661 * These devices are connected via the DMA APB bridge
663 #define SCI_IRQ { IRQ_SCIINT, NO_IRQ }
664 #define SCI_DMA { 7, 6 }
665 #define UART0_IRQ { IRQ_UARTINT0, NO_IRQ }
666 #define UART0_DMA { 15, 14 }
667 #define UART1_IRQ { IRQ_UARTINT1, NO_IRQ }
668 #define UART1_DMA { 13, 12 }
669 #define UART2_IRQ { IRQ_UARTINT2, NO_IRQ }
670 #define UART2_DMA { 11, 10 }
671 #define SSP_IRQ { IRQ_SSPINT, NO_IRQ }
672 #define SSP_DMA { 9, 8 }
674 /* FPGA Primecells */
675 AMBA_DEVICE(aaci
, "fpga:04", AACI
, NULL
);
676 AMBA_DEVICE(mmc0
, "fpga:05", MMCI0
, &mmc0_plat_data
);
677 AMBA_DEVICE(kmi0
, "fpga:06", KMI0
, NULL
);
678 AMBA_DEVICE(kmi1
, "fpga:07", KMI1
, NULL
);
680 /* DevChip Primecells */
681 AMBA_DEVICE(smc
, "dev:00", SMC
, NULL
);
682 AMBA_DEVICE(mpmc
, "dev:10", MPMC
, NULL
);
683 AMBA_DEVICE(clcd
, "dev:20", CLCD
, &clcd_plat_data
);
684 AMBA_DEVICE(dmac
, "dev:30", DMAC
, NULL
);
685 AMBA_DEVICE(sctl
, "dev:e0", SCTL
, NULL
);
686 AMBA_DEVICE(wdog
, "dev:e1", WATCHDOG
, NULL
);
687 AMBA_DEVICE(gpio0
, "dev:e4", GPIO0
, NULL
);
688 AMBA_DEVICE(gpio1
, "dev:e5", GPIO1
, NULL
);
689 AMBA_DEVICE(rtc
, "dev:e8", RTC
, NULL
);
690 AMBA_DEVICE(sci0
, "dev:f0", SCI
, NULL
);
691 AMBA_DEVICE(uart0
, "dev:f1", UART0
, NULL
);
692 AMBA_DEVICE(uart1
, "dev:f2", UART1
, NULL
);
693 AMBA_DEVICE(uart2
, "dev:f3", UART2
, NULL
);
694 AMBA_DEVICE(ssp0
, "dev:f4", SSP
, NULL
);
696 static struct amba_device
*amba_devs
[] __initdata
= {
718 #define VA_LEDS_BASE (IO_ADDRESS(VERSATILE_SYS_BASE) + VERSATILE_SYS_LED_OFFSET)
720 static void versatile_leds_event(led_event_t ledevt
)
725 local_irq_save(flags
);
726 val
= readl(VA_LEDS_BASE
);
730 val
= val
& ~VERSATILE_SYS_LED0
;
734 val
= val
| VERSATILE_SYS_LED0
;
738 val
= val
^ VERSATILE_SYS_LED1
;
749 writel(val
, VA_LEDS_BASE
);
750 local_irq_restore(flags
);
752 #endif /* CONFIG_LEDS */
754 void __init
versatile_init(void)
758 clk_register(&versatile_clcd_clk
);
760 platform_device_register(&versatile_flash_device
);
761 platform_device_register(&smc91x_device
);
763 for (i
= 0; i
< ARRAY_SIZE(amba_devs
); i
++) {
764 struct amba_device
*d
= amba_devs
[i
];
765 amba_device_register(d
, &iomem_resource
);
769 leds_event
= versatile_leds_event
;
774 * Where is the timer (VA)?
776 #define TIMER0_VA_BASE IO_ADDRESS(VERSATILE_TIMER0_1_BASE)
777 #define TIMER1_VA_BASE (IO_ADDRESS(VERSATILE_TIMER0_1_BASE) + 0x20)
778 #define TIMER2_VA_BASE IO_ADDRESS(VERSATILE_TIMER2_3_BASE)
779 #define TIMER3_VA_BASE (IO_ADDRESS(VERSATILE_TIMER2_3_BASE) + 0x20)
780 #define VA_IC_BASE IO_ADDRESS(VERSATILE_VIC_BASE)
783 * How long is the timer interval?
785 #define TIMER_INTERVAL (TICKS_PER_uSEC * mSEC_10)
786 #if TIMER_INTERVAL >= 0x100000
787 #define TIMER_RELOAD (TIMER_INTERVAL >> 8) /* Divide by 256 */
788 #define TIMER_CTRL 0x88 /* Enable, Clock / 256 */
789 #define TICKS2USECS(x) (256 * (x) / TICKS_PER_uSEC)
790 #elif TIMER_INTERVAL >= 0x10000
791 #define TIMER_RELOAD (TIMER_INTERVAL >> 4) /* Divide by 16 */
792 #define TIMER_CTRL 0x84 /* Enable, Clock / 16 */
793 #define TICKS2USECS(x) (16 * (x) / TICKS_PER_uSEC)
795 #define TIMER_RELOAD (TIMER_INTERVAL)
796 #define TIMER_CTRL 0x80 /* Enable */
797 #define TICKS2USECS(x) ((x) / TICKS_PER_uSEC)
800 #define TIMER_CTRL_IE (1 << 5) /* Interrupt Enable */
803 * What does it look like?
805 typedef struct TimerStruct
{
806 unsigned long TimerLoad
;
807 unsigned long TimerValue
;
808 unsigned long TimerControl
;
809 unsigned long TimerClear
;
813 * Returns number of ms since last clock interrupt. Note that interrupts
814 * will have been disabled by do_gettimeoffset()
816 static unsigned long versatile_gettimeoffset(void)
818 volatile TimerStruct_t
*timer0
= (TimerStruct_t
*)TIMER0_VA_BASE
;
819 unsigned long ticks1
, ticks2
, status
;
822 * Get the current number of ticks. Note that there is a race
823 * condition between us reading the timer and checking for
824 * an interrupt. We get around this by ensuring that the
825 * counter has not reloaded between our two reads.
827 ticks2
= timer0
->TimerValue
& 0xffff;
830 status
= __raw_readl(VA_IC_BASE
+ VIC_IRQ_RAW_STATUS
);
831 ticks2
= timer0
->TimerValue
& 0xffff;
832 } while (ticks2
> ticks1
);
835 * Number of ticks since last interrupt.
837 ticks1
= TIMER_RELOAD
- ticks2
;
840 * Interrupt pending? If so, we've reloaded once already.
842 * FIXME: Need to check this is effectively timer 0 that expires
844 if (status
& IRQMASK_TIMERINT0_1
)
845 ticks1
+= TIMER_RELOAD
;
848 * Convert the ticks to usecs
850 return TICKS2USECS(ticks1
);
854 * IRQ handler for the timer
856 static irqreturn_t
versatile_timer_interrupt(int irq
, void *dev_id
, struct pt_regs
*regs
)
858 volatile TimerStruct_t
*timer0
= (volatile TimerStruct_t
*)TIMER0_VA_BASE
;
860 write_seqlock(&xtime_lock
);
862 // ...clear the interrupt
863 timer0
->TimerClear
= 1;
867 write_sequnlock(&xtime_lock
);
872 static struct irqaction versatile_timer_irq
= {
873 .name
= "Versatile Timer Tick",
874 .flags
= SA_INTERRUPT
,
875 .handler
= versatile_timer_interrupt
879 * Set up timer interrupt, and return the current time in seconds.
881 static void __init
versatile_timer_init(void)
883 volatile TimerStruct_t
*timer0
= (volatile TimerStruct_t
*)TIMER0_VA_BASE
;
884 volatile TimerStruct_t
*timer1
= (volatile TimerStruct_t
*)TIMER1_VA_BASE
;
885 volatile TimerStruct_t
*timer2
= (volatile TimerStruct_t
*)TIMER2_VA_BASE
;
886 volatile TimerStruct_t
*timer3
= (volatile TimerStruct_t
*)TIMER3_VA_BASE
;
889 * set clock frequency:
890 * VERSATILE_REFCLK is 32KHz
891 * VERSATILE_TIMCLK is 1MHz
893 *(volatile unsigned int *)IO_ADDRESS(VERSATILE_SCTL_BASE
) |=
894 ((VERSATILE_TIMCLK
<< VERSATILE_TIMER1_EnSel
) | (VERSATILE_TIMCLK
<< VERSATILE_TIMER2_EnSel
) |
895 (VERSATILE_TIMCLK
<< VERSATILE_TIMER3_EnSel
) | (VERSATILE_TIMCLK
<< VERSATILE_TIMER4_EnSel
));
898 * Initialise to a known state (all timers off)
900 timer0
->TimerControl
= 0;
901 timer1
->TimerControl
= 0;
902 timer2
->TimerControl
= 0;
903 timer3
->TimerControl
= 0;
905 timer0
->TimerLoad
= TIMER_RELOAD
;
906 timer0
->TimerValue
= TIMER_RELOAD
;
907 timer0
->TimerControl
= TIMER_CTRL
| 0x40 | TIMER_CTRL_IE
; /* periodic + IE */
910 * Make irqs happen for the system timer
912 setup_irq(IRQ_TIMERINT0_1
, &versatile_timer_irq
);
915 struct sys_timer versatile_timer
= {
916 .init
= versatile_timer_init
,
917 .offset
= versatile_gettimeoffset
,