2 * linux/arch/arm/mm/init.c
4 * Copyright (C) 1995-2002 Russell King
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
10 #include <linux/config.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/ptrace.h>
14 #include <linux/swap.h>
15 #include <linux/init.h>
16 #include <linux/bootmem.h>
17 #include <linux/mman.h>
18 #include <linux/nodemask.h>
19 #include <linux/initrd.h>
21 #include <asm/mach-types.h>
22 #include <asm/hardware.h>
23 #include <asm/setup.h>
26 #include <asm/mach/arch.h>
27 #include <asm/mach/map.h>
29 #define TABLE_SIZE (2 * PTRS_PER_PTE * sizeof(pte_t))
31 DEFINE_PER_CPU(struct mmu_gather
, mmu_gathers
);
33 extern pgd_t swapper_pg_dir
[PTRS_PER_PGD
];
34 extern void _stext
, _text
, _etext
, __data_start
, _end
, __init_begin
, __init_end
;
35 extern unsigned long phys_initrd_start
;
36 extern unsigned long phys_initrd_size
;
39 * The sole use of this is to pass memory configuration
40 * data from paging_init to mem_init.
42 static struct meminfo meminfo __initdata
= { 0, };
45 * empty_zero_page is a special page that is used for
46 * zero-initialized data and COW.
48 struct page
*empty_zero_page
;
52 int free
= 0, total
= 0, reserved
= 0;
53 int shared
= 0, cached
= 0, slab
= 0, node
;
55 printk("Mem-info:\n");
57 printk("Free swap: %6ldkB\n", nr_swap_pages
<<(PAGE_SHIFT
-10));
59 for_each_online_node(node
) {
60 struct page
*page
, *end
;
62 page
= NODE_MEM_MAP(node
);
63 end
= page
+ NODE_DATA(node
)->node_spanned_pages
;
67 if (PageReserved(page
))
69 else if (PageSwapCache(page
))
71 else if (PageSlab(page
))
73 else if (!page_count(page
))
76 shared
+= page_count(page
) - 1;
81 printk("%d pages of RAM\n", total
);
82 printk("%d free pages\n", free
);
83 printk("%d reserved pages\n", reserved
);
84 printk("%d slab pages\n", slab
);
85 printk("%d pages shared\n", shared
);
86 printk("%d pages swap cached\n", cached
);
95 #define O_PFN_DOWN(x) ((x) >> PAGE_SHIFT)
96 #define V_PFN_DOWN(x) O_PFN_DOWN(__pa(x))
98 #define O_PFN_UP(x) (PAGE_ALIGN(x) >> PAGE_SHIFT)
99 #define V_PFN_UP(x) O_PFN_UP(__pa(x))
101 #define PFN_SIZE(x) ((x) >> PAGE_SHIFT)
102 #define PFN_RANGE(s,e) PFN_SIZE(PAGE_ALIGN((unsigned long)(e)) - \
103 (((unsigned long)(s)) & PAGE_MASK))
106 * FIXME: We really want to avoid allocating the bootmap bitmap
107 * over the top of the initrd. Hopefully, this is located towards
108 * the start of a bank, so if we allocate the bootmap bitmap at
109 * the end, we won't clash.
111 static unsigned int __init
112 find_bootmap_pfn(int node
, struct meminfo
*mi
, unsigned int bootmap_pages
)
114 unsigned int start_pfn
, bank
, bootmap_pfn
;
116 start_pfn
= V_PFN_UP(&_end
);
119 for (bank
= 0; bank
< mi
->nr_banks
; bank
++) {
120 unsigned int start
, end
;
122 if (mi
->bank
[bank
].node
!= node
)
125 start
= O_PFN_UP(mi
->bank
[bank
].start
);
126 end
= O_PFN_DOWN(mi
->bank
[bank
].size
+
127 mi
->bank
[bank
].start
);
132 if (start
< start_pfn
)
138 if (end
- start
>= bootmap_pages
) {
144 if (bootmap_pfn
== 0)
151 * Scan the memory info structure and pull out:
152 * - the end of memory
153 * - the number of nodes
154 * - the pfn range of each node
155 * - the number of bootmem bitmap pages
157 static unsigned int __init
158 find_memend_and_nodes(struct meminfo
*mi
, struct node_info
*np
)
160 unsigned int i
, bootmem_pages
= 0, memend_pfn
= 0;
162 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
165 np
[i
].bootmap_pages
= 0;
168 for (i
= 0; i
< mi
->nr_banks
; i
++) {
169 unsigned long start
, end
;
172 if (mi
->bank
[i
].size
== 0) {
174 * Mark this bank with an invalid node number
176 mi
->bank
[i
].node
= -1;
180 node
= mi
->bank
[i
].node
;
183 * Make sure we haven't exceeded the maximum number of nodes
184 * that we have in this configuration. If we have, we're in
185 * trouble. (maybe we ought to limit, instead of bugging?)
187 if (node
>= MAX_NUMNODES
)
189 node_set_online(node
);
192 * Get the start and end pfns for this bank
194 start
= O_PFN_UP(mi
->bank
[i
].start
);
195 end
= O_PFN_DOWN(mi
->bank
[i
].start
+ mi
->bank
[i
].size
);
197 if (np
[node
].start
> start
)
198 np
[node
].start
= start
;
200 if (np
[node
].end
< end
)
203 if (memend_pfn
< end
)
208 * Calculate the number of pages we require to
209 * store the bootmem bitmaps.
211 for_each_online_node(i
) {
215 np
[i
].bootmap_pages
= bootmem_bootmap_pages(np
[i
].end
-
217 bootmem_pages
+= np
[i
].bootmap_pages
;
220 high_memory
= __va(memend_pfn
<< PAGE_SHIFT
);
223 * This doesn't seem to be used by the Linux memory
224 * manager any more. If we can get rid of it, we
225 * also get rid of some of the stuff above as well.
227 * Note: max_low_pfn and max_pfn reflect the number
228 * of _pages_ in the system, not the maximum PFN.
230 max_low_pfn
= memend_pfn
- O_PFN_DOWN(PHYS_OFFSET
);
231 max_pfn
= memend_pfn
- O_PFN_DOWN(PHYS_OFFSET
);
233 return bootmem_pages
;
236 static int __init
check_initrd(struct meminfo
*mi
)
238 int initrd_node
= -2;
239 #ifdef CONFIG_BLK_DEV_INITRD
240 unsigned long end
= phys_initrd_start
+ phys_initrd_size
;
243 * Make sure that the initrd is within a valid area of
246 if (phys_initrd_size
) {
251 for (i
= 0; i
< mi
->nr_banks
; i
++) {
252 unsigned long bank_end
;
254 bank_end
= mi
->bank
[i
].start
+ mi
->bank
[i
].size
;
256 if (mi
->bank
[i
].start
<= phys_initrd_start
&&
258 initrd_node
= mi
->bank
[i
].node
;
262 if (initrd_node
== -1) {
263 printk(KERN_ERR
"initrd (0x%08lx - 0x%08lx) extends beyond "
264 "physical memory - disabling initrd\n",
265 phys_initrd_start
, end
);
266 phys_initrd_start
= phys_initrd_size
= 0;
274 * Reserve the various regions of node 0
276 static __init
void reserve_node_zero(unsigned int bootmap_pfn
, unsigned int bootmap_pages
)
278 pg_data_t
*pgdat
= NODE_DATA(0);
279 unsigned long res_size
= 0;
282 * Register the kernel text and data with bootmem.
283 * Note that this can only be in node 0.
285 #ifdef CONFIG_XIP_KERNEL
286 reserve_bootmem_node(pgdat
, __pa(&__data_start
), &_end
- &__data_start
);
288 reserve_bootmem_node(pgdat
, __pa(&_stext
), &_end
- &_stext
);
292 * Reserve the page tables. These are already in use,
293 * and can only be in node 0.
295 reserve_bootmem_node(pgdat
, __pa(swapper_pg_dir
),
296 PTRS_PER_PGD
* sizeof(pgd_t
));
299 * And don't forget to reserve the allocator bitmap,
300 * which will be freed later.
302 reserve_bootmem_node(pgdat
, bootmap_pfn
<< PAGE_SHIFT
,
303 bootmap_pages
<< PAGE_SHIFT
);
306 * Hmm... This should go elsewhere, but we really really need to
307 * stop things allocating the low memory; ideally we need a better
308 * implementation of GFP_DMA which does not assume that DMA-able
309 * memory starts at zero.
311 if (machine_is_integrator() || machine_is_cintegrator())
312 res_size
= __pa(swapper_pg_dir
) - PHYS_OFFSET
;
315 * These should likewise go elsewhere. They pre-reserve the
316 * screen memory region at the start of main system memory.
318 if (machine_is_edb7211())
319 res_size
= 0x00020000;
320 if (machine_is_p720t())
321 res_size
= 0x00014000;
325 * Because of the SA1111 DMA bug, we want to preserve our
326 * precious DMA-able memory...
328 res_size
= __pa(swapper_pg_dir
) - PHYS_OFFSET
;
331 reserve_bootmem_node(pgdat
, PHYS_OFFSET
, res_size
);
335 * Register all available RAM in this node with the bootmem allocator.
337 static inline void free_bootmem_node_bank(int node
, struct meminfo
*mi
)
339 pg_data_t
*pgdat
= NODE_DATA(node
);
342 for (bank
= 0; bank
< mi
->nr_banks
; bank
++)
343 if (mi
->bank
[bank
].node
== node
)
344 free_bootmem_node(pgdat
, mi
->bank
[bank
].start
,
345 mi
->bank
[bank
].size
);
349 * Initialise the bootmem allocator for all nodes. This is called
350 * early during the architecture specific initialisation.
352 static void __init
bootmem_init(struct meminfo
*mi
)
354 struct node_info node_info
[MAX_NUMNODES
], *np
= node_info
;
355 unsigned int bootmap_pages
, bootmap_pfn
, map_pg
;
356 int node
, initrd_node
;
358 bootmap_pages
= find_memend_and_nodes(mi
, np
);
359 bootmap_pfn
= find_bootmap_pfn(0, mi
, bootmap_pages
);
360 initrd_node
= check_initrd(mi
);
362 map_pg
= bootmap_pfn
;
365 * Initialise the bootmem nodes.
367 * What we really want to do is:
369 * unmap_all_regions_except_kernel();
370 * for_each_node_in_reverse_order(node) {
372 * allocate_bootmem_map(node);
373 * init_bootmem_node(node);
374 * free_bootmem_node(node);
377 * but this is a 2.5-type change. For now, we just set
378 * the nodes up in reverse order.
380 * (we could also do with rolling bootmem_init and paging_init
381 * into one generic "memory_init" type function).
383 np
+= num_online_nodes() - 1;
384 for (node
= num_online_nodes() - 1; node
>= 0; node
--, np
--) {
386 * If there are no pages in this node, ignore it.
387 * Note that node 0 must always have some pages.
389 if (np
->end
== 0 || !node_online(node
)) {
396 * Initialise the bootmem allocator.
398 init_bootmem_node(NODE_DATA(node
), map_pg
, np
->start
, np
->end
);
399 free_bootmem_node_bank(node
, mi
);
400 map_pg
+= np
->bootmap_pages
;
403 * If this is node 0, we need to reserve some areas ASAP -
404 * we may use bootmem on node 0 to setup the other nodes.
407 reserve_node_zero(bootmap_pfn
, bootmap_pages
);
411 #ifdef CONFIG_BLK_DEV_INITRD
412 if (phys_initrd_size
&& initrd_node
>= 0) {
413 reserve_bootmem_node(NODE_DATA(initrd_node
), phys_initrd_start
,
415 initrd_start
= __phys_to_virt(phys_initrd_start
);
416 initrd_end
= initrd_start
+ phys_initrd_size
;
420 BUG_ON(map_pg
!= bootmap_pfn
+ bootmap_pages
);
424 * paging_init() sets up the page tables, initialises the zone memory
425 * maps, and sets up the zero page, bad page and bad page tables.
427 void __init
paging_init(struct meminfo
*mi
, struct machine_desc
*mdesc
)
434 memcpy(&meminfo
, mi
, sizeof(meminfo
));
437 * allocate the zero page. Note that we count on this going ok.
439 zero_page
= alloc_bootmem_low_pages(PAGE_SIZE
);
442 * initialise the page tables.
450 * initialise the zones within each node
452 for_each_online_node(node
) {
453 unsigned long zone_size
[MAX_NR_ZONES
];
454 unsigned long zhole_size
[MAX_NR_ZONES
];
455 struct bootmem_data
*bdata
;
460 * Initialise the zone size information.
462 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
467 pgdat
= NODE_DATA(node
);
468 bdata
= pgdat
->bdata
;
471 * The size of this node has already been determined.
472 * If we need to do anything fancy with the allocation
473 * of this memory to the zones, now is the time to do
476 zone_size
[0] = bdata
->node_low_pfn
-
477 (bdata
->node_boot_start
>> PAGE_SHIFT
);
480 * If this zone has zero size, skip it.
486 * For each bank in this node, calculate the size of the
487 * holes. holes = node_size - sum(bank_sizes_in_node)
489 zhole_size
[0] = zone_size
[0];
490 for (i
= 0; i
< mi
->nr_banks
; i
++) {
491 if (mi
->bank
[i
].node
!= node
)
494 zhole_size
[0] -= mi
->bank
[i
].size
>> PAGE_SHIFT
;
498 * Adjust the sizes according to any special
499 * requirements for this machine type.
501 arch_adjust_zones(node
, zone_size
, zhole_size
);
503 free_area_init_node(node
, pgdat
, zone_size
,
504 bdata
->node_boot_start
>> PAGE_SHIFT
, zhole_size
);
508 * finish off the bad pages once
509 * the mem_map is initialised
511 memzero(zero_page
, PAGE_SIZE
);
512 empty_zero_page
= virt_to_page(zero_page
);
513 flush_dcache_page(empty_zero_page
);
516 static inline void free_area(unsigned long addr
, unsigned long end
, char *s
)
518 unsigned int size
= (end
- addr
) >> 10;
520 for (; addr
< end
; addr
+= PAGE_SIZE
) {
521 struct page
*page
= virt_to_page(addr
);
522 ClearPageReserved(page
);
523 set_page_count(page
, 1);
529 printk(KERN_INFO
"Freeing %s memory: %dK\n", s
, size
);
533 * mem_init() marks the free areas in the mem_map and tells us how much
534 * memory is free. This is done after various parts of the system have
535 * claimed their memory after the kernel image.
537 void __init
mem_init(void)
539 unsigned int codepages
, datapages
, initpages
;
542 codepages
= &_etext
- &_text
;
543 datapages
= &_end
- &__data_start
;
544 initpages
= &__init_end
- &__init_begin
;
546 #ifndef CONFIG_DISCONTIGMEM
547 max_mapnr
= virt_to_page(high_memory
) - mem_map
;
551 * We may have non-contiguous memory.
553 if (meminfo
.nr_banks
!= 1)
554 create_memmap_holes(&meminfo
);
556 /* this will put all unused low memory onto the freelists */
557 for_each_online_node(node
) {
558 pg_data_t
*pgdat
= NODE_DATA(node
);
560 if (pgdat
->node_spanned_pages
!= 0)
561 totalram_pages
+= free_all_bootmem_node(pgdat
);
565 /* now that our DMA memory is actually so designated, we can free it */
566 free_area(PAGE_OFFSET
, (unsigned long)swapper_pg_dir
, NULL
);
570 * Since our memory may not be contiguous, calculate the
571 * real number of pages we have in this system
573 printk(KERN_INFO
"Memory:");
576 for (i
= 0; i
< meminfo
.nr_banks
; i
++) {
577 num_physpages
+= meminfo
.bank
[i
].size
>> PAGE_SHIFT
;
578 printk(" %ldMB", meminfo
.bank
[i
].size
>> 20);
581 printk(" = %luMB total\n", num_physpages
>> (20 - PAGE_SHIFT
));
582 printk(KERN_NOTICE
"Memory: %luKB available (%dK code, "
583 "%dK data, %dK init)\n",
584 (unsigned long) nr_free_pages() << (PAGE_SHIFT
-10),
585 codepages
>> 10, datapages
>> 10, initpages
>> 10);
587 if (PAGE_SIZE
>= 16384 && num_physpages
<= 128) {
588 extern int sysctl_overcommit_memory
;
590 * On a machine this small we won't get
591 * anywhere without overcommit, so turn
594 sysctl_overcommit_memory
= OVERCOMMIT_ALWAYS
;
598 void free_initmem(void)
600 if (!machine_is_integrator() && !machine_is_cintegrator()) {
601 free_area((unsigned long)(&__init_begin
),
602 (unsigned long)(&__init_end
),
607 #ifdef CONFIG_BLK_DEV_INITRD
609 static int keep_initrd
;
611 void free_initrd_mem(unsigned long start
, unsigned long end
)
614 free_area(start
, end
, "initrd");
617 static int __init
keepinitrd_setup(char *__unused
)
623 __setup("keepinitrd", keepinitrd_setup
);