2 * Kernel Probes (KProbes)
3 * arch/i386/kernel/kprobes.c
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 * Copyright (C) IBM Corporation, 2002, 2004
21 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22 * Probes initial implementation ( includes contributions from
24 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
25 * interface to access function arguments.
28 #include <linux/config.h>
29 #include <linux/kprobes.h>
30 #include <linux/ptrace.h>
31 #include <linux/spinlock.h>
32 #include <linux/preempt.h>
33 #include <asm/kdebug.h>
36 /* kprobe_status settings */
37 #define KPROBE_HIT_ACTIVE 0x00000001
38 #define KPROBE_HIT_SS 0x00000002
40 static struct kprobe
*current_kprobe
;
41 static unsigned long kprobe_status
, kprobe_old_eflags
, kprobe_saved_eflags
;
42 static struct pt_regs jprobe_saved_regs
;
43 static long *jprobe_saved_esp
;
44 /* copy of the kernel stack at the probe fire time */
45 static kprobe_opcode_t jprobes_stack
[MAX_STACK_SIZE
];
46 void jprobe_return_end(void);
49 * returns non-zero if opcode modifies the interrupt flag.
51 static inline int is_IF_modifier(kprobe_opcode_t opcode
)
56 case 0xcf: /* iret/iretd */
57 case 0x9d: /* popf/popfd */
63 int arch_prepare_kprobe(struct kprobe
*p
)
68 void arch_copy_kprobe(struct kprobe
*p
)
70 memcpy(p
->ainsn
.insn
, p
->addr
, MAX_INSN_SIZE
* sizeof(kprobe_opcode_t
));
73 void arch_remove_kprobe(struct kprobe
*p
)
77 static inline void disarm_kprobe(struct kprobe
*p
, struct pt_regs
*regs
)
80 regs
->eip
= (unsigned long)p
->addr
;
83 static inline void prepare_singlestep(struct kprobe
*p
, struct pt_regs
*regs
)
85 regs
->eflags
|= TF_MASK
;
86 regs
->eflags
&= ~IF_MASK
;
87 /*single step inline if the instruction is an int3*/
88 if (p
->opcode
== BREAKPOINT_INSTRUCTION
)
89 regs
->eip
= (unsigned long)p
->addr
;
91 regs
->eip
= (unsigned long)&p
->ainsn
.insn
;
95 * Interrupts are disabled on entry as trap3 is an interrupt gate and they
96 * remain disabled thorough out this function.
98 static int kprobe_handler(struct pt_regs
*regs
)
102 kprobe_opcode_t
*addr
= NULL
;
105 /* We're in an interrupt, but this is clear and BUG()-safe. */
107 /* Check if the application is using LDT entry for its code segment and
108 * calculate the address by reading the base address from the LDT entry.
110 if ((regs
->xcs
& 4) && (current
->mm
)) {
111 lp
= (unsigned long *) ((unsigned long)((regs
->xcs
>> 3) * 8)
112 + (char *) current
->mm
->context
.ldt
);
113 addr
= (kprobe_opcode_t
*) (get_desc_base(lp
) + regs
->eip
-
114 sizeof(kprobe_opcode_t
));
116 addr
= (kprobe_opcode_t
*)(regs
->eip
- sizeof(kprobe_opcode_t
));
118 /* Check we're not actually recursing */
119 if (kprobe_running()) {
120 /* We *are* holding lock here, so this is safe.
121 Disarm the probe we just hit, and ignore it. */
122 p
= get_kprobe(addr
);
124 if (kprobe_status
== KPROBE_HIT_SS
) {
125 regs
->eflags
&= ~TF_MASK
;
126 regs
->eflags
|= kprobe_saved_eflags
;
130 disarm_kprobe(p
, regs
);
134 if (p
->break_handler
&& p
->break_handler(p
, regs
)) {
138 /* If it's not ours, can't be delete race, (we hold lock). */
143 p
= get_kprobe(addr
);
146 if (regs
->eflags
& VM_MASK
) {
147 /* We are in virtual-8086 mode. Return 0 */
151 if (*addr
!= BREAKPOINT_INSTRUCTION
) {
153 * The breakpoint instruction was removed right
154 * after we hit it. Another cpu has removed
155 * either a probepoint or a debugger breakpoint
156 * at this address. In either case, no further
157 * handling of this interrupt is appropriate.
161 /* Not one of ours: let kernel handle it */
165 kprobe_status
= KPROBE_HIT_ACTIVE
;
167 kprobe_saved_eflags
= kprobe_old_eflags
168 = (regs
->eflags
& (TF_MASK
| IF_MASK
));
169 if (is_IF_modifier(p
->opcode
))
170 kprobe_saved_eflags
&= ~IF_MASK
;
172 if (p
->pre_handler
&& p
->pre_handler(p
, regs
))
173 /* handler has already set things up, so skip ss setup */
177 prepare_singlestep(p
, regs
);
178 kprobe_status
= KPROBE_HIT_SS
;
182 preempt_enable_no_resched();
187 * Called after single-stepping. p->addr is the address of the
188 * instruction whose first byte has been replaced by the "int 3"
189 * instruction. To avoid the SMP problems that can occur when we
190 * temporarily put back the original opcode to single-step, we
191 * single-stepped a copy of the instruction. The address of this
192 * copy is p->ainsn.insn.
194 * This function prepares to return from the post-single-step
195 * interrupt. We have to fix up the stack as follows:
197 * 0) Except in the case of absolute or indirect jump or call instructions,
198 * the new eip is relative to the copied instruction. We need to make
199 * it relative to the original instruction.
201 * 1) If the single-stepped instruction was pushfl, then the TF and IF
202 * flags are set in the just-pushed eflags, and may need to be cleared.
204 * 2) If the single-stepped instruction was a call, the return address
205 * that is atop the stack is the address following the copied instruction.
206 * We need to make it the address following the original instruction.
208 static void resume_execution(struct kprobe
*p
, struct pt_regs
*regs
)
210 unsigned long *tos
= (unsigned long *)®s
->esp
;
211 unsigned long next_eip
= 0;
212 unsigned long copy_eip
= (unsigned long)&p
->ainsn
.insn
;
213 unsigned long orig_eip
= (unsigned long)p
->addr
;
215 switch (p
->ainsn
.insn
[0]) {
216 case 0x9c: /* pushfl */
217 *tos
&= ~(TF_MASK
| IF_MASK
);
218 *tos
|= kprobe_old_eflags
;
220 case 0xc3: /* ret/lret */
224 regs
->eflags
&= ~TF_MASK
;
225 /* eip is already adjusted, no more changes required*/
227 case 0xe8: /* call relative - Fix return addr */
228 *tos
= orig_eip
+ (*tos
- copy_eip
);
231 if ((p
->ainsn
.insn
[1] & 0x30) == 0x10) {
232 /* call absolute, indirect */
233 /* Fix return addr; eip is correct. */
234 next_eip
= regs
->eip
;
235 *tos
= orig_eip
+ (*tos
- copy_eip
);
236 } else if (((p
->ainsn
.insn
[1] & 0x31) == 0x20) || /* jmp near, absolute indirect */
237 ((p
->ainsn
.insn
[1] & 0x31) == 0x21)) { /* jmp far, absolute indirect */
238 /* eip is correct. */
239 next_eip
= regs
->eip
;
242 case 0xea: /* jmp absolute -- eip is correct */
243 next_eip
= regs
->eip
;
249 regs
->eflags
&= ~TF_MASK
;
251 regs
->eip
= next_eip
;
253 regs
->eip
= orig_eip
+ (regs
->eip
- copy_eip
);
258 * Interrupts are disabled on entry as trap1 is an interrupt gate and they
259 * remain disabled thoroughout this function. And we hold kprobe lock.
261 static inline int post_kprobe_handler(struct pt_regs
*regs
)
263 if (!kprobe_running())
266 if (current_kprobe
->post_handler
)
267 current_kprobe
->post_handler(current_kprobe
, regs
, 0);
269 resume_execution(current_kprobe
, regs
);
270 regs
->eflags
|= kprobe_saved_eflags
;
273 preempt_enable_no_resched();
276 * if somebody else is singlestepping across a probe point, eflags
277 * will have TF set, in which case, continue the remaining processing
278 * of do_debug, as if this is not a probe hit.
280 if (regs
->eflags
& TF_MASK
)
286 /* Interrupts disabled, kprobe_lock held. */
287 static inline int kprobe_fault_handler(struct pt_regs
*regs
, int trapnr
)
289 if (current_kprobe
->fault_handler
290 && current_kprobe
->fault_handler(current_kprobe
, regs
, trapnr
))
293 if (kprobe_status
& KPROBE_HIT_SS
) {
294 resume_execution(current_kprobe
, regs
);
295 regs
->eflags
|= kprobe_old_eflags
;
298 preempt_enable_no_resched();
304 * Wrapper routine to for handling exceptions.
306 int kprobe_exceptions_notify(struct notifier_block
*self
, unsigned long val
,
309 struct die_args
*args
= (struct die_args
*)data
;
312 if (kprobe_handler(args
->regs
))
316 if (post_kprobe_handler(args
->regs
))
320 if (kprobe_running() &&
321 kprobe_fault_handler(args
->regs
, args
->trapnr
))
325 if (kprobe_running() &&
326 kprobe_fault_handler(args
->regs
, args
->trapnr
))
335 int setjmp_pre_handler(struct kprobe
*p
, struct pt_regs
*regs
)
337 struct jprobe
*jp
= container_of(p
, struct jprobe
, kp
);
340 jprobe_saved_regs
= *regs
;
341 jprobe_saved_esp
= ®s
->esp
;
342 addr
= (unsigned long)jprobe_saved_esp
;
345 * TBD: As Linus pointed out, gcc assumes that the callee
346 * owns the argument space and could overwrite it, e.g.
347 * tailcall optimization. So, to be absolutely safe
348 * we also save and restore enough stack bytes to cover
351 memcpy(jprobes_stack
, (kprobe_opcode_t
*) addr
, MIN_STACK_SIZE(addr
));
352 regs
->eflags
&= ~IF_MASK
;
353 regs
->eip
= (unsigned long)(jp
->entry
);
357 void jprobe_return(void)
359 preempt_enable_no_resched();
360 asm volatile (" xchgl %%ebx,%%esp \n"
362 " .globl jprobe_return_end \n"
363 " jprobe_return_end: \n"
365 (jprobe_saved_esp
):"memory");
368 int longjmp_break_handler(struct kprobe
*p
, struct pt_regs
*regs
)
370 u8
*addr
= (u8
*) (regs
->eip
- 1);
371 unsigned long stack_addr
= (unsigned long)jprobe_saved_esp
;
372 struct jprobe
*jp
= container_of(p
, struct jprobe
, kp
);
374 if ((addr
> (u8
*) jprobe_return
) && (addr
< (u8
*) jprobe_return_end
)) {
375 if (®s
->esp
!= jprobe_saved_esp
) {
376 struct pt_regs
*saved_regs
=
377 container_of(jprobe_saved_esp
, struct pt_regs
, esp
);
378 printk("current esp %p does not match saved esp %p\n",
379 ®s
->esp
, jprobe_saved_esp
);
380 printk("Saved registers for jprobe %p\n", jp
);
381 show_registers(saved_regs
);
382 printk("Current registers\n");
383 show_registers(regs
);
386 *regs
= jprobe_saved_regs
;
387 memcpy((kprobe_opcode_t
*) stack_addr
, jprobes_stack
,
388 MIN_STACK_SIZE(stack_addr
));