2 * Intel SMP support routines.
4 * (c) 1995 Alan Cox, Building #3 <alan@redhat.com>
5 * (c) 1998-99, 2000 Ingo Molnar <mingo@redhat.com>
7 * This code is released under the GNU General Public License version 2 or
11 #include <linux/init.h>
14 #include <linux/irq.h>
15 #include <linux/delay.h>
16 #include <linux/spinlock.h>
17 #include <linux/smp_lock.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/mc146818rtc.h>
20 #include <linux/cache.h>
21 #include <linux/interrupt.h>
24 #include <asm/tlbflush.h>
25 #include <mach_apic.h>
28 * Some notes on x86 processor bugs affecting SMP operation:
30 * Pentium, Pentium Pro, II, III (and all CPUs) have bugs.
31 * The Linux implications for SMP are handled as follows:
33 * Pentium III / [Xeon]
34 * None of the E1AP-E3AP errata are visible to the user.
41 * None of the A1AP-A3AP errata are visible to the user.
48 * None of 1AP-9AP errata are visible to the normal user,
49 * except occasional delivery of 'spurious interrupt' as trap #15.
50 * This is very rare and a non-problem.
52 * 1AP. Linux maps APIC as non-cacheable
53 * 2AP. worked around in hardware
54 * 3AP. fixed in C0 and above steppings microcode update.
55 * Linux does not use excessive STARTUP_IPIs.
56 * 4AP. worked around in hardware
57 * 5AP. symmetric IO mode (normal Linux operation) not affected.
58 * 'noapic' mode has vector 0xf filled out properly.
59 * 6AP. 'noapic' mode might be affected - fixed in later steppings
60 * 7AP. We do not assume writes to the LVT deassering IRQs
61 * 8AP. We do not enable low power mode (deep sleep) during MP bootup
62 * 9AP. We do not use mixed mode
65 * There is a marginal case where REP MOVS on 100MHz SMP
66 * machines with B stepping processors can fail. XXX should provide
67 * an L1cache=Writethrough or L1cache=off option.
69 * B stepping CPUs may hang. There are hardware work arounds
70 * for this. We warn about it in case your board doesn't have the work
71 * arounds. Basically thats so I can tell anyone with a B stepping
72 * CPU and SMP problems "tough".
74 * Specific items [From Pentium Processor Specification Update]
76 * 1AP. Linux doesn't use remote read
77 * 2AP. Linux doesn't trust APIC errors
78 * 3AP. We work around this
79 * 4AP. Linux never generated 3 interrupts of the same priority
80 * to cause a lost local interrupt.
81 * 5AP. Remote read is never used
82 * 6AP. not affected - worked around in hardware
83 * 7AP. not affected - worked around in hardware
84 * 8AP. worked around in hardware - we get explicit CS errors if not
85 * 9AP. only 'noapic' mode affected. Might generate spurious
86 * interrupts, we log only the first one and count the
88 * 10AP. not affected - worked around in hardware
89 * 11AP. Linux reads the APIC between writes to avoid this, as per
90 * the documentation. Make sure you preserve this as it affects
91 * the C stepping chips too.
92 * 12AP. not affected - worked around in hardware
93 * 13AP. not affected - worked around in hardware
94 * 14AP. we always deassert INIT during bootup
95 * 15AP. not affected - worked around in hardware
96 * 16AP. not affected - worked around in hardware
97 * 17AP. not affected - worked around in hardware
98 * 18AP. not affected - worked around in hardware
99 * 19AP. not affected - worked around in BIOS
101 * If this sounds worrying believe me these bugs are either ___RARE___,
102 * or are signal timing bugs worked around in hardware and there's
103 * about nothing of note with C stepping upwards.
106 DEFINE_PER_CPU(struct tlb_state
, cpu_tlbstate
) ____cacheline_aligned
= { &init_mm
, 0, };
109 * the following functions deal with sending IPIs between CPUs.
111 * We use 'broadcast', CPU->CPU IPIs and self-IPIs too.
114 static inline int __prepare_ICR (unsigned int shortcut
, int vector
)
116 return APIC_DM_FIXED
| shortcut
| vector
| APIC_DEST_LOGICAL
;
119 static inline int __prepare_ICR2 (unsigned int mask
)
121 return SET_APIC_DEST_FIELD(mask
);
124 void __send_IPI_shortcut(unsigned int shortcut
, int vector
)
127 * Subtle. In the case of the 'never do double writes' workaround
128 * we have to lock out interrupts to be safe. As we don't care
129 * of the value read we use an atomic rmw access to avoid costly
130 * cli/sti. Otherwise we use an even cheaper single atomic write
138 apic_wait_icr_idle();
141 * No need to touch the target chip field
143 cfg
= __prepare_ICR(shortcut
, vector
);
146 * Send the IPI. The write to APIC_ICR fires this off.
148 apic_write_around(APIC_ICR
, cfg
);
151 void fastcall
send_IPI_self(int vector
)
153 __send_IPI_shortcut(APIC_DEST_SELF
, vector
);
157 * This is only used on smaller machines.
159 void send_IPI_mask_bitmask(cpumask_t cpumask
, int vector
)
161 unsigned long mask
= cpus_addr(cpumask
)[0];
165 local_irq_save(flags
);
170 apic_wait_icr_idle();
173 * prepare target chip field
175 cfg
= __prepare_ICR2(mask
);
176 apic_write_around(APIC_ICR2
, cfg
);
181 cfg
= __prepare_ICR(0, vector
);
184 * Send the IPI. The write to APIC_ICR fires this off.
186 apic_write_around(APIC_ICR
, cfg
);
188 local_irq_restore(flags
);
191 void send_IPI_mask_sequence(cpumask_t mask
, int vector
)
193 unsigned long cfg
, flags
;
194 unsigned int query_cpu
;
197 * Hack. The clustered APIC addressing mode doesn't allow us to send
198 * to an arbitrary mask, so I do a unicasts to each CPU instead. This
199 * should be modified to do 1 message per cluster ID - mbligh
202 local_irq_save(flags
);
204 for (query_cpu
= 0; query_cpu
< NR_CPUS
; ++query_cpu
) {
205 if (cpu_isset(query_cpu
, mask
)) {
210 apic_wait_icr_idle();
213 * prepare target chip field
215 cfg
= __prepare_ICR2(cpu_to_logical_apicid(query_cpu
));
216 apic_write_around(APIC_ICR2
, cfg
);
221 cfg
= __prepare_ICR(0, vector
);
224 * Send the IPI. The write to APIC_ICR fires this off.
226 apic_write_around(APIC_ICR
, cfg
);
229 local_irq_restore(flags
);
232 #include <mach_ipi.h> /* must come after the send_IPI functions above for inlining */
235 * Smarter SMP flushing macros.
236 * c/o Linus Torvalds.
238 * These mean you can really definitely utterly forget about
239 * writing to user space from interrupts. (Its not allowed anyway).
241 * Optimizations Manfred Spraul <manfred@colorfullife.com>
244 static cpumask_t flush_cpumask
;
245 static struct mm_struct
* flush_mm
;
246 static unsigned long flush_va
;
247 static DEFINE_SPINLOCK(tlbstate_lock
);
248 #define FLUSH_ALL 0xffffffff
251 * We cannot call mmdrop() because we are in interrupt context,
252 * instead update mm->cpu_vm_mask.
254 * We need to reload %cr3 since the page tables may be going
255 * away from under us..
257 static inline void leave_mm (unsigned long cpu
)
259 if (per_cpu(cpu_tlbstate
, cpu
).state
== TLBSTATE_OK
)
261 cpu_clear(cpu
, per_cpu(cpu_tlbstate
, cpu
).active_mm
->cpu_vm_mask
);
262 load_cr3(swapper_pg_dir
);
267 * The flush IPI assumes that a thread switch happens in this order:
268 * [cpu0: the cpu that switches]
269 * 1) switch_mm() either 1a) or 1b)
270 * 1a) thread switch to a different mm
271 * 1a1) cpu_clear(cpu, old_mm->cpu_vm_mask);
272 * Stop ipi delivery for the old mm. This is not synchronized with
273 * the other cpus, but smp_invalidate_interrupt ignore flush ipis
274 * for the wrong mm, and in the worst case we perform a superflous
276 * 1a2) set cpu_tlbstate to TLBSTATE_OK
277 * Now the smp_invalidate_interrupt won't call leave_mm if cpu0
278 * was in lazy tlb mode.
279 * 1a3) update cpu_tlbstate[].active_mm
280 * Now cpu0 accepts tlb flushes for the new mm.
281 * 1a4) cpu_set(cpu, new_mm->cpu_vm_mask);
282 * Now the other cpus will send tlb flush ipis.
284 * 1b) thread switch without mm change
285 * cpu_tlbstate[].active_mm is correct, cpu0 already handles
287 * 1b1) set cpu_tlbstate to TLBSTATE_OK
288 * 1b2) test_and_set the cpu bit in cpu_vm_mask.
289 * Atomically set the bit [other cpus will start sending flush ipis],
291 * 1b3) if the bit was 0: leave_mm was called, flush the tlb.
292 * 2) switch %%esp, ie current
294 * The interrupt must handle 2 special cases:
295 * - cr3 is changed before %%esp, ie. it cannot use current->{active_,}mm.
296 * - the cpu performs speculative tlb reads, i.e. even if the cpu only
297 * runs in kernel space, the cpu could load tlb entries for user space
300 * The good news is that cpu_tlbstate is local to each cpu, no
301 * write/read ordering problems.
307 * 1) Flush the tlb entries if the cpu uses the mm that's being flushed.
308 * 2) Leave the mm if we are in the lazy tlb mode.
311 fastcall
void smp_invalidate_interrupt(struct pt_regs
*regs
)
317 if (!cpu_isset(cpu
, flush_cpumask
))
320 * This was a BUG() but until someone can quote me the
321 * line from the intel manual that guarantees an IPI to
322 * multiple CPUs is retried _only_ on the erroring CPUs
323 * its staying as a return
328 if (flush_mm
== per_cpu(cpu_tlbstate
, cpu
).active_mm
) {
329 if (per_cpu(cpu_tlbstate
, cpu
).state
== TLBSTATE_OK
) {
330 if (flush_va
== FLUSH_ALL
)
333 __flush_tlb_one(flush_va
);
338 smp_mb__before_clear_bit();
339 cpu_clear(cpu
, flush_cpumask
);
340 smp_mb__after_clear_bit();
342 put_cpu_no_resched();
345 static void flush_tlb_others(cpumask_t cpumask
, struct mm_struct
*mm
,
350 * A couple of (to be removed) sanity checks:
352 * - we do not send IPIs to not-yet booted CPUs.
353 * - current CPU must not be in mask
354 * - mask must exist :)
356 BUG_ON(cpus_empty(cpumask
));
358 cpus_and(tmp
, cpumask
, cpu_online_map
);
359 BUG_ON(!cpus_equal(cpumask
, tmp
));
360 BUG_ON(cpu_isset(smp_processor_id(), cpumask
));
364 * i'm not happy about this global shared spinlock in the
365 * MM hot path, but we'll see how contended it is.
366 * Temporarily this turns IRQs off, so that lockups are
367 * detected by the NMI watchdog.
369 spin_lock(&tlbstate_lock
);
373 #if NR_CPUS <= BITS_PER_LONG
374 atomic_set_mask(cpumask
, &flush_cpumask
);
378 unsigned long *flush_mask
= (unsigned long *)&flush_cpumask
;
379 unsigned long *cpu_mask
= (unsigned long *)&cpumask
;
380 for (k
= 0; k
< BITS_TO_LONGS(NR_CPUS
); ++k
)
381 atomic_set_mask(cpu_mask
[k
], &flush_mask
[k
]);
385 * We have to send the IPI only to
388 send_IPI_mask(cpumask
, INVALIDATE_TLB_VECTOR
);
390 while (!cpus_empty(flush_cpumask
))
391 /* nothing. lockup detection does not belong here */
396 spin_unlock(&tlbstate_lock
);
399 void flush_tlb_current_task(void)
401 struct mm_struct
*mm
= current
->mm
;
405 cpu_mask
= mm
->cpu_vm_mask
;
406 cpu_clear(smp_processor_id(), cpu_mask
);
409 if (!cpus_empty(cpu_mask
))
410 flush_tlb_others(cpu_mask
, mm
, FLUSH_ALL
);
414 void flush_tlb_mm (struct mm_struct
* mm
)
419 cpu_mask
= mm
->cpu_vm_mask
;
420 cpu_clear(smp_processor_id(), cpu_mask
);
422 if (current
->active_mm
== mm
) {
426 leave_mm(smp_processor_id());
428 if (!cpus_empty(cpu_mask
))
429 flush_tlb_others(cpu_mask
, mm
, FLUSH_ALL
);
434 void flush_tlb_page(struct vm_area_struct
* vma
, unsigned long va
)
436 struct mm_struct
*mm
= vma
->vm_mm
;
440 cpu_mask
= mm
->cpu_vm_mask
;
441 cpu_clear(smp_processor_id(), cpu_mask
);
443 if (current
->active_mm
== mm
) {
447 leave_mm(smp_processor_id());
450 if (!cpus_empty(cpu_mask
))
451 flush_tlb_others(cpu_mask
, mm
, va
);
456 static void do_flush_tlb_all(void* info
)
458 unsigned long cpu
= smp_processor_id();
461 if (per_cpu(cpu_tlbstate
, cpu
).state
== TLBSTATE_LAZY
)
465 void flush_tlb_all(void)
467 on_each_cpu(do_flush_tlb_all
, NULL
, 1, 1);
471 * this function sends a 'reschedule' IPI to another CPU.
472 * it goes straight through and wastes no time serializing
473 * anything. Worst case is that we lose a reschedule ...
475 void smp_send_reschedule(int cpu
)
477 send_IPI_mask(cpumask_of_cpu(cpu
), RESCHEDULE_VECTOR
);
481 * Structure and data for smp_call_function(). This is designed to minimise
482 * static memory requirements. It also looks cleaner.
484 static DEFINE_SPINLOCK(call_lock
);
486 struct call_data_struct
{
487 void (*func
) (void *info
);
494 static struct call_data_struct
* call_data
;
497 * this function sends a 'generic call function' IPI to all other CPUs
501 int smp_call_function (void (*func
) (void *info
), void *info
, int nonatomic
,
504 * [SUMMARY] Run a function on all other CPUs.
505 * <func> The function to run. This must be fast and non-blocking.
506 * <info> An arbitrary pointer to pass to the function.
507 * <nonatomic> currently unused.
508 * <wait> If true, wait (atomically) until function has completed on other CPUs.
509 * [RETURNS] 0 on success, else a negative status code. Does not return until
510 * remote CPUs are nearly ready to execute <<func>> or are or have executed.
512 * You must not call this function with disabled interrupts or from a
513 * hardware interrupt handler or from a bottom half handler.
516 struct call_data_struct data
;
517 int cpus
= num_online_cpus()-1;
522 /* Can deadlock when called with interrupts disabled */
523 WARN_ON(irqs_disabled());
527 atomic_set(&data
.started
, 0);
530 atomic_set(&data
.finished
, 0);
532 spin_lock(&call_lock
);
536 /* Send a message to all other CPUs and wait for them to respond */
537 send_IPI_allbutself(CALL_FUNCTION_VECTOR
);
539 /* Wait for response */
540 while (atomic_read(&data
.started
) != cpus
)
544 while (atomic_read(&data
.finished
) != cpus
)
546 spin_unlock(&call_lock
);
551 static void stop_this_cpu (void * dummy
)
556 cpu_clear(smp_processor_id(), cpu_online_map
);
558 disable_local_APIC();
559 if (cpu_data
[smp_processor_id()].hlt_works_ok
)
560 for(;;) __asm__("hlt");
565 * this function calls the 'stop' function on all other CPUs in the system.
568 void smp_send_stop(void)
570 smp_call_function(stop_this_cpu
, NULL
, 1, 0);
573 disable_local_APIC();
578 * Reschedule call back. Nothing to do,
579 * all the work is done automatically when
580 * we return from the interrupt.
582 fastcall
void smp_reschedule_interrupt(struct pt_regs
*regs
)
587 fastcall
void smp_call_function_interrupt(struct pt_regs
*regs
)
589 void (*func
) (void *info
) = call_data
->func
;
590 void *info
= call_data
->info
;
591 int wait
= call_data
->wait
;
595 * Notify initiating CPU that I've grabbed the data and am
596 * about to execute the function
599 atomic_inc(&call_data
->started
);
601 * At this point the info structure may be out of scope unless wait==1
609 atomic_inc(&call_data
->finished
);