2 * This file implements the perfmon-2 subsystem which is used
3 * to program the IA-64 Performance Monitoring Unit (PMU).
5 * The initial version of perfmon.c was written by
6 * Ganesh Venkitachalam, IBM Corp.
8 * Then it was modified for perfmon-1.x by Stephane Eranian and
9 * David Mosberger, Hewlett Packard Co.
11 * Version Perfmon-2.x is a rewrite of perfmon-1.x
12 * by Stephane Eranian, Hewlett Packard Co.
14 * Copyright (C) 1999-2003, 2005 Hewlett Packard Co
15 * Stephane Eranian <eranian@hpl.hp.com>
16 * David Mosberger-Tang <davidm@hpl.hp.com>
18 * More information about perfmon available at:
19 * http://www.hpl.hp.com/research/linux/perfmon
22 #include <linux/config.h>
23 #include <linux/module.h>
24 #include <linux/kernel.h>
25 #include <linux/sched.h>
26 #include <linux/interrupt.h>
27 #include <linux/smp_lock.h>
28 #include <linux/proc_fs.h>
29 #include <linux/seq_file.h>
30 #include <linux/init.h>
31 #include <linux/vmalloc.h>
33 #include <linux/sysctl.h>
34 #include <linux/list.h>
35 #include <linux/file.h>
36 #include <linux/poll.h>
37 #include <linux/vfs.h>
38 #include <linux/pagemap.h>
39 #include <linux/mount.h>
40 #include <linux/version.h>
41 #include <linux/bitops.h>
43 #include <asm/errno.h>
44 #include <asm/intrinsics.h>
46 #include <asm/perfmon.h>
47 #include <asm/processor.h>
48 #include <asm/signal.h>
49 #include <asm/system.h>
50 #include <asm/uaccess.h>
51 #include <asm/delay.h>
55 * perfmon context state
57 #define PFM_CTX_UNLOADED 1 /* context is not loaded onto any task */
58 #define PFM_CTX_LOADED 2 /* context is loaded onto a task */
59 #define PFM_CTX_MASKED 3 /* context is loaded but monitoring is masked due to overflow */
60 #define PFM_CTX_ZOMBIE 4 /* owner of the context is closing it */
62 #define PFM_INVALID_ACTIVATION (~0UL)
65 * depth of message queue
67 #define PFM_MAX_MSGS 32
68 #define PFM_CTXQ_EMPTY(g) ((g)->ctx_msgq_head == (g)->ctx_msgq_tail)
71 * type of a PMU register (bitmask).
73 * bit0 : register implemented
76 * bit4 : pmc has pmc.pm
77 * bit5 : pmc controls a counter (has pmc.oi), pmd is used as counter
78 * bit6-7 : register type
81 #define PFM_REG_NOTIMPL 0x0 /* not implemented at all */
82 #define PFM_REG_IMPL 0x1 /* register implemented */
83 #define PFM_REG_END 0x2 /* end marker */
84 #define PFM_REG_MONITOR (0x1<<4|PFM_REG_IMPL) /* a PMC with a pmc.pm field only */
85 #define PFM_REG_COUNTING (0x2<<4|PFM_REG_MONITOR) /* a monitor + pmc.oi+ PMD used as a counter */
86 #define PFM_REG_CONTROL (0x4<<4|PFM_REG_IMPL) /* PMU control register */
87 #define PFM_REG_CONFIG (0x8<<4|PFM_REG_IMPL) /* configuration register */
88 #define PFM_REG_BUFFER (0xc<<4|PFM_REG_IMPL) /* PMD used as buffer */
90 #define PMC_IS_LAST(i) (pmu_conf->pmc_desc[i].type & PFM_REG_END)
91 #define PMD_IS_LAST(i) (pmu_conf->pmd_desc[i].type & PFM_REG_END)
93 #define PMC_OVFL_NOTIFY(ctx, i) ((ctx)->ctx_pmds[i].flags & PFM_REGFL_OVFL_NOTIFY)
95 /* i assumed unsigned */
96 #define PMC_IS_IMPL(i) (i< PMU_MAX_PMCS && (pmu_conf->pmc_desc[i].type & PFM_REG_IMPL))
97 #define PMD_IS_IMPL(i) (i< PMU_MAX_PMDS && (pmu_conf->pmd_desc[i].type & PFM_REG_IMPL))
99 /* XXX: these assume that register i is implemented */
100 #define PMD_IS_COUNTING(i) ((pmu_conf->pmd_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
101 #define PMC_IS_COUNTING(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
102 #define PMC_IS_MONITOR(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_MONITOR) == PFM_REG_MONITOR)
103 #define PMC_IS_CONTROL(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_CONTROL) == PFM_REG_CONTROL)
105 #define PMC_DFL_VAL(i) pmu_conf->pmc_desc[i].default_value
106 #define PMC_RSVD_MASK(i) pmu_conf->pmc_desc[i].reserved_mask
107 #define PMD_PMD_DEP(i) pmu_conf->pmd_desc[i].dep_pmd[0]
108 #define PMC_PMD_DEP(i) pmu_conf->pmc_desc[i].dep_pmd[0]
110 #define PFM_NUM_IBRS IA64_NUM_DBG_REGS
111 #define PFM_NUM_DBRS IA64_NUM_DBG_REGS
113 #define CTX_OVFL_NOBLOCK(c) ((c)->ctx_fl_block == 0)
114 #define CTX_HAS_SMPL(c) ((c)->ctx_fl_is_sampling)
115 #define PFM_CTX_TASK(h) (h)->ctx_task
117 #define PMU_PMC_OI 5 /* position of pmc.oi bit */
119 /* XXX: does not support more than 64 PMDs */
120 #define CTX_USED_PMD(ctx, mask) (ctx)->ctx_used_pmds[0] |= (mask)
121 #define CTX_IS_USED_PMD(ctx, c) (((ctx)->ctx_used_pmds[0] & (1UL << (c))) != 0UL)
123 #define CTX_USED_MONITOR(ctx, mask) (ctx)->ctx_used_monitors[0] |= (mask)
125 #define CTX_USED_IBR(ctx,n) (ctx)->ctx_used_ibrs[(n)>>6] |= 1UL<< ((n) % 64)
126 #define CTX_USED_DBR(ctx,n) (ctx)->ctx_used_dbrs[(n)>>6] |= 1UL<< ((n) % 64)
127 #define CTX_USES_DBREGS(ctx) (((pfm_context_t *)(ctx))->ctx_fl_using_dbreg==1)
128 #define PFM_CODE_RR 0 /* requesting code range restriction */
129 #define PFM_DATA_RR 1 /* requestion data range restriction */
131 #define PFM_CPUINFO_CLEAR(v) pfm_get_cpu_var(pfm_syst_info) &= ~(v)
132 #define PFM_CPUINFO_SET(v) pfm_get_cpu_var(pfm_syst_info) |= (v)
133 #define PFM_CPUINFO_GET() pfm_get_cpu_var(pfm_syst_info)
135 #define RDEP(x) (1UL<<(x))
138 * context protection macros
140 * - we need to protect against CPU concurrency (spin_lock)
141 * - we need to protect against PMU overflow interrupts (local_irq_disable)
143 * - we need to protect against PMU overflow interrupts (local_irq_disable)
145 * spin_lock_irqsave()/spin_lock_irqrestore():
146 * in SMP: local_irq_disable + spin_lock
147 * in UP : local_irq_disable
149 * spin_lock()/spin_lock():
150 * in UP : removed automatically
151 * in SMP: protect against context accesses from other CPU. interrupts
152 * are not masked. This is useful for the PMU interrupt handler
153 * because we know we will not get PMU concurrency in that code.
155 #define PROTECT_CTX(c, f) \
157 DPRINT(("spinlock_irq_save ctx %p by [%d]\n", c, current->pid)); \
158 spin_lock_irqsave(&(c)->ctx_lock, f); \
159 DPRINT(("spinlocked ctx %p by [%d]\n", c, current->pid)); \
162 #define UNPROTECT_CTX(c, f) \
164 DPRINT(("spinlock_irq_restore ctx %p by [%d]\n", c, current->pid)); \
165 spin_unlock_irqrestore(&(c)->ctx_lock, f); \
168 #define PROTECT_CTX_NOPRINT(c, f) \
170 spin_lock_irqsave(&(c)->ctx_lock, f); \
174 #define UNPROTECT_CTX_NOPRINT(c, f) \
176 spin_unlock_irqrestore(&(c)->ctx_lock, f); \
180 #define PROTECT_CTX_NOIRQ(c) \
182 spin_lock(&(c)->ctx_lock); \
185 #define UNPROTECT_CTX_NOIRQ(c) \
187 spin_unlock(&(c)->ctx_lock); \
193 #define GET_ACTIVATION() pfm_get_cpu_var(pmu_activation_number)
194 #define INC_ACTIVATION() pfm_get_cpu_var(pmu_activation_number)++
195 #define SET_ACTIVATION(c) (c)->ctx_last_activation = GET_ACTIVATION()
197 #else /* !CONFIG_SMP */
198 #define SET_ACTIVATION(t) do {} while(0)
199 #define GET_ACTIVATION(t) do {} while(0)
200 #define INC_ACTIVATION(t) do {} while(0)
201 #endif /* CONFIG_SMP */
203 #define SET_PMU_OWNER(t, c) do { pfm_get_cpu_var(pmu_owner) = (t); pfm_get_cpu_var(pmu_ctx) = (c); } while(0)
204 #define GET_PMU_OWNER() pfm_get_cpu_var(pmu_owner)
205 #define GET_PMU_CTX() pfm_get_cpu_var(pmu_ctx)
207 #define LOCK_PFS(g) spin_lock_irqsave(&pfm_sessions.pfs_lock, g)
208 #define UNLOCK_PFS(g) spin_unlock_irqrestore(&pfm_sessions.pfs_lock, g)
210 #define PFM_REG_RETFLAG_SET(flags, val) do { flags &= ~PFM_REG_RETFL_MASK; flags |= (val); } while(0)
213 * cmp0 must be the value of pmc0
215 #define PMC0_HAS_OVFL(cmp0) (cmp0 & ~0x1UL)
217 #define PFMFS_MAGIC 0xa0b4d889
222 #define PFM_DEBUGGING 1
226 if (unlikely(pfm_sysctl.debug >0)) { printk("%s.%d: CPU%d [%d] ", __FUNCTION__, __LINE__, smp_processor_id(), current->pid); printk a; } \
229 #define DPRINT_ovfl(a) \
231 if (unlikely(pfm_sysctl.debug > 0 && pfm_sysctl.debug_ovfl >0)) { printk("%s.%d: CPU%d [%d] ", __FUNCTION__, __LINE__, smp_processor_id(), current->pid); printk a; } \
236 * 64-bit software counter structure
238 * the next_reset_type is applied to the next call to pfm_reset_regs()
241 unsigned long val
; /* virtual 64bit counter value */
242 unsigned long lval
; /* last reset value */
243 unsigned long long_reset
; /* reset value on sampling overflow */
244 unsigned long short_reset
; /* reset value on overflow */
245 unsigned long reset_pmds
[4]; /* which other pmds to reset when this counter overflows */
246 unsigned long smpl_pmds
[4]; /* which pmds are accessed when counter overflow */
247 unsigned long seed
; /* seed for random-number generator */
248 unsigned long mask
; /* mask for random-number generator */
249 unsigned int flags
; /* notify/do not notify */
250 unsigned long eventid
; /* overflow event identifier */
257 unsigned int block
:1; /* when 1, task will blocked on user notifications */
258 unsigned int system
:1; /* do system wide monitoring */
259 unsigned int using_dbreg
:1; /* using range restrictions (debug registers) */
260 unsigned int is_sampling
:1; /* true if using a custom format */
261 unsigned int excl_idle
:1; /* exclude idle task in system wide session */
262 unsigned int going_zombie
:1; /* context is zombie (MASKED+blocking) */
263 unsigned int trap_reason
:2; /* reason for going into pfm_handle_work() */
264 unsigned int no_msg
:1; /* no message sent on overflow */
265 unsigned int can_restart
:1; /* allowed to issue a PFM_RESTART */
266 unsigned int reserved
:22;
267 } pfm_context_flags_t
;
269 #define PFM_TRAP_REASON_NONE 0x0 /* default value */
270 #define PFM_TRAP_REASON_BLOCK 0x1 /* we need to block on overflow */
271 #define PFM_TRAP_REASON_RESET 0x2 /* we need to reset PMDs */
275 * perfmon context: encapsulates all the state of a monitoring session
278 typedef struct pfm_context
{
279 spinlock_t ctx_lock
; /* context protection */
281 pfm_context_flags_t ctx_flags
; /* bitmask of flags (block reason incl.) */
282 unsigned int ctx_state
; /* state: active/inactive (no bitfield) */
284 struct task_struct
*ctx_task
; /* task to which context is attached */
286 unsigned long ctx_ovfl_regs
[4]; /* which registers overflowed (notification) */
288 struct semaphore ctx_restart_sem
; /* use for blocking notification mode */
290 unsigned long ctx_used_pmds
[4]; /* bitmask of PMD used */
291 unsigned long ctx_all_pmds
[4]; /* bitmask of all accessible PMDs */
292 unsigned long ctx_reload_pmds
[4]; /* bitmask of force reload PMD on ctxsw in */
294 unsigned long ctx_all_pmcs
[4]; /* bitmask of all accessible PMCs */
295 unsigned long ctx_reload_pmcs
[4]; /* bitmask of force reload PMC on ctxsw in */
296 unsigned long ctx_used_monitors
[4]; /* bitmask of monitor PMC being used */
298 unsigned long ctx_pmcs
[IA64_NUM_PMC_REGS
]; /* saved copies of PMC values */
300 unsigned int ctx_used_ibrs
[1]; /* bitmask of used IBR (speedup ctxsw in) */
301 unsigned int ctx_used_dbrs
[1]; /* bitmask of used DBR (speedup ctxsw in) */
302 unsigned long ctx_dbrs
[IA64_NUM_DBG_REGS
]; /* DBR values (cache) when not loaded */
303 unsigned long ctx_ibrs
[IA64_NUM_DBG_REGS
]; /* IBR values (cache) when not loaded */
305 pfm_counter_t ctx_pmds
[IA64_NUM_PMD_REGS
]; /* software state for PMDS */
307 u64 ctx_saved_psr_up
; /* only contains psr.up value */
309 unsigned long ctx_last_activation
; /* context last activation number for last_cpu */
310 unsigned int ctx_last_cpu
; /* CPU id of current or last CPU used (SMP only) */
311 unsigned int ctx_cpu
; /* cpu to which perfmon is applied (system wide) */
313 int ctx_fd
; /* file descriptor used my this context */
314 pfm_ovfl_arg_t ctx_ovfl_arg
; /* argument to custom buffer format handler */
316 pfm_buffer_fmt_t
*ctx_buf_fmt
; /* buffer format callbacks */
317 void *ctx_smpl_hdr
; /* points to sampling buffer header kernel vaddr */
318 unsigned long ctx_smpl_size
; /* size of sampling buffer */
319 void *ctx_smpl_vaddr
; /* user level virtual address of smpl buffer */
321 wait_queue_head_t ctx_msgq_wait
;
322 pfm_msg_t ctx_msgq
[PFM_MAX_MSGS
];
325 struct fasync_struct
*ctx_async_queue
;
327 wait_queue_head_t ctx_zombieq
; /* termination cleanup wait queue */
331 * magic number used to verify that structure is really
334 #define PFM_IS_FILE(f) ((f)->f_op == &pfm_file_ops)
336 #define PFM_GET_CTX(t) ((pfm_context_t *)(t)->thread.pfm_context)
339 #define SET_LAST_CPU(ctx, v) (ctx)->ctx_last_cpu = (v)
340 #define GET_LAST_CPU(ctx) (ctx)->ctx_last_cpu
342 #define SET_LAST_CPU(ctx, v) do {} while(0)
343 #define GET_LAST_CPU(ctx) do {} while(0)
347 #define ctx_fl_block ctx_flags.block
348 #define ctx_fl_system ctx_flags.system
349 #define ctx_fl_using_dbreg ctx_flags.using_dbreg
350 #define ctx_fl_is_sampling ctx_flags.is_sampling
351 #define ctx_fl_excl_idle ctx_flags.excl_idle
352 #define ctx_fl_going_zombie ctx_flags.going_zombie
353 #define ctx_fl_trap_reason ctx_flags.trap_reason
354 #define ctx_fl_no_msg ctx_flags.no_msg
355 #define ctx_fl_can_restart ctx_flags.can_restart
357 #define PFM_SET_WORK_PENDING(t, v) do { (t)->thread.pfm_needs_checking = v; } while(0);
358 #define PFM_GET_WORK_PENDING(t) (t)->thread.pfm_needs_checking
361 * global information about all sessions
362 * mostly used to synchronize between system wide and per-process
365 spinlock_t pfs_lock
; /* lock the structure */
367 unsigned int pfs_task_sessions
; /* number of per task sessions */
368 unsigned int pfs_sys_sessions
; /* number of per system wide sessions */
369 unsigned int pfs_sys_use_dbregs
; /* incremented when a system wide session uses debug regs */
370 unsigned int pfs_ptrace_use_dbregs
; /* incremented when a process uses debug regs */
371 struct task_struct
*pfs_sys_session
[NR_CPUS
]; /* point to task owning a system-wide session */
375 * information about a PMC or PMD.
376 * dep_pmd[]: a bitmask of dependent PMD registers
377 * dep_pmc[]: a bitmask of dependent PMC registers
379 typedef int (*pfm_reg_check_t
)(struct task_struct
*task
, pfm_context_t
*ctx
, unsigned int cnum
, unsigned long *val
, struct pt_regs
*regs
);
383 unsigned long default_value
; /* power-on default value */
384 unsigned long reserved_mask
; /* bitmask of reserved bits */
385 pfm_reg_check_t read_check
;
386 pfm_reg_check_t write_check
;
387 unsigned long dep_pmd
[4];
388 unsigned long dep_pmc
[4];
391 /* assume cnum is a valid monitor */
392 #define PMC_PM(cnum, val) (((val) >> (pmu_conf->pmc_desc[cnum].pm_pos)) & 0x1)
395 * This structure is initialized at boot time and contains
396 * a description of the PMU main characteristics.
398 * If the probe function is defined, detection is based
399 * on its return value:
400 * - 0 means recognized PMU
401 * - anything else means not supported
402 * When the probe function is not defined, then the pmu_family field
403 * is used and it must match the host CPU family such that:
404 * - cpu->family & config->pmu_family != 0
407 unsigned long ovfl_val
; /* overflow value for counters */
409 pfm_reg_desc_t
*pmc_desc
; /* detailed PMC register dependencies descriptions */
410 pfm_reg_desc_t
*pmd_desc
; /* detailed PMD register dependencies descriptions */
412 unsigned int num_pmcs
; /* number of PMCS: computed at init time */
413 unsigned int num_pmds
; /* number of PMDS: computed at init time */
414 unsigned long impl_pmcs
[4]; /* bitmask of implemented PMCS */
415 unsigned long impl_pmds
[4]; /* bitmask of implemented PMDS */
417 char *pmu_name
; /* PMU family name */
418 unsigned int pmu_family
; /* cpuid family pattern used to identify pmu */
419 unsigned int flags
; /* pmu specific flags */
420 unsigned int num_ibrs
; /* number of IBRS: computed at init time */
421 unsigned int num_dbrs
; /* number of DBRS: computed at init time */
422 unsigned int num_counters
; /* PMC/PMD counting pairs : computed at init time */
423 int (*probe
)(void); /* customized probe routine */
424 unsigned int use_rr_dbregs
:1; /* set if debug registers used for range restriction */
429 #define PFM_PMU_IRQ_RESEND 1 /* PMU needs explicit IRQ resend */
432 * debug register related type definitions
435 unsigned long ibr_mask
:56;
436 unsigned long ibr_plm
:4;
437 unsigned long ibr_ig
:3;
438 unsigned long ibr_x
:1;
442 unsigned long dbr_mask
:56;
443 unsigned long dbr_plm
:4;
444 unsigned long dbr_ig
:2;
445 unsigned long dbr_w
:1;
446 unsigned long dbr_r
:1;
457 * perfmon command descriptions
460 int (*cmd_func
)(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
);
463 unsigned int cmd_narg
;
465 int (*cmd_getsize
)(void *arg
, size_t *sz
);
468 #define PFM_CMD_FD 0x01 /* command requires a file descriptor */
469 #define PFM_CMD_ARG_READ 0x02 /* command must read argument(s) */
470 #define PFM_CMD_ARG_RW 0x04 /* command must read/write argument(s) */
471 #define PFM_CMD_STOP 0x08 /* command does not work on zombie context */
474 #define PFM_CMD_NAME(cmd) pfm_cmd_tab[(cmd)].cmd_name
475 #define PFM_CMD_READ_ARG(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_READ)
476 #define PFM_CMD_RW_ARG(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_RW)
477 #define PFM_CMD_USE_FD(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_FD)
478 #define PFM_CMD_STOPPED(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_STOP)
480 #define PFM_CMD_ARG_MANY -1 /* cannot be zero */
483 unsigned long pfm_spurious_ovfl_intr_count
; /* keep track of spurious ovfl interrupts */
484 unsigned long pfm_replay_ovfl_intr_count
; /* keep track of replayed ovfl interrupts */
485 unsigned long pfm_ovfl_intr_count
; /* keep track of ovfl interrupts */
486 unsigned long pfm_ovfl_intr_cycles
; /* cycles spent processing ovfl interrupts */
487 unsigned long pfm_ovfl_intr_cycles_min
; /* min cycles spent processing ovfl interrupts */
488 unsigned long pfm_ovfl_intr_cycles_max
; /* max cycles spent processing ovfl interrupts */
489 unsigned long pfm_smpl_handler_calls
;
490 unsigned long pfm_smpl_handler_cycles
;
491 char pad
[SMP_CACHE_BYTES
] ____cacheline_aligned
;
495 * perfmon internal variables
497 static pfm_stats_t pfm_stats
[NR_CPUS
];
498 static pfm_session_t pfm_sessions
; /* global sessions information */
500 static struct proc_dir_entry
*perfmon_dir
;
501 static pfm_uuid_t pfm_null_uuid
= {0,};
503 static spinlock_t pfm_buffer_fmt_lock
;
504 static LIST_HEAD(pfm_buffer_fmt_list
);
506 static pmu_config_t
*pmu_conf
;
508 /* sysctl() controls */
509 pfm_sysctl_t pfm_sysctl
;
510 EXPORT_SYMBOL(pfm_sysctl
);
512 static ctl_table pfm_ctl_table
[]={
513 {1, "debug", &pfm_sysctl
.debug
, sizeof(int), 0666, NULL
, &proc_dointvec
, NULL
,},
514 {2, "debug_ovfl", &pfm_sysctl
.debug_ovfl
, sizeof(int), 0666, NULL
, &proc_dointvec
, NULL
,},
515 {3, "fastctxsw", &pfm_sysctl
.fastctxsw
, sizeof(int), 0600, NULL
, &proc_dointvec
, NULL
,},
516 {4, "expert_mode", &pfm_sysctl
.expert_mode
, sizeof(int), 0600, NULL
, &proc_dointvec
, NULL
,},
519 static ctl_table pfm_sysctl_dir
[] = {
520 {1, "perfmon", NULL
, 0, 0755, pfm_ctl_table
, },
523 static ctl_table pfm_sysctl_root
[] = {
524 {1, "kernel", NULL
, 0, 0755, pfm_sysctl_dir
, },
527 static struct ctl_table_header
*pfm_sysctl_header
;
529 static int pfm_context_unload(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
);
530 static int pfm_flush(struct file
*filp
);
532 #define pfm_get_cpu_var(v) __ia64_per_cpu_var(v)
533 #define pfm_get_cpu_data(a,b) per_cpu(a, b)
536 pfm_put_task(struct task_struct
*task
)
538 if (task
!= current
) put_task_struct(task
);
542 pfm_set_task_notify(struct task_struct
*task
)
544 struct thread_info
*info
;
546 info
= (struct thread_info
*) ((char *) task
+ IA64_TASK_SIZE
);
547 set_bit(TIF_NOTIFY_RESUME
, &info
->flags
);
551 pfm_clear_task_notify(void)
553 clear_thread_flag(TIF_NOTIFY_RESUME
);
557 pfm_reserve_page(unsigned long a
)
559 SetPageReserved(vmalloc_to_page((void *)a
));
562 pfm_unreserve_page(unsigned long a
)
564 ClearPageReserved(vmalloc_to_page((void*)a
));
567 static inline unsigned long
568 pfm_protect_ctx_ctxsw(pfm_context_t
*x
)
570 spin_lock(&(x
)->ctx_lock
);
574 static inline unsigned long
575 pfm_unprotect_ctx_ctxsw(pfm_context_t
*x
, unsigned long f
)
577 spin_unlock(&(x
)->ctx_lock
);
580 static inline unsigned int
581 pfm_do_munmap(struct mm_struct
*mm
, unsigned long addr
, size_t len
, int acct
)
583 return do_munmap(mm
, addr
, len
);
586 static inline unsigned long
587 pfm_get_unmapped_area(struct file
*file
, unsigned long addr
, unsigned long len
, unsigned long pgoff
, unsigned long flags
, unsigned long exec
)
589 return get_unmapped_area(file
, addr
, len
, pgoff
, flags
);
593 static struct super_block
*
594 pfmfs_get_sb(struct file_system_type
*fs_type
, int flags
, const char *dev_name
, void *data
)
596 return get_sb_pseudo(fs_type
, "pfm:", NULL
, PFMFS_MAGIC
);
599 static struct file_system_type pfm_fs_type
= {
601 .get_sb
= pfmfs_get_sb
,
602 .kill_sb
= kill_anon_super
,
605 DEFINE_PER_CPU(unsigned long, pfm_syst_info
);
606 DEFINE_PER_CPU(struct task_struct
*, pmu_owner
);
607 DEFINE_PER_CPU(pfm_context_t
*, pmu_ctx
);
608 DEFINE_PER_CPU(unsigned long, pmu_activation_number
);
611 /* forward declaration */
612 static struct file_operations pfm_file_ops
;
615 * forward declarations
618 static void pfm_lazy_save_regs (struct task_struct
*ta
);
621 void dump_pmu_state(const char *);
622 static int pfm_write_ibr_dbr(int mode
, pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
);
624 #include "perfmon_itanium.h"
625 #include "perfmon_mckinley.h"
626 #include "perfmon_generic.h"
628 static pmu_config_t
*pmu_confs
[]={
631 &pmu_conf_gen
, /* must be last */
636 static int pfm_end_notify_user(pfm_context_t
*ctx
);
639 pfm_clear_psr_pp(void)
641 ia64_rsm(IA64_PSR_PP
);
648 ia64_ssm(IA64_PSR_PP
);
653 pfm_clear_psr_up(void)
655 ia64_rsm(IA64_PSR_UP
);
662 ia64_ssm(IA64_PSR_UP
);
666 static inline unsigned long
670 tmp
= ia64_getreg(_IA64_REG_PSR
);
676 pfm_set_psr_l(unsigned long val
)
678 ia64_setreg(_IA64_REG_PSR_L
, val
);
690 pfm_unfreeze_pmu(void)
697 pfm_restore_ibrs(unsigned long *ibrs
, unsigned int nibrs
)
701 for (i
=0; i
< nibrs
; i
++) {
702 ia64_set_ibr(i
, ibrs
[i
]);
703 ia64_dv_serialize_instruction();
709 pfm_restore_dbrs(unsigned long *dbrs
, unsigned int ndbrs
)
713 for (i
=0; i
< ndbrs
; i
++) {
714 ia64_set_dbr(i
, dbrs
[i
]);
715 ia64_dv_serialize_data();
721 * PMD[i] must be a counter. no check is made
723 static inline unsigned long
724 pfm_read_soft_counter(pfm_context_t
*ctx
, int i
)
726 return ctx
->ctx_pmds
[i
].val
+ (ia64_get_pmd(i
) & pmu_conf
->ovfl_val
);
730 * PMD[i] must be a counter. no check is made
733 pfm_write_soft_counter(pfm_context_t
*ctx
, int i
, unsigned long val
)
735 unsigned long ovfl_val
= pmu_conf
->ovfl_val
;
737 ctx
->ctx_pmds
[i
].val
= val
& ~ovfl_val
;
739 * writing to unimplemented part is ignore, so we do not need to
742 ia64_set_pmd(i
, val
& ovfl_val
);
746 pfm_get_new_msg(pfm_context_t
*ctx
)
750 next
= (ctx
->ctx_msgq_tail
+1) % PFM_MAX_MSGS
;
752 DPRINT(("ctx_fd=%p head=%d tail=%d\n", ctx
, ctx
->ctx_msgq_head
, ctx
->ctx_msgq_tail
));
753 if (next
== ctx
->ctx_msgq_head
) return NULL
;
755 idx
= ctx
->ctx_msgq_tail
;
756 ctx
->ctx_msgq_tail
= next
;
758 DPRINT(("ctx=%p head=%d tail=%d msg=%d\n", ctx
, ctx
->ctx_msgq_head
, ctx
->ctx_msgq_tail
, idx
));
760 return ctx
->ctx_msgq
+idx
;
764 pfm_get_next_msg(pfm_context_t
*ctx
)
768 DPRINT(("ctx=%p head=%d tail=%d\n", ctx
, ctx
->ctx_msgq_head
, ctx
->ctx_msgq_tail
));
770 if (PFM_CTXQ_EMPTY(ctx
)) return NULL
;
775 msg
= ctx
->ctx_msgq
+ctx
->ctx_msgq_head
;
780 ctx
->ctx_msgq_head
= (ctx
->ctx_msgq_head
+1) % PFM_MAX_MSGS
;
782 DPRINT(("ctx=%p head=%d tail=%d type=%d\n", ctx
, ctx
->ctx_msgq_head
, ctx
->ctx_msgq_tail
, msg
->pfm_gen_msg
.msg_type
));
788 pfm_reset_msgq(pfm_context_t
*ctx
)
790 ctx
->ctx_msgq_head
= ctx
->ctx_msgq_tail
= 0;
791 DPRINT(("ctx=%p msgq reset\n", ctx
));
795 pfm_rvmalloc(unsigned long size
)
800 size
= PAGE_ALIGN(size
);
803 //printk("perfmon: CPU%d pfm_rvmalloc(%ld)=%p\n", smp_processor_id(), size, mem);
804 memset(mem
, 0, size
);
805 addr
= (unsigned long)mem
;
807 pfm_reserve_page(addr
);
816 pfm_rvfree(void *mem
, unsigned long size
)
821 DPRINT(("freeing physical buffer @%p size=%lu\n", mem
, size
));
822 addr
= (unsigned long) mem
;
823 while ((long) size
> 0) {
824 pfm_unreserve_page(addr
);
833 static pfm_context_t
*
834 pfm_context_alloc(void)
839 * allocate context descriptor
840 * must be able to free with interrupts disabled
842 ctx
= kmalloc(sizeof(pfm_context_t
), GFP_KERNEL
);
844 memset(ctx
, 0, sizeof(pfm_context_t
));
845 DPRINT(("alloc ctx @%p\n", ctx
));
851 pfm_context_free(pfm_context_t
*ctx
)
854 DPRINT(("free ctx @%p\n", ctx
));
860 pfm_mask_monitoring(struct task_struct
*task
)
862 pfm_context_t
*ctx
= PFM_GET_CTX(task
);
863 struct thread_struct
*th
= &task
->thread
;
864 unsigned long mask
, val
, ovfl_mask
;
867 DPRINT_ovfl(("masking monitoring for [%d]\n", task
->pid
));
869 ovfl_mask
= pmu_conf
->ovfl_val
;
871 * monitoring can only be masked as a result of a valid
872 * counter overflow. In UP, it means that the PMU still
873 * has an owner. Note that the owner can be different
874 * from the current task. However the PMU state belongs
876 * In SMP, a valid overflow only happens when task is
877 * current. Therefore if we come here, we know that
878 * the PMU state belongs to the current task, therefore
879 * we can access the live registers.
881 * So in both cases, the live register contains the owner's
882 * state. We can ONLY touch the PMU registers and NOT the PSR.
884 * As a consequence to this call, the thread->pmds[] array
885 * contains stale information which must be ignored
886 * when context is reloaded AND monitoring is active (see
889 mask
= ctx
->ctx_used_pmds
[0];
890 for (i
= 0; mask
; i
++, mask
>>=1) {
891 /* skip non used pmds */
892 if ((mask
& 0x1) == 0) continue;
893 val
= ia64_get_pmd(i
);
895 if (PMD_IS_COUNTING(i
)) {
897 * we rebuild the full 64 bit value of the counter
899 ctx
->ctx_pmds
[i
].val
+= (val
& ovfl_mask
);
901 ctx
->ctx_pmds
[i
].val
= val
;
903 DPRINT_ovfl(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
905 ctx
->ctx_pmds
[i
].val
,
909 * mask monitoring by setting the privilege level to 0
910 * we cannot use psr.pp/psr.up for this, it is controlled by
913 * if task is current, modify actual registers, otherwise modify
914 * thread save state, i.e., what will be restored in pfm_load_regs()
916 mask
= ctx
->ctx_used_monitors
[0] >> PMU_FIRST_COUNTER
;
917 for(i
= PMU_FIRST_COUNTER
; mask
; i
++, mask
>>=1) {
918 if ((mask
& 0x1) == 0UL) continue;
919 ia64_set_pmc(i
, th
->pmcs
[i
] & ~0xfUL
);
920 th
->pmcs
[i
] &= ~0xfUL
;
921 DPRINT_ovfl(("pmc[%d]=0x%lx\n", i
, th
->pmcs
[i
]));
924 * make all of this visible
930 * must always be done with task == current
932 * context must be in MASKED state when calling
935 pfm_restore_monitoring(struct task_struct
*task
)
937 pfm_context_t
*ctx
= PFM_GET_CTX(task
);
938 struct thread_struct
*th
= &task
->thread
;
939 unsigned long mask
, ovfl_mask
;
940 unsigned long psr
, val
;
943 is_system
= ctx
->ctx_fl_system
;
944 ovfl_mask
= pmu_conf
->ovfl_val
;
946 if (task
!= current
) {
947 printk(KERN_ERR
"perfmon.%d: invalid task[%d] current[%d]\n", __LINE__
, task
->pid
, current
->pid
);
950 if (ctx
->ctx_state
!= PFM_CTX_MASKED
) {
951 printk(KERN_ERR
"perfmon.%d: task[%d] current[%d] invalid state=%d\n", __LINE__
,
952 task
->pid
, current
->pid
, ctx
->ctx_state
);
957 * monitoring is masked via the PMC.
958 * As we restore their value, we do not want each counter to
959 * restart right away. We stop monitoring using the PSR,
960 * restore the PMC (and PMD) and then re-establish the psr
961 * as it was. Note that there can be no pending overflow at
962 * this point, because monitoring was MASKED.
964 * system-wide session are pinned and self-monitoring
966 if (is_system
&& (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP
)) {
968 ia64_setreg(_IA64_REG_CR_DCR
, ia64_getreg(_IA64_REG_CR_DCR
) & ~IA64_DCR_PP
);
974 * first, we restore the PMD
976 mask
= ctx
->ctx_used_pmds
[0];
977 for (i
= 0; mask
; i
++, mask
>>=1) {
978 /* skip non used pmds */
979 if ((mask
& 0x1) == 0) continue;
981 if (PMD_IS_COUNTING(i
)) {
983 * we split the 64bit value according to
986 val
= ctx
->ctx_pmds
[i
].val
& ovfl_mask
;
987 ctx
->ctx_pmds
[i
].val
&= ~ovfl_mask
;
989 val
= ctx
->ctx_pmds
[i
].val
;
991 ia64_set_pmd(i
, val
);
993 DPRINT(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
995 ctx
->ctx_pmds
[i
].val
,
1001 mask
= ctx
->ctx_used_monitors
[0] >> PMU_FIRST_COUNTER
;
1002 for(i
= PMU_FIRST_COUNTER
; mask
; i
++, mask
>>=1) {
1003 if ((mask
& 0x1) == 0UL) continue;
1004 th
->pmcs
[i
] = ctx
->ctx_pmcs
[i
];
1005 ia64_set_pmc(i
, th
->pmcs
[i
]);
1006 DPRINT(("[%d] pmc[%d]=0x%lx\n", task
->pid
, i
, th
->pmcs
[i
]));
1011 * must restore DBR/IBR because could be modified while masked
1012 * XXX: need to optimize
1014 if (ctx
->ctx_fl_using_dbreg
) {
1015 pfm_restore_ibrs(ctx
->ctx_ibrs
, pmu_conf
->num_ibrs
);
1016 pfm_restore_dbrs(ctx
->ctx_dbrs
, pmu_conf
->num_dbrs
);
1022 if (is_system
&& (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP
)) {
1024 ia64_setreg(_IA64_REG_CR_DCR
, ia64_getreg(_IA64_REG_CR_DCR
) | IA64_DCR_PP
);
1031 pfm_save_pmds(unsigned long *pmds
, unsigned long mask
)
1037 for (i
=0; mask
; i
++, mask
>>=1) {
1038 if (mask
& 0x1) pmds
[i
] = ia64_get_pmd(i
);
1043 * reload from thread state (used for ctxw only)
1046 pfm_restore_pmds(unsigned long *pmds
, unsigned long mask
)
1049 unsigned long val
, ovfl_val
= pmu_conf
->ovfl_val
;
1051 for (i
=0; mask
; i
++, mask
>>=1) {
1052 if ((mask
& 0x1) == 0) continue;
1053 val
= PMD_IS_COUNTING(i
) ? pmds
[i
] & ovfl_val
: pmds
[i
];
1054 ia64_set_pmd(i
, val
);
1060 * propagate PMD from context to thread-state
1063 pfm_copy_pmds(struct task_struct
*task
, pfm_context_t
*ctx
)
1065 struct thread_struct
*thread
= &task
->thread
;
1066 unsigned long ovfl_val
= pmu_conf
->ovfl_val
;
1067 unsigned long mask
= ctx
->ctx_all_pmds
[0];
1071 DPRINT(("mask=0x%lx\n", mask
));
1073 for (i
=0; mask
; i
++, mask
>>=1) {
1075 val
= ctx
->ctx_pmds
[i
].val
;
1078 * We break up the 64 bit value into 2 pieces
1079 * the lower bits go to the machine state in the
1080 * thread (will be reloaded on ctxsw in).
1081 * The upper part stays in the soft-counter.
1083 if (PMD_IS_COUNTING(i
)) {
1084 ctx
->ctx_pmds
[i
].val
= val
& ~ovfl_val
;
1087 thread
->pmds
[i
] = val
;
1089 DPRINT(("pmd[%d]=0x%lx soft_val=0x%lx\n",
1092 ctx
->ctx_pmds
[i
].val
));
1097 * propagate PMC from context to thread-state
1100 pfm_copy_pmcs(struct task_struct
*task
, pfm_context_t
*ctx
)
1102 struct thread_struct
*thread
= &task
->thread
;
1103 unsigned long mask
= ctx
->ctx_all_pmcs
[0];
1106 DPRINT(("mask=0x%lx\n", mask
));
1108 for (i
=0; mask
; i
++, mask
>>=1) {
1109 /* masking 0 with ovfl_val yields 0 */
1110 thread
->pmcs
[i
] = ctx
->ctx_pmcs
[i
];
1111 DPRINT(("pmc[%d]=0x%lx\n", i
, thread
->pmcs
[i
]));
1118 pfm_restore_pmcs(unsigned long *pmcs
, unsigned long mask
)
1122 for (i
=0; mask
; i
++, mask
>>=1) {
1123 if ((mask
& 0x1) == 0) continue;
1124 ia64_set_pmc(i
, pmcs
[i
]);
1130 pfm_uuid_cmp(pfm_uuid_t a
, pfm_uuid_t b
)
1132 return memcmp(a
, b
, sizeof(pfm_uuid_t
));
1136 pfm_buf_fmt_exit(pfm_buffer_fmt_t
*fmt
, struct task_struct
*task
, void *buf
, struct pt_regs
*regs
)
1139 if (fmt
->fmt_exit
) ret
= (*fmt
->fmt_exit
)(task
, buf
, regs
);
1144 pfm_buf_fmt_getsize(pfm_buffer_fmt_t
*fmt
, struct task_struct
*task
, unsigned int flags
, int cpu
, void *arg
, unsigned long *size
)
1147 if (fmt
->fmt_getsize
) ret
= (*fmt
->fmt_getsize
)(task
, flags
, cpu
, arg
, size
);
1153 pfm_buf_fmt_validate(pfm_buffer_fmt_t
*fmt
, struct task_struct
*task
, unsigned int flags
,
1157 if (fmt
->fmt_validate
) ret
= (*fmt
->fmt_validate
)(task
, flags
, cpu
, arg
);
1162 pfm_buf_fmt_init(pfm_buffer_fmt_t
*fmt
, struct task_struct
*task
, void *buf
, unsigned int flags
,
1166 if (fmt
->fmt_init
) ret
= (*fmt
->fmt_init
)(task
, buf
, flags
, cpu
, arg
);
1171 pfm_buf_fmt_restart(pfm_buffer_fmt_t
*fmt
, struct task_struct
*task
, pfm_ovfl_ctrl_t
*ctrl
, void *buf
, struct pt_regs
*regs
)
1174 if (fmt
->fmt_restart
) ret
= (*fmt
->fmt_restart
)(task
, ctrl
, buf
, regs
);
1179 pfm_buf_fmt_restart_active(pfm_buffer_fmt_t
*fmt
, struct task_struct
*task
, pfm_ovfl_ctrl_t
*ctrl
, void *buf
, struct pt_regs
*regs
)
1182 if (fmt
->fmt_restart_active
) ret
= (*fmt
->fmt_restart_active
)(task
, ctrl
, buf
, regs
);
1186 static pfm_buffer_fmt_t
*
1187 __pfm_find_buffer_fmt(pfm_uuid_t uuid
)
1189 struct list_head
* pos
;
1190 pfm_buffer_fmt_t
* entry
;
1192 list_for_each(pos
, &pfm_buffer_fmt_list
) {
1193 entry
= list_entry(pos
, pfm_buffer_fmt_t
, fmt_list
);
1194 if (pfm_uuid_cmp(uuid
, entry
->fmt_uuid
) == 0)
1201 * find a buffer format based on its uuid
1203 static pfm_buffer_fmt_t
*
1204 pfm_find_buffer_fmt(pfm_uuid_t uuid
)
1206 pfm_buffer_fmt_t
* fmt
;
1207 spin_lock(&pfm_buffer_fmt_lock
);
1208 fmt
= __pfm_find_buffer_fmt(uuid
);
1209 spin_unlock(&pfm_buffer_fmt_lock
);
1214 pfm_register_buffer_fmt(pfm_buffer_fmt_t
*fmt
)
1218 /* some sanity checks */
1219 if (fmt
== NULL
|| fmt
->fmt_name
== NULL
) return -EINVAL
;
1221 /* we need at least a handler */
1222 if (fmt
->fmt_handler
== NULL
) return -EINVAL
;
1225 * XXX: need check validity of fmt_arg_size
1228 spin_lock(&pfm_buffer_fmt_lock
);
1230 if (__pfm_find_buffer_fmt(fmt
->fmt_uuid
)) {
1231 printk(KERN_ERR
"perfmon: duplicate sampling format: %s\n", fmt
->fmt_name
);
1235 list_add(&fmt
->fmt_list
, &pfm_buffer_fmt_list
);
1236 printk(KERN_INFO
"perfmon: added sampling format %s\n", fmt
->fmt_name
);
1239 spin_unlock(&pfm_buffer_fmt_lock
);
1242 EXPORT_SYMBOL(pfm_register_buffer_fmt
);
1245 pfm_unregister_buffer_fmt(pfm_uuid_t uuid
)
1247 pfm_buffer_fmt_t
*fmt
;
1250 spin_lock(&pfm_buffer_fmt_lock
);
1252 fmt
= __pfm_find_buffer_fmt(uuid
);
1254 printk(KERN_ERR
"perfmon: cannot unregister format, not found\n");
1258 list_del_init(&fmt
->fmt_list
);
1259 printk(KERN_INFO
"perfmon: removed sampling format: %s\n", fmt
->fmt_name
);
1262 spin_unlock(&pfm_buffer_fmt_lock
);
1266 EXPORT_SYMBOL(pfm_unregister_buffer_fmt
);
1268 extern void update_pal_halt_status(int);
1271 pfm_reserve_session(struct task_struct
*task
, int is_syswide
, unsigned int cpu
)
1273 unsigned long flags
;
1275 * validy checks on cpu_mask have been done upstream
1279 DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1280 pfm_sessions
.pfs_sys_sessions
,
1281 pfm_sessions
.pfs_task_sessions
,
1282 pfm_sessions
.pfs_sys_use_dbregs
,
1288 * cannot mix system wide and per-task sessions
1290 if (pfm_sessions
.pfs_task_sessions
> 0UL) {
1291 DPRINT(("system wide not possible, %u conflicting task_sessions\n",
1292 pfm_sessions
.pfs_task_sessions
));
1296 if (pfm_sessions
.pfs_sys_session
[cpu
]) goto error_conflict
;
1298 DPRINT(("reserving system wide session on CPU%u currently on CPU%u\n", cpu
, smp_processor_id()));
1300 pfm_sessions
.pfs_sys_session
[cpu
] = task
;
1302 pfm_sessions
.pfs_sys_sessions
++ ;
1305 if (pfm_sessions
.pfs_sys_sessions
) goto abort
;
1306 pfm_sessions
.pfs_task_sessions
++;
1309 DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1310 pfm_sessions
.pfs_sys_sessions
,
1311 pfm_sessions
.pfs_task_sessions
,
1312 pfm_sessions
.pfs_sys_use_dbregs
,
1317 * disable default_idle() to go to PAL_HALT
1319 update_pal_halt_status(0);
1326 DPRINT(("system wide not possible, conflicting session [%d] on CPU%d\n",
1327 pfm_sessions
.pfs_sys_session
[cpu
]->pid
,
1328 smp_processor_id()));
1337 pfm_unreserve_session(pfm_context_t
*ctx
, int is_syswide
, unsigned int cpu
)
1339 unsigned long flags
;
1341 * validy checks on cpu_mask have been done upstream
1345 DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1346 pfm_sessions
.pfs_sys_sessions
,
1347 pfm_sessions
.pfs_task_sessions
,
1348 pfm_sessions
.pfs_sys_use_dbregs
,
1354 pfm_sessions
.pfs_sys_session
[cpu
] = NULL
;
1356 * would not work with perfmon+more than one bit in cpu_mask
1358 if (ctx
&& ctx
->ctx_fl_using_dbreg
) {
1359 if (pfm_sessions
.pfs_sys_use_dbregs
== 0) {
1360 printk(KERN_ERR
"perfmon: invalid release for ctx %p sys_use_dbregs=0\n", ctx
);
1362 pfm_sessions
.pfs_sys_use_dbregs
--;
1365 pfm_sessions
.pfs_sys_sessions
--;
1367 pfm_sessions
.pfs_task_sessions
--;
1369 DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1370 pfm_sessions
.pfs_sys_sessions
,
1371 pfm_sessions
.pfs_task_sessions
,
1372 pfm_sessions
.pfs_sys_use_dbregs
,
1377 * if possible, enable default_idle() to go into PAL_HALT
1379 if (pfm_sessions
.pfs_task_sessions
== 0 && pfm_sessions
.pfs_sys_sessions
== 0)
1380 update_pal_halt_status(1);
1388 * removes virtual mapping of the sampling buffer.
1389 * IMPORTANT: cannot be called with interrupts disable, e.g. inside
1390 * a PROTECT_CTX() section.
1393 pfm_remove_smpl_mapping(struct task_struct
*task
, void *vaddr
, unsigned long size
)
1398 if (task
->mm
== NULL
|| size
== 0UL || vaddr
== NULL
) {
1399 printk(KERN_ERR
"perfmon: pfm_remove_smpl_mapping [%d] invalid context mm=%p\n", task
->pid
, task
->mm
);
1403 DPRINT(("smpl_vaddr=%p size=%lu\n", vaddr
, size
));
1406 * does the actual unmapping
1408 down_write(&task
->mm
->mmap_sem
);
1410 DPRINT(("down_write done smpl_vaddr=%p size=%lu\n", vaddr
, size
));
1412 r
= pfm_do_munmap(task
->mm
, (unsigned long)vaddr
, size
, 0);
1414 up_write(&task
->mm
->mmap_sem
);
1416 printk(KERN_ERR
"perfmon: [%d] unable to unmap sampling buffer @%p size=%lu\n", task
->pid
, vaddr
, size
);
1419 DPRINT(("do_unmap(%p, %lu)=%d\n", vaddr
, size
, r
));
1425 * free actual physical storage used by sampling buffer
1429 pfm_free_smpl_buffer(pfm_context_t
*ctx
)
1431 pfm_buffer_fmt_t
*fmt
;
1433 if (ctx
->ctx_smpl_hdr
== NULL
) goto invalid_free
;
1436 * we won't use the buffer format anymore
1438 fmt
= ctx
->ctx_buf_fmt
;
1440 DPRINT(("sampling buffer @%p size %lu vaddr=%p\n",
1443 ctx
->ctx_smpl_vaddr
));
1445 pfm_buf_fmt_exit(fmt
, current
, NULL
, NULL
);
1450 pfm_rvfree(ctx
->ctx_smpl_hdr
, ctx
->ctx_smpl_size
);
1452 ctx
->ctx_smpl_hdr
= NULL
;
1453 ctx
->ctx_smpl_size
= 0UL;
1458 printk(KERN_ERR
"perfmon: pfm_free_smpl_buffer [%d] no buffer\n", current
->pid
);
1464 pfm_exit_smpl_buffer(pfm_buffer_fmt_t
*fmt
)
1466 if (fmt
== NULL
) return;
1468 pfm_buf_fmt_exit(fmt
, current
, NULL
, NULL
);
1473 * pfmfs should _never_ be mounted by userland - too much of security hassle,
1474 * no real gain from having the whole whorehouse mounted. So we don't need
1475 * any operations on the root directory. However, we need a non-trivial
1476 * d_name - pfm: will go nicely and kill the special-casing in procfs.
1478 static struct vfsmount
*pfmfs_mnt
;
1483 int err
= register_filesystem(&pfm_fs_type
);
1485 pfmfs_mnt
= kern_mount(&pfm_fs_type
);
1486 err
= PTR_ERR(pfmfs_mnt
);
1487 if (IS_ERR(pfmfs_mnt
))
1488 unregister_filesystem(&pfm_fs_type
);
1498 unregister_filesystem(&pfm_fs_type
);
1503 pfm_read(struct file
*filp
, char __user
*buf
, size_t size
, loff_t
*ppos
)
1508 unsigned long flags
;
1509 DECLARE_WAITQUEUE(wait
, current
);
1510 if (PFM_IS_FILE(filp
) == 0) {
1511 printk(KERN_ERR
"perfmon: pfm_poll: bad magic [%d]\n", current
->pid
);
1515 ctx
= (pfm_context_t
*)filp
->private_data
;
1517 printk(KERN_ERR
"perfmon: pfm_read: NULL ctx [%d]\n", current
->pid
);
1522 * check even when there is no message
1524 if (size
< sizeof(pfm_msg_t
)) {
1525 DPRINT(("message is too small ctx=%p (>=%ld)\n", ctx
, sizeof(pfm_msg_t
)));
1529 PROTECT_CTX(ctx
, flags
);
1532 * put ourselves on the wait queue
1534 add_wait_queue(&ctx
->ctx_msgq_wait
, &wait
);
1542 set_current_state(TASK_INTERRUPTIBLE
);
1544 DPRINT(("head=%d tail=%d\n", ctx
->ctx_msgq_head
, ctx
->ctx_msgq_tail
));
1547 if(PFM_CTXQ_EMPTY(ctx
) == 0) break;
1549 UNPROTECT_CTX(ctx
, flags
);
1552 * check non-blocking read
1555 if(filp
->f_flags
& O_NONBLOCK
) break;
1558 * check pending signals
1560 if(signal_pending(current
)) {
1565 * no message, so wait
1569 PROTECT_CTX(ctx
, flags
);
1571 DPRINT(("[%d] back to running ret=%ld\n", current
->pid
, ret
));
1572 set_current_state(TASK_RUNNING
);
1573 remove_wait_queue(&ctx
->ctx_msgq_wait
, &wait
);
1575 if (ret
< 0) goto abort
;
1578 msg
= pfm_get_next_msg(ctx
);
1580 printk(KERN_ERR
"perfmon: pfm_read no msg for ctx=%p [%d]\n", ctx
, current
->pid
);
1584 DPRINT(("fd=%d type=%d\n", msg
->pfm_gen_msg
.msg_ctx_fd
, msg
->pfm_gen_msg
.msg_type
));
1587 if(copy_to_user(buf
, msg
, sizeof(pfm_msg_t
)) == 0) ret
= sizeof(pfm_msg_t
);
1590 UNPROTECT_CTX(ctx
, flags
);
1596 pfm_write(struct file
*file
, const char __user
*ubuf
,
1597 size_t size
, loff_t
*ppos
)
1599 DPRINT(("pfm_write called\n"));
1604 pfm_poll(struct file
*filp
, poll_table
* wait
)
1607 unsigned long flags
;
1608 unsigned int mask
= 0;
1610 if (PFM_IS_FILE(filp
) == 0) {
1611 printk(KERN_ERR
"perfmon: pfm_poll: bad magic [%d]\n", current
->pid
);
1615 ctx
= (pfm_context_t
*)filp
->private_data
;
1617 printk(KERN_ERR
"perfmon: pfm_poll: NULL ctx [%d]\n", current
->pid
);
1622 DPRINT(("pfm_poll ctx_fd=%d before poll_wait\n", ctx
->ctx_fd
));
1624 poll_wait(filp
, &ctx
->ctx_msgq_wait
, wait
);
1626 PROTECT_CTX(ctx
, flags
);
1628 if (PFM_CTXQ_EMPTY(ctx
) == 0)
1629 mask
= POLLIN
| POLLRDNORM
;
1631 UNPROTECT_CTX(ctx
, flags
);
1633 DPRINT(("pfm_poll ctx_fd=%d mask=0x%x\n", ctx
->ctx_fd
, mask
));
1639 pfm_ioctl(struct inode
*inode
, struct file
*file
, unsigned int cmd
, unsigned long arg
)
1641 DPRINT(("pfm_ioctl called\n"));
1646 * interrupt cannot be masked when coming here
1649 pfm_do_fasync(int fd
, struct file
*filp
, pfm_context_t
*ctx
, int on
)
1653 ret
= fasync_helper (fd
, filp
, on
, &ctx
->ctx_async_queue
);
1655 DPRINT(("pfm_fasync called by [%d] on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1659 ctx
->ctx_async_queue
, ret
));
1665 pfm_fasync(int fd
, struct file
*filp
, int on
)
1670 if (PFM_IS_FILE(filp
) == 0) {
1671 printk(KERN_ERR
"perfmon: pfm_fasync bad magic [%d]\n", current
->pid
);
1675 ctx
= (pfm_context_t
*)filp
->private_data
;
1677 printk(KERN_ERR
"perfmon: pfm_fasync NULL ctx [%d]\n", current
->pid
);
1681 * we cannot mask interrupts during this call because this may
1682 * may go to sleep if memory is not readily avalaible.
1684 * We are protected from the conetxt disappearing by the get_fd()/put_fd()
1685 * done in caller. Serialization of this function is ensured by caller.
1687 ret
= pfm_do_fasync(fd
, filp
, ctx
, on
);
1690 DPRINT(("pfm_fasync called on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1693 ctx
->ctx_async_queue
, ret
));
1700 * this function is exclusively called from pfm_close().
1701 * The context is not protected at that time, nor are interrupts
1702 * on the remote CPU. That's necessary to avoid deadlocks.
1705 pfm_syswide_force_stop(void *info
)
1707 pfm_context_t
*ctx
= (pfm_context_t
*)info
;
1708 struct pt_regs
*regs
= ia64_task_regs(current
);
1709 struct task_struct
*owner
;
1710 unsigned long flags
;
1713 if (ctx
->ctx_cpu
!= smp_processor_id()) {
1714 printk(KERN_ERR
"perfmon: pfm_syswide_force_stop for CPU%d but on CPU%d\n",
1716 smp_processor_id());
1719 owner
= GET_PMU_OWNER();
1720 if (owner
!= ctx
->ctx_task
) {
1721 printk(KERN_ERR
"perfmon: pfm_syswide_force_stop CPU%d unexpected owner [%d] instead of [%d]\n",
1723 owner
->pid
, ctx
->ctx_task
->pid
);
1726 if (GET_PMU_CTX() != ctx
) {
1727 printk(KERN_ERR
"perfmon: pfm_syswide_force_stop CPU%d unexpected ctx %p instead of %p\n",
1729 GET_PMU_CTX(), ctx
);
1733 DPRINT(("on CPU%d forcing system wide stop for [%d]\n", smp_processor_id(), ctx
->ctx_task
->pid
));
1735 * the context is already protected in pfm_close(), we simply
1736 * need to mask interrupts to avoid a PMU interrupt race on
1739 local_irq_save(flags
);
1741 ret
= pfm_context_unload(ctx
, NULL
, 0, regs
);
1743 DPRINT(("context_unload returned %d\n", ret
));
1747 * unmask interrupts, PMU interrupts are now spurious here
1749 local_irq_restore(flags
);
1753 pfm_syswide_cleanup_other_cpu(pfm_context_t
*ctx
)
1757 DPRINT(("calling CPU%d for cleanup\n", ctx
->ctx_cpu
));
1758 ret
= smp_call_function_single(ctx
->ctx_cpu
, pfm_syswide_force_stop
, ctx
, 0, 1);
1759 DPRINT(("called CPU%d for cleanup ret=%d\n", ctx
->ctx_cpu
, ret
));
1761 #endif /* CONFIG_SMP */
1764 * called for each close(). Partially free resources.
1765 * When caller is self-monitoring, the context is unloaded.
1768 pfm_flush(struct file
*filp
)
1771 struct task_struct
*task
;
1772 struct pt_regs
*regs
;
1773 unsigned long flags
;
1774 unsigned long smpl_buf_size
= 0UL;
1775 void *smpl_buf_vaddr
= NULL
;
1776 int state
, is_system
;
1778 if (PFM_IS_FILE(filp
) == 0) {
1779 DPRINT(("bad magic for\n"));
1783 ctx
= (pfm_context_t
*)filp
->private_data
;
1785 printk(KERN_ERR
"perfmon: pfm_flush: NULL ctx [%d]\n", current
->pid
);
1790 * remove our file from the async queue, if we use this mode.
1791 * This can be done without the context being protected. We come
1792 * here when the context has become unreacheable by other tasks.
1794 * We may still have active monitoring at this point and we may
1795 * end up in pfm_overflow_handler(). However, fasync_helper()
1796 * operates with interrupts disabled and it cleans up the
1797 * queue. If the PMU handler is called prior to entering
1798 * fasync_helper() then it will send a signal. If it is
1799 * invoked after, it will find an empty queue and no
1800 * signal will be sent. In both case, we are safe
1802 if (filp
->f_flags
& FASYNC
) {
1803 DPRINT(("cleaning up async_queue=%p\n", ctx
->ctx_async_queue
));
1804 pfm_do_fasync (-1, filp
, ctx
, 0);
1807 PROTECT_CTX(ctx
, flags
);
1809 state
= ctx
->ctx_state
;
1810 is_system
= ctx
->ctx_fl_system
;
1812 task
= PFM_CTX_TASK(ctx
);
1813 regs
= ia64_task_regs(task
);
1815 DPRINT(("ctx_state=%d is_current=%d\n",
1817 task
== current
? 1 : 0));
1820 * if state == UNLOADED, then task is NULL
1824 * we must stop and unload because we are losing access to the context.
1826 if (task
== current
) {
1829 * the task IS the owner but it migrated to another CPU: that's bad
1830 * but we must handle this cleanly. Unfortunately, the kernel does
1831 * not provide a mechanism to block migration (while the context is loaded).
1833 * We need to release the resource on the ORIGINAL cpu.
1835 if (is_system
&& ctx
->ctx_cpu
!= smp_processor_id()) {
1837 DPRINT(("should be running on CPU%d\n", ctx
->ctx_cpu
));
1839 * keep context protected but unmask interrupt for IPI
1841 local_irq_restore(flags
);
1843 pfm_syswide_cleanup_other_cpu(ctx
);
1846 * restore interrupt masking
1848 local_irq_save(flags
);
1851 * context is unloaded at this point
1854 #endif /* CONFIG_SMP */
1857 DPRINT(("forcing unload\n"));
1859 * stop and unload, returning with state UNLOADED
1860 * and session unreserved.
1862 pfm_context_unload(ctx
, NULL
, 0, regs
);
1864 DPRINT(("ctx_state=%d\n", ctx
->ctx_state
));
1869 * remove virtual mapping, if any, for the calling task.
1870 * cannot reset ctx field until last user is calling close().
1872 * ctx_smpl_vaddr must never be cleared because it is needed
1873 * by every task with access to the context
1875 * When called from do_exit(), the mm context is gone already, therefore
1876 * mm is NULL, i.e., the VMA is already gone and we do not have to
1879 if (ctx
->ctx_smpl_vaddr
&& current
->mm
) {
1880 smpl_buf_vaddr
= ctx
->ctx_smpl_vaddr
;
1881 smpl_buf_size
= ctx
->ctx_smpl_size
;
1884 UNPROTECT_CTX(ctx
, flags
);
1887 * if there was a mapping, then we systematically remove it
1888 * at this point. Cannot be done inside critical section
1889 * because some VM function reenables interrupts.
1892 if (smpl_buf_vaddr
) pfm_remove_smpl_mapping(current
, smpl_buf_vaddr
, smpl_buf_size
);
1897 * called either on explicit close() or from exit_files().
1898 * Only the LAST user of the file gets to this point, i.e., it is
1901 * IMPORTANT: we get called ONLY when the refcnt on the file gets to zero
1902 * (fput()),i.e, last task to access the file. Nobody else can access the
1903 * file at this point.
1905 * When called from exit_files(), the VMA has been freed because exit_mm()
1906 * is executed before exit_files().
1908 * When called from exit_files(), the current task is not yet ZOMBIE but we
1909 * flush the PMU state to the context.
1912 pfm_close(struct inode
*inode
, struct file
*filp
)
1915 struct task_struct
*task
;
1916 struct pt_regs
*regs
;
1917 DECLARE_WAITQUEUE(wait
, current
);
1918 unsigned long flags
;
1919 unsigned long smpl_buf_size
= 0UL;
1920 void *smpl_buf_addr
= NULL
;
1921 int free_possible
= 1;
1922 int state
, is_system
;
1924 DPRINT(("pfm_close called private=%p\n", filp
->private_data
));
1926 if (PFM_IS_FILE(filp
) == 0) {
1927 DPRINT(("bad magic\n"));
1931 ctx
= (pfm_context_t
*)filp
->private_data
;
1933 printk(KERN_ERR
"perfmon: pfm_close: NULL ctx [%d]\n", current
->pid
);
1937 PROTECT_CTX(ctx
, flags
);
1939 state
= ctx
->ctx_state
;
1940 is_system
= ctx
->ctx_fl_system
;
1942 task
= PFM_CTX_TASK(ctx
);
1943 regs
= ia64_task_regs(task
);
1945 DPRINT(("ctx_state=%d is_current=%d\n",
1947 task
== current
? 1 : 0));
1950 * if task == current, then pfm_flush() unloaded the context
1952 if (state
== PFM_CTX_UNLOADED
) goto doit
;
1955 * context is loaded/masked and task != current, we need to
1956 * either force an unload or go zombie
1960 * The task is currently blocked or will block after an overflow.
1961 * we must force it to wakeup to get out of the
1962 * MASKED state and transition to the unloaded state by itself.
1964 * This situation is only possible for per-task mode
1966 if (state
== PFM_CTX_MASKED
&& CTX_OVFL_NOBLOCK(ctx
) == 0) {
1969 * set a "partial" zombie state to be checked
1970 * upon return from down() in pfm_handle_work().
1972 * We cannot use the ZOMBIE state, because it is checked
1973 * by pfm_load_regs() which is called upon wakeup from down().
1974 * In such case, it would free the context and then we would
1975 * return to pfm_handle_work() which would access the
1976 * stale context. Instead, we set a flag invisible to pfm_load_regs()
1977 * but visible to pfm_handle_work().
1979 * For some window of time, we have a zombie context with
1980 * ctx_state = MASKED and not ZOMBIE
1982 ctx
->ctx_fl_going_zombie
= 1;
1985 * force task to wake up from MASKED state
1987 up(&ctx
->ctx_restart_sem
);
1989 DPRINT(("waking up ctx_state=%d\n", state
));
1992 * put ourself to sleep waiting for the other
1993 * task to report completion
1995 * the context is protected by mutex, therefore there
1996 * is no risk of being notified of completion before
1997 * begin actually on the waitq.
1999 set_current_state(TASK_INTERRUPTIBLE
);
2000 add_wait_queue(&ctx
->ctx_zombieq
, &wait
);
2002 UNPROTECT_CTX(ctx
, flags
);
2005 * XXX: check for signals :
2006 * - ok for explicit close
2007 * - not ok when coming from exit_files()
2012 PROTECT_CTX(ctx
, flags
);
2015 remove_wait_queue(&ctx
->ctx_zombieq
, &wait
);
2016 set_current_state(TASK_RUNNING
);
2019 * context is unloaded at this point
2021 DPRINT(("after zombie wakeup ctx_state=%d for\n", state
));
2023 else if (task
!= current
) {
2026 * switch context to zombie state
2028 ctx
->ctx_state
= PFM_CTX_ZOMBIE
;
2030 DPRINT(("zombie ctx for [%d]\n", task
->pid
));
2032 * cannot free the context on the spot. deferred until
2033 * the task notices the ZOMBIE state
2037 pfm_context_unload(ctx
, NULL
, 0, regs
);
2042 /* reload state, may have changed during opening of critical section */
2043 state
= ctx
->ctx_state
;
2046 * the context is still attached to a task (possibly current)
2047 * we cannot destroy it right now
2051 * we must free the sampling buffer right here because
2052 * we cannot rely on it being cleaned up later by the
2053 * monitored task. It is not possible to free vmalloc'ed
2054 * memory in pfm_load_regs(). Instead, we remove the buffer
2055 * now. should there be subsequent PMU overflow originally
2056 * meant for sampling, the will be converted to spurious
2057 * and that's fine because the monitoring tools is gone anyway.
2059 if (ctx
->ctx_smpl_hdr
) {
2060 smpl_buf_addr
= ctx
->ctx_smpl_hdr
;
2061 smpl_buf_size
= ctx
->ctx_smpl_size
;
2062 /* no more sampling */
2063 ctx
->ctx_smpl_hdr
= NULL
;
2064 ctx
->ctx_fl_is_sampling
= 0;
2067 DPRINT(("ctx_state=%d free_possible=%d addr=%p size=%lu\n",
2073 if (smpl_buf_addr
) pfm_exit_smpl_buffer(ctx
->ctx_buf_fmt
);
2076 * UNLOADED that the session has already been unreserved.
2078 if (state
== PFM_CTX_ZOMBIE
) {
2079 pfm_unreserve_session(ctx
, ctx
->ctx_fl_system
, ctx
->ctx_cpu
);
2083 * disconnect file descriptor from context must be done
2086 filp
->private_data
= NULL
;
2089 * if we free on the spot, the context is now completely unreacheable
2090 * from the callers side. The monitored task side is also cut, so we
2093 * If we have a deferred free, only the caller side is disconnected.
2095 UNPROTECT_CTX(ctx
, flags
);
2098 * All memory free operations (especially for vmalloc'ed memory)
2099 * MUST be done with interrupts ENABLED.
2101 if (smpl_buf_addr
) pfm_rvfree(smpl_buf_addr
, smpl_buf_size
);
2104 * return the memory used by the context
2106 if (free_possible
) pfm_context_free(ctx
);
2112 pfm_no_open(struct inode
*irrelevant
, struct file
*dontcare
)
2114 DPRINT(("pfm_no_open called\n"));
2120 static struct file_operations pfm_file_ops
= {
2121 .llseek
= no_llseek
,
2126 .open
= pfm_no_open
, /* special open code to disallow open via /proc */
2127 .fasync
= pfm_fasync
,
2128 .release
= pfm_close
,
2133 pfmfs_delete_dentry(struct dentry
*dentry
)
2138 static struct dentry_operations pfmfs_dentry_operations
= {
2139 .d_delete
= pfmfs_delete_dentry
,
2144 pfm_alloc_fd(struct file
**cfile
)
2147 struct file
*file
= NULL
;
2148 struct inode
* inode
;
2152 fd
= get_unused_fd();
2153 if (fd
< 0) return -ENFILE
;
2157 file
= get_empty_filp();
2158 if (!file
) goto out
;
2161 * allocate a new inode
2163 inode
= new_inode(pfmfs_mnt
->mnt_sb
);
2164 if (!inode
) goto out
;
2166 DPRINT(("new inode ino=%ld @%p\n", inode
->i_ino
, inode
));
2168 inode
->i_mode
= S_IFCHR
|S_IRUGO
;
2169 inode
->i_uid
= current
->fsuid
;
2170 inode
->i_gid
= current
->fsgid
;
2172 sprintf(name
, "[%lu]", inode
->i_ino
);
2174 this.len
= strlen(name
);
2175 this.hash
= inode
->i_ino
;
2180 * allocate a new dcache entry
2182 file
->f_dentry
= d_alloc(pfmfs_mnt
->mnt_sb
->s_root
, &this);
2183 if (!file
->f_dentry
) goto out
;
2185 file
->f_dentry
->d_op
= &pfmfs_dentry_operations
;
2187 d_add(file
->f_dentry
, inode
);
2188 file
->f_vfsmnt
= mntget(pfmfs_mnt
);
2189 file
->f_mapping
= inode
->i_mapping
;
2191 file
->f_op
= &pfm_file_ops
;
2192 file
->f_mode
= FMODE_READ
;
2193 file
->f_flags
= O_RDONLY
;
2197 * may have to delay until context is attached?
2199 fd_install(fd
, file
);
2202 * the file structure we will use
2208 if (file
) put_filp(file
);
2214 pfm_free_fd(int fd
, struct file
*file
)
2216 struct files_struct
*files
= current
->files
;
2219 * there ie no fd_uninstall(), so we do it here
2221 spin_lock(&files
->file_lock
);
2222 files
->fd
[fd
] = NULL
;
2223 spin_unlock(&files
->file_lock
);
2225 if (file
) put_filp(file
);
2230 pfm_remap_buffer(struct vm_area_struct
*vma
, unsigned long buf
, unsigned long addr
, unsigned long size
)
2232 DPRINT(("CPU%d buf=0x%lx addr=0x%lx size=%ld\n", smp_processor_id(), buf
, addr
, size
));
2235 unsigned long pfn
= ia64_tpa(buf
) >> PAGE_SHIFT
;
2238 if (remap_pfn_range(vma
, addr
, pfn
, PAGE_SIZE
, PAGE_READONLY
))
2249 * allocate a sampling buffer and remaps it into the user address space of the task
2252 pfm_smpl_buffer_alloc(struct task_struct
*task
, pfm_context_t
*ctx
, unsigned long rsize
, void **user_vaddr
)
2254 struct mm_struct
*mm
= task
->mm
;
2255 struct vm_area_struct
*vma
= NULL
;
2261 * the fixed header + requested size and align to page boundary
2263 size
= PAGE_ALIGN(rsize
);
2265 DPRINT(("sampling buffer rsize=%lu size=%lu bytes\n", rsize
, size
));
2268 * check requested size to avoid Denial-of-service attacks
2269 * XXX: may have to refine this test
2270 * Check against address space limit.
2272 * if ((mm->total_vm << PAGE_SHIFT) + len> task->rlim[RLIMIT_AS].rlim_cur)
2275 if (size
> task
->signal
->rlim
[RLIMIT_MEMLOCK
].rlim_cur
)
2279 * We do the easy to undo allocations first.
2281 * pfm_rvmalloc(), clears the buffer, so there is no leak
2283 smpl_buf
= pfm_rvmalloc(size
);
2284 if (smpl_buf
== NULL
) {
2285 DPRINT(("Can't allocate sampling buffer\n"));
2289 DPRINT(("smpl_buf @%p\n", smpl_buf
));
2292 vma
= kmem_cache_alloc(vm_area_cachep
, SLAB_KERNEL
);
2294 DPRINT(("Cannot allocate vma\n"));
2297 memset(vma
, 0, sizeof(*vma
));
2300 * partially initialize the vma for the sampling buffer
2303 vma
->vm_flags
= VM_READ
| VM_MAYREAD
|VM_RESERVED
;
2304 vma
->vm_page_prot
= PAGE_READONLY
; /* XXX may need to change */
2307 * Now we have everything we need and we can initialize
2308 * and connect all the data structures
2311 ctx
->ctx_smpl_hdr
= smpl_buf
;
2312 ctx
->ctx_smpl_size
= size
; /* aligned size */
2315 * Let's do the difficult operations next.
2317 * now we atomically find some area in the address space and
2318 * remap the buffer in it.
2320 down_write(&task
->mm
->mmap_sem
);
2322 /* find some free area in address space, must have mmap sem held */
2323 vma
->vm_start
= pfm_get_unmapped_area(NULL
, 0, size
, 0, MAP_PRIVATE
|MAP_ANONYMOUS
, 0);
2324 if (vma
->vm_start
== 0UL) {
2325 DPRINT(("Cannot find unmapped area for size %ld\n", size
));
2326 up_write(&task
->mm
->mmap_sem
);
2329 vma
->vm_end
= vma
->vm_start
+ size
;
2330 vma
->vm_pgoff
= vma
->vm_start
>> PAGE_SHIFT
;
2332 DPRINT(("aligned size=%ld, hdr=%p mapped @0x%lx\n", size
, ctx
->ctx_smpl_hdr
, vma
->vm_start
));
2334 /* can only be applied to current task, need to have the mm semaphore held when called */
2335 if (pfm_remap_buffer(vma
, (unsigned long)smpl_buf
, vma
->vm_start
, size
)) {
2336 DPRINT(("Can't remap buffer\n"));
2337 up_write(&task
->mm
->mmap_sem
);
2342 * now insert the vma in the vm list for the process, must be
2343 * done with mmap lock held
2345 insert_vm_struct(mm
, vma
);
2347 mm
->total_vm
+= size
>> PAGE_SHIFT
;
2348 vm_stat_account(vma
);
2349 up_write(&task
->mm
->mmap_sem
);
2352 * keep track of user level virtual address
2354 ctx
->ctx_smpl_vaddr
= (void *)vma
->vm_start
;
2355 *(unsigned long *)user_vaddr
= vma
->vm_start
;
2360 kmem_cache_free(vm_area_cachep
, vma
);
2362 pfm_rvfree(smpl_buf
, size
);
2368 * XXX: do something better here
2371 pfm_bad_permissions(struct task_struct
*task
)
2373 /* inspired by ptrace_attach() */
2374 DPRINT(("cur: uid=%d gid=%d task: euid=%d suid=%d uid=%d egid=%d sgid=%d\n",
2383 return ((current
->uid
!= task
->euid
)
2384 || (current
->uid
!= task
->suid
)
2385 || (current
->uid
!= task
->uid
)
2386 || (current
->gid
!= task
->egid
)
2387 || (current
->gid
!= task
->sgid
)
2388 || (current
->gid
!= task
->gid
)) && !capable(CAP_SYS_PTRACE
);
2392 pfarg_is_sane(struct task_struct
*task
, pfarg_context_t
*pfx
)
2398 ctx_flags
= pfx
->ctx_flags
;
2400 if (ctx_flags
& PFM_FL_SYSTEM_WIDE
) {
2403 * cannot block in this mode
2405 if (ctx_flags
& PFM_FL_NOTIFY_BLOCK
) {
2406 DPRINT(("cannot use blocking mode when in system wide monitoring\n"));
2411 /* probably more to add here */
2417 pfm_setup_buffer_fmt(struct task_struct
*task
, pfm_context_t
*ctx
, unsigned int ctx_flags
,
2418 unsigned int cpu
, pfarg_context_t
*arg
)
2420 pfm_buffer_fmt_t
*fmt
= NULL
;
2421 unsigned long size
= 0UL;
2423 void *fmt_arg
= NULL
;
2425 #define PFM_CTXARG_BUF_ARG(a) (pfm_buffer_fmt_t *)(a+1)
2427 /* invoke and lock buffer format, if found */
2428 fmt
= pfm_find_buffer_fmt(arg
->ctx_smpl_buf_id
);
2430 DPRINT(("[%d] cannot find buffer format\n", task
->pid
));
2435 * buffer argument MUST be contiguous to pfarg_context_t
2437 if (fmt
->fmt_arg_size
) fmt_arg
= PFM_CTXARG_BUF_ARG(arg
);
2439 ret
= pfm_buf_fmt_validate(fmt
, task
, ctx_flags
, cpu
, fmt_arg
);
2441 DPRINT(("[%d] after validate(0x%x,%d,%p)=%d\n", task
->pid
, ctx_flags
, cpu
, fmt_arg
, ret
));
2443 if (ret
) goto error
;
2445 /* link buffer format and context */
2446 ctx
->ctx_buf_fmt
= fmt
;
2449 * check if buffer format wants to use perfmon buffer allocation/mapping service
2451 ret
= pfm_buf_fmt_getsize(fmt
, task
, ctx_flags
, cpu
, fmt_arg
, &size
);
2452 if (ret
) goto error
;
2456 * buffer is always remapped into the caller's address space
2458 ret
= pfm_smpl_buffer_alloc(current
, ctx
, size
, &uaddr
);
2459 if (ret
) goto error
;
2461 /* keep track of user address of buffer */
2462 arg
->ctx_smpl_vaddr
= uaddr
;
2464 ret
= pfm_buf_fmt_init(fmt
, task
, ctx
->ctx_smpl_hdr
, ctx_flags
, cpu
, fmt_arg
);
2471 pfm_reset_pmu_state(pfm_context_t
*ctx
)
2476 * install reset values for PMC.
2478 for (i
=1; PMC_IS_LAST(i
) == 0; i
++) {
2479 if (PMC_IS_IMPL(i
) == 0) continue;
2480 ctx
->ctx_pmcs
[i
] = PMC_DFL_VAL(i
);
2481 DPRINT(("pmc[%d]=0x%lx\n", i
, ctx
->ctx_pmcs
[i
]));
2484 * PMD registers are set to 0UL when the context in memset()
2488 * On context switched restore, we must restore ALL pmc and ALL pmd even
2489 * when they are not actively used by the task. In UP, the incoming process
2490 * may otherwise pick up left over PMC, PMD state from the previous process.
2491 * As opposed to PMD, stale PMC can cause harm to the incoming
2492 * process because they may change what is being measured.
2493 * Therefore, we must systematically reinstall the entire
2494 * PMC state. In SMP, the same thing is possible on the
2495 * same CPU but also on between 2 CPUs.
2497 * The problem with PMD is information leaking especially
2498 * to user level when psr.sp=0
2500 * There is unfortunately no easy way to avoid this problem
2501 * on either UP or SMP. This definitively slows down the
2502 * pfm_load_regs() function.
2506 * bitmask of all PMCs accessible to this context
2508 * PMC0 is treated differently.
2510 ctx
->ctx_all_pmcs
[0] = pmu_conf
->impl_pmcs
[0] & ~0x1;
2513 * bitmask of all PMDs that are accesible to this context
2515 ctx
->ctx_all_pmds
[0] = pmu_conf
->impl_pmds
[0];
2517 DPRINT(("<%d> all_pmcs=0x%lx all_pmds=0x%lx\n", ctx
->ctx_fd
, ctx
->ctx_all_pmcs
[0],ctx
->ctx_all_pmds
[0]));
2520 * useful in case of re-enable after disable
2522 ctx
->ctx_used_ibrs
[0] = 0UL;
2523 ctx
->ctx_used_dbrs
[0] = 0UL;
2527 pfm_ctx_getsize(void *arg
, size_t *sz
)
2529 pfarg_context_t
*req
= (pfarg_context_t
*)arg
;
2530 pfm_buffer_fmt_t
*fmt
;
2534 if (!pfm_uuid_cmp(req
->ctx_smpl_buf_id
, pfm_null_uuid
)) return 0;
2536 fmt
= pfm_find_buffer_fmt(req
->ctx_smpl_buf_id
);
2538 DPRINT(("cannot find buffer format\n"));
2541 /* get just enough to copy in user parameters */
2542 *sz
= fmt
->fmt_arg_size
;
2543 DPRINT(("arg_size=%lu\n", *sz
));
2551 * cannot attach if :
2553 * - task not owned by caller
2554 * - task incompatible with context mode
2557 pfm_task_incompatible(pfm_context_t
*ctx
, struct task_struct
*task
)
2560 * no kernel task or task not owner by caller
2562 if (task
->mm
== NULL
) {
2563 DPRINT(("task [%d] has not memory context (kernel thread)\n", task
->pid
));
2566 if (pfm_bad_permissions(task
)) {
2567 DPRINT(("no permission to attach to [%d]\n", task
->pid
));
2571 * cannot block in self-monitoring mode
2573 if (CTX_OVFL_NOBLOCK(ctx
) == 0 && task
== current
) {
2574 DPRINT(("cannot load a blocking context on self for [%d]\n", task
->pid
));
2578 if (task
->exit_state
== EXIT_ZOMBIE
) {
2579 DPRINT(("cannot attach to zombie task [%d]\n", task
->pid
));
2584 * always ok for self
2586 if (task
== current
) return 0;
2588 if ((task
->state
!= TASK_STOPPED
) && (task
->state
!= TASK_TRACED
)) {
2589 DPRINT(("cannot attach to non-stopped task [%d] state=%ld\n", task
->pid
, task
->state
));
2593 * make sure the task is off any CPU
2595 wait_task_inactive(task
);
2597 /* more to come... */
2603 pfm_get_task(pfm_context_t
*ctx
, pid_t pid
, struct task_struct
**task
)
2605 struct task_struct
*p
= current
;
2608 /* XXX: need to add more checks here */
2609 if (pid
< 2) return -EPERM
;
2611 if (pid
!= current
->pid
) {
2613 read_lock(&tasklist_lock
);
2615 p
= find_task_by_pid(pid
);
2617 /* make sure task cannot go away while we operate on it */
2618 if (p
) get_task_struct(p
);
2620 read_unlock(&tasklist_lock
);
2622 if (p
== NULL
) return -ESRCH
;
2625 ret
= pfm_task_incompatible(ctx
, p
);
2628 } else if (p
!= current
) {
2637 pfm_context_create(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
2639 pfarg_context_t
*req
= (pfarg_context_t
*)arg
;
2644 /* let's check the arguments first */
2645 ret
= pfarg_is_sane(current
, req
);
2646 if (ret
< 0) return ret
;
2648 ctx_flags
= req
->ctx_flags
;
2652 ctx
= pfm_context_alloc();
2653 if (!ctx
) goto error
;
2655 ret
= pfm_alloc_fd(&filp
);
2656 if (ret
< 0) goto error_file
;
2658 req
->ctx_fd
= ctx
->ctx_fd
= ret
;
2661 * attach context to file
2663 filp
->private_data
= ctx
;
2666 * does the user want to sample?
2668 if (pfm_uuid_cmp(req
->ctx_smpl_buf_id
, pfm_null_uuid
)) {
2669 ret
= pfm_setup_buffer_fmt(current
, ctx
, ctx_flags
, 0, req
);
2670 if (ret
) goto buffer_error
;
2674 * init context protection lock
2676 spin_lock_init(&ctx
->ctx_lock
);
2679 * context is unloaded
2681 ctx
->ctx_state
= PFM_CTX_UNLOADED
;
2684 * initialization of context's flags
2686 ctx
->ctx_fl_block
= (ctx_flags
& PFM_FL_NOTIFY_BLOCK
) ? 1 : 0;
2687 ctx
->ctx_fl_system
= (ctx_flags
& PFM_FL_SYSTEM_WIDE
) ? 1: 0;
2688 ctx
->ctx_fl_is_sampling
= ctx
->ctx_buf_fmt
? 1 : 0; /* assume record() is defined */
2689 ctx
->ctx_fl_no_msg
= (ctx_flags
& PFM_FL_OVFL_NO_MSG
) ? 1: 0;
2691 * will move to set properties
2692 * ctx->ctx_fl_excl_idle = (ctx_flags & PFM_FL_EXCL_IDLE) ? 1: 0;
2696 * init restart semaphore to locked
2698 sema_init(&ctx
->ctx_restart_sem
, 0);
2701 * activation is used in SMP only
2703 ctx
->ctx_last_activation
= PFM_INVALID_ACTIVATION
;
2704 SET_LAST_CPU(ctx
, -1);
2707 * initialize notification message queue
2709 ctx
->ctx_msgq_head
= ctx
->ctx_msgq_tail
= 0;
2710 init_waitqueue_head(&ctx
->ctx_msgq_wait
);
2711 init_waitqueue_head(&ctx
->ctx_zombieq
);
2713 DPRINT(("ctx=%p flags=0x%x system=%d notify_block=%d excl_idle=%d no_msg=%d ctx_fd=%d \n",
2718 ctx
->ctx_fl_excl_idle
,
2723 * initialize soft PMU state
2725 pfm_reset_pmu_state(ctx
);
2730 pfm_free_fd(ctx
->ctx_fd
, filp
);
2732 if (ctx
->ctx_buf_fmt
) {
2733 pfm_buf_fmt_exit(ctx
->ctx_buf_fmt
, current
, NULL
, regs
);
2736 pfm_context_free(ctx
);
2742 static inline unsigned long
2743 pfm_new_counter_value (pfm_counter_t
*reg
, int is_long_reset
)
2745 unsigned long val
= is_long_reset
? reg
->long_reset
: reg
->short_reset
;
2746 unsigned long new_seed
, old_seed
= reg
->seed
, mask
= reg
->mask
;
2747 extern unsigned long carta_random32 (unsigned long seed
);
2749 if (reg
->flags
& PFM_REGFL_RANDOM
) {
2750 new_seed
= carta_random32(old_seed
);
2751 val
-= (old_seed
& mask
); /* counter values are negative numbers! */
2752 if ((mask
>> 32) != 0)
2753 /* construct a full 64-bit random value: */
2754 new_seed
|= carta_random32(old_seed
>> 32) << 32;
2755 reg
->seed
= new_seed
;
2762 pfm_reset_regs_masked(pfm_context_t
*ctx
, unsigned long *ovfl_regs
, int is_long_reset
)
2764 unsigned long mask
= ovfl_regs
[0];
2765 unsigned long reset_others
= 0UL;
2770 * now restore reset value on sampling overflowed counters
2772 mask
>>= PMU_FIRST_COUNTER
;
2773 for(i
= PMU_FIRST_COUNTER
; mask
; i
++, mask
>>= 1) {
2775 if ((mask
& 0x1UL
) == 0UL) continue;
2777 ctx
->ctx_pmds
[i
].val
= val
= pfm_new_counter_value(ctx
->ctx_pmds
+ i
, is_long_reset
);
2778 reset_others
|= ctx
->ctx_pmds
[i
].reset_pmds
[0];
2780 DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset
? "long" : "short", i
, val
));
2784 * Now take care of resetting the other registers
2786 for(i
= 0; reset_others
; i
++, reset_others
>>= 1) {
2788 if ((reset_others
& 0x1) == 0) continue;
2790 ctx
->ctx_pmds
[i
].val
= val
= pfm_new_counter_value(ctx
->ctx_pmds
+ i
, is_long_reset
);
2792 DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2793 is_long_reset
? "long" : "short", i
, val
));
2798 pfm_reset_regs(pfm_context_t
*ctx
, unsigned long *ovfl_regs
, int is_long_reset
)
2800 unsigned long mask
= ovfl_regs
[0];
2801 unsigned long reset_others
= 0UL;
2805 DPRINT_ovfl(("ovfl_regs=0x%lx is_long_reset=%d\n", ovfl_regs
[0], is_long_reset
));
2807 if (ctx
->ctx_state
== PFM_CTX_MASKED
) {
2808 pfm_reset_regs_masked(ctx
, ovfl_regs
, is_long_reset
);
2813 * now restore reset value on sampling overflowed counters
2815 mask
>>= PMU_FIRST_COUNTER
;
2816 for(i
= PMU_FIRST_COUNTER
; mask
; i
++, mask
>>= 1) {
2818 if ((mask
& 0x1UL
) == 0UL) continue;
2820 val
= pfm_new_counter_value(ctx
->ctx_pmds
+ i
, is_long_reset
);
2821 reset_others
|= ctx
->ctx_pmds
[i
].reset_pmds
[0];
2823 DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset
? "long" : "short", i
, val
));
2825 pfm_write_soft_counter(ctx
, i
, val
);
2829 * Now take care of resetting the other registers
2831 for(i
= 0; reset_others
; i
++, reset_others
>>= 1) {
2833 if ((reset_others
& 0x1) == 0) continue;
2835 val
= pfm_new_counter_value(ctx
->ctx_pmds
+ i
, is_long_reset
);
2837 if (PMD_IS_COUNTING(i
)) {
2838 pfm_write_soft_counter(ctx
, i
, val
);
2840 ia64_set_pmd(i
, val
);
2842 DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2843 is_long_reset
? "long" : "short", i
, val
));
2849 pfm_write_pmcs(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
2851 struct thread_struct
*thread
= NULL
;
2852 struct task_struct
*task
;
2853 pfarg_reg_t
*req
= (pfarg_reg_t
*)arg
;
2854 unsigned long value
, pmc_pm
;
2855 unsigned long smpl_pmds
, reset_pmds
, impl_pmds
;
2856 unsigned int cnum
, reg_flags
, flags
, pmc_type
;
2857 int i
, can_access_pmu
= 0, is_loaded
, is_system
, expert_mode
;
2858 int is_monitor
, is_counting
, state
;
2860 pfm_reg_check_t wr_func
;
2861 #define PFM_CHECK_PMC_PM(x, y, z) ((x)->ctx_fl_system ^ PMC_PM(y, z))
2863 state
= ctx
->ctx_state
;
2864 is_loaded
= state
== PFM_CTX_LOADED
? 1 : 0;
2865 is_system
= ctx
->ctx_fl_system
;
2866 task
= ctx
->ctx_task
;
2867 impl_pmds
= pmu_conf
->impl_pmds
[0];
2869 if (state
== PFM_CTX_ZOMBIE
) return -EINVAL
;
2872 thread
= &task
->thread
;
2874 * In system wide and when the context is loaded, access can only happen
2875 * when the caller is running on the CPU being monitored by the session.
2876 * It does not have to be the owner (ctx_task) of the context per se.
2878 if (is_system
&& ctx
->ctx_cpu
!= smp_processor_id()) {
2879 DPRINT(("should be running on CPU%d\n", ctx
->ctx_cpu
));
2882 can_access_pmu
= GET_PMU_OWNER() == task
|| is_system
? 1 : 0;
2884 expert_mode
= pfm_sysctl
.expert_mode
;
2886 for (i
= 0; i
< count
; i
++, req
++) {
2888 cnum
= req
->reg_num
;
2889 reg_flags
= req
->reg_flags
;
2890 value
= req
->reg_value
;
2891 smpl_pmds
= req
->reg_smpl_pmds
[0];
2892 reset_pmds
= req
->reg_reset_pmds
[0];
2896 if (cnum
>= PMU_MAX_PMCS
) {
2897 DPRINT(("pmc%u is invalid\n", cnum
));
2901 pmc_type
= pmu_conf
->pmc_desc
[cnum
].type
;
2902 pmc_pm
= (value
>> pmu_conf
->pmc_desc
[cnum
].pm_pos
) & 0x1;
2903 is_counting
= (pmc_type
& PFM_REG_COUNTING
) == PFM_REG_COUNTING
? 1 : 0;
2904 is_monitor
= (pmc_type
& PFM_REG_MONITOR
) == PFM_REG_MONITOR
? 1 : 0;
2907 * we reject all non implemented PMC as well
2908 * as attempts to modify PMC[0-3] which are used
2909 * as status registers by the PMU
2911 if ((pmc_type
& PFM_REG_IMPL
) == 0 || (pmc_type
& PFM_REG_CONTROL
) == PFM_REG_CONTROL
) {
2912 DPRINT(("pmc%u is unimplemented or no-access pmc_type=%x\n", cnum
, pmc_type
));
2915 wr_func
= pmu_conf
->pmc_desc
[cnum
].write_check
;
2917 * If the PMC is a monitor, then if the value is not the default:
2918 * - system-wide session: PMCx.pm=1 (privileged monitor)
2919 * - per-task : PMCx.pm=0 (user monitor)
2921 if (is_monitor
&& value
!= PMC_DFL_VAL(cnum
) && is_system
^ pmc_pm
) {
2922 DPRINT(("pmc%u pmc_pm=%lu is_system=%d\n",
2931 * enforce generation of overflow interrupt. Necessary on all
2934 value
|= 1 << PMU_PMC_OI
;
2936 if (reg_flags
& PFM_REGFL_OVFL_NOTIFY
) {
2937 flags
|= PFM_REGFL_OVFL_NOTIFY
;
2940 if (reg_flags
& PFM_REGFL_RANDOM
) flags
|= PFM_REGFL_RANDOM
;
2942 /* verify validity of smpl_pmds */
2943 if ((smpl_pmds
& impl_pmds
) != smpl_pmds
) {
2944 DPRINT(("invalid smpl_pmds 0x%lx for pmc%u\n", smpl_pmds
, cnum
));
2948 /* verify validity of reset_pmds */
2949 if ((reset_pmds
& impl_pmds
) != reset_pmds
) {
2950 DPRINT(("invalid reset_pmds 0x%lx for pmc%u\n", reset_pmds
, cnum
));
2954 if (reg_flags
& (PFM_REGFL_OVFL_NOTIFY
|PFM_REGFL_RANDOM
)) {
2955 DPRINT(("cannot set ovfl_notify or random on pmc%u\n", cnum
));
2958 /* eventid on non-counting monitors are ignored */
2962 * execute write checker, if any
2964 if (likely(expert_mode
== 0 && wr_func
)) {
2965 ret
= (*wr_func
)(task
, ctx
, cnum
, &value
, regs
);
2966 if (ret
) goto error
;
2971 * no error on this register
2973 PFM_REG_RETFLAG_SET(req
->reg_flags
, 0);
2976 * Now we commit the changes to the software state
2980 * update overflow information
2984 * full flag update each time a register is programmed
2986 ctx
->ctx_pmds
[cnum
].flags
= flags
;
2988 ctx
->ctx_pmds
[cnum
].reset_pmds
[0] = reset_pmds
;
2989 ctx
->ctx_pmds
[cnum
].smpl_pmds
[0] = smpl_pmds
;
2990 ctx
->ctx_pmds
[cnum
].eventid
= req
->reg_smpl_eventid
;
2993 * Mark all PMDS to be accessed as used.
2995 * We do not keep track of PMC because we have to
2996 * systematically restore ALL of them.
2998 * We do not update the used_monitors mask, because
2999 * if we have not programmed them, then will be in
3000 * a quiescent state, therefore we will not need to
3001 * mask/restore then when context is MASKED.
3003 CTX_USED_PMD(ctx
, reset_pmds
);
3004 CTX_USED_PMD(ctx
, smpl_pmds
);
3006 * make sure we do not try to reset on
3007 * restart because we have established new values
3009 if (state
== PFM_CTX_MASKED
) ctx
->ctx_ovfl_regs
[0] &= ~1UL << cnum
;
3012 * Needed in case the user does not initialize the equivalent
3013 * PMD. Clearing is done indirectly via pfm_reset_pmu_state() so there is no
3014 * possible leak here.
3016 CTX_USED_PMD(ctx
, pmu_conf
->pmc_desc
[cnum
].dep_pmd
[0]);
3019 * keep track of the monitor PMC that we are using.
3020 * we save the value of the pmc in ctx_pmcs[] and if
3021 * the monitoring is not stopped for the context we also
3022 * place it in the saved state area so that it will be
3023 * picked up later by the context switch code.
3025 * The value in ctx_pmcs[] can only be changed in pfm_write_pmcs().
3027 * The value in thread->pmcs[] may be modified on overflow, i.e., when
3028 * monitoring needs to be stopped.
3030 if (is_monitor
) CTX_USED_MONITOR(ctx
, 1UL << cnum
);
3033 * update context state
3035 ctx
->ctx_pmcs
[cnum
] = value
;
3039 * write thread state
3041 if (is_system
== 0) thread
->pmcs
[cnum
] = value
;
3044 * write hardware register if we can
3046 if (can_access_pmu
) {
3047 ia64_set_pmc(cnum
, value
);
3052 * per-task SMP only here
3054 * we are guaranteed that the task is not running on the other CPU,
3055 * we indicate that this PMD will need to be reloaded if the task
3056 * is rescheduled on the CPU it ran last on.
3058 ctx
->ctx_reload_pmcs
[0] |= 1UL << cnum
;
3063 DPRINT(("pmc[%u]=0x%lx ld=%d apmu=%d flags=0x%x all_pmcs=0x%lx used_pmds=0x%lx eventid=%ld smpl_pmds=0x%lx reset_pmds=0x%lx reloads_pmcs=0x%lx used_monitors=0x%lx ovfl_regs=0x%lx\n",
3069 ctx
->ctx_all_pmcs
[0],
3070 ctx
->ctx_used_pmds
[0],
3071 ctx
->ctx_pmds
[cnum
].eventid
,
3074 ctx
->ctx_reload_pmcs
[0],
3075 ctx
->ctx_used_monitors
[0],
3076 ctx
->ctx_ovfl_regs
[0]));
3080 * make sure the changes are visible
3082 if (can_access_pmu
) ia64_srlz_d();
3086 PFM_REG_RETFLAG_SET(req
->reg_flags
, PFM_REG_RETFL_EINVAL
);
3091 pfm_write_pmds(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
3093 struct thread_struct
*thread
= NULL
;
3094 struct task_struct
*task
;
3095 pfarg_reg_t
*req
= (pfarg_reg_t
*)arg
;
3096 unsigned long value
, hw_value
, ovfl_mask
;
3098 int i
, can_access_pmu
= 0, state
;
3099 int is_counting
, is_loaded
, is_system
, expert_mode
;
3101 pfm_reg_check_t wr_func
;
3104 state
= ctx
->ctx_state
;
3105 is_loaded
= state
== PFM_CTX_LOADED
? 1 : 0;
3106 is_system
= ctx
->ctx_fl_system
;
3107 ovfl_mask
= pmu_conf
->ovfl_val
;
3108 task
= ctx
->ctx_task
;
3110 if (unlikely(state
== PFM_CTX_ZOMBIE
)) return -EINVAL
;
3113 * on both UP and SMP, we can only write to the PMC when the task is
3114 * the owner of the local PMU.
3116 if (likely(is_loaded
)) {
3117 thread
= &task
->thread
;
3119 * In system wide and when the context is loaded, access can only happen
3120 * when the caller is running on the CPU being monitored by the session.
3121 * It does not have to be the owner (ctx_task) of the context per se.
3123 if (unlikely(is_system
&& ctx
->ctx_cpu
!= smp_processor_id())) {
3124 DPRINT(("should be running on CPU%d\n", ctx
->ctx_cpu
));
3127 can_access_pmu
= GET_PMU_OWNER() == task
|| is_system
? 1 : 0;
3129 expert_mode
= pfm_sysctl
.expert_mode
;
3131 for (i
= 0; i
< count
; i
++, req
++) {
3133 cnum
= req
->reg_num
;
3134 value
= req
->reg_value
;
3136 if (!PMD_IS_IMPL(cnum
)) {
3137 DPRINT(("pmd[%u] is unimplemented or invalid\n", cnum
));
3140 is_counting
= PMD_IS_COUNTING(cnum
);
3141 wr_func
= pmu_conf
->pmd_desc
[cnum
].write_check
;
3144 * execute write checker, if any
3146 if (unlikely(expert_mode
== 0 && wr_func
)) {
3147 unsigned long v
= value
;
3149 ret
= (*wr_func
)(task
, ctx
, cnum
, &v
, regs
);
3150 if (ret
) goto abort_mission
;
3157 * no error on this register
3159 PFM_REG_RETFLAG_SET(req
->reg_flags
, 0);
3162 * now commit changes to software state
3167 * update virtualized (64bits) counter
3171 * write context state
3173 ctx
->ctx_pmds
[cnum
].lval
= value
;
3176 * when context is load we use the split value
3179 hw_value
= value
& ovfl_mask
;
3180 value
= value
& ~ovfl_mask
;
3184 * update reset values (not just for counters)
3186 ctx
->ctx_pmds
[cnum
].long_reset
= req
->reg_long_reset
;
3187 ctx
->ctx_pmds
[cnum
].short_reset
= req
->reg_short_reset
;
3190 * update randomization parameters (not just for counters)
3192 ctx
->ctx_pmds
[cnum
].seed
= req
->reg_random_seed
;
3193 ctx
->ctx_pmds
[cnum
].mask
= req
->reg_random_mask
;
3196 * update context value
3198 ctx
->ctx_pmds
[cnum
].val
= value
;
3201 * Keep track of what we use
3203 * We do not keep track of PMC because we have to
3204 * systematically restore ALL of them.
3206 CTX_USED_PMD(ctx
, PMD_PMD_DEP(cnum
));
3209 * mark this PMD register used as well
3211 CTX_USED_PMD(ctx
, RDEP(cnum
));
3214 * make sure we do not try to reset on
3215 * restart because we have established new values
3217 if (is_counting
&& state
== PFM_CTX_MASKED
) {
3218 ctx
->ctx_ovfl_regs
[0] &= ~1UL << cnum
;
3223 * write thread state
3225 if (is_system
== 0) thread
->pmds
[cnum
] = hw_value
;
3228 * write hardware register if we can
3230 if (can_access_pmu
) {
3231 ia64_set_pmd(cnum
, hw_value
);
3235 * we are guaranteed that the task is not running on the other CPU,
3236 * we indicate that this PMD will need to be reloaded if the task
3237 * is rescheduled on the CPU it ran last on.
3239 ctx
->ctx_reload_pmds
[0] |= 1UL << cnum
;
3244 DPRINT(("pmd[%u]=0x%lx ld=%d apmu=%d, hw_value=0x%lx ctx_pmd=0x%lx short_reset=0x%lx "
3245 "long_reset=0x%lx notify=%c seed=0x%lx mask=0x%lx used_pmds=0x%lx reset_pmds=0x%lx reload_pmds=0x%lx all_pmds=0x%lx ovfl_regs=0x%lx\n",
3251 ctx
->ctx_pmds
[cnum
].val
,
3252 ctx
->ctx_pmds
[cnum
].short_reset
,
3253 ctx
->ctx_pmds
[cnum
].long_reset
,
3254 PMC_OVFL_NOTIFY(ctx
, cnum
) ? 'Y':'N',
3255 ctx
->ctx_pmds
[cnum
].seed
,
3256 ctx
->ctx_pmds
[cnum
].mask
,
3257 ctx
->ctx_used_pmds
[0],
3258 ctx
->ctx_pmds
[cnum
].reset_pmds
[0],
3259 ctx
->ctx_reload_pmds
[0],
3260 ctx
->ctx_all_pmds
[0],
3261 ctx
->ctx_ovfl_regs
[0]));
3265 * make changes visible
3267 if (can_access_pmu
) ia64_srlz_d();
3273 * for now, we have only one possibility for error
3275 PFM_REG_RETFLAG_SET(req
->reg_flags
, PFM_REG_RETFL_EINVAL
);
3280 * By the way of PROTECT_CONTEXT(), interrupts are masked while we are in this function.
3281 * Therefore we know, we do not have to worry about the PMU overflow interrupt. If an
3282 * interrupt is delivered during the call, it will be kept pending until we leave, making
3283 * it appears as if it had been generated at the UNPROTECT_CONTEXT(). At least we are
3284 * guaranteed to return consistent data to the user, it may simply be old. It is not
3285 * trivial to treat the overflow while inside the call because you may end up in
3286 * some module sampling buffer code causing deadlocks.
3289 pfm_read_pmds(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
3291 struct thread_struct
*thread
= NULL
;
3292 struct task_struct
*task
;
3293 unsigned long val
= 0UL, lval
, ovfl_mask
, sval
;
3294 pfarg_reg_t
*req
= (pfarg_reg_t
*)arg
;
3295 unsigned int cnum
, reg_flags
= 0;
3296 int i
, can_access_pmu
= 0, state
;
3297 int is_loaded
, is_system
, is_counting
, expert_mode
;
3299 pfm_reg_check_t rd_func
;
3302 * access is possible when loaded only for
3303 * self-monitoring tasks or in UP mode
3306 state
= ctx
->ctx_state
;
3307 is_loaded
= state
== PFM_CTX_LOADED
? 1 : 0;
3308 is_system
= ctx
->ctx_fl_system
;
3309 ovfl_mask
= pmu_conf
->ovfl_val
;
3310 task
= ctx
->ctx_task
;
3312 if (state
== PFM_CTX_ZOMBIE
) return -EINVAL
;
3314 if (likely(is_loaded
)) {
3315 thread
= &task
->thread
;
3317 * In system wide and when the context is loaded, access can only happen
3318 * when the caller is running on the CPU being monitored by the session.
3319 * It does not have to be the owner (ctx_task) of the context per se.
3321 if (unlikely(is_system
&& ctx
->ctx_cpu
!= smp_processor_id())) {
3322 DPRINT(("should be running on CPU%d\n", ctx
->ctx_cpu
));
3326 * this can be true when not self-monitoring only in UP
3328 can_access_pmu
= GET_PMU_OWNER() == task
|| is_system
? 1 : 0;
3330 if (can_access_pmu
) ia64_srlz_d();
3332 expert_mode
= pfm_sysctl
.expert_mode
;
3334 DPRINT(("ld=%d apmu=%d ctx_state=%d\n",
3340 * on both UP and SMP, we can only read the PMD from the hardware register when
3341 * the task is the owner of the local PMU.
3344 for (i
= 0; i
< count
; i
++, req
++) {
3346 cnum
= req
->reg_num
;
3347 reg_flags
= req
->reg_flags
;
3349 if (unlikely(!PMD_IS_IMPL(cnum
))) goto error
;
3351 * we can only read the register that we use. That includes
3352 * the one we explicitely initialize AND the one we want included
3353 * in the sampling buffer (smpl_regs).
3355 * Having this restriction allows optimization in the ctxsw routine
3356 * without compromising security (leaks)
3358 if (unlikely(!CTX_IS_USED_PMD(ctx
, cnum
))) goto error
;
3360 sval
= ctx
->ctx_pmds
[cnum
].val
;
3361 lval
= ctx
->ctx_pmds
[cnum
].lval
;
3362 is_counting
= PMD_IS_COUNTING(cnum
);
3365 * If the task is not the current one, then we check if the
3366 * PMU state is still in the local live register due to lazy ctxsw.
3367 * If true, then we read directly from the registers.
3369 if (can_access_pmu
){
3370 val
= ia64_get_pmd(cnum
);
3373 * context has been saved
3374 * if context is zombie, then task does not exist anymore.
3375 * In this case, we use the full value saved in the context (pfm_flush_regs()).
3377 val
= is_loaded
? thread
->pmds
[cnum
] : 0UL;
3379 rd_func
= pmu_conf
->pmd_desc
[cnum
].read_check
;
3383 * XXX: need to check for overflow when loaded
3390 * execute read checker, if any
3392 if (unlikely(expert_mode
== 0 && rd_func
)) {
3393 unsigned long v
= val
;
3394 ret
= (*rd_func
)(ctx
->ctx_task
, ctx
, cnum
, &v
, regs
);
3395 if (ret
) goto error
;
3400 PFM_REG_RETFLAG_SET(reg_flags
, 0);
3402 DPRINT(("pmd[%u]=0x%lx\n", cnum
, val
));
3405 * update register return value, abort all if problem during copy.
3406 * we only modify the reg_flags field. no check mode is fine because
3407 * access has been verified upfront in sys_perfmonctl().
3409 req
->reg_value
= val
;
3410 req
->reg_flags
= reg_flags
;
3411 req
->reg_last_reset_val
= lval
;
3417 PFM_REG_RETFLAG_SET(req
->reg_flags
, PFM_REG_RETFL_EINVAL
);
3422 pfm_mod_write_pmcs(struct task_struct
*task
, void *req
, unsigned int nreq
, struct pt_regs
*regs
)
3426 if (req
== NULL
) return -EINVAL
;
3428 ctx
= GET_PMU_CTX();
3430 if (ctx
== NULL
) return -EINVAL
;
3433 * for now limit to current task, which is enough when calling
3434 * from overflow handler
3436 if (task
!= current
&& ctx
->ctx_fl_system
== 0) return -EBUSY
;
3438 return pfm_write_pmcs(ctx
, req
, nreq
, regs
);
3440 EXPORT_SYMBOL(pfm_mod_write_pmcs
);
3443 pfm_mod_read_pmds(struct task_struct
*task
, void *req
, unsigned int nreq
, struct pt_regs
*regs
)
3447 if (req
== NULL
) return -EINVAL
;
3449 ctx
= GET_PMU_CTX();
3451 if (ctx
== NULL
) return -EINVAL
;
3454 * for now limit to current task, which is enough when calling
3455 * from overflow handler
3457 if (task
!= current
&& ctx
->ctx_fl_system
== 0) return -EBUSY
;
3459 return pfm_read_pmds(ctx
, req
, nreq
, regs
);
3461 EXPORT_SYMBOL(pfm_mod_read_pmds
);
3464 * Only call this function when a process it trying to
3465 * write the debug registers (reading is always allowed)
3468 pfm_use_debug_registers(struct task_struct
*task
)
3470 pfm_context_t
*ctx
= task
->thread
.pfm_context
;
3471 unsigned long flags
;
3474 if (pmu_conf
->use_rr_dbregs
== 0) return 0;
3476 DPRINT(("called for [%d]\n", task
->pid
));
3481 if (task
->thread
.flags
& IA64_THREAD_DBG_VALID
) return 0;
3484 * Even on SMP, we do not need to use an atomic here because
3485 * the only way in is via ptrace() and this is possible only when the
3486 * process is stopped. Even in the case where the ctxsw out is not totally
3487 * completed by the time we come here, there is no way the 'stopped' process
3488 * could be in the middle of fiddling with the pfm_write_ibr_dbr() routine.
3489 * So this is always safe.
3491 if (ctx
&& ctx
->ctx_fl_using_dbreg
== 1) return -1;
3496 * We cannot allow setting breakpoints when system wide monitoring
3497 * sessions are using the debug registers.
3499 if (pfm_sessions
.pfs_sys_use_dbregs
> 0)
3502 pfm_sessions
.pfs_ptrace_use_dbregs
++;
3504 DPRINT(("ptrace_use_dbregs=%u sys_use_dbregs=%u by [%d] ret = %d\n",
3505 pfm_sessions
.pfs_ptrace_use_dbregs
,
3506 pfm_sessions
.pfs_sys_use_dbregs
,
3515 * This function is called for every task that exits with the
3516 * IA64_THREAD_DBG_VALID set. This indicates a task which was
3517 * able to use the debug registers for debugging purposes via
3518 * ptrace(). Therefore we know it was not using them for
3519 * perfmormance monitoring, so we only decrement the number
3520 * of "ptraced" debug register users to keep the count up to date
3523 pfm_release_debug_registers(struct task_struct
*task
)
3525 unsigned long flags
;
3528 if (pmu_conf
->use_rr_dbregs
== 0) return 0;
3531 if (pfm_sessions
.pfs_ptrace_use_dbregs
== 0) {
3532 printk(KERN_ERR
"perfmon: invalid release for [%d] ptrace_use_dbregs=0\n", task
->pid
);
3535 pfm_sessions
.pfs_ptrace_use_dbregs
--;
3544 pfm_restart(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
3546 struct task_struct
*task
;
3547 pfm_buffer_fmt_t
*fmt
;
3548 pfm_ovfl_ctrl_t rst_ctrl
;
3549 int state
, is_system
;
3552 state
= ctx
->ctx_state
;
3553 fmt
= ctx
->ctx_buf_fmt
;
3554 is_system
= ctx
->ctx_fl_system
;
3555 task
= PFM_CTX_TASK(ctx
);
3558 case PFM_CTX_MASKED
:
3560 case PFM_CTX_LOADED
:
3561 if (CTX_HAS_SMPL(ctx
) && fmt
->fmt_restart_active
) break;
3563 case PFM_CTX_UNLOADED
:
3564 case PFM_CTX_ZOMBIE
:
3565 DPRINT(("invalid state=%d\n", state
));
3568 DPRINT(("state=%d, cannot operate (no active_restart handler)\n", state
));
3573 * In system wide and when the context is loaded, access can only happen
3574 * when the caller is running on the CPU being monitored by the session.
3575 * It does not have to be the owner (ctx_task) of the context per se.
3577 if (is_system
&& ctx
->ctx_cpu
!= smp_processor_id()) {
3578 DPRINT(("should be running on CPU%d\n", ctx
->ctx_cpu
));
3583 if (unlikely(task
== NULL
)) {
3584 printk(KERN_ERR
"perfmon: [%d] pfm_restart no task\n", current
->pid
);
3588 if (task
== current
|| is_system
) {
3590 fmt
= ctx
->ctx_buf_fmt
;
3592 DPRINT(("restarting self %d ovfl=0x%lx\n",
3594 ctx
->ctx_ovfl_regs
[0]));
3596 if (CTX_HAS_SMPL(ctx
)) {
3598 prefetch(ctx
->ctx_smpl_hdr
);
3600 rst_ctrl
.bits
.mask_monitoring
= 0;
3601 rst_ctrl
.bits
.reset_ovfl_pmds
= 0;
3603 if (state
== PFM_CTX_LOADED
)
3604 ret
= pfm_buf_fmt_restart_active(fmt
, task
, &rst_ctrl
, ctx
->ctx_smpl_hdr
, regs
);
3606 ret
= pfm_buf_fmt_restart(fmt
, task
, &rst_ctrl
, ctx
->ctx_smpl_hdr
, regs
);
3608 rst_ctrl
.bits
.mask_monitoring
= 0;
3609 rst_ctrl
.bits
.reset_ovfl_pmds
= 1;
3613 if (rst_ctrl
.bits
.reset_ovfl_pmds
)
3614 pfm_reset_regs(ctx
, ctx
->ctx_ovfl_regs
, PFM_PMD_LONG_RESET
);
3616 if (rst_ctrl
.bits
.mask_monitoring
== 0) {
3617 DPRINT(("resuming monitoring for [%d]\n", task
->pid
));
3619 if (state
== PFM_CTX_MASKED
) pfm_restore_monitoring(task
);
3621 DPRINT(("keeping monitoring stopped for [%d]\n", task
->pid
));
3623 // cannot use pfm_stop_monitoring(task, regs);
3627 * clear overflowed PMD mask to remove any stale information
3629 ctx
->ctx_ovfl_regs
[0] = 0UL;
3632 * back to LOADED state
3634 ctx
->ctx_state
= PFM_CTX_LOADED
;
3637 * XXX: not really useful for self monitoring
3639 ctx
->ctx_fl_can_restart
= 0;
3645 * restart another task
3649 * When PFM_CTX_MASKED, we cannot issue a restart before the previous
3650 * one is seen by the task.
3652 if (state
== PFM_CTX_MASKED
) {
3653 if (ctx
->ctx_fl_can_restart
== 0) return -EINVAL
;
3655 * will prevent subsequent restart before this one is
3656 * seen by other task
3658 ctx
->ctx_fl_can_restart
= 0;
3662 * if blocking, then post the semaphore is PFM_CTX_MASKED, i.e.
3663 * the task is blocked or on its way to block. That's the normal
3664 * restart path. If the monitoring is not masked, then the task
3665 * can be actively monitoring and we cannot directly intervene.
3666 * Therefore we use the trap mechanism to catch the task and
3667 * force it to reset the buffer/reset PMDs.
3669 * if non-blocking, then we ensure that the task will go into
3670 * pfm_handle_work() before returning to user mode.
3672 * We cannot explicitely reset another task, it MUST always
3673 * be done by the task itself. This works for system wide because
3674 * the tool that is controlling the session is logically doing
3675 * "self-monitoring".
3677 if (CTX_OVFL_NOBLOCK(ctx
) == 0 && state
== PFM_CTX_MASKED
) {
3678 DPRINT(("unblocking [%d] \n", task
->pid
));
3679 up(&ctx
->ctx_restart_sem
);
3681 DPRINT(("[%d] armed exit trap\n", task
->pid
));
3683 ctx
->ctx_fl_trap_reason
= PFM_TRAP_REASON_RESET
;
3685 PFM_SET_WORK_PENDING(task
, 1);
3687 pfm_set_task_notify(task
);
3690 * XXX: send reschedule if task runs on another CPU
3697 pfm_debug(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
3699 unsigned int m
= *(unsigned int *)arg
;
3701 pfm_sysctl
.debug
= m
== 0 ? 0 : 1;
3703 printk(KERN_INFO
"perfmon debugging %s (timing reset)\n", pfm_sysctl
.debug
? "on" : "off");
3706 memset(pfm_stats
, 0, sizeof(pfm_stats
));
3707 for(m
=0; m
< NR_CPUS
; m
++) pfm_stats
[m
].pfm_ovfl_intr_cycles_min
= ~0UL;
3713 * arg can be NULL and count can be zero for this function
3716 pfm_write_ibr_dbr(int mode
, pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
3718 struct thread_struct
*thread
= NULL
;
3719 struct task_struct
*task
;
3720 pfarg_dbreg_t
*req
= (pfarg_dbreg_t
*)arg
;
3721 unsigned long flags
;
3726 int i
, can_access_pmu
= 0;
3727 int is_system
, is_loaded
;
3729 if (pmu_conf
->use_rr_dbregs
== 0) return -EINVAL
;
3731 state
= ctx
->ctx_state
;
3732 is_loaded
= state
== PFM_CTX_LOADED
? 1 : 0;
3733 is_system
= ctx
->ctx_fl_system
;
3734 task
= ctx
->ctx_task
;
3736 if (state
== PFM_CTX_ZOMBIE
) return -EINVAL
;
3739 * on both UP and SMP, we can only write to the PMC when the task is
3740 * the owner of the local PMU.
3743 thread
= &task
->thread
;
3745 * In system wide and when the context is loaded, access can only happen
3746 * when the caller is running on the CPU being monitored by the session.
3747 * It does not have to be the owner (ctx_task) of the context per se.
3749 if (unlikely(is_system
&& ctx
->ctx_cpu
!= smp_processor_id())) {
3750 DPRINT(("should be running on CPU%d\n", ctx
->ctx_cpu
));
3753 can_access_pmu
= GET_PMU_OWNER() == task
|| is_system
? 1 : 0;
3757 * we do not need to check for ipsr.db because we do clear ibr.x, dbr.r, and dbr.w
3758 * ensuring that no real breakpoint can be installed via this call.
3760 * IMPORTANT: regs can be NULL in this function
3763 first_time
= ctx
->ctx_fl_using_dbreg
== 0;
3766 * don't bother if we are loaded and task is being debugged
3768 if (is_loaded
&& (thread
->flags
& IA64_THREAD_DBG_VALID
) != 0) {
3769 DPRINT(("debug registers already in use for [%d]\n", task
->pid
));
3774 * check for debug registers in system wide mode
3776 * If though a check is done in pfm_context_load(),
3777 * we must repeat it here, in case the registers are
3778 * written after the context is loaded
3783 if (first_time
&& is_system
) {
3784 if (pfm_sessions
.pfs_ptrace_use_dbregs
)
3787 pfm_sessions
.pfs_sys_use_dbregs
++;
3792 if (ret
!= 0) return ret
;
3795 * mark ourself as user of the debug registers for
3798 ctx
->ctx_fl_using_dbreg
= 1;
3801 * clear hardware registers to make sure we don't
3802 * pick up stale state.
3804 * for a system wide session, we do not use
3805 * thread.dbr, thread.ibr because this process
3806 * never leaves the current CPU and the state
3807 * is shared by all processes running on it
3809 if (first_time
&& can_access_pmu
) {
3810 DPRINT(("[%d] clearing ibrs, dbrs\n", task
->pid
));
3811 for (i
=0; i
< pmu_conf
->num_ibrs
; i
++) {
3812 ia64_set_ibr(i
, 0UL);
3813 ia64_dv_serialize_instruction();
3816 for (i
=0; i
< pmu_conf
->num_dbrs
; i
++) {
3817 ia64_set_dbr(i
, 0UL);
3818 ia64_dv_serialize_data();
3824 * Now install the values into the registers
3826 for (i
= 0; i
< count
; i
++, req
++) {
3828 rnum
= req
->dbreg_num
;
3829 dbreg
.val
= req
->dbreg_value
;
3833 if ((mode
== PFM_CODE_RR
&& rnum
>= PFM_NUM_IBRS
) || ((mode
== PFM_DATA_RR
) && rnum
>= PFM_NUM_DBRS
)) {
3834 DPRINT(("invalid register %u val=0x%lx mode=%d i=%d count=%d\n",
3835 rnum
, dbreg
.val
, mode
, i
, count
));
3841 * make sure we do not install enabled breakpoint
3844 if (mode
== PFM_CODE_RR
)
3845 dbreg
.ibr
.ibr_x
= 0;
3847 dbreg
.dbr
.dbr_r
= dbreg
.dbr
.dbr_w
= 0;
3850 PFM_REG_RETFLAG_SET(req
->dbreg_flags
, 0);
3853 * Debug registers, just like PMC, can only be modified
3854 * by a kernel call. Moreover, perfmon() access to those
3855 * registers are centralized in this routine. The hardware
3856 * does not modify the value of these registers, therefore,
3857 * if we save them as they are written, we can avoid having
3858 * to save them on context switch out. This is made possible
3859 * by the fact that when perfmon uses debug registers, ptrace()
3860 * won't be able to modify them concurrently.
3862 if (mode
== PFM_CODE_RR
) {
3863 CTX_USED_IBR(ctx
, rnum
);
3865 if (can_access_pmu
) {
3866 ia64_set_ibr(rnum
, dbreg
.val
);
3867 ia64_dv_serialize_instruction();
3870 ctx
->ctx_ibrs
[rnum
] = dbreg
.val
;
3872 DPRINT(("write ibr%u=0x%lx used_ibrs=0x%x ld=%d apmu=%d\n",
3873 rnum
, dbreg
.val
, ctx
->ctx_used_ibrs
[0], is_loaded
, can_access_pmu
));
3875 CTX_USED_DBR(ctx
, rnum
);
3877 if (can_access_pmu
) {
3878 ia64_set_dbr(rnum
, dbreg
.val
);
3879 ia64_dv_serialize_data();
3881 ctx
->ctx_dbrs
[rnum
] = dbreg
.val
;
3883 DPRINT(("write dbr%u=0x%lx used_dbrs=0x%x ld=%d apmu=%d\n",
3884 rnum
, dbreg
.val
, ctx
->ctx_used_dbrs
[0], is_loaded
, can_access_pmu
));
3892 * in case it was our first attempt, we undo the global modifications
3896 if (ctx
->ctx_fl_system
) {
3897 pfm_sessions
.pfs_sys_use_dbregs
--;
3900 ctx
->ctx_fl_using_dbreg
= 0;
3903 * install error return flag
3905 PFM_REG_RETFLAG_SET(req
->dbreg_flags
, PFM_REG_RETFL_EINVAL
);
3911 pfm_write_ibrs(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
3913 return pfm_write_ibr_dbr(PFM_CODE_RR
, ctx
, arg
, count
, regs
);
3917 pfm_write_dbrs(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
3919 return pfm_write_ibr_dbr(PFM_DATA_RR
, ctx
, arg
, count
, regs
);
3923 pfm_mod_write_ibrs(struct task_struct
*task
, void *req
, unsigned int nreq
, struct pt_regs
*regs
)
3927 if (req
== NULL
) return -EINVAL
;
3929 ctx
= GET_PMU_CTX();
3931 if (ctx
== NULL
) return -EINVAL
;
3934 * for now limit to current task, which is enough when calling
3935 * from overflow handler
3937 if (task
!= current
&& ctx
->ctx_fl_system
== 0) return -EBUSY
;
3939 return pfm_write_ibrs(ctx
, req
, nreq
, regs
);
3941 EXPORT_SYMBOL(pfm_mod_write_ibrs
);
3944 pfm_mod_write_dbrs(struct task_struct
*task
, void *req
, unsigned int nreq
, struct pt_regs
*regs
)
3948 if (req
== NULL
) return -EINVAL
;
3950 ctx
= GET_PMU_CTX();
3952 if (ctx
== NULL
) return -EINVAL
;
3955 * for now limit to current task, which is enough when calling
3956 * from overflow handler
3958 if (task
!= current
&& ctx
->ctx_fl_system
== 0) return -EBUSY
;
3960 return pfm_write_dbrs(ctx
, req
, nreq
, regs
);
3962 EXPORT_SYMBOL(pfm_mod_write_dbrs
);
3966 pfm_get_features(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
3968 pfarg_features_t
*req
= (pfarg_features_t
*)arg
;
3970 req
->ft_version
= PFM_VERSION
;
3975 pfm_stop(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
3977 struct pt_regs
*tregs
;
3978 struct task_struct
*task
= PFM_CTX_TASK(ctx
);
3979 int state
, is_system
;
3981 state
= ctx
->ctx_state
;
3982 is_system
= ctx
->ctx_fl_system
;
3985 * context must be attached to issue the stop command (includes LOADED,MASKED,ZOMBIE)
3987 if (state
== PFM_CTX_UNLOADED
) return -EINVAL
;
3990 * In system wide and when the context is loaded, access can only happen
3991 * when the caller is running on the CPU being monitored by the session.
3992 * It does not have to be the owner (ctx_task) of the context per se.
3994 if (is_system
&& ctx
->ctx_cpu
!= smp_processor_id()) {
3995 DPRINT(("should be running on CPU%d\n", ctx
->ctx_cpu
));
3998 DPRINT(("task [%d] ctx_state=%d is_system=%d\n",
3999 PFM_CTX_TASK(ctx
)->pid
,
4003 * in system mode, we need to update the PMU directly
4004 * and the user level state of the caller, which may not
4005 * necessarily be the creator of the context.
4009 * Update local PMU first
4013 ia64_setreg(_IA64_REG_CR_DCR
, ia64_getreg(_IA64_REG_CR_DCR
) & ~IA64_DCR_PP
);
4017 * update local cpuinfo
4019 PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP
);
4022 * stop monitoring, does srlz.i
4027 * stop monitoring in the caller
4029 ia64_psr(regs
)->pp
= 0;
4037 if (task
== current
) {
4038 /* stop monitoring at kernel level */
4042 * stop monitoring at the user level
4044 ia64_psr(regs
)->up
= 0;
4046 tregs
= ia64_task_regs(task
);
4049 * stop monitoring at the user level
4051 ia64_psr(tregs
)->up
= 0;
4054 * monitoring disabled in kernel at next reschedule
4056 ctx
->ctx_saved_psr_up
= 0;
4057 DPRINT(("task=[%d]\n", task
->pid
));
4064 pfm_start(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
4066 struct pt_regs
*tregs
;
4067 int state
, is_system
;
4069 state
= ctx
->ctx_state
;
4070 is_system
= ctx
->ctx_fl_system
;
4072 if (state
!= PFM_CTX_LOADED
) return -EINVAL
;
4075 * In system wide and when the context is loaded, access can only happen
4076 * when the caller is running on the CPU being monitored by the session.
4077 * It does not have to be the owner (ctx_task) of the context per se.
4079 if (is_system
&& ctx
->ctx_cpu
!= smp_processor_id()) {
4080 DPRINT(("should be running on CPU%d\n", ctx
->ctx_cpu
));
4085 * in system mode, we need to update the PMU directly
4086 * and the user level state of the caller, which may not
4087 * necessarily be the creator of the context.
4092 * set user level psr.pp for the caller
4094 ia64_psr(regs
)->pp
= 1;
4097 * now update the local PMU and cpuinfo
4099 PFM_CPUINFO_SET(PFM_CPUINFO_DCR_PP
);
4102 * start monitoring at kernel level
4107 ia64_setreg(_IA64_REG_CR_DCR
, ia64_getreg(_IA64_REG_CR_DCR
) | IA64_DCR_PP
);
4117 if (ctx
->ctx_task
== current
) {
4119 /* start monitoring at kernel level */
4123 * activate monitoring at user level
4125 ia64_psr(regs
)->up
= 1;
4128 tregs
= ia64_task_regs(ctx
->ctx_task
);
4131 * start monitoring at the kernel level the next
4132 * time the task is scheduled
4134 ctx
->ctx_saved_psr_up
= IA64_PSR_UP
;
4137 * activate monitoring at user level
4139 ia64_psr(tregs
)->up
= 1;
4145 pfm_get_pmc_reset(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
4147 pfarg_reg_t
*req
= (pfarg_reg_t
*)arg
;
4152 for (i
= 0; i
< count
; i
++, req
++) {
4154 cnum
= req
->reg_num
;
4156 if (!PMC_IS_IMPL(cnum
)) goto abort_mission
;
4158 req
->reg_value
= PMC_DFL_VAL(cnum
);
4160 PFM_REG_RETFLAG_SET(req
->reg_flags
, 0);
4162 DPRINT(("pmc_reset_val pmc[%u]=0x%lx\n", cnum
, req
->reg_value
));
4167 PFM_REG_RETFLAG_SET(req
->reg_flags
, PFM_REG_RETFL_EINVAL
);
4172 pfm_check_task_exist(pfm_context_t
*ctx
)
4174 struct task_struct
*g
, *t
;
4177 read_lock(&tasklist_lock
);
4179 do_each_thread (g
, t
) {
4180 if (t
->thread
.pfm_context
== ctx
) {
4184 } while_each_thread (g
, t
);
4186 read_unlock(&tasklist_lock
);
4188 DPRINT(("pfm_check_task_exist: ret=%d ctx=%p\n", ret
, ctx
));
4194 pfm_context_load(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
4196 struct task_struct
*task
;
4197 struct thread_struct
*thread
;
4198 struct pfm_context_t
*old
;
4199 unsigned long flags
;
4201 struct task_struct
*owner_task
= NULL
;
4203 pfarg_load_t
*req
= (pfarg_load_t
*)arg
;
4204 unsigned long *pmcs_source
, *pmds_source
;
4207 int state
, is_system
, set_dbregs
= 0;
4209 state
= ctx
->ctx_state
;
4210 is_system
= ctx
->ctx_fl_system
;
4212 * can only load from unloaded or terminated state
4214 if (state
!= PFM_CTX_UNLOADED
) {
4215 DPRINT(("cannot load to [%d], invalid ctx_state=%d\n",
4221 DPRINT(("load_pid [%d] using_dbreg=%d\n", req
->load_pid
, ctx
->ctx_fl_using_dbreg
));
4223 if (CTX_OVFL_NOBLOCK(ctx
) == 0 && req
->load_pid
== current
->pid
) {
4224 DPRINT(("cannot use blocking mode on self\n"));
4228 ret
= pfm_get_task(ctx
, req
->load_pid
, &task
);
4230 DPRINT(("load_pid [%d] get_task=%d\n", req
->load_pid
, ret
));
4237 * system wide is self monitoring only
4239 if (is_system
&& task
!= current
) {
4240 DPRINT(("system wide is self monitoring only load_pid=%d\n",
4245 thread
= &task
->thread
;
4249 * cannot load a context which is using range restrictions,
4250 * into a task that is being debugged.
4252 if (ctx
->ctx_fl_using_dbreg
) {
4253 if (thread
->flags
& IA64_THREAD_DBG_VALID
) {
4255 DPRINT(("load_pid [%d] task is debugged, cannot load range restrictions\n", req
->load_pid
));
4261 if (pfm_sessions
.pfs_ptrace_use_dbregs
) {
4262 DPRINT(("cannot load [%d] dbregs in use\n", task
->pid
));
4265 pfm_sessions
.pfs_sys_use_dbregs
++;
4266 DPRINT(("load [%d] increased sys_use_dbreg=%u\n", task
->pid
, pfm_sessions
.pfs_sys_use_dbregs
));
4273 if (ret
) goto error
;
4277 * SMP system-wide monitoring implies self-monitoring.
4279 * The programming model expects the task to
4280 * be pinned on a CPU throughout the session.
4281 * Here we take note of the current CPU at the
4282 * time the context is loaded. No call from
4283 * another CPU will be allowed.
4285 * The pinning via shed_setaffinity()
4286 * must be done by the calling task prior
4289 * systemwide: keep track of CPU this session is supposed to run on
4291 the_cpu
= ctx
->ctx_cpu
= smp_processor_id();
4295 * now reserve the session
4297 ret
= pfm_reserve_session(current
, is_system
, the_cpu
);
4298 if (ret
) goto error
;
4301 * task is necessarily stopped at this point.
4303 * If the previous context was zombie, then it got removed in
4304 * pfm_save_regs(). Therefore we should not see it here.
4305 * If we see a context, then this is an active context
4307 * XXX: needs to be atomic
4309 DPRINT(("before cmpxchg() old_ctx=%p new_ctx=%p\n",
4310 thread
->pfm_context
, ctx
));
4312 old
= ia64_cmpxchg(acq
, &thread
->pfm_context
, NULL
, ctx
, sizeof(pfm_context_t
*));
4314 DPRINT(("load_pid [%d] already has a context\n", req
->load_pid
));
4318 pfm_reset_msgq(ctx
);
4320 ctx
->ctx_state
= PFM_CTX_LOADED
;
4323 * link context to task
4325 ctx
->ctx_task
= task
;
4329 * we load as stopped
4331 PFM_CPUINFO_SET(PFM_CPUINFO_SYST_WIDE
);
4332 PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP
);
4334 if (ctx
->ctx_fl_excl_idle
) PFM_CPUINFO_SET(PFM_CPUINFO_EXCL_IDLE
);
4336 thread
->flags
|= IA64_THREAD_PM_VALID
;
4340 * propagate into thread-state
4342 pfm_copy_pmds(task
, ctx
);
4343 pfm_copy_pmcs(task
, ctx
);
4345 pmcs_source
= thread
->pmcs
;
4346 pmds_source
= thread
->pmds
;
4349 * always the case for system-wide
4351 if (task
== current
) {
4353 if (is_system
== 0) {
4355 /* allow user level control */
4356 ia64_psr(regs
)->sp
= 0;
4357 DPRINT(("clearing psr.sp for [%d]\n", task
->pid
));
4359 SET_LAST_CPU(ctx
, smp_processor_id());
4361 SET_ACTIVATION(ctx
);
4364 * push the other task out, if any
4366 owner_task
= GET_PMU_OWNER();
4367 if (owner_task
) pfm_lazy_save_regs(owner_task
);
4371 * load all PMD from ctx to PMU (as opposed to thread state)
4372 * restore all PMC from ctx to PMU
4374 pfm_restore_pmds(pmds_source
, ctx
->ctx_all_pmds
[0]);
4375 pfm_restore_pmcs(pmcs_source
, ctx
->ctx_all_pmcs
[0]);
4377 ctx
->ctx_reload_pmcs
[0] = 0UL;
4378 ctx
->ctx_reload_pmds
[0] = 0UL;
4381 * guaranteed safe by earlier check against DBG_VALID
4383 if (ctx
->ctx_fl_using_dbreg
) {
4384 pfm_restore_ibrs(ctx
->ctx_ibrs
, pmu_conf
->num_ibrs
);
4385 pfm_restore_dbrs(ctx
->ctx_dbrs
, pmu_conf
->num_dbrs
);
4390 SET_PMU_OWNER(task
, ctx
);
4392 DPRINT(("context loaded on PMU for [%d]\n", task
->pid
));
4395 * when not current, task MUST be stopped, so this is safe
4397 regs
= ia64_task_regs(task
);
4399 /* force a full reload */
4400 ctx
->ctx_last_activation
= PFM_INVALID_ACTIVATION
;
4401 SET_LAST_CPU(ctx
, -1);
4403 /* initial saved psr (stopped) */
4404 ctx
->ctx_saved_psr_up
= 0UL;
4405 ia64_psr(regs
)->up
= ia64_psr(regs
)->pp
= 0;
4411 if (ret
) pfm_unreserve_session(ctx
, ctx
->ctx_fl_system
, the_cpu
);
4414 * we must undo the dbregs setting (for system-wide)
4416 if (ret
&& set_dbregs
) {
4418 pfm_sessions
.pfs_sys_use_dbregs
--;
4422 * release task, there is now a link with the context
4424 if (is_system
== 0 && task
!= current
) {
4428 ret
= pfm_check_task_exist(ctx
);
4430 ctx
->ctx_state
= PFM_CTX_UNLOADED
;
4431 ctx
->ctx_task
= NULL
;
4439 * in this function, we do not need to increase the use count
4440 * for the task via get_task_struct(), because we hold the
4441 * context lock. If the task were to disappear while having
4442 * a context attached, it would go through pfm_exit_thread()
4443 * which also grabs the context lock and would therefore be blocked
4444 * until we are here.
4446 static void pfm_flush_pmds(struct task_struct
*, pfm_context_t
*ctx
);
4449 pfm_context_unload(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
4451 struct task_struct
*task
= PFM_CTX_TASK(ctx
);
4452 struct pt_regs
*tregs
;
4453 int prev_state
, is_system
;
4456 DPRINT(("ctx_state=%d task [%d]\n", ctx
->ctx_state
, task
? task
->pid
: -1));
4458 prev_state
= ctx
->ctx_state
;
4459 is_system
= ctx
->ctx_fl_system
;
4462 * unload only when necessary
4464 if (prev_state
== PFM_CTX_UNLOADED
) {
4465 DPRINT(("ctx_state=%d, nothing to do\n", prev_state
));
4470 * clear psr and dcr bits
4472 ret
= pfm_stop(ctx
, NULL
, 0, regs
);
4473 if (ret
) return ret
;
4475 ctx
->ctx_state
= PFM_CTX_UNLOADED
;
4478 * in system mode, we need to update the PMU directly
4479 * and the user level state of the caller, which may not
4480 * necessarily be the creator of the context.
4487 * local PMU is taken care of in pfm_stop()
4489 PFM_CPUINFO_CLEAR(PFM_CPUINFO_SYST_WIDE
);
4490 PFM_CPUINFO_CLEAR(PFM_CPUINFO_EXCL_IDLE
);
4493 * save PMDs in context
4496 pfm_flush_pmds(current
, ctx
);
4499 * at this point we are done with the PMU
4500 * so we can unreserve the resource.
4502 if (prev_state
!= PFM_CTX_ZOMBIE
)
4503 pfm_unreserve_session(ctx
, 1 , ctx
->ctx_cpu
);
4506 * disconnect context from task
4508 task
->thread
.pfm_context
= NULL
;
4510 * disconnect task from context
4512 ctx
->ctx_task
= NULL
;
4515 * There is nothing more to cleanup here.
4523 tregs
= task
== current
? regs
: ia64_task_regs(task
);
4525 if (task
== current
) {
4527 * cancel user level control
4529 ia64_psr(regs
)->sp
= 1;
4531 DPRINT(("setting psr.sp for [%d]\n", task
->pid
));
4534 * save PMDs to context
4537 pfm_flush_pmds(task
, ctx
);
4540 * at this point we are done with the PMU
4541 * so we can unreserve the resource.
4543 * when state was ZOMBIE, we have already unreserved.
4545 if (prev_state
!= PFM_CTX_ZOMBIE
)
4546 pfm_unreserve_session(ctx
, 0 , ctx
->ctx_cpu
);
4549 * reset activation counter and psr
4551 ctx
->ctx_last_activation
= PFM_INVALID_ACTIVATION
;
4552 SET_LAST_CPU(ctx
, -1);
4555 * PMU state will not be restored
4557 task
->thread
.flags
&= ~IA64_THREAD_PM_VALID
;
4560 * break links between context and task
4562 task
->thread
.pfm_context
= NULL
;
4563 ctx
->ctx_task
= NULL
;
4565 PFM_SET_WORK_PENDING(task
, 0);
4567 ctx
->ctx_fl_trap_reason
= PFM_TRAP_REASON_NONE
;
4568 ctx
->ctx_fl_can_restart
= 0;
4569 ctx
->ctx_fl_going_zombie
= 0;
4571 DPRINT(("disconnected [%d] from context\n", task
->pid
));
4578 * called only from exit_thread(): task == current
4579 * we come here only if current has a context attached (loaded or masked)
4582 pfm_exit_thread(struct task_struct
*task
)
4585 unsigned long flags
;
4586 struct pt_regs
*regs
= ia64_task_regs(task
);
4590 ctx
= PFM_GET_CTX(task
);
4592 PROTECT_CTX(ctx
, flags
);
4594 DPRINT(("state=%d task [%d]\n", ctx
->ctx_state
, task
->pid
));
4596 state
= ctx
->ctx_state
;
4598 case PFM_CTX_UNLOADED
:
4600 * only comes to thios function if pfm_context is not NULL, i.e., cannot
4601 * be in unloaded state
4603 printk(KERN_ERR
"perfmon: pfm_exit_thread [%d] ctx unloaded\n", task
->pid
);
4605 case PFM_CTX_LOADED
:
4606 case PFM_CTX_MASKED
:
4607 ret
= pfm_context_unload(ctx
, NULL
, 0, regs
);
4609 printk(KERN_ERR
"perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task
->pid
, state
, ret
);
4611 DPRINT(("ctx unloaded for current state was %d\n", state
));
4613 pfm_end_notify_user(ctx
);
4615 case PFM_CTX_ZOMBIE
:
4616 ret
= pfm_context_unload(ctx
, NULL
, 0, regs
);
4618 printk(KERN_ERR
"perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task
->pid
, state
, ret
);
4623 printk(KERN_ERR
"perfmon: pfm_exit_thread [%d] unexpected state=%d\n", task
->pid
, state
);
4626 UNPROTECT_CTX(ctx
, flags
);
4628 { u64 psr
= pfm_get_psr();
4629 BUG_ON(psr
& (IA64_PSR_UP
|IA64_PSR_PP
));
4630 BUG_ON(GET_PMU_OWNER());
4631 BUG_ON(ia64_psr(regs
)->up
);
4632 BUG_ON(ia64_psr(regs
)->pp
);
4636 * All memory free operations (especially for vmalloc'ed memory)
4637 * MUST be done with interrupts ENABLED.
4639 if (free_ok
) pfm_context_free(ctx
);
4643 * functions MUST be listed in the increasing order of their index (see permfon.h)
4645 #define PFM_CMD(name, flags, arg_count, arg_type, getsz) { name, #name, flags, arg_count, sizeof(arg_type), getsz }
4646 #define PFM_CMD_S(name, flags) { name, #name, flags, 0, 0, NULL }
4647 #define PFM_CMD_PCLRWS (PFM_CMD_FD|PFM_CMD_ARG_RW|PFM_CMD_STOP)
4648 #define PFM_CMD_PCLRW (PFM_CMD_FD|PFM_CMD_ARG_RW)
4649 #define PFM_CMD_NONE { NULL, "no-cmd", 0, 0, 0, NULL}
4651 static pfm_cmd_desc_t pfm_cmd_tab
[]={
4652 /* 0 */PFM_CMD_NONE
,
4653 /* 1 */PFM_CMD(pfm_write_pmcs
, PFM_CMD_PCLRWS
, PFM_CMD_ARG_MANY
, pfarg_reg_t
, NULL
),
4654 /* 2 */PFM_CMD(pfm_write_pmds
, PFM_CMD_PCLRWS
, PFM_CMD_ARG_MANY
, pfarg_reg_t
, NULL
),
4655 /* 3 */PFM_CMD(pfm_read_pmds
, PFM_CMD_PCLRWS
, PFM_CMD_ARG_MANY
, pfarg_reg_t
, NULL
),
4656 /* 4 */PFM_CMD_S(pfm_stop
, PFM_CMD_PCLRWS
),
4657 /* 5 */PFM_CMD_S(pfm_start
, PFM_CMD_PCLRWS
),
4658 /* 6 */PFM_CMD_NONE
,
4659 /* 7 */PFM_CMD_NONE
,
4660 /* 8 */PFM_CMD(pfm_context_create
, PFM_CMD_ARG_RW
, 1, pfarg_context_t
, pfm_ctx_getsize
),
4661 /* 9 */PFM_CMD_NONE
,
4662 /* 10 */PFM_CMD_S(pfm_restart
, PFM_CMD_PCLRW
),
4663 /* 11 */PFM_CMD_NONE
,
4664 /* 12 */PFM_CMD(pfm_get_features
, PFM_CMD_ARG_RW
, 1, pfarg_features_t
, NULL
),
4665 /* 13 */PFM_CMD(pfm_debug
, 0, 1, unsigned int, NULL
),
4666 /* 14 */PFM_CMD_NONE
,
4667 /* 15 */PFM_CMD(pfm_get_pmc_reset
, PFM_CMD_ARG_RW
, PFM_CMD_ARG_MANY
, pfarg_reg_t
, NULL
),
4668 /* 16 */PFM_CMD(pfm_context_load
, PFM_CMD_PCLRWS
, 1, pfarg_load_t
, NULL
),
4669 /* 17 */PFM_CMD_S(pfm_context_unload
, PFM_CMD_PCLRWS
),
4670 /* 18 */PFM_CMD_NONE
,
4671 /* 19 */PFM_CMD_NONE
,
4672 /* 20 */PFM_CMD_NONE
,
4673 /* 21 */PFM_CMD_NONE
,
4674 /* 22 */PFM_CMD_NONE
,
4675 /* 23 */PFM_CMD_NONE
,
4676 /* 24 */PFM_CMD_NONE
,
4677 /* 25 */PFM_CMD_NONE
,
4678 /* 26 */PFM_CMD_NONE
,
4679 /* 27 */PFM_CMD_NONE
,
4680 /* 28 */PFM_CMD_NONE
,
4681 /* 29 */PFM_CMD_NONE
,
4682 /* 30 */PFM_CMD_NONE
,
4683 /* 31 */PFM_CMD_NONE
,
4684 /* 32 */PFM_CMD(pfm_write_ibrs
, PFM_CMD_PCLRWS
, PFM_CMD_ARG_MANY
, pfarg_dbreg_t
, NULL
),
4685 /* 33 */PFM_CMD(pfm_write_dbrs
, PFM_CMD_PCLRWS
, PFM_CMD_ARG_MANY
, pfarg_dbreg_t
, NULL
)
4687 #define PFM_CMD_COUNT (sizeof(pfm_cmd_tab)/sizeof(pfm_cmd_desc_t))
4690 pfm_check_task_state(pfm_context_t
*ctx
, int cmd
, unsigned long flags
)
4692 struct task_struct
*task
;
4693 int state
, old_state
;
4696 state
= ctx
->ctx_state
;
4697 task
= ctx
->ctx_task
;
4700 DPRINT(("context %d no task, state=%d\n", ctx
->ctx_fd
, state
));
4704 DPRINT(("context %d state=%d [%d] task_state=%ld must_stop=%d\n",
4708 task
->state
, PFM_CMD_STOPPED(cmd
)));
4711 * self-monitoring always ok.
4713 * for system-wide the caller can either be the creator of the
4714 * context (to one to which the context is attached to) OR
4715 * a task running on the same CPU as the session.
4717 if (task
== current
|| ctx
->ctx_fl_system
) return 0;
4720 * we are monitoring another thread
4723 case PFM_CTX_UNLOADED
:
4725 * if context is UNLOADED we are safe to go
4728 case PFM_CTX_ZOMBIE
:
4730 * no command can operate on a zombie context
4732 DPRINT(("cmd %d state zombie cannot operate on context\n", cmd
));
4734 case PFM_CTX_MASKED
:
4736 * PMU state has been saved to software even though
4737 * the thread may still be running.
4739 if (cmd
!= PFM_UNLOAD_CONTEXT
) return 0;
4743 * context is LOADED or MASKED. Some commands may need to have
4746 * We could lift this restriction for UP but it would mean that
4747 * the user has no guarantee the task would not run between
4748 * two successive calls to perfmonctl(). That's probably OK.
4749 * If this user wants to ensure the task does not run, then
4750 * the task must be stopped.
4752 if (PFM_CMD_STOPPED(cmd
)) {
4753 if ((task
->state
!= TASK_STOPPED
) && (task
->state
!= TASK_TRACED
)) {
4754 DPRINT(("[%d] task not in stopped state\n", task
->pid
));
4758 * task is now stopped, wait for ctxsw out
4760 * This is an interesting point in the code.
4761 * We need to unprotect the context because
4762 * the pfm_save_regs() routines needs to grab
4763 * the same lock. There are danger in doing
4764 * this because it leaves a window open for
4765 * another task to get access to the context
4766 * and possibly change its state. The one thing
4767 * that is not possible is for the context to disappear
4768 * because we are protected by the VFS layer, i.e.,
4769 * get_fd()/put_fd().
4773 UNPROTECT_CTX(ctx
, flags
);
4775 wait_task_inactive(task
);
4777 PROTECT_CTX(ctx
, flags
);
4780 * we must recheck to verify if state has changed
4782 if (ctx
->ctx_state
!= old_state
) {
4783 DPRINT(("old_state=%d new_state=%d\n", old_state
, ctx
->ctx_state
));
4791 * system-call entry point (must return long)
4794 sys_perfmonctl (int fd
, int cmd
, void __user
*arg
, int count
)
4796 struct file
*file
= NULL
;
4797 pfm_context_t
*ctx
= NULL
;
4798 unsigned long flags
= 0UL;
4799 void *args_k
= NULL
;
4800 long ret
; /* will expand int return types */
4801 size_t base_sz
, sz
, xtra_sz
= 0;
4802 int narg
, completed_args
= 0, call_made
= 0, cmd_flags
;
4803 int (*func
)(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
);
4804 int (*getsize
)(void *arg
, size_t *sz
);
4805 #define PFM_MAX_ARGSIZE 4096
4808 * reject any call if perfmon was disabled at initialization
4810 if (unlikely(pmu_conf
== NULL
)) return -ENOSYS
;
4812 if (unlikely(cmd
< 0 || cmd
>= PFM_CMD_COUNT
)) {
4813 DPRINT(("invalid cmd=%d\n", cmd
));
4817 func
= pfm_cmd_tab
[cmd
].cmd_func
;
4818 narg
= pfm_cmd_tab
[cmd
].cmd_narg
;
4819 base_sz
= pfm_cmd_tab
[cmd
].cmd_argsize
;
4820 getsize
= pfm_cmd_tab
[cmd
].cmd_getsize
;
4821 cmd_flags
= pfm_cmd_tab
[cmd
].cmd_flags
;
4823 if (unlikely(func
== NULL
)) {
4824 DPRINT(("invalid cmd=%d\n", cmd
));
4828 DPRINT(("cmd=%s idx=%d narg=0x%x argsz=%lu count=%d\n",
4836 * check if number of arguments matches what the command expects
4838 if (unlikely((narg
== PFM_CMD_ARG_MANY
&& count
<= 0) || (narg
> 0 && narg
!= count
)))
4842 sz
= xtra_sz
+ base_sz
*count
;
4844 * limit abuse to min page size
4846 if (unlikely(sz
> PFM_MAX_ARGSIZE
)) {
4847 printk(KERN_ERR
"perfmon: [%d] argument too big %lu\n", current
->pid
, sz
);
4852 * allocate default-sized argument buffer
4854 if (likely(count
&& args_k
== NULL
)) {
4855 args_k
= kmalloc(PFM_MAX_ARGSIZE
, GFP_KERNEL
);
4856 if (args_k
== NULL
) return -ENOMEM
;
4864 * assume sz = 0 for command without parameters
4866 if (sz
&& copy_from_user(args_k
, arg
, sz
)) {
4867 DPRINT(("cannot copy_from_user %lu bytes @%p\n", sz
, arg
));
4872 * check if command supports extra parameters
4874 if (completed_args
== 0 && getsize
) {
4876 * get extra parameters size (based on main argument)
4878 ret
= (*getsize
)(args_k
, &xtra_sz
);
4879 if (ret
) goto error_args
;
4883 DPRINT(("restart_args sz=%lu xtra_sz=%lu\n", sz
, xtra_sz
));
4885 /* retry if necessary */
4886 if (likely(xtra_sz
)) goto restart_args
;
4889 if (unlikely((cmd_flags
& PFM_CMD_FD
) == 0)) goto skip_fd
;
4894 if (unlikely(file
== NULL
)) {
4895 DPRINT(("invalid fd %d\n", fd
));
4898 if (unlikely(PFM_IS_FILE(file
) == 0)) {
4899 DPRINT(("fd %d not related to perfmon\n", fd
));
4903 ctx
= (pfm_context_t
*)file
->private_data
;
4904 if (unlikely(ctx
== NULL
)) {
4905 DPRINT(("no context for fd %d\n", fd
));
4908 prefetch(&ctx
->ctx_state
);
4910 PROTECT_CTX(ctx
, flags
);
4913 * check task is stopped
4915 ret
= pfm_check_task_state(ctx
, cmd
, flags
);
4916 if (unlikely(ret
)) goto abort_locked
;
4919 ret
= (*func
)(ctx
, args_k
, count
, ia64_task_regs(current
));
4925 DPRINT(("context unlocked\n"));
4926 UNPROTECT_CTX(ctx
, flags
);
4930 /* copy argument back to user, if needed */
4931 if (call_made
&& PFM_CMD_RW_ARG(cmd
) && copy_to_user(arg
, args_k
, base_sz
*count
)) ret
= -EFAULT
;
4934 if (args_k
) kfree(args_k
);
4936 DPRINT(("cmd=%s ret=%ld\n", PFM_CMD_NAME(cmd
), ret
));
4942 pfm_resume_after_ovfl(pfm_context_t
*ctx
, unsigned long ovfl_regs
, struct pt_regs
*regs
)
4944 pfm_buffer_fmt_t
*fmt
= ctx
->ctx_buf_fmt
;
4945 pfm_ovfl_ctrl_t rst_ctrl
;
4949 state
= ctx
->ctx_state
;
4951 * Unlock sampling buffer and reset index atomically
4952 * XXX: not really needed when blocking
4954 if (CTX_HAS_SMPL(ctx
)) {
4956 rst_ctrl
.bits
.mask_monitoring
= 0;
4957 rst_ctrl
.bits
.reset_ovfl_pmds
= 0;
4959 if (state
== PFM_CTX_LOADED
)
4960 ret
= pfm_buf_fmt_restart_active(fmt
, current
, &rst_ctrl
, ctx
->ctx_smpl_hdr
, regs
);
4962 ret
= pfm_buf_fmt_restart(fmt
, current
, &rst_ctrl
, ctx
->ctx_smpl_hdr
, regs
);
4964 rst_ctrl
.bits
.mask_monitoring
= 0;
4965 rst_ctrl
.bits
.reset_ovfl_pmds
= 1;
4969 if (rst_ctrl
.bits
.reset_ovfl_pmds
) {
4970 pfm_reset_regs(ctx
, &ovfl_regs
, PFM_PMD_LONG_RESET
);
4972 if (rst_ctrl
.bits
.mask_monitoring
== 0) {
4973 DPRINT(("resuming monitoring\n"));
4974 if (ctx
->ctx_state
== PFM_CTX_MASKED
) pfm_restore_monitoring(current
);
4976 DPRINT(("stopping monitoring\n"));
4977 //pfm_stop_monitoring(current, regs);
4979 ctx
->ctx_state
= PFM_CTX_LOADED
;
4984 * context MUST BE LOCKED when calling
4985 * can only be called for current
4988 pfm_context_force_terminate(pfm_context_t
*ctx
, struct pt_regs
*regs
)
4992 DPRINT(("entering for [%d]\n", current
->pid
));
4994 ret
= pfm_context_unload(ctx
, NULL
, 0, regs
);
4996 printk(KERN_ERR
"pfm_context_force_terminate: [%d] unloaded failed with %d\n", current
->pid
, ret
);
5000 * and wakeup controlling task, indicating we are now disconnected
5002 wake_up_interruptible(&ctx
->ctx_zombieq
);
5005 * given that context is still locked, the controlling
5006 * task will only get access when we return from
5007 * pfm_handle_work().
5011 static int pfm_ovfl_notify_user(pfm_context_t
*ctx
, unsigned long ovfl_pmds
);
5013 * pfm_handle_work() can be called with interrupts enabled
5014 * (TIF_NEED_RESCHED) or disabled. The down_interruptible
5015 * call may sleep, therefore we must re-enable interrupts
5016 * to avoid deadlocks. It is safe to do so because this function
5017 * is called ONLY when returning to user level (PUStk=1), in which case
5018 * there is no risk of kernel stack overflow due to deep
5019 * interrupt nesting.
5022 pfm_handle_work(void)
5025 struct pt_regs
*regs
;
5026 unsigned long flags
, dummy_flags
;
5027 unsigned long ovfl_regs
;
5028 unsigned int reason
;
5031 ctx
= PFM_GET_CTX(current
);
5033 printk(KERN_ERR
"perfmon: [%d] has no PFM context\n", current
->pid
);
5037 PROTECT_CTX(ctx
, flags
);
5039 PFM_SET_WORK_PENDING(current
, 0);
5041 pfm_clear_task_notify();
5043 regs
= ia64_task_regs(current
);
5046 * extract reason for being here and clear
5048 reason
= ctx
->ctx_fl_trap_reason
;
5049 ctx
->ctx_fl_trap_reason
= PFM_TRAP_REASON_NONE
;
5050 ovfl_regs
= ctx
->ctx_ovfl_regs
[0];
5052 DPRINT(("reason=%d state=%d\n", reason
, ctx
->ctx_state
));
5055 * must be done before we check for simple-reset mode
5057 if (ctx
->ctx_fl_going_zombie
|| ctx
->ctx_state
== PFM_CTX_ZOMBIE
) goto do_zombie
;
5060 //if (CTX_OVFL_NOBLOCK(ctx)) goto skip_blocking;
5061 if (reason
== PFM_TRAP_REASON_RESET
) goto skip_blocking
;
5064 * restore interrupt mask to what it was on entry.
5065 * Could be enabled/diasbled.
5067 UNPROTECT_CTX(ctx
, flags
);
5070 * force interrupt enable because of down_interruptible()
5074 DPRINT(("before block sleeping\n"));
5077 * may go through without blocking on SMP systems
5078 * if restart has been received already by the time we call down()
5080 ret
= down_interruptible(&ctx
->ctx_restart_sem
);
5082 DPRINT(("after block sleeping ret=%d\n", ret
));
5085 * lock context and mask interrupts again
5086 * We save flags into a dummy because we may have
5087 * altered interrupts mask compared to entry in this
5090 PROTECT_CTX(ctx
, dummy_flags
);
5093 * we need to read the ovfl_regs only after wake-up
5094 * because we may have had pfm_write_pmds() in between
5095 * and that can changed PMD values and therefore
5096 * ovfl_regs is reset for these new PMD values.
5098 ovfl_regs
= ctx
->ctx_ovfl_regs
[0];
5100 if (ctx
->ctx_fl_going_zombie
) {
5102 DPRINT(("context is zombie, bailing out\n"));
5103 pfm_context_force_terminate(ctx
, regs
);
5107 * in case of interruption of down() we don't restart anything
5109 if (ret
< 0) goto nothing_to_do
;
5112 pfm_resume_after_ovfl(ctx
, ovfl_regs
, regs
);
5113 ctx
->ctx_ovfl_regs
[0] = 0UL;
5117 * restore flags as they were upon entry
5119 UNPROTECT_CTX(ctx
, flags
);
5123 pfm_notify_user(pfm_context_t
*ctx
, pfm_msg_t
*msg
)
5125 if (ctx
->ctx_state
== PFM_CTX_ZOMBIE
) {
5126 DPRINT(("ignoring overflow notification, owner is zombie\n"));
5130 DPRINT(("waking up somebody\n"));
5132 if (msg
) wake_up_interruptible(&ctx
->ctx_msgq_wait
);
5135 * safe, we are not in intr handler, nor in ctxsw when
5138 kill_fasync (&ctx
->ctx_async_queue
, SIGIO
, POLL_IN
);
5144 pfm_ovfl_notify_user(pfm_context_t
*ctx
, unsigned long ovfl_pmds
)
5146 pfm_msg_t
*msg
= NULL
;
5148 if (ctx
->ctx_fl_no_msg
== 0) {
5149 msg
= pfm_get_new_msg(ctx
);
5151 printk(KERN_ERR
"perfmon: pfm_ovfl_notify_user no more notification msgs\n");
5155 msg
->pfm_ovfl_msg
.msg_type
= PFM_MSG_OVFL
;
5156 msg
->pfm_ovfl_msg
.msg_ctx_fd
= ctx
->ctx_fd
;
5157 msg
->pfm_ovfl_msg
.msg_active_set
= 0;
5158 msg
->pfm_ovfl_msg
.msg_ovfl_pmds
[0] = ovfl_pmds
;
5159 msg
->pfm_ovfl_msg
.msg_ovfl_pmds
[1] = 0UL;
5160 msg
->pfm_ovfl_msg
.msg_ovfl_pmds
[2] = 0UL;
5161 msg
->pfm_ovfl_msg
.msg_ovfl_pmds
[3] = 0UL;
5162 msg
->pfm_ovfl_msg
.msg_tstamp
= 0UL;
5165 DPRINT(("ovfl msg: msg=%p no_msg=%d fd=%d ovfl_pmds=0x%lx\n",
5171 return pfm_notify_user(ctx
, msg
);
5175 pfm_end_notify_user(pfm_context_t
*ctx
)
5179 msg
= pfm_get_new_msg(ctx
);
5181 printk(KERN_ERR
"perfmon: pfm_end_notify_user no more notification msgs\n");
5185 memset(msg
, 0, sizeof(*msg
));
5187 msg
->pfm_end_msg
.msg_type
= PFM_MSG_END
;
5188 msg
->pfm_end_msg
.msg_ctx_fd
= ctx
->ctx_fd
;
5189 msg
->pfm_ovfl_msg
.msg_tstamp
= 0UL;
5191 DPRINT(("end msg: msg=%p no_msg=%d ctx_fd=%d\n",
5196 return pfm_notify_user(ctx
, msg
);
5200 * main overflow processing routine.
5201 * it can be called from the interrupt path or explicitely during the context switch code
5204 pfm_overflow_handler(struct task_struct
*task
, pfm_context_t
*ctx
, u64 pmc0
, struct pt_regs
*regs
)
5206 pfm_ovfl_arg_t
*ovfl_arg
;
5208 unsigned long old_val
, ovfl_val
, new_val
;
5209 unsigned long ovfl_notify
= 0UL, ovfl_pmds
= 0UL, smpl_pmds
= 0UL, reset_pmds
;
5210 unsigned long tstamp
;
5211 pfm_ovfl_ctrl_t ovfl_ctrl
;
5212 unsigned int i
, has_smpl
;
5213 int must_notify
= 0;
5215 if (unlikely(ctx
->ctx_state
== PFM_CTX_ZOMBIE
)) goto stop_monitoring
;
5218 * sanity test. Should never happen
5220 if (unlikely((pmc0
& 0x1) == 0)) goto sanity_check
;
5222 tstamp
= ia64_get_itc();
5223 mask
= pmc0
>> PMU_FIRST_COUNTER
;
5224 ovfl_val
= pmu_conf
->ovfl_val
;
5225 has_smpl
= CTX_HAS_SMPL(ctx
);
5227 DPRINT_ovfl(("pmc0=0x%lx pid=%d iip=0x%lx, %s "
5228 "used_pmds=0x%lx\n",
5230 task
? task
->pid
: -1,
5231 (regs
? regs
->cr_iip
: 0),
5232 CTX_OVFL_NOBLOCK(ctx
) ? "nonblocking" : "blocking",
5233 ctx
->ctx_used_pmds
[0]));
5237 * first we update the virtual counters
5238 * assume there was a prior ia64_srlz_d() issued
5240 for (i
= PMU_FIRST_COUNTER
; mask
; i
++, mask
>>= 1) {
5242 /* skip pmd which did not overflow */
5243 if ((mask
& 0x1) == 0) continue;
5246 * Note that the pmd is not necessarily 0 at this point as qualified events
5247 * may have happened before the PMU was frozen. The residual count is not
5248 * taken into consideration here but will be with any read of the pmd via
5251 old_val
= new_val
= ctx
->ctx_pmds
[i
].val
;
5252 new_val
+= 1 + ovfl_val
;
5253 ctx
->ctx_pmds
[i
].val
= new_val
;
5256 * check for overflow condition
5258 if (likely(old_val
> new_val
)) {
5259 ovfl_pmds
|= 1UL << i
;
5260 if (PMC_OVFL_NOTIFY(ctx
, i
)) ovfl_notify
|= 1UL << i
;
5263 DPRINT_ovfl(("ctx_pmd[%d].val=0x%lx old_val=0x%lx pmd=0x%lx ovfl_pmds=0x%lx ovfl_notify=0x%lx\n",
5267 ia64_get_pmd(i
) & ovfl_val
,
5273 * there was no 64-bit overflow, nothing else to do
5275 if (ovfl_pmds
== 0UL) return;
5278 * reset all control bits
5284 * if a sampling format module exists, then we "cache" the overflow by
5285 * calling the module's handler() routine.
5288 unsigned long start_cycles
, end_cycles
;
5289 unsigned long pmd_mask
;
5291 int this_cpu
= smp_processor_id();
5293 pmd_mask
= ovfl_pmds
>> PMU_FIRST_COUNTER
;
5294 ovfl_arg
= &ctx
->ctx_ovfl_arg
;
5296 prefetch(ctx
->ctx_smpl_hdr
);
5298 for(i
=PMU_FIRST_COUNTER
; pmd_mask
&& ret
== 0; i
++, pmd_mask
>>=1) {
5302 if ((pmd_mask
& 0x1) == 0) continue;
5304 ovfl_arg
->ovfl_pmd
= (unsigned char )i
;
5305 ovfl_arg
->ovfl_notify
= ovfl_notify
& mask
? 1 : 0;
5306 ovfl_arg
->active_set
= 0;
5307 ovfl_arg
->ovfl_ctrl
.val
= 0; /* module must fill in all fields */
5308 ovfl_arg
->smpl_pmds
[0] = smpl_pmds
= ctx
->ctx_pmds
[i
].smpl_pmds
[0];
5310 ovfl_arg
->pmd_value
= ctx
->ctx_pmds
[i
].val
;
5311 ovfl_arg
->pmd_last_reset
= ctx
->ctx_pmds
[i
].lval
;
5312 ovfl_arg
->pmd_eventid
= ctx
->ctx_pmds
[i
].eventid
;
5315 * copy values of pmds of interest. Sampling format may copy them
5316 * into sampling buffer.
5319 for(j
=0, k
=0; smpl_pmds
; j
++, smpl_pmds
>>=1) {
5320 if ((smpl_pmds
& 0x1) == 0) continue;
5321 ovfl_arg
->smpl_pmds_values
[k
++] = PMD_IS_COUNTING(j
) ? pfm_read_soft_counter(ctx
, j
) : ia64_get_pmd(j
);
5322 DPRINT_ovfl(("smpl_pmd[%d]=pmd%u=0x%lx\n", k
-1, j
, ovfl_arg
->smpl_pmds_values
[k
-1]));
5326 pfm_stats
[this_cpu
].pfm_smpl_handler_calls
++;
5328 start_cycles
= ia64_get_itc();
5331 * call custom buffer format record (handler) routine
5333 ret
= (*ctx
->ctx_buf_fmt
->fmt_handler
)(task
, ctx
->ctx_smpl_hdr
, ovfl_arg
, regs
, tstamp
);
5335 end_cycles
= ia64_get_itc();
5338 * For those controls, we take the union because they have
5339 * an all or nothing behavior.
5341 ovfl_ctrl
.bits
.notify_user
|= ovfl_arg
->ovfl_ctrl
.bits
.notify_user
;
5342 ovfl_ctrl
.bits
.block_task
|= ovfl_arg
->ovfl_ctrl
.bits
.block_task
;
5343 ovfl_ctrl
.bits
.mask_monitoring
|= ovfl_arg
->ovfl_ctrl
.bits
.mask_monitoring
;
5345 * build the bitmask of pmds to reset now
5347 if (ovfl_arg
->ovfl_ctrl
.bits
.reset_ovfl_pmds
) reset_pmds
|= mask
;
5349 pfm_stats
[this_cpu
].pfm_smpl_handler_cycles
+= end_cycles
- start_cycles
;
5352 * when the module cannot handle the rest of the overflows, we abort right here
5354 if (ret
&& pmd_mask
) {
5355 DPRINT(("handler aborts leftover ovfl_pmds=0x%lx\n",
5356 pmd_mask
<<PMU_FIRST_COUNTER
));
5359 * remove the pmds we reset now from the set of pmds to reset in pfm_restart()
5361 ovfl_pmds
&= ~reset_pmds
;
5364 * when no sampling module is used, then the default
5365 * is to notify on overflow if requested by user
5367 ovfl_ctrl
.bits
.notify_user
= ovfl_notify
? 1 : 0;
5368 ovfl_ctrl
.bits
.block_task
= ovfl_notify
? 1 : 0;
5369 ovfl_ctrl
.bits
.mask_monitoring
= ovfl_notify
? 1 : 0; /* XXX: change for saturation */
5370 ovfl_ctrl
.bits
.reset_ovfl_pmds
= ovfl_notify
? 0 : 1;
5372 * if needed, we reset all overflowed pmds
5374 if (ovfl_notify
== 0) reset_pmds
= ovfl_pmds
;
5377 DPRINT_ovfl(("ovfl_pmds=0x%lx reset_pmds=0x%lx\n", ovfl_pmds
, reset_pmds
));
5380 * reset the requested PMD registers using the short reset values
5383 unsigned long bm
= reset_pmds
;
5384 pfm_reset_regs(ctx
, &bm
, PFM_PMD_SHORT_RESET
);
5387 if (ovfl_notify
&& ovfl_ctrl
.bits
.notify_user
) {
5389 * keep track of what to reset when unblocking
5391 ctx
->ctx_ovfl_regs
[0] = ovfl_pmds
;
5394 * check for blocking context
5396 if (CTX_OVFL_NOBLOCK(ctx
) == 0 && ovfl_ctrl
.bits
.block_task
) {
5398 ctx
->ctx_fl_trap_reason
= PFM_TRAP_REASON_BLOCK
;
5401 * set the perfmon specific checking pending work for the task
5403 PFM_SET_WORK_PENDING(task
, 1);
5406 * when coming from ctxsw, current still points to the
5407 * previous task, therefore we must work with task and not current.
5409 pfm_set_task_notify(task
);
5412 * defer until state is changed (shorten spin window). the context is locked
5413 * anyway, so the signal receiver would come spin for nothing.
5418 DPRINT_ovfl(("owner [%d] pending=%ld reason=%u ovfl_pmds=0x%lx ovfl_notify=0x%lx masked=%d\n",
5419 GET_PMU_OWNER() ? GET_PMU_OWNER()->pid
: -1,
5420 PFM_GET_WORK_PENDING(task
),
5421 ctx
->ctx_fl_trap_reason
,
5424 ovfl_ctrl
.bits
.mask_monitoring
? 1 : 0));
5426 * in case monitoring must be stopped, we toggle the psr bits
5428 if (ovfl_ctrl
.bits
.mask_monitoring
) {
5429 pfm_mask_monitoring(task
);
5430 ctx
->ctx_state
= PFM_CTX_MASKED
;
5431 ctx
->ctx_fl_can_restart
= 1;
5435 * send notification now
5437 if (must_notify
) pfm_ovfl_notify_user(ctx
, ovfl_notify
);
5442 printk(KERN_ERR
"perfmon: CPU%d overflow handler [%d] pmc0=0x%lx\n",
5444 task
? task
->pid
: -1,
5450 * in SMP, zombie context is never restored but reclaimed in pfm_load_regs().
5451 * Moreover, zombies are also reclaimed in pfm_save_regs(). Therefore we can
5452 * come here as zombie only if the task is the current task. In which case, we
5453 * can access the PMU hardware directly.
5455 * Note that zombies do have PM_VALID set. So here we do the minimal.
5457 * In case the context was zombified it could not be reclaimed at the time
5458 * the monitoring program exited. At this point, the PMU reservation has been
5459 * returned, the sampiing buffer has been freed. We must convert this call
5460 * into a spurious interrupt. However, we must also avoid infinite overflows
5461 * by stopping monitoring for this task. We can only come here for a per-task
5462 * context. All we need to do is to stop monitoring using the psr bits which
5463 * are always task private. By re-enabling secure montioring, we ensure that
5464 * the monitored task will not be able to re-activate monitoring.
5465 * The task will eventually be context switched out, at which point the context
5466 * will be reclaimed (that includes releasing ownership of the PMU).
5468 * So there might be a window of time where the number of per-task session is zero
5469 * yet one PMU might have a owner and get at most one overflow interrupt for a zombie
5470 * context. This is safe because if a per-task session comes in, it will push this one
5471 * out and by the virtue on pfm_save_regs(), this one will disappear. If a system wide
5472 * session is force on that CPU, given that we use task pinning, pfm_save_regs() will
5473 * also push our zombie context out.
5475 * Overall pretty hairy stuff....
5477 DPRINT(("ctx is zombie for [%d], converted to spurious\n", task
? task
->pid
: -1));
5479 ia64_psr(regs
)->up
= 0;
5480 ia64_psr(regs
)->sp
= 1;
5485 pfm_do_interrupt_handler(int irq
, void *arg
, struct pt_regs
*regs
)
5487 struct task_struct
*task
;
5489 unsigned long flags
;
5491 int this_cpu
= smp_processor_id();
5494 pfm_stats
[this_cpu
].pfm_ovfl_intr_count
++;
5497 * srlz.d done before arriving here
5499 pmc0
= ia64_get_pmc(0);
5501 task
= GET_PMU_OWNER();
5502 ctx
= GET_PMU_CTX();
5505 * if we have some pending bits set
5506 * assumes : if any PMC0.bit[63-1] is set, then PMC0.fr = 1
5508 if (PMC0_HAS_OVFL(pmc0
) && task
) {
5510 * we assume that pmc0.fr is always set here
5514 if (!ctx
) goto report_spurious1
;
5516 if (ctx
->ctx_fl_system
== 0 && (task
->thread
.flags
& IA64_THREAD_PM_VALID
) == 0)
5517 goto report_spurious2
;
5519 PROTECT_CTX_NOPRINT(ctx
, flags
);
5521 pfm_overflow_handler(task
, ctx
, pmc0
, regs
);
5523 UNPROTECT_CTX_NOPRINT(ctx
, flags
);
5526 pfm_stats
[this_cpu
].pfm_spurious_ovfl_intr_count
++;
5530 * keep it unfrozen at all times
5537 printk(KERN_INFO
"perfmon: spurious overflow interrupt on CPU%d: process %d has no PFM context\n",
5538 this_cpu
, task
->pid
);
5542 printk(KERN_INFO
"perfmon: spurious overflow interrupt on CPU%d: process %d, invalid flag\n",
5550 pfm_interrupt_handler(int irq
, void *arg
, struct pt_regs
*regs
)
5552 unsigned long start_cycles
, total_cycles
;
5553 unsigned long min
, max
;
5557 this_cpu
= get_cpu();
5558 min
= pfm_stats
[this_cpu
].pfm_ovfl_intr_cycles_min
;
5559 max
= pfm_stats
[this_cpu
].pfm_ovfl_intr_cycles_max
;
5561 start_cycles
= ia64_get_itc();
5563 ret
= pfm_do_interrupt_handler(irq
, arg
, regs
);
5565 total_cycles
= ia64_get_itc();
5568 * don't measure spurious interrupts
5570 if (likely(ret
== 0)) {
5571 total_cycles
-= start_cycles
;
5573 if (total_cycles
< min
) pfm_stats
[this_cpu
].pfm_ovfl_intr_cycles_min
= total_cycles
;
5574 if (total_cycles
> max
) pfm_stats
[this_cpu
].pfm_ovfl_intr_cycles_max
= total_cycles
;
5576 pfm_stats
[this_cpu
].pfm_ovfl_intr_cycles
+= total_cycles
;
5578 put_cpu_no_resched();
5583 * /proc/perfmon interface, for debug only
5586 #define PFM_PROC_SHOW_HEADER ((void *)NR_CPUS+1)
5589 pfm_proc_start(struct seq_file
*m
, loff_t
*pos
)
5592 return PFM_PROC_SHOW_HEADER
;
5595 while (*pos
<= NR_CPUS
) {
5596 if (cpu_online(*pos
- 1)) {
5597 return (void *)*pos
;
5605 pfm_proc_next(struct seq_file
*m
, void *v
, loff_t
*pos
)
5608 return pfm_proc_start(m
, pos
);
5612 pfm_proc_stop(struct seq_file
*m
, void *v
)
5617 pfm_proc_show_header(struct seq_file
*m
)
5619 struct list_head
* pos
;
5620 pfm_buffer_fmt_t
* entry
;
5621 unsigned long flags
;
5624 "perfmon version : %u.%u\n"
5627 "expert mode : %s\n"
5628 "ovfl_mask : 0x%lx\n"
5629 "PMU flags : 0x%x\n",
5630 PFM_VERSION_MAJ
, PFM_VERSION_MIN
,
5632 pfm_sysctl
.fastctxsw
> 0 ? "Yes": "No",
5633 pfm_sysctl
.expert_mode
> 0 ? "Yes": "No",
5640 "proc_sessions : %u\n"
5641 "sys_sessions : %u\n"
5642 "sys_use_dbregs : %u\n"
5643 "ptrace_use_dbregs : %u\n",
5644 pfm_sessions
.pfs_task_sessions
,
5645 pfm_sessions
.pfs_sys_sessions
,
5646 pfm_sessions
.pfs_sys_use_dbregs
,
5647 pfm_sessions
.pfs_ptrace_use_dbregs
);
5651 spin_lock(&pfm_buffer_fmt_lock
);
5653 list_for_each(pos
, &pfm_buffer_fmt_list
) {
5654 entry
= list_entry(pos
, pfm_buffer_fmt_t
, fmt_list
);
5655 seq_printf(m
, "format : %02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x %s\n",
5666 entry
->fmt_uuid
[10],
5667 entry
->fmt_uuid
[11],
5668 entry
->fmt_uuid
[12],
5669 entry
->fmt_uuid
[13],
5670 entry
->fmt_uuid
[14],
5671 entry
->fmt_uuid
[15],
5674 spin_unlock(&pfm_buffer_fmt_lock
);
5679 pfm_proc_show(struct seq_file
*m
, void *v
)
5685 if (v
== PFM_PROC_SHOW_HEADER
) {
5686 pfm_proc_show_header(m
);
5690 /* show info for CPU (v - 1) */
5694 "CPU%-2d overflow intrs : %lu\n"
5695 "CPU%-2d overflow cycles : %lu\n"
5696 "CPU%-2d overflow min : %lu\n"
5697 "CPU%-2d overflow max : %lu\n"
5698 "CPU%-2d smpl handler calls : %lu\n"
5699 "CPU%-2d smpl handler cycles : %lu\n"
5700 "CPU%-2d spurious intrs : %lu\n"
5701 "CPU%-2d replay intrs : %lu\n"
5702 "CPU%-2d syst_wide : %d\n"
5703 "CPU%-2d dcr_pp : %d\n"
5704 "CPU%-2d exclude idle : %d\n"
5705 "CPU%-2d owner : %d\n"
5706 "CPU%-2d context : %p\n"
5707 "CPU%-2d activations : %lu\n",
5708 cpu
, pfm_stats
[cpu
].pfm_ovfl_intr_count
,
5709 cpu
, pfm_stats
[cpu
].pfm_ovfl_intr_cycles
,
5710 cpu
, pfm_stats
[cpu
].pfm_ovfl_intr_cycles_min
,
5711 cpu
, pfm_stats
[cpu
].pfm_ovfl_intr_cycles_max
,
5712 cpu
, pfm_stats
[cpu
].pfm_smpl_handler_calls
,
5713 cpu
, pfm_stats
[cpu
].pfm_smpl_handler_cycles
,
5714 cpu
, pfm_stats
[cpu
].pfm_spurious_ovfl_intr_count
,
5715 cpu
, pfm_stats
[cpu
].pfm_replay_ovfl_intr_count
,
5716 cpu
, pfm_get_cpu_data(pfm_syst_info
, cpu
) & PFM_CPUINFO_SYST_WIDE
? 1 : 0,
5717 cpu
, pfm_get_cpu_data(pfm_syst_info
, cpu
) & PFM_CPUINFO_DCR_PP
? 1 : 0,
5718 cpu
, pfm_get_cpu_data(pfm_syst_info
, cpu
) & PFM_CPUINFO_EXCL_IDLE
? 1 : 0,
5719 cpu
, pfm_get_cpu_data(pmu_owner
, cpu
) ? pfm_get_cpu_data(pmu_owner
, cpu
)->pid
: -1,
5720 cpu
, pfm_get_cpu_data(pmu_ctx
, cpu
),
5721 cpu
, pfm_get_cpu_data(pmu_activation_number
, cpu
));
5723 if (num_online_cpus() == 1 && pfm_sysctl
.debug
> 0) {
5725 psr
= pfm_get_psr();
5730 "CPU%-2d psr : 0x%lx\n"
5731 "CPU%-2d pmc0 : 0x%lx\n",
5733 cpu
, ia64_get_pmc(0));
5735 for (i
=0; PMC_IS_LAST(i
) == 0; i
++) {
5736 if (PMC_IS_COUNTING(i
) == 0) continue;
5738 "CPU%-2d pmc%u : 0x%lx\n"
5739 "CPU%-2d pmd%u : 0x%lx\n",
5740 cpu
, i
, ia64_get_pmc(i
),
5741 cpu
, i
, ia64_get_pmd(i
));
5747 struct seq_operations pfm_seq_ops
= {
5748 .start
= pfm_proc_start
,
5749 .next
= pfm_proc_next
,
5750 .stop
= pfm_proc_stop
,
5751 .show
= pfm_proc_show
5755 pfm_proc_open(struct inode
*inode
, struct file
*file
)
5757 return seq_open(file
, &pfm_seq_ops
);
5762 * we come here as soon as local_cpu_data->pfm_syst_wide is set. this happens
5763 * during pfm_enable() hence before pfm_start(). We cannot assume monitoring
5764 * is active or inactive based on mode. We must rely on the value in
5765 * local_cpu_data->pfm_syst_info
5768 pfm_syst_wide_update_task(struct task_struct
*task
, unsigned long info
, int is_ctxswin
)
5770 struct pt_regs
*regs
;
5772 unsigned long dcr_pp
;
5774 dcr_pp
= info
& PFM_CPUINFO_DCR_PP
? 1 : 0;
5777 * pid 0 is guaranteed to be the idle task. There is one such task with pid 0
5778 * on every CPU, so we can rely on the pid to identify the idle task.
5780 if ((info
& PFM_CPUINFO_EXCL_IDLE
) == 0 || task
->pid
) {
5781 regs
= ia64_task_regs(task
);
5782 ia64_psr(regs
)->pp
= is_ctxswin
? dcr_pp
: 0;
5786 * if monitoring has started
5789 dcr
= ia64_getreg(_IA64_REG_CR_DCR
);
5791 * context switching in?
5794 /* mask monitoring for the idle task */
5795 ia64_setreg(_IA64_REG_CR_DCR
, dcr
& ~IA64_DCR_PP
);
5801 * context switching out
5802 * restore monitoring for next task
5804 * Due to inlining this odd if-then-else construction generates
5807 ia64_setreg(_IA64_REG_CR_DCR
, dcr
|IA64_DCR_PP
);
5816 pfm_force_cleanup(pfm_context_t
*ctx
, struct pt_regs
*regs
)
5818 struct task_struct
*task
= ctx
->ctx_task
;
5820 ia64_psr(regs
)->up
= 0;
5821 ia64_psr(regs
)->sp
= 1;
5823 if (GET_PMU_OWNER() == task
) {
5824 DPRINT(("cleared ownership for [%d]\n", ctx
->ctx_task
->pid
));
5825 SET_PMU_OWNER(NULL
, NULL
);
5829 * disconnect the task from the context and vice-versa
5831 PFM_SET_WORK_PENDING(task
, 0);
5833 task
->thread
.pfm_context
= NULL
;
5834 task
->thread
.flags
&= ~IA64_THREAD_PM_VALID
;
5836 DPRINT(("force cleanup for [%d]\n", task
->pid
));
5841 * in 2.6, interrupts are masked when we come here and the runqueue lock is held
5844 pfm_save_regs(struct task_struct
*task
)
5847 struct thread_struct
*t
;
5848 unsigned long flags
;
5852 ctx
= PFM_GET_CTX(task
);
5853 if (ctx
== NULL
) return;
5857 * we always come here with interrupts ALREADY disabled by
5858 * the scheduler. So we simply need to protect against concurrent
5859 * access, not CPU concurrency.
5861 flags
= pfm_protect_ctx_ctxsw(ctx
);
5863 if (ctx
->ctx_state
== PFM_CTX_ZOMBIE
) {
5864 struct pt_regs
*regs
= ia64_task_regs(task
);
5868 pfm_force_cleanup(ctx
, regs
);
5870 BUG_ON(ctx
->ctx_smpl_hdr
);
5872 pfm_unprotect_ctx_ctxsw(ctx
, flags
);
5874 pfm_context_free(ctx
);
5879 * save current PSR: needed because we modify it
5882 psr
= pfm_get_psr();
5884 BUG_ON(psr
& (IA64_PSR_I
));
5888 * This is the last instruction which may generate an overflow
5890 * We do not need to set psr.sp because, it is irrelevant in kernel.
5891 * It will be restored from ipsr when going back to user level
5896 * keep a copy of psr.up (for reload)
5898 ctx
->ctx_saved_psr_up
= psr
& IA64_PSR_UP
;
5901 * release ownership of this PMU.
5902 * PM interrupts are masked, so nothing
5905 SET_PMU_OWNER(NULL
, NULL
);
5908 * we systematically save the PMD as we have no
5909 * guarantee we will be schedule at that same
5912 pfm_save_pmds(t
->pmds
, ctx
->ctx_used_pmds
[0]);
5915 * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
5916 * we will need it on the restore path to check
5917 * for pending overflow.
5919 t
->pmcs
[0] = ia64_get_pmc(0);
5922 * unfreeze PMU if had pending overflows
5924 if (t
->pmcs
[0] & ~0x1UL
) pfm_unfreeze_pmu();
5927 * finally, allow context access.
5928 * interrupts will still be masked after this call.
5930 pfm_unprotect_ctx_ctxsw(ctx
, flags
);
5933 #else /* !CONFIG_SMP */
5935 pfm_save_regs(struct task_struct
*task
)
5940 ctx
= PFM_GET_CTX(task
);
5941 if (ctx
== NULL
) return;
5944 * save current PSR: needed because we modify it
5946 psr
= pfm_get_psr();
5948 BUG_ON(psr
& (IA64_PSR_I
));
5952 * This is the last instruction which may generate an overflow
5954 * We do not need to set psr.sp because, it is irrelevant in kernel.
5955 * It will be restored from ipsr when going back to user level
5960 * keep a copy of psr.up (for reload)
5962 ctx
->ctx_saved_psr_up
= psr
& IA64_PSR_UP
;
5966 pfm_lazy_save_regs (struct task_struct
*task
)
5969 struct thread_struct
*t
;
5970 unsigned long flags
;
5972 { u64 psr
= pfm_get_psr();
5973 BUG_ON(psr
& IA64_PSR_UP
);
5976 ctx
= PFM_GET_CTX(task
);
5980 * we need to mask PMU overflow here to
5981 * make sure that we maintain pmc0 until
5982 * we save it. overflow interrupts are
5983 * treated as spurious if there is no
5986 * XXX: I don't think this is necessary
5988 PROTECT_CTX(ctx
,flags
);
5991 * release ownership of this PMU.
5992 * must be done before we save the registers.
5994 * after this call any PMU interrupt is treated
5997 SET_PMU_OWNER(NULL
, NULL
);
6000 * save all the pmds we use
6002 pfm_save_pmds(t
->pmds
, ctx
->ctx_used_pmds
[0]);
6005 * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
6006 * it is needed to check for pended overflow
6007 * on the restore path
6009 t
->pmcs
[0] = ia64_get_pmc(0);
6012 * unfreeze PMU if had pending overflows
6014 if (t
->pmcs
[0] & ~0x1UL
) pfm_unfreeze_pmu();
6017 * now get can unmask PMU interrupts, they will
6018 * be treated as purely spurious and we will not
6019 * lose any information
6021 UNPROTECT_CTX(ctx
,flags
);
6023 #endif /* CONFIG_SMP */
6027 * in 2.6, interrupts are masked when we come here and the runqueue lock is held
6030 pfm_load_regs (struct task_struct
*task
)
6033 struct thread_struct
*t
;
6034 unsigned long pmc_mask
= 0UL, pmd_mask
= 0UL;
6035 unsigned long flags
;
6037 int need_irq_resend
;
6039 ctx
= PFM_GET_CTX(task
);
6040 if (unlikely(ctx
== NULL
)) return;
6042 BUG_ON(GET_PMU_OWNER());
6046 * possible on unload
6048 if (unlikely((t
->flags
& IA64_THREAD_PM_VALID
) == 0)) return;
6051 * we always come here with interrupts ALREADY disabled by
6052 * the scheduler. So we simply need to protect against concurrent
6053 * access, not CPU concurrency.
6055 flags
= pfm_protect_ctx_ctxsw(ctx
);
6056 psr
= pfm_get_psr();
6058 need_irq_resend
= pmu_conf
->flags
& PFM_PMU_IRQ_RESEND
;
6060 BUG_ON(psr
& (IA64_PSR_UP
|IA64_PSR_PP
));
6061 BUG_ON(psr
& IA64_PSR_I
);
6063 if (unlikely(ctx
->ctx_state
== PFM_CTX_ZOMBIE
)) {
6064 struct pt_regs
*regs
= ia64_task_regs(task
);
6066 BUG_ON(ctx
->ctx_smpl_hdr
);
6068 pfm_force_cleanup(ctx
, regs
);
6070 pfm_unprotect_ctx_ctxsw(ctx
, flags
);
6073 * this one (kmalloc'ed) is fine with interrupts disabled
6075 pfm_context_free(ctx
);
6081 * we restore ALL the debug registers to avoid picking up
6084 if (ctx
->ctx_fl_using_dbreg
) {
6085 pfm_restore_ibrs(ctx
->ctx_ibrs
, pmu_conf
->num_ibrs
);
6086 pfm_restore_dbrs(ctx
->ctx_dbrs
, pmu_conf
->num_dbrs
);
6089 * retrieve saved psr.up
6091 psr_up
= ctx
->ctx_saved_psr_up
;
6094 * if we were the last user of the PMU on that CPU,
6095 * then nothing to do except restore psr
6097 if (GET_LAST_CPU(ctx
) == smp_processor_id() && ctx
->ctx_last_activation
== GET_ACTIVATION()) {
6100 * retrieve partial reload masks (due to user modifications)
6102 pmc_mask
= ctx
->ctx_reload_pmcs
[0];
6103 pmd_mask
= ctx
->ctx_reload_pmds
[0];
6107 * To avoid leaking information to the user level when psr.sp=0,
6108 * we must reload ALL implemented pmds (even the ones we don't use).
6109 * In the kernel we only allow PFM_READ_PMDS on registers which
6110 * we initialized or requested (sampling) so there is no risk there.
6112 pmd_mask
= pfm_sysctl
.fastctxsw
? ctx
->ctx_used_pmds
[0] : ctx
->ctx_all_pmds
[0];
6115 * ALL accessible PMCs are systematically reloaded, unused registers
6116 * get their default (from pfm_reset_pmu_state()) values to avoid picking
6117 * up stale configuration.
6119 * PMC0 is never in the mask. It is always restored separately.
6121 pmc_mask
= ctx
->ctx_all_pmcs
[0];
6124 * when context is MASKED, we will restore PMC with plm=0
6125 * and PMD with stale information, but that's ok, nothing
6128 * XXX: optimize here
6130 if (pmd_mask
) pfm_restore_pmds(t
->pmds
, pmd_mask
);
6131 if (pmc_mask
) pfm_restore_pmcs(t
->pmcs
, pmc_mask
);
6134 * check for pending overflow at the time the state
6137 if (unlikely(PMC0_HAS_OVFL(t
->pmcs
[0]))) {
6139 * reload pmc0 with the overflow information
6140 * On McKinley PMU, this will trigger a PMU interrupt
6142 ia64_set_pmc(0, t
->pmcs
[0]);
6147 * will replay the PMU interrupt
6149 if (need_irq_resend
) hw_resend_irq(NULL
, IA64_PERFMON_VECTOR
);
6151 pfm_stats
[smp_processor_id()].pfm_replay_ovfl_intr_count
++;
6155 * we just did a reload, so we reset the partial reload fields
6157 ctx
->ctx_reload_pmcs
[0] = 0UL;
6158 ctx
->ctx_reload_pmds
[0] = 0UL;
6160 SET_LAST_CPU(ctx
, smp_processor_id());
6163 * dump activation value for this PMU
6167 * record current activation for this context
6169 SET_ACTIVATION(ctx
);
6172 * establish new ownership.
6174 SET_PMU_OWNER(task
, ctx
);
6177 * restore the psr.up bit. measurement
6179 * no PMU interrupt can happen at this point
6180 * because we still have interrupts disabled.
6182 if (likely(psr_up
)) pfm_set_psr_up();
6185 * allow concurrent access to context
6187 pfm_unprotect_ctx_ctxsw(ctx
, flags
);
6189 #else /* !CONFIG_SMP */
6191 * reload PMU state for UP kernels
6192 * in 2.5 we come here with interrupts disabled
6195 pfm_load_regs (struct task_struct
*task
)
6197 struct thread_struct
*t
;
6199 struct task_struct
*owner
;
6200 unsigned long pmd_mask
, pmc_mask
;
6202 int need_irq_resend
;
6204 owner
= GET_PMU_OWNER();
6205 ctx
= PFM_GET_CTX(task
);
6207 psr
= pfm_get_psr();
6209 BUG_ON(psr
& (IA64_PSR_UP
|IA64_PSR_PP
));
6210 BUG_ON(psr
& IA64_PSR_I
);
6213 * we restore ALL the debug registers to avoid picking up
6216 * This must be done even when the task is still the owner
6217 * as the registers may have been modified via ptrace()
6218 * (not perfmon) by the previous task.
6220 if (ctx
->ctx_fl_using_dbreg
) {
6221 pfm_restore_ibrs(ctx
->ctx_ibrs
, pmu_conf
->num_ibrs
);
6222 pfm_restore_dbrs(ctx
->ctx_dbrs
, pmu_conf
->num_dbrs
);
6226 * retrieved saved psr.up
6228 psr_up
= ctx
->ctx_saved_psr_up
;
6229 need_irq_resend
= pmu_conf
->flags
& PFM_PMU_IRQ_RESEND
;
6232 * short path, our state is still there, just
6233 * need to restore psr and we go
6235 * we do not touch either PMC nor PMD. the psr is not touched
6236 * by the overflow_handler. So we are safe w.r.t. to interrupt
6237 * concurrency even without interrupt masking.
6239 if (likely(owner
== task
)) {
6240 if (likely(psr_up
)) pfm_set_psr_up();
6245 * someone else is still using the PMU, first push it out and
6246 * then we'll be able to install our stuff !
6248 * Upon return, there will be no owner for the current PMU
6250 if (owner
) pfm_lazy_save_regs(owner
);
6253 * To avoid leaking information to the user level when psr.sp=0,
6254 * we must reload ALL implemented pmds (even the ones we don't use).
6255 * In the kernel we only allow PFM_READ_PMDS on registers which
6256 * we initialized or requested (sampling) so there is no risk there.
6258 pmd_mask
= pfm_sysctl
.fastctxsw
? ctx
->ctx_used_pmds
[0] : ctx
->ctx_all_pmds
[0];
6261 * ALL accessible PMCs are systematically reloaded, unused registers
6262 * get their default (from pfm_reset_pmu_state()) values to avoid picking
6263 * up stale configuration.
6265 * PMC0 is never in the mask. It is always restored separately
6267 pmc_mask
= ctx
->ctx_all_pmcs
[0];
6269 pfm_restore_pmds(t
->pmds
, pmd_mask
);
6270 pfm_restore_pmcs(t
->pmcs
, pmc_mask
);
6273 * check for pending overflow at the time the state
6276 if (unlikely(PMC0_HAS_OVFL(t
->pmcs
[0]))) {
6278 * reload pmc0 with the overflow information
6279 * On McKinley PMU, this will trigger a PMU interrupt
6281 ia64_set_pmc(0, t
->pmcs
[0]);
6287 * will replay the PMU interrupt
6289 if (need_irq_resend
) hw_resend_irq(NULL
, IA64_PERFMON_VECTOR
);
6291 pfm_stats
[smp_processor_id()].pfm_replay_ovfl_intr_count
++;
6295 * establish new ownership.
6297 SET_PMU_OWNER(task
, ctx
);
6300 * restore the psr.up bit. measurement
6302 * no PMU interrupt can happen at this point
6303 * because we still have interrupts disabled.
6305 if (likely(psr_up
)) pfm_set_psr_up();
6307 #endif /* CONFIG_SMP */
6310 * this function assumes monitoring is stopped
6313 pfm_flush_pmds(struct task_struct
*task
, pfm_context_t
*ctx
)
6316 unsigned long mask2
, val
, pmd_val
, ovfl_val
;
6317 int i
, can_access_pmu
= 0;
6321 * is the caller the task being monitored (or which initiated the
6322 * session for system wide measurements)
6324 is_self
= ctx
->ctx_task
== task
? 1 : 0;
6327 * can access PMU is task is the owner of the PMU state on the current CPU
6328 * or if we are running on the CPU bound to the context in system-wide mode
6329 * (that is not necessarily the task the context is attached to in this mode).
6330 * In system-wide we always have can_access_pmu true because a task running on an
6331 * invalid processor is flagged earlier in the call stack (see pfm_stop).
6333 can_access_pmu
= (GET_PMU_OWNER() == task
) || (ctx
->ctx_fl_system
&& ctx
->ctx_cpu
== smp_processor_id());
6334 if (can_access_pmu
) {
6336 * Mark the PMU as not owned
6337 * This will cause the interrupt handler to do nothing in case an overflow
6338 * interrupt was in-flight
6339 * This also guarantees that pmc0 will contain the final state
6340 * It virtually gives us full control on overflow processing from that point
6343 SET_PMU_OWNER(NULL
, NULL
);
6344 DPRINT(("releasing ownership\n"));
6347 * read current overflow status:
6349 * we are guaranteed to read the final stable state
6352 pmc0
= ia64_get_pmc(0); /* slow */
6355 * reset freeze bit, overflow status information destroyed
6359 pmc0
= task
->thread
.pmcs
[0];
6361 * clear whatever overflow status bits there were
6363 task
->thread
.pmcs
[0] = 0;
6365 ovfl_val
= pmu_conf
->ovfl_val
;
6367 * we save all the used pmds
6368 * we take care of overflows for counting PMDs
6370 * XXX: sampling situation is not taken into account here
6372 mask2
= ctx
->ctx_used_pmds
[0];
6374 DPRINT(("is_self=%d ovfl_val=0x%lx mask2=0x%lx\n", is_self
, ovfl_val
, mask2
));
6376 for (i
= 0; mask2
; i
++, mask2
>>=1) {
6378 /* skip non used pmds */
6379 if ((mask2
& 0x1) == 0) continue;
6382 * can access PMU always true in system wide mode
6384 val
= pmd_val
= can_access_pmu
? ia64_get_pmd(i
) : task
->thread
.pmds
[i
];
6386 if (PMD_IS_COUNTING(i
)) {
6387 DPRINT(("[%d] pmd[%d] ctx_pmd=0x%lx hw_pmd=0x%lx\n",
6390 ctx
->ctx_pmds
[i
].val
,
6394 * we rebuild the full 64 bit value of the counter
6396 val
= ctx
->ctx_pmds
[i
].val
+ (val
& ovfl_val
);
6399 * now everything is in ctx_pmds[] and we need
6400 * to clear the saved context from save_regs() such that
6401 * pfm_read_pmds() gets the correct value
6406 * take care of overflow inline
6408 if (pmc0
& (1UL << i
)) {
6409 val
+= 1 + ovfl_val
;
6410 DPRINT(("[%d] pmd[%d] overflowed\n", task
->pid
, i
));
6414 DPRINT(("[%d] ctx_pmd[%d]=0x%lx pmd_val=0x%lx\n", task
->pid
, i
, val
, pmd_val
));
6416 if (is_self
) task
->thread
.pmds
[i
] = pmd_val
;
6418 ctx
->ctx_pmds
[i
].val
= val
;
6422 static struct irqaction perfmon_irqaction
= {
6423 .handler
= pfm_interrupt_handler
,
6424 .flags
= SA_INTERRUPT
,
6429 * perfmon initialization routine, called from the initcall() table
6431 static int init_pfm_fs(void);
6439 family
= local_cpu_data
->family
;
6444 if ((*p
)->probe() == 0) goto found
;
6445 } else if ((*p
)->pmu_family
== family
|| (*p
)->pmu_family
== 0xff) {
6456 static struct file_operations pfm_proc_fops
= {
6457 .open
= pfm_proc_open
,
6459 .llseek
= seq_lseek
,
6460 .release
= seq_release
,
6466 unsigned int n
, n_counters
, i
;
6468 printk("perfmon: version %u.%u IRQ %u\n",
6471 IA64_PERFMON_VECTOR
);
6473 if (pfm_probe_pmu()) {
6474 printk(KERN_INFO
"perfmon: disabled, there is no support for processor family %d\n",
6475 local_cpu_data
->family
);
6480 * compute the number of implemented PMD/PMC from the
6481 * description tables
6484 for (i
=0; PMC_IS_LAST(i
) == 0; i
++) {
6485 if (PMC_IS_IMPL(i
) == 0) continue;
6486 pmu_conf
->impl_pmcs
[i
>>6] |= 1UL << (i
&63);
6489 pmu_conf
->num_pmcs
= n
;
6491 n
= 0; n_counters
= 0;
6492 for (i
=0; PMD_IS_LAST(i
) == 0; i
++) {
6493 if (PMD_IS_IMPL(i
) == 0) continue;
6494 pmu_conf
->impl_pmds
[i
>>6] |= 1UL << (i
&63);
6496 if (PMD_IS_COUNTING(i
)) n_counters
++;
6498 pmu_conf
->num_pmds
= n
;
6499 pmu_conf
->num_counters
= n_counters
;
6502 * sanity checks on the number of debug registers
6504 if (pmu_conf
->use_rr_dbregs
) {
6505 if (pmu_conf
->num_ibrs
> IA64_NUM_DBG_REGS
) {
6506 printk(KERN_INFO
"perfmon: unsupported number of code debug registers (%u)\n", pmu_conf
->num_ibrs
);
6510 if (pmu_conf
->num_dbrs
> IA64_NUM_DBG_REGS
) {
6511 printk(KERN_INFO
"perfmon: unsupported number of data debug registers (%u)\n", pmu_conf
->num_ibrs
);
6517 printk("perfmon: %s PMU detected, %u PMCs, %u PMDs, %u counters (%lu bits)\n",
6521 pmu_conf
->num_counters
,
6522 ffz(pmu_conf
->ovfl_val
));
6525 if (pmu_conf
->num_pmds
>= IA64_NUM_PMD_REGS
|| pmu_conf
->num_pmcs
>= IA64_NUM_PMC_REGS
) {
6526 printk(KERN_ERR
"perfmon: not enough pmc/pmd, perfmon disabled\n");
6532 * create /proc/perfmon (mostly for debugging purposes)
6534 perfmon_dir
= create_proc_entry("perfmon", S_IRUGO
, NULL
);
6535 if (perfmon_dir
== NULL
) {
6536 printk(KERN_ERR
"perfmon: cannot create /proc entry, perfmon disabled\n");
6541 * install customized file operations for /proc/perfmon entry
6543 perfmon_dir
->proc_fops
= &pfm_proc_fops
;
6546 * create /proc/sys/kernel/perfmon (for debugging purposes)
6548 pfm_sysctl_header
= register_sysctl_table(pfm_sysctl_root
, 0);
6551 * initialize all our spinlocks
6553 spin_lock_init(&pfm_sessions
.pfs_lock
);
6554 spin_lock_init(&pfm_buffer_fmt_lock
);
6558 for(i
=0; i
< NR_CPUS
; i
++) pfm_stats
[i
].pfm_ovfl_intr_cycles_min
= ~0UL;
6563 __initcall(pfm_init
);
6566 * this function is called before pfm_init()
6569 pfm_init_percpu (void)
6572 * make sure no measurement is active
6573 * (may inherit programmed PMCs from EFI).
6579 * we run with the PMU not frozen at all times
6583 if (smp_processor_id() == 0)
6584 register_percpu_irq(IA64_PERFMON_VECTOR
, &perfmon_irqaction
);
6586 ia64_setreg(_IA64_REG_CR_PMV
, IA64_PERFMON_VECTOR
);
6591 * used for debug purposes only
6594 dump_pmu_state(const char *from
)
6596 struct task_struct
*task
;
6597 struct thread_struct
*t
;
6598 struct pt_regs
*regs
;
6600 unsigned long psr
, dcr
, info
, flags
;
6603 local_irq_save(flags
);
6605 this_cpu
= smp_processor_id();
6606 regs
= ia64_task_regs(current
);
6607 info
= PFM_CPUINFO_GET();
6608 dcr
= ia64_getreg(_IA64_REG_CR_DCR
);
6610 if (info
== 0 && ia64_psr(regs
)->pp
== 0 && (dcr
& IA64_DCR_PP
) == 0) {
6611 local_irq_restore(flags
);
6615 printk("CPU%d from %s() current [%d] iip=0x%lx %s\n",
6622 task
= GET_PMU_OWNER();
6623 ctx
= GET_PMU_CTX();
6625 printk("->CPU%d owner [%d] ctx=%p\n", this_cpu
, task
? task
->pid
: -1, ctx
);
6627 psr
= pfm_get_psr();
6629 printk("->CPU%d pmc0=0x%lx psr.pp=%d psr.up=%d dcr.pp=%d syst_info=0x%lx user_psr.up=%d user_psr.pp=%d\n",
6632 psr
& IA64_PSR_PP
? 1 : 0,
6633 psr
& IA64_PSR_UP
? 1 : 0,
6634 dcr
& IA64_DCR_PP
? 1 : 0,
6637 ia64_psr(regs
)->pp
);
6639 ia64_psr(regs
)->up
= 0;
6640 ia64_psr(regs
)->pp
= 0;
6642 t
= ¤t
->thread
;
6644 for (i
=1; PMC_IS_LAST(i
) == 0; i
++) {
6645 if (PMC_IS_IMPL(i
) == 0) continue;
6646 printk("->CPU%d pmc[%d]=0x%lx thread_pmc[%d]=0x%lx\n", this_cpu
, i
, ia64_get_pmc(i
), i
, t
->pmcs
[i
]);
6649 for (i
=1; PMD_IS_LAST(i
) == 0; i
++) {
6650 if (PMD_IS_IMPL(i
) == 0) continue;
6651 printk("->CPU%d pmd[%d]=0x%lx thread_pmd[%d]=0x%lx\n", this_cpu
, i
, ia64_get_pmd(i
), i
, t
->pmds
[i
]);
6655 printk("->CPU%d ctx_state=%d vaddr=%p addr=%p fd=%d ctx_task=[%d] saved_psr_up=0x%lx\n",
6658 ctx
->ctx_smpl_vaddr
,
6662 ctx
->ctx_saved_psr_up
);
6664 local_irq_restore(flags
);
6668 * called from process.c:copy_thread(). task is new child.
6671 pfm_inherit(struct task_struct
*task
, struct pt_regs
*regs
)
6673 struct thread_struct
*thread
;
6675 DPRINT(("perfmon: pfm_inherit clearing state for [%d]\n", task
->pid
));
6677 thread
= &task
->thread
;
6680 * cut links inherited from parent (current)
6682 thread
->pfm_context
= NULL
;
6684 PFM_SET_WORK_PENDING(task
, 0);
6687 * the psr bits are already set properly in copy_threads()
6690 #else /* !CONFIG_PERFMON */
6692 sys_perfmonctl (int fd
, int cmd
, void *arg
, int count
)
6696 #endif /* CONFIG_PERFMON */