2 * Kernel support for the ptrace() and syscall tracing interfaces.
4 * Copyright (C) 1999-2005 Hewlett-Packard Co
5 * David Mosberger-Tang <davidm@hpl.hp.com>
7 * Derived from the x86 and Alpha versions.
9 #include <linux/config.h>
10 #include <linux/kernel.h>
11 #include <linux/sched.h>
12 #include <linux/slab.h>
14 #include <linux/errno.h>
15 #include <linux/ptrace.h>
16 #include <linux/smp_lock.h>
17 #include <linux/user.h>
18 #include <linux/security.h>
19 #include <linux/audit.h>
20 #include <linux/signal.h>
22 #include <asm/pgtable.h>
23 #include <asm/processor.h>
24 #include <asm/ptrace_offsets.h>
26 #include <asm/system.h>
27 #include <asm/uaccess.h>
28 #include <asm/unwind.h>
30 #include <asm/perfmon.h>
36 * Bits in the PSR that we allow ptrace() to change:
37 * be, up, ac, mfl, mfh (the user mask; five bits total)
38 * db (debug breakpoint fault; one bit)
39 * id (instruction debug fault disable; one bit)
40 * dd (data debug fault disable; one bit)
41 * ri (restart instruction; two bits)
42 * is (instruction set; one bit)
44 #define IPSR_MASK (IA64_PSR_UM | IA64_PSR_DB | IA64_PSR_IS \
45 | IA64_PSR_ID | IA64_PSR_DD | IA64_PSR_RI)
47 #define MASK(nbits) ((1UL << (nbits)) - 1) /* mask with NBITS bits set */
48 #define PFM_MASK MASK(38)
50 #define PTRACE_DEBUG 0
53 # define dprintk(format...) printk(format)
56 # define dprintk(format...)
59 /* Return TRUE if PT was created due to kernel-entry via a system-call. */
62 in_syscall (struct pt_regs
*pt
)
64 return (long) pt
->cr_ifs
>= 0;
68 * Collect the NaT bits for r1-r31 from scratch_unat and return a NaT
69 * bitset where bit i is set iff the NaT bit of register i is set.
72 ia64_get_scratch_nat_bits (struct pt_regs
*pt
, unsigned long scratch_unat
)
74 # define GET_BITS(first, last, unat) \
76 unsigned long bit = ia64_unat_pos(&pt->r##first); \
77 unsigned long nbits = (last - first + 1); \
78 unsigned long mask = MASK(nbits) << first; \
81 dist = 64 + bit - first; \
84 ia64_rotr(unat, dist) & mask; \
89 * Registers that are stored consecutively in struct pt_regs
90 * can be handled in parallel. If the register order in
91 * struct_pt_regs changes, this code MUST be updated.
93 val
= GET_BITS( 1, 1, scratch_unat
);
94 val
|= GET_BITS( 2, 3, scratch_unat
);
95 val
|= GET_BITS(12, 13, scratch_unat
);
96 val
|= GET_BITS(14, 14, scratch_unat
);
97 val
|= GET_BITS(15, 15, scratch_unat
);
98 val
|= GET_BITS( 8, 11, scratch_unat
);
99 val
|= GET_BITS(16, 31, scratch_unat
);
106 * Set the NaT bits for the scratch registers according to NAT and
107 * return the resulting unat (assuming the scratch registers are
111 ia64_put_scratch_nat_bits (struct pt_regs
*pt
, unsigned long nat
)
113 # define PUT_BITS(first, last, nat) \
115 unsigned long bit = ia64_unat_pos(&pt->r##first); \
116 unsigned long nbits = (last - first + 1); \
117 unsigned long mask = MASK(nbits) << first; \
120 dist = 64 + bit - first; \
122 dist = bit - first; \
123 ia64_rotl(nat & mask, dist); \
125 unsigned long scratch_unat
;
128 * Registers that are stored consecutively in struct pt_regs
129 * can be handled in parallel. If the register order in
130 * struct_pt_regs changes, this code MUST be updated.
132 scratch_unat
= PUT_BITS( 1, 1, nat
);
133 scratch_unat
|= PUT_BITS( 2, 3, nat
);
134 scratch_unat
|= PUT_BITS(12, 13, nat
);
135 scratch_unat
|= PUT_BITS(14, 14, nat
);
136 scratch_unat
|= PUT_BITS(15, 15, nat
);
137 scratch_unat
|= PUT_BITS( 8, 11, nat
);
138 scratch_unat
|= PUT_BITS(16, 31, nat
);
145 #define IA64_MLX_TEMPLATE 0x2
146 #define IA64_MOVL_OPCODE 6
149 ia64_increment_ip (struct pt_regs
*regs
)
151 unsigned long w0
, ri
= ia64_psr(regs
)->ri
+ 1;
156 } else if (ri
== 2) {
157 get_user(w0
, (char __user
*) regs
->cr_iip
+ 0);
158 if (((w0
>> 1) & 0xf) == IA64_MLX_TEMPLATE
) {
160 * rfi'ing to slot 2 of an MLX bundle causes
161 * an illegal operation fault. We don't want
168 ia64_psr(regs
)->ri
= ri
;
172 ia64_decrement_ip (struct pt_regs
*regs
)
174 unsigned long w0
, ri
= ia64_psr(regs
)->ri
- 1;
176 if (ia64_psr(regs
)->ri
== 0) {
179 get_user(w0
, (char __user
*) regs
->cr_iip
+ 0);
180 if (((w0
>> 1) & 0xf) == IA64_MLX_TEMPLATE
) {
182 * rfi'ing to slot 2 of an MLX bundle causes
183 * an illegal operation fault. We don't want
189 ia64_psr(regs
)->ri
= ri
;
193 * This routine is used to read an rnat bits that are stored on the
194 * kernel backing store. Since, in general, the alignment of the user
195 * and kernel are different, this is not completely trivial. In
196 * essence, we need to construct the user RNAT based on up to two
197 * kernel RNAT values and/or the RNAT value saved in the child's
202 * +--------+ <-- lowest address
209 * | slot01 | > child_regs->ar_rnat
211 * | slot02 | / kernel rbs
212 * +--------+ +--------+
213 * <- child_regs->ar_bspstore | slot61 | <-- krbs
214 * +- - - - + +--------+
216 * +- - - - + +--------+
218 * +- - - - + +--------+
220 * +- - - - + +--------+
225 * | slot01 | > child_stack->ar_rnat
229 * <--- child_stack->ar_bspstore
231 * The way to think of this code is as follows: bit 0 in the user rnat
232 * corresponds to some bit N (0 <= N <= 62) in one of the kernel rnat
233 * value. The kernel rnat value holding this bit is stored in
234 * variable rnat0. rnat1 is loaded with the kernel rnat value that
235 * form the upper bits of the user rnat value.
239 * o when reading the rnat "below" the first rnat slot on the kernel
240 * backing store, rnat0/rnat1 are set to 0 and the low order bits are
241 * merged in from pt->ar_rnat.
243 * o when reading the rnat "above" the last rnat slot on the kernel
244 * backing store, rnat0/rnat1 gets its value from sw->ar_rnat.
247 get_rnat (struct task_struct
*task
, struct switch_stack
*sw
,
248 unsigned long *krbs
, unsigned long *urnat_addr
,
249 unsigned long *urbs_end
)
251 unsigned long rnat0
= 0, rnat1
= 0, urnat
= 0, *slot0_kaddr
;
252 unsigned long umask
= 0, mask
, m
;
253 unsigned long *kbsp
, *ubspstore
, *rnat0_kaddr
, *rnat1_kaddr
, shift
;
254 long num_regs
, nbits
;
257 pt
= ia64_task_regs(task
);
258 kbsp
= (unsigned long *) sw
->ar_bspstore
;
259 ubspstore
= (unsigned long *) pt
->ar_bspstore
;
261 if (urbs_end
< urnat_addr
)
262 nbits
= ia64_rse_num_regs(urnat_addr
- 63, urbs_end
);
267 * First, figure out which bit number slot 0 in user-land maps
268 * to in the kernel rnat. Do this by figuring out how many
269 * register slots we're beyond the user's backingstore and
270 * then computing the equivalent address in kernel space.
272 num_regs
= ia64_rse_num_regs(ubspstore
, urnat_addr
+ 1);
273 slot0_kaddr
= ia64_rse_skip_regs(krbs
, num_regs
);
274 shift
= ia64_rse_slot_num(slot0_kaddr
);
275 rnat1_kaddr
= ia64_rse_rnat_addr(slot0_kaddr
);
276 rnat0_kaddr
= rnat1_kaddr
- 64;
278 if (ubspstore
+ 63 > urnat_addr
) {
279 /* some bits need to be merged in from pt->ar_rnat */
280 umask
= MASK(ia64_rse_slot_num(ubspstore
)) & mask
;
281 urnat
= (pt
->ar_rnat
& umask
);
288 if (rnat0_kaddr
>= kbsp
)
290 else if (rnat0_kaddr
> krbs
)
291 rnat0
= *rnat0_kaddr
;
292 urnat
|= (rnat0
& m
) >> shift
;
294 m
= mask
>> (63 - shift
);
295 if (rnat1_kaddr
>= kbsp
)
297 else if (rnat1_kaddr
> krbs
)
298 rnat1
= *rnat1_kaddr
;
299 urnat
|= (rnat1
& m
) << (63 - shift
);
304 * The reverse of get_rnat.
307 put_rnat (struct task_struct
*task
, struct switch_stack
*sw
,
308 unsigned long *krbs
, unsigned long *urnat_addr
, unsigned long urnat
,
309 unsigned long *urbs_end
)
311 unsigned long rnat0
= 0, rnat1
= 0, *slot0_kaddr
, umask
= 0, mask
, m
;
312 unsigned long *kbsp
, *ubspstore
, *rnat0_kaddr
, *rnat1_kaddr
, shift
;
313 long num_regs
, nbits
;
315 unsigned long cfm
, *urbs_kargs
;
317 pt
= ia64_task_regs(task
);
318 kbsp
= (unsigned long *) sw
->ar_bspstore
;
319 ubspstore
= (unsigned long *) pt
->ar_bspstore
;
321 urbs_kargs
= urbs_end
;
322 if (in_syscall(pt
)) {
324 * If entered via syscall, don't allow user to set rnat bits
328 urbs_kargs
= ia64_rse_skip_regs(urbs_end
, -(cfm
& 0x7f));
331 if (urbs_kargs
>= urnat_addr
)
334 if ((urnat_addr
- 63) >= urbs_kargs
)
336 nbits
= ia64_rse_num_regs(urnat_addr
- 63, urbs_kargs
);
341 * First, figure out which bit number slot 0 in user-land maps
342 * to in the kernel rnat. Do this by figuring out how many
343 * register slots we're beyond the user's backingstore and
344 * then computing the equivalent address in kernel space.
346 num_regs
= ia64_rse_num_regs(ubspstore
, urnat_addr
+ 1);
347 slot0_kaddr
= ia64_rse_skip_regs(krbs
, num_regs
);
348 shift
= ia64_rse_slot_num(slot0_kaddr
);
349 rnat1_kaddr
= ia64_rse_rnat_addr(slot0_kaddr
);
350 rnat0_kaddr
= rnat1_kaddr
- 64;
352 if (ubspstore
+ 63 > urnat_addr
) {
353 /* some bits need to be place in pt->ar_rnat: */
354 umask
= MASK(ia64_rse_slot_num(ubspstore
)) & mask
;
355 pt
->ar_rnat
= (pt
->ar_rnat
& ~umask
) | (urnat
& umask
);
361 * Note: Section 11.1 of the EAS guarantees that bit 63 of an
362 * rnat slot is ignored. so we don't have to clear it here.
364 rnat0
= (urnat
<< shift
);
366 if (rnat0_kaddr
>= kbsp
)
367 sw
->ar_rnat
= (sw
->ar_rnat
& ~m
) | (rnat0
& m
);
368 else if (rnat0_kaddr
> krbs
)
369 *rnat0_kaddr
= ((*rnat0_kaddr
& ~m
) | (rnat0
& m
));
371 rnat1
= (urnat
>> (63 - shift
));
372 m
= mask
>> (63 - shift
);
373 if (rnat1_kaddr
>= kbsp
)
374 sw
->ar_rnat
= (sw
->ar_rnat
& ~m
) | (rnat1
& m
);
375 else if (rnat1_kaddr
> krbs
)
376 *rnat1_kaddr
= ((*rnat1_kaddr
& ~m
) | (rnat1
& m
));
380 on_kernel_rbs (unsigned long addr
, unsigned long bspstore
,
381 unsigned long urbs_end
)
383 unsigned long *rnat_addr
= ia64_rse_rnat_addr((unsigned long *)
385 return (addr
>= bspstore
&& addr
<= (unsigned long) rnat_addr
);
389 * Read a word from the user-level backing store of task CHILD. ADDR
390 * is the user-level address to read the word from, VAL a pointer to
391 * the return value, and USER_BSP gives the end of the user-level
392 * backing store (i.e., it's the address that would be in ar.bsp after
393 * the user executed a "cover" instruction).
395 * This routine takes care of accessing the kernel register backing
396 * store for those registers that got spilled there. It also takes
397 * care of calculating the appropriate RNaT collection words.
400 ia64_peek (struct task_struct
*child
, struct switch_stack
*child_stack
,
401 unsigned long user_rbs_end
, unsigned long addr
, long *val
)
403 unsigned long *bspstore
, *krbs
, regnum
, *laddr
, *urbs_end
, *rnat_addr
;
404 struct pt_regs
*child_regs
;
408 urbs_end
= (long *) user_rbs_end
;
409 laddr
= (unsigned long *) addr
;
410 child_regs
= ia64_task_regs(child
);
411 bspstore
= (unsigned long *) child_regs
->ar_bspstore
;
412 krbs
= (unsigned long *) child
+ IA64_RBS_OFFSET
/8;
413 if (on_kernel_rbs(addr
, (unsigned long) bspstore
,
414 (unsigned long) urbs_end
))
417 * Attempt to read the RBS in an area that's actually
418 * on the kernel RBS => read the corresponding bits in
421 rnat_addr
= ia64_rse_rnat_addr(laddr
);
422 ret
= get_rnat(child
, child_stack
, krbs
, rnat_addr
, urbs_end
);
424 if (laddr
== rnat_addr
) {
425 /* return NaT collection word itself */
430 if (((1UL << ia64_rse_slot_num(laddr
)) & ret
) != 0) {
432 * It is implementation dependent whether the
433 * data portion of a NaT value gets saved on a
434 * st8.spill or RSE spill (e.g., see EAS 2.6,
435 * 4.4.4.6 Register Spill and Fill). To get
436 * consistent behavior across all possible
437 * IA-64 implementations, we return zero in
444 if (laddr
< urbs_end
) {
446 * The desired word is on the kernel RBS and
449 regnum
= ia64_rse_num_regs(bspstore
, laddr
);
450 *val
= *ia64_rse_skip_regs(krbs
, regnum
);
454 copied
= access_process_vm(child
, addr
, &ret
, sizeof(ret
), 0);
455 if (copied
!= sizeof(ret
))
462 ia64_poke (struct task_struct
*child
, struct switch_stack
*child_stack
,
463 unsigned long user_rbs_end
, unsigned long addr
, long val
)
465 unsigned long *bspstore
, *krbs
, regnum
, *laddr
;
466 unsigned long *urbs_end
= (long *) user_rbs_end
;
467 struct pt_regs
*child_regs
;
469 laddr
= (unsigned long *) addr
;
470 child_regs
= ia64_task_regs(child
);
471 bspstore
= (unsigned long *) child_regs
->ar_bspstore
;
472 krbs
= (unsigned long *) child
+ IA64_RBS_OFFSET
/8;
473 if (on_kernel_rbs(addr
, (unsigned long) bspstore
,
474 (unsigned long) urbs_end
))
477 * Attempt to write the RBS in an area that's actually
478 * on the kernel RBS => write the corresponding bits
481 if (ia64_rse_is_rnat_slot(laddr
))
482 put_rnat(child
, child_stack
, krbs
, laddr
, val
,
485 if (laddr
< urbs_end
) {
486 regnum
= ia64_rse_num_regs(bspstore
, laddr
);
487 *ia64_rse_skip_regs(krbs
, regnum
) = val
;
490 } else if (access_process_vm(child
, addr
, &val
, sizeof(val
), 1)
497 * Calculate the address of the end of the user-level register backing
498 * store. This is the address that would have been stored in ar.bsp
499 * if the user had executed a "cover" instruction right before
500 * entering the kernel. If CFMP is not NULL, it is used to return the
501 * "current frame mask" that was active at the time the kernel was
505 ia64_get_user_rbs_end (struct task_struct
*child
, struct pt_regs
*pt
,
508 unsigned long *krbs
, *bspstore
, cfm
= pt
->cr_ifs
;
511 krbs
= (unsigned long *) child
+ IA64_RBS_OFFSET
/8;
512 bspstore
= (unsigned long *) pt
->ar_bspstore
;
513 ndirty
= ia64_rse_num_regs(krbs
, krbs
+ (pt
->loadrs
>> 19));
516 ndirty
+= (cfm
& 0x7f);
518 cfm
&= ~(1UL << 63); /* clear valid bit */
522 return (unsigned long) ia64_rse_skip_regs(bspstore
, ndirty
);
526 * Synchronize (i.e, write) the RSE backing store living in kernel
527 * space to the VM of the CHILD task. SW and PT are the pointers to
528 * the switch_stack and pt_regs structures, respectively.
529 * USER_RBS_END is the user-level address at which the backing store
533 ia64_sync_user_rbs (struct task_struct
*child
, struct switch_stack
*sw
,
534 unsigned long user_rbs_start
, unsigned long user_rbs_end
)
536 unsigned long addr
, val
;
539 /* now copy word for word from kernel rbs to user rbs: */
540 for (addr
= user_rbs_start
; addr
< user_rbs_end
; addr
+= 8) {
541 ret
= ia64_peek(child
, sw
, user_rbs_end
, addr
, &val
);
544 if (access_process_vm(child
, addr
, &val
, sizeof(val
), 1)
552 thread_matches (struct task_struct
*thread
, unsigned long addr
)
554 unsigned long thread_rbs_end
;
555 struct pt_regs
*thread_regs
;
557 if (ptrace_check_attach(thread
, 0) < 0)
559 * If the thread is not in an attachable state, we'll
560 * ignore it. The net effect is that if ADDR happens
561 * to overlap with the portion of the thread's
562 * register backing store that is currently residing
563 * on the thread's kernel stack, then ptrace() may end
564 * up accessing a stale value. But if the thread
565 * isn't stopped, that's a problem anyhow, so we're
566 * doing as well as we can...
570 thread_regs
= ia64_task_regs(thread
);
571 thread_rbs_end
= ia64_get_user_rbs_end(thread
, thread_regs
, NULL
);
572 if (!on_kernel_rbs(addr
, thread_regs
->ar_bspstore
, thread_rbs_end
))
575 return 1; /* looks like we've got a winner */
579 * GDB apparently wants to be able to read the register-backing store
580 * of any thread when attached to a given process. If we are peeking
581 * or poking an address that happens to reside in the kernel-backing
582 * store of another thread, we need to attach to that thread, because
583 * otherwise we end up accessing stale data.
585 * task_list_lock must be read-locked before calling this routine!
587 static struct task_struct
*
588 find_thread_for_addr (struct task_struct
*child
, unsigned long addr
)
590 struct task_struct
*g
, *p
;
591 struct mm_struct
*mm
;
594 if (!(mm
= get_task_mm(child
)))
597 /* -1 because of our get_task_mm(): */
598 mm_users
= atomic_read(&mm
->mm_users
) - 1;
600 goto out
; /* not multi-threaded */
603 * First, traverse the child's thread-list. Good for scalability with
608 if (thread_matches(p
, addr
)) {
614 } while ((p
= next_thread(p
)) != child
);
616 do_each_thread(g
, p
) {
620 if (thread_matches(p
, addr
)) {
624 } while_each_thread(g
, p
);
631 * Write f32-f127 back to task->thread.fph if it has been modified.
634 ia64_flush_fph (struct task_struct
*task
)
636 struct ia64_psr
*psr
= ia64_psr(ia64_task_regs(task
));
638 if (ia64_is_local_fpu_owner(task
) && psr
->mfh
) {
640 task
->thread
.flags
|= IA64_THREAD_FPH_VALID
;
641 ia64_save_fpu(&task
->thread
.fph
[0]);
646 * Sync the fph state of the task so that it can be manipulated
647 * through thread.fph. If necessary, f32-f127 are written back to
648 * thread.fph or, if the fph state hasn't been used before, thread.fph
649 * is cleared to zeroes. Also, access to f32-f127 is disabled to
650 * ensure that the task picks up the state from thread.fph when it
654 ia64_sync_fph (struct task_struct
*task
)
656 struct ia64_psr
*psr
= ia64_psr(ia64_task_regs(task
));
658 ia64_flush_fph(task
);
659 if (!(task
->thread
.flags
& IA64_THREAD_FPH_VALID
)) {
660 task
->thread
.flags
|= IA64_THREAD_FPH_VALID
;
661 memset(&task
->thread
.fph
, 0, sizeof(task
->thread
.fph
));
668 access_fr (struct unw_frame_info
*info
, int regnum
, int hi
,
669 unsigned long *data
, int write_access
)
671 struct ia64_fpreg fpval
;
674 ret
= unw_get_fr(info
, regnum
, &fpval
);
679 fpval
.u
.bits
[hi
] = *data
;
680 ret
= unw_set_fr(info
, regnum
, fpval
);
682 *data
= fpval
.u
.bits
[hi
];
687 * Change the machine-state of CHILD such that it will return via the normal
688 * kernel exit-path, rather than the syscall-exit path.
691 convert_to_non_syscall (struct task_struct
*child
, struct pt_regs
*pt
,
694 struct unw_frame_info info
, prev_info
;
695 unsigned long ip
, pr
;
697 unw_init_from_blocked_task(&info
, child
);
700 if (unw_unwind(&info
) < 0)
702 if (unw_get_rp(&info
, &ip
) < 0)
704 if (ip
< FIXADDR_USER_END
)
708 unw_get_pr(&prev_info
, &pr
);
709 pr
&= ~(1UL << PRED_SYSCALL
);
710 pr
|= (1UL << PRED_NON_SYSCALL
);
711 unw_set_pr(&prev_info
, pr
);
713 pt
->cr_ifs
= (1UL << 63) | cfm
;
717 access_nat_bits (struct task_struct
*child
, struct pt_regs
*pt
,
718 struct unw_frame_info
*info
,
719 unsigned long *data
, int write_access
)
721 unsigned long regnum
, nat_bits
, scratch_unat
, dummy
= 0;
726 scratch_unat
= ia64_put_scratch_nat_bits(pt
, nat_bits
);
727 if (unw_set_ar(info
, UNW_AR_UNAT
, scratch_unat
) < 0) {
728 dprintk("ptrace: failed to set ar.unat\n");
731 for (regnum
= 4; regnum
<= 7; ++regnum
) {
732 unw_get_gr(info
, regnum
, &dummy
, &nat
);
733 unw_set_gr(info
, regnum
, dummy
,
734 (nat_bits
>> regnum
) & 1);
737 if (unw_get_ar(info
, UNW_AR_UNAT
, &scratch_unat
) < 0) {
738 dprintk("ptrace: failed to read ar.unat\n");
741 nat_bits
= ia64_get_scratch_nat_bits(pt
, scratch_unat
);
742 for (regnum
= 4; regnum
<= 7; ++regnum
) {
743 unw_get_gr(info
, regnum
, &dummy
, &nat
);
744 nat_bits
|= (nat
!= 0) << regnum
;
752 access_uarea (struct task_struct
*child
, unsigned long addr
,
753 unsigned long *data
, int write_access
)
755 unsigned long *ptr
, regnum
, urbs_end
, rnat_addr
, cfm
;
756 struct switch_stack
*sw
;
758 # define pt_reg_addr(pt, reg) ((void *) \
759 ((unsigned long) (pt) \
760 + offsetof(struct pt_regs, reg)))
763 pt
= ia64_task_regs(child
);
764 sw
= (struct switch_stack
*) (child
->thread
.ksp
+ 16);
766 if ((addr
& 0x7) != 0) {
767 dprintk("ptrace: unaligned register address 0x%lx\n", addr
);
771 if (addr
< PT_F127
+ 16) {
774 ia64_sync_fph(child
);
776 ia64_flush_fph(child
);
777 ptr
= (unsigned long *)
778 ((unsigned long) &child
->thread
.fph
+ addr
);
779 } else if ((addr
>= PT_F10
) && (addr
< PT_F11
+ 16)) {
780 /* scratch registers untouched by kernel (saved in pt_regs) */
781 ptr
= pt_reg_addr(pt
, f10
) + (addr
- PT_F10
);
782 } else if (addr
>= PT_F12
&& addr
< PT_F15
+ 16) {
784 * Scratch registers untouched by kernel (saved in
787 ptr
= (unsigned long *) ((long) sw
788 + (addr
- PT_NAT_BITS
- 32));
789 } else if (addr
< PT_AR_LC
+ 8) {
790 /* preserved state: */
791 struct unw_frame_info info
;
795 unw_init_from_blocked_task(&info
, child
);
796 if (unw_unwind_to_user(&info
) < 0)
801 return access_nat_bits(child
, pt
, &info
,
804 case PT_R4
: case PT_R5
: case PT_R6
: case PT_R7
:
806 /* read NaT bit first: */
809 ret
= unw_get_gr(&info
, (addr
- PT_R4
)/8 + 4,
814 return unw_access_gr(&info
, (addr
- PT_R4
)/8 + 4, data
,
817 case PT_B1
: case PT_B2
: case PT_B3
:
818 case PT_B4
: case PT_B5
:
819 return unw_access_br(&info
, (addr
- PT_B1
)/8 + 1, data
,
823 return unw_access_ar(&info
, UNW_AR_EC
, data
,
827 return unw_access_ar(&info
, UNW_AR_LC
, data
,
831 if (addr
>= PT_F2
&& addr
< PT_F5
+ 16)
832 return access_fr(&info
, (addr
- PT_F2
)/16 + 2,
833 (addr
& 8) != 0, data
,
835 else if (addr
>= PT_F16
&& addr
< PT_F31
+ 16)
836 return access_fr(&info
,
837 (addr
- PT_F16
)/16 + 16,
841 dprintk("ptrace: rejecting access to register "
842 "address 0x%lx\n", addr
);
846 } else if (addr
< PT_F9
+16) {
851 * By convention, we use PT_AR_BSP to refer to
852 * the end of the user-level backing store.
853 * Use ia64_rse_skip_regs(PT_AR_BSP, -CFM.sof)
854 * to get the real value of ar.bsp at the time
855 * the kernel was entered.
857 * Furthermore, when changing the contents of
858 * PT_AR_BSP (or PT_CFM) we MUST copy any
859 * users-level stacked registers that are
860 * stored on the kernel stack back to
861 * user-space because otherwise, we might end
862 * up clobbering kernel stacked registers.
863 * Also, if this happens while the task is
864 * blocked in a system call, which convert the
865 * state such that the non-system-call exit
866 * path is used. This ensures that the proper
867 * state will be picked up when resuming
868 * execution. However, it *also* means that
869 * once we write PT_AR_BSP/PT_CFM, it won't be
870 * possible to modify the syscall arguments of
871 * the pending system call any longer. This
872 * shouldn't be an issue because modifying
873 * PT_AR_BSP/PT_CFM generally implies that
874 * we're either abandoning the pending system
875 * call or that we defer it's re-execution
876 * (e.g., due to GDB doing an inferior
879 urbs_end
= ia64_get_user_rbs_end(child
, pt
, &cfm
);
881 if (*data
!= urbs_end
) {
882 if (ia64_sync_user_rbs(child
, sw
,
887 convert_to_non_syscall(child
,
891 * Simulate user-level write
895 pt
->ar_bspstore
= *data
;
902 urbs_end
= ia64_get_user_rbs_end(child
, pt
, &cfm
);
904 if (((cfm
^ *data
) & PFM_MASK
) != 0) {
905 if (ia64_sync_user_rbs(child
, sw
,
910 convert_to_non_syscall(child
,
913 pt
->cr_ifs
= ((pt
->cr_ifs
& ~PFM_MASK
)
914 | (*data
& PFM_MASK
));
922 pt
->cr_ipsr
= ((*data
& IPSR_MASK
)
923 | (pt
->cr_ipsr
& ~IPSR_MASK
));
925 *data
= (pt
->cr_ipsr
& IPSR_MASK
);
929 urbs_end
= ia64_get_user_rbs_end(child
, pt
, NULL
);
930 rnat_addr
= (long) ia64_rse_rnat_addr((long *)
933 return ia64_poke(child
, sw
, urbs_end
,
936 return ia64_peek(child
, sw
, urbs_end
,
940 ptr
= pt_reg_addr(pt
, r1
);
942 case PT_R2
: case PT_R3
:
943 ptr
= pt_reg_addr(pt
, r2
) + (addr
- PT_R2
);
945 case PT_R8
: case PT_R9
: case PT_R10
: case PT_R11
:
946 ptr
= pt_reg_addr(pt
, r8
) + (addr
- PT_R8
);
948 case PT_R12
: case PT_R13
:
949 ptr
= pt_reg_addr(pt
, r12
) + (addr
- PT_R12
);
952 ptr
= pt_reg_addr(pt
, r14
);
955 ptr
= pt_reg_addr(pt
, r15
);
957 case PT_R16
: case PT_R17
: case PT_R18
: case PT_R19
:
958 case PT_R20
: case PT_R21
: case PT_R22
: case PT_R23
:
959 case PT_R24
: case PT_R25
: case PT_R26
: case PT_R27
:
960 case PT_R28
: case PT_R29
: case PT_R30
: case PT_R31
:
961 ptr
= pt_reg_addr(pt
, r16
) + (addr
- PT_R16
);
964 ptr
= pt_reg_addr(pt
, b0
);
967 ptr
= pt_reg_addr(pt
, b6
);
970 ptr
= pt_reg_addr(pt
, b7
);
972 case PT_F6
: case PT_F6
+8: case PT_F7
: case PT_F7
+8:
973 case PT_F8
: case PT_F8
+8: case PT_F9
: case PT_F9
+8:
974 ptr
= pt_reg_addr(pt
, f6
) + (addr
- PT_F6
);
977 ptr
= pt_reg_addr(pt
, ar_bspstore
);
980 ptr
= pt_reg_addr(pt
, ar_rsc
);
983 ptr
= pt_reg_addr(pt
, ar_unat
);
986 ptr
= pt_reg_addr(pt
, ar_pfs
);
989 ptr
= pt_reg_addr(pt
, ar_ccv
);
992 ptr
= pt_reg_addr(pt
, ar_fpsr
);
995 ptr
= pt_reg_addr(pt
, cr_iip
);
998 ptr
= pt_reg_addr(pt
, pr
);
1000 /* scratch register */
1003 /* disallow accessing anything else... */
1004 dprintk("ptrace: rejecting access to register "
1005 "address 0x%lx\n", addr
);
1008 } else if (addr
<= PT_AR_SSD
) {
1009 ptr
= pt_reg_addr(pt
, ar_csd
) + (addr
- PT_AR_CSD
);
1011 /* access debug registers */
1013 if (addr
>= PT_IBR
) {
1014 regnum
= (addr
- PT_IBR
) >> 3;
1015 ptr
= &child
->thread
.ibr
[0];
1017 regnum
= (addr
- PT_DBR
) >> 3;
1018 ptr
= &child
->thread
.dbr
[0];
1022 dprintk("ptrace: rejecting access to register "
1023 "address 0x%lx\n", addr
);
1026 #ifdef CONFIG_PERFMON
1028 * Check if debug registers are used by perfmon. This
1029 * test must be done once we know that we can do the
1030 * operation, i.e. the arguments are all valid, but
1031 * before we start modifying the state.
1033 * Perfmon needs to keep a count of how many processes
1034 * are trying to modify the debug registers for system
1035 * wide monitoring sessions.
1037 * We also include read access here, because they may
1038 * cause the PMU-installed debug register state
1039 * (dbr[], ibr[]) to be reset. The two arrays are also
1040 * used by perfmon, but we do not use
1041 * IA64_THREAD_DBG_VALID. The registers are restored
1042 * by the PMU context switch code.
1044 if (pfm_use_debug_registers(child
)) return -1;
1047 if (!(child
->thread
.flags
& IA64_THREAD_DBG_VALID
)) {
1048 child
->thread
.flags
|= IA64_THREAD_DBG_VALID
;
1049 memset(child
->thread
.dbr
, 0,
1050 sizeof(child
->thread
.dbr
));
1051 memset(child
->thread
.ibr
, 0,
1052 sizeof(child
->thread
.ibr
));
1057 if ((regnum
& 1) && write_access
) {
1058 /* don't let the user set kernel-level breakpoints: */
1059 *ptr
= *data
& ~(7UL << 56);
1071 ptrace_getregs (struct task_struct
*child
, struct pt_all_user_regs __user
*ppr
)
1073 unsigned long psr
, ec
, lc
, rnat
, bsp
, cfm
, nat_bits
, val
;
1074 struct unw_frame_info info
;
1075 struct ia64_fpreg fpval
;
1076 struct switch_stack
*sw
;
1078 long ret
, retval
= 0;
1082 if (!access_ok(VERIFY_WRITE
, ppr
, sizeof(struct pt_all_user_regs
)))
1085 pt
= ia64_task_regs(child
);
1086 sw
= (struct switch_stack
*) (child
->thread
.ksp
+ 16);
1087 unw_init_from_blocked_task(&info
, child
);
1088 if (unw_unwind_to_user(&info
) < 0) {
1092 if (((unsigned long) ppr
& 0x7) != 0) {
1093 dprintk("ptrace:unaligned register address %p\n", ppr
);
1097 if (access_uarea(child
, PT_CR_IPSR
, &psr
, 0) < 0
1098 || access_uarea(child
, PT_AR_EC
, &ec
, 0) < 0
1099 || access_uarea(child
, PT_AR_LC
, &lc
, 0) < 0
1100 || access_uarea(child
, PT_AR_RNAT
, &rnat
, 0) < 0
1101 || access_uarea(child
, PT_AR_BSP
, &bsp
, 0) < 0
1102 || access_uarea(child
, PT_CFM
, &cfm
, 0)
1103 || access_uarea(child
, PT_NAT_BITS
, &nat_bits
, 0))
1108 retval
|= __put_user(pt
->cr_iip
, &ppr
->cr_iip
);
1109 retval
|= __put_user(psr
, &ppr
->cr_ipsr
);
1113 retval
|= __put_user(pt
->ar_pfs
, &ppr
->ar
[PT_AUR_PFS
]);
1114 retval
|= __put_user(pt
->ar_rsc
, &ppr
->ar
[PT_AUR_RSC
]);
1115 retval
|= __put_user(pt
->ar_bspstore
, &ppr
->ar
[PT_AUR_BSPSTORE
]);
1116 retval
|= __put_user(pt
->ar_unat
, &ppr
->ar
[PT_AUR_UNAT
]);
1117 retval
|= __put_user(pt
->ar_ccv
, &ppr
->ar
[PT_AUR_CCV
]);
1118 retval
|= __put_user(pt
->ar_fpsr
, &ppr
->ar
[PT_AUR_FPSR
]);
1120 retval
|= __put_user(ec
, &ppr
->ar
[PT_AUR_EC
]);
1121 retval
|= __put_user(lc
, &ppr
->ar
[PT_AUR_LC
]);
1122 retval
|= __put_user(rnat
, &ppr
->ar
[PT_AUR_RNAT
]);
1123 retval
|= __put_user(bsp
, &ppr
->ar
[PT_AUR_BSP
]);
1124 retval
|= __put_user(cfm
, &ppr
->cfm
);
1128 retval
|= __copy_to_user(&ppr
->gr
[1], &pt
->r1
, sizeof(long));
1129 retval
|= __copy_to_user(&ppr
->gr
[2], &pt
->r2
, sizeof(long) *2);
1133 for (i
= 4; i
< 8; i
++) {
1134 if (unw_access_gr(&info
, i
, &val
, &nat
, 0) < 0)
1136 retval
|= __put_user(val
, &ppr
->gr
[i
]);
1141 retval
|= __copy_to_user(&ppr
->gr
[8], &pt
->r8
, sizeof(long) * 4);
1145 retval
|= __copy_to_user(&ppr
->gr
[12], &pt
->r12
, sizeof(long) * 2);
1146 retval
|= __copy_to_user(&ppr
->gr
[14], &pt
->r14
, sizeof(long));
1147 retval
|= __copy_to_user(&ppr
->gr
[15], &pt
->r15
, sizeof(long));
1151 retval
|= __copy_to_user(&ppr
->gr
[16], &pt
->r16
, sizeof(long) * 16);
1155 retval
|= __put_user(pt
->b0
, &ppr
->br
[0]);
1159 for (i
= 1; i
< 6; i
++) {
1160 if (unw_access_br(&info
, i
, &val
, 0) < 0)
1162 __put_user(val
, &ppr
->br
[i
]);
1167 retval
|= __put_user(pt
->b6
, &ppr
->br
[6]);
1168 retval
|= __put_user(pt
->b7
, &ppr
->br
[7]);
1172 for (i
= 2; i
< 6; i
++) {
1173 if (unw_get_fr(&info
, i
, &fpval
) < 0)
1175 retval
|= __copy_to_user(&ppr
->fr
[i
], &fpval
, sizeof (fpval
));
1180 retval
|= __copy_to_user(&ppr
->fr
[6], &pt
->f6
,
1181 sizeof(struct ia64_fpreg
) * 6);
1183 /* fp scratch regs(12-15) */
1185 retval
|= __copy_to_user(&ppr
->fr
[12], &sw
->f12
,
1186 sizeof(struct ia64_fpreg
) * 4);
1190 for (i
= 16; i
< 32; i
++) {
1191 if (unw_get_fr(&info
, i
, &fpval
) < 0)
1193 retval
|= __copy_to_user(&ppr
->fr
[i
], &fpval
, sizeof (fpval
));
1198 ia64_flush_fph(child
);
1199 retval
|= __copy_to_user(&ppr
->fr
[32], &child
->thread
.fph
,
1200 sizeof(ppr
->fr
[32]) * 96);
1204 retval
|= __put_user(pt
->pr
, &ppr
->pr
);
1208 retval
|= __put_user(nat_bits
, &ppr
->nat
);
1210 ret
= retval
? -EIO
: 0;
1215 ptrace_setregs (struct task_struct
*child
, struct pt_all_user_regs __user
*ppr
)
1217 unsigned long psr
, ec
, lc
, rnat
, bsp
, cfm
, nat_bits
, val
= 0;
1218 struct unw_frame_info info
;
1219 struct switch_stack
*sw
;
1220 struct ia64_fpreg fpval
;
1222 long ret
, retval
= 0;
1225 memset(&fpval
, 0, sizeof(fpval
));
1227 if (!access_ok(VERIFY_READ
, ppr
, sizeof(struct pt_all_user_regs
)))
1230 pt
= ia64_task_regs(child
);
1231 sw
= (struct switch_stack
*) (child
->thread
.ksp
+ 16);
1232 unw_init_from_blocked_task(&info
, child
);
1233 if (unw_unwind_to_user(&info
) < 0) {
1237 if (((unsigned long) ppr
& 0x7) != 0) {
1238 dprintk("ptrace:unaligned register address %p\n", ppr
);
1244 retval
|= __get_user(pt
->cr_iip
, &ppr
->cr_iip
);
1245 retval
|= __get_user(psr
, &ppr
->cr_ipsr
);
1249 retval
|= __get_user(pt
->ar_pfs
, &ppr
->ar
[PT_AUR_PFS
]);
1250 retval
|= __get_user(pt
->ar_rsc
, &ppr
->ar
[PT_AUR_RSC
]);
1251 retval
|= __get_user(pt
->ar_bspstore
, &ppr
->ar
[PT_AUR_BSPSTORE
]);
1252 retval
|= __get_user(pt
->ar_unat
, &ppr
->ar
[PT_AUR_UNAT
]);
1253 retval
|= __get_user(pt
->ar_ccv
, &ppr
->ar
[PT_AUR_CCV
]);
1254 retval
|= __get_user(pt
->ar_fpsr
, &ppr
->ar
[PT_AUR_FPSR
]);
1256 retval
|= __get_user(ec
, &ppr
->ar
[PT_AUR_EC
]);
1257 retval
|= __get_user(lc
, &ppr
->ar
[PT_AUR_LC
]);
1258 retval
|= __get_user(rnat
, &ppr
->ar
[PT_AUR_RNAT
]);
1259 retval
|= __get_user(bsp
, &ppr
->ar
[PT_AUR_BSP
]);
1260 retval
|= __get_user(cfm
, &ppr
->cfm
);
1264 retval
|= __copy_from_user(&pt
->r1
, &ppr
->gr
[1], sizeof(long));
1265 retval
|= __copy_from_user(&pt
->r2
, &ppr
->gr
[2], sizeof(long) * 2);
1269 for (i
= 4; i
< 8; i
++) {
1270 retval
|= __get_user(val
, &ppr
->gr
[i
]);
1271 /* NaT bit will be set via PT_NAT_BITS: */
1272 if (unw_set_gr(&info
, i
, val
, 0) < 0)
1278 retval
|= __copy_from_user(&pt
->r8
, &ppr
->gr
[8], sizeof(long) * 4);
1282 retval
|= __copy_from_user(&pt
->r12
, &ppr
->gr
[12], sizeof(long) * 2);
1283 retval
|= __copy_from_user(&pt
->r14
, &ppr
->gr
[14], sizeof(long));
1284 retval
|= __copy_from_user(&pt
->r15
, &ppr
->gr
[15], sizeof(long));
1288 retval
|= __copy_from_user(&pt
->r16
, &ppr
->gr
[16], sizeof(long) * 16);
1292 retval
|= __get_user(pt
->b0
, &ppr
->br
[0]);
1296 for (i
= 1; i
< 6; i
++) {
1297 retval
|= __get_user(val
, &ppr
->br
[i
]);
1298 unw_set_br(&info
, i
, val
);
1303 retval
|= __get_user(pt
->b6
, &ppr
->br
[6]);
1304 retval
|= __get_user(pt
->b7
, &ppr
->br
[7]);
1308 for (i
= 2; i
< 6; i
++) {
1309 retval
|= __copy_from_user(&fpval
, &ppr
->fr
[i
], sizeof(fpval
));
1310 if (unw_set_fr(&info
, i
, fpval
) < 0)
1316 retval
|= __copy_from_user(&pt
->f6
, &ppr
->fr
[6],
1317 sizeof(ppr
->fr
[6]) * 6);
1319 /* fp scratch regs(12-15) */
1321 retval
|= __copy_from_user(&sw
->f12
, &ppr
->fr
[12],
1322 sizeof(ppr
->fr
[12]) * 4);
1326 for (i
= 16; i
< 32; i
++) {
1327 retval
|= __copy_from_user(&fpval
, &ppr
->fr
[i
],
1329 if (unw_set_fr(&info
, i
, fpval
) < 0)
1335 ia64_sync_fph(child
);
1336 retval
|= __copy_from_user(&child
->thread
.fph
, &ppr
->fr
[32],
1337 sizeof(ppr
->fr
[32]) * 96);
1341 retval
|= __get_user(pt
->pr
, &ppr
->pr
);
1345 retval
|= __get_user(nat_bits
, &ppr
->nat
);
1347 retval
|= access_uarea(child
, PT_CR_IPSR
, &psr
, 1);
1348 retval
|= access_uarea(child
, PT_AR_EC
, &ec
, 1);
1349 retval
|= access_uarea(child
, PT_AR_LC
, &lc
, 1);
1350 retval
|= access_uarea(child
, PT_AR_RNAT
, &rnat
, 1);
1351 retval
|= access_uarea(child
, PT_AR_BSP
, &bsp
, 1);
1352 retval
|= access_uarea(child
, PT_CFM
, &cfm
, 1);
1353 retval
|= access_uarea(child
, PT_NAT_BITS
, &nat_bits
, 1);
1355 ret
= retval
? -EIO
: 0;
1360 * Called by kernel/ptrace.c when detaching..
1362 * Make sure the single step bit is not set.
1365 ptrace_disable (struct task_struct
*child
)
1367 struct ia64_psr
*child_psr
= ia64_psr(ia64_task_regs(child
));
1369 /* make sure the single step/taken-branch trap bits are not set: */
1375 sys_ptrace (long request
, pid_t pid
, unsigned long addr
, unsigned long data
)
1378 unsigned long urbs_end
, peek_or_poke
;
1379 struct task_struct
*child
;
1380 struct switch_stack
*sw
;
1385 if (request
== PTRACE_TRACEME
) {
1386 /* are we already being traced? */
1387 if (current
->ptrace
& PT_PTRACED
)
1389 ret
= security_ptrace(current
->parent
, current
);
1392 current
->ptrace
|= PT_PTRACED
;
1397 peek_or_poke
= (request
== PTRACE_PEEKTEXT
1398 || request
== PTRACE_PEEKDATA
1399 || request
== PTRACE_POKETEXT
1400 || request
== PTRACE_POKEDATA
);
1402 read_lock(&tasklist_lock
);
1404 child
= find_task_by_pid(pid
);
1407 child
= find_thread_for_addr(child
, addr
);
1408 get_task_struct(child
);
1411 read_unlock(&tasklist_lock
);
1415 if (pid
== 1) /* no messing around with init! */
1418 if (request
== PTRACE_ATTACH
) {
1419 ret
= ptrace_attach(child
);
1423 ret
= ptrace_check_attach(child
, request
== PTRACE_KILL
);
1427 pt
= ia64_task_regs(child
);
1428 sw
= (struct switch_stack
*) (child
->thread
.ksp
+ 16);
1431 case PTRACE_PEEKTEXT
:
1432 case PTRACE_PEEKDATA
:
1433 /* read word at location addr */
1434 urbs_end
= ia64_get_user_rbs_end(child
, pt
, NULL
);
1435 ret
= ia64_peek(child
, sw
, urbs_end
, addr
, &data
);
1438 /* ensure "ret" is not mistaken as an error code: */
1439 force_successful_syscall_return();
1443 case PTRACE_POKETEXT
:
1444 case PTRACE_POKEDATA
:
1445 /* write the word at location addr */
1446 urbs_end
= ia64_get_user_rbs_end(child
, pt
, NULL
);
1447 ret
= ia64_poke(child
, sw
, urbs_end
, addr
, data
);
1450 case PTRACE_PEEKUSR
:
1451 /* read the word at addr in the USER area */
1452 if (access_uarea(child
, addr
, &data
, 0) < 0) {
1457 /* ensure "ret" is not mistaken as an error code */
1458 force_successful_syscall_return();
1461 case PTRACE_POKEUSR
:
1462 /* write the word at addr in the USER area */
1463 if (access_uarea(child
, addr
, &data
, 1) < 0) {
1470 case PTRACE_OLD_GETSIGINFO
:
1471 /* for backwards-compatibility */
1472 ret
= ptrace_request(child
, PTRACE_GETSIGINFO
, addr
, data
);
1475 case PTRACE_OLD_SETSIGINFO
:
1476 /* for backwards-compatibility */
1477 ret
= ptrace_request(child
, PTRACE_SETSIGINFO
, addr
, data
);
1480 case PTRACE_SYSCALL
:
1481 /* continue and stop at next (return from) syscall */
1483 /* restart after signal. */
1485 if (!valid_signal(data
))
1487 if (request
== PTRACE_SYSCALL
)
1488 set_tsk_thread_flag(child
, TIF_SYSCALL_TRACE
);
1490 clear_tsk_thread_flag(child
, TIF_SYSCALL_TRACE
);
1491 child
->exit_code
= data
;
1494 * Make sure the single step/taken-branch trap bits
1497 ia64_psr(pt
)->ss
= 0;
1498 ia64_psr(pt
)->tb
= 0;
1500 wake_up_process(child
);
1506 * Make the child exit. Best I can do is send it a
1507 * sigkill. Perhaps it should be put in the status
1508 * that it wants to exit.
1510 if (child
->exit_state
== EXIT_ZOMBIE
)
1513 child
->exit_code
= SIGKILL
;
1515 ptrace_disable(child
);
1516 wake_up_process(child
);
1520 case PTRACE_SINGLESTEP
:
1521 /* let child execute for one instruction */
1522 case PTRACE_SINGLEBLOCK
:
1524 if (!valid_signal(data
))
1527 clear_tsk_thread_flag(child
, TIF_SYSCALL_TRACE
);
1528 if (request
== PTRACE_SINGLESTEP
) {
1529 ia64_psr(pt
)->ss
= 1;
1531 ia64_psr(pt
)->tb
= 1;
1533 child
->exit_code
= data
;
1535 /* give it a chance to run. */
1536 wake_up_process(child
);
1541 /* detach a process that was attached. */
1542 ret
= ptrace_detach(child
, data
);
1545 case PTRACE_GETREGS
:
1546 ret
= ptrace_getregs(child
,
1547 (struct pt_all_user_regs __user
*) data
);
1550 case PTRACE_SETREGS
:
1551 ret
= ptrace_setregs(child
,
1552 (struct pt_all_user_regs __user
*) data
);
1556 ret
= ptrace_request(child
, request
, addr
, data
);
1560 put_task_struct(child
);
1568 syscall_trace (void)
1570 if (!test_thread_flag(TIF_SYSCALL_TRACE
))
1572 if (!(current
->ptrace
& PT_PTRACED
))
1575 * The 0x80 provides a way for the tracing parent to
1576 * distinguish between a syscall stop and SIGTRAP delivery.
1578 ptrace_notify(SIGTRAP
1579 | ((current
->ptrace
& PT_TRACESYSGOOD
) ? 0x80 : 0));
1582 * This isn't the same as continuing with a signal, but it
1583 * will do for normal use. strace only continues with a
1584 * signal if the stopping signal is not SIGTRAP. -brl
1586 if (current
->exit_code
) {
1587 send_sig(current
->exit_code
, current
, 1);
1588 current
->exit_code
= 0;
1592 /* "asmlinkage" so the input arguments are preserved... */
1595 syscall_trace_enter (long arg0
, long arg1
, long arg2
, long arg3
,
1596 long arg4
, long arg5
, long arg6
, long arg7
,
1597 struct pt_regs regs
)
1599 if (test_thread_flag(TIF_SYSCALL_TRACE
)
1600 && (current
->ptrace
& PT_PTRACED
))
1603 if (unlikely(current
->audit_context
)) {
1607 if (IS_IA32_PROCESS(®s
)) {
1609 arch
= AUDIT_ARCH_I386
;
1612 arch
= AUDIT_ARCH_IA64
;
1615 audit_syscall_entry(current
, arch
, syscall
, arg0
, arg1
, arg2
, arg3
);
1620 /* "asmlinkage" so the input arguments are preserved... */
1623 syscall_trace_leave (long arg0
, long arg1
, long arg2
, long arg3
,
1624 long arg4
, long arg5
, long arg6
, long arg7
,
1625 struct pt_regs regs
)
1627 if (unlikely(current
->audit_context
))
1628 audit_syscall_exit(current
, AUDITSC_RESULT(regs
.r10
), regs
.r8
);
1630 if (test_thread_flag(TIF_SYSCALL_TRACE
)
1631 && (current
->ptrace
& PT_PTRACED
))