[TG3]: Set minimal hw interrupt mitigation.
[linux-2.6/verdex.git] / arch / ia64 / kernel / signal.c
blob499b7e5317cf4f5ac3564ccf55bfdc5dc2829da5
1 /*
2 * Architecture-specific signal handling support.
4 * Copyright (C) 1999-2004 Hewlett-Packard Co
5 * David Mosberger-Tang <davidm@hpl.hp.com>
7 * Derived from i386 and Alpha versions.
8 */
10 #include <linux/config.h>
11 #include <linux/errno.h>
12 #include <linux/kernel.h>
13 #include <linux/mm.h>
14 #include <linux/ptrace.h>
15 #include <linux/sched.h>
16 #include <linux/signal.h>
17 #include <linux/smp.h>
18 #include <linux/smp_lock.h>
19 #include <linux/stddef.h>
20 #include <linux/tty.h>
21 #include <linux/binfmts.h>
22 #include <linux/unistd.h>
23 #include <linux/wait.h>
25 #include <asm/ia32.h>
26 #include <asm/intrinsics.h>
27 #include <asm/uaccess.h>
28 #include <asm/rse.h>
29 #include <asm/sigcontext.h>
31 #include "sigframe.h"
33 #define DEBUG_SIG 0
34 #define STACK_ALIGN 16 /* minimal alignment for stack pointer */
35 #define _BLOCKABLE (~(sigmask(SIGKILL) | sigmask(SIGSTOP)))
37 #if _NSIG_WORDS > 1
38 # define PUT_SIGSET(k,u) __copy_to_user((u)->sig, (k)->sig, sizeof(sigset_t))
39 # define GET_SIGSET(k,u) __copy_from_user((k)->sig, (u)->sig, sizeof(sigset_t))
40 #else
41 # define PUT_SIGSET(k,u) __put_user((k)->sig[0], &(u)->sig[0])
42 # define GET_SIGSET(k,u) __get_user((k)->sig[0], &(u)->sig[0])
43 #endif
45 long
46 ia64_rt_sigsuspend (sigset_t __user *uset, size_t sigsetsize, struct sigscratch *scr)
48 sigset_t oldset, set;
50 /* XXX: Don't preclude handling different sized sigset_t's. */
51 if (sigsetsize != sizeof(sigset_t))
52 return -EINVAL;
54 if (!access_ok(VERIFY_READ, uset, sigsetsize))
55 return -EFAULT;
57 if (GET_SIGSET(&set, uset))
58 return -EFAULT;
60 sigdelsetmask(&set, ~_BLOCKABLE);
62 spin_lock_irq(&current->sighand->siglock);
64 oldset = current->blocked;
65 current->blocked = set;
66 recalc_sigpending();
68 spin_unlock_irq(&current->sighand->siglock);
71 * The return below usually returns to the signal handler. We need to
72 * pre-set the correct error code here to ensure that the right values
73 * get saved in sigcontext by ia64_do_signal.
75 scr->pt.r8 = EINTR;
76 scr->pt.r10 = -1;
78 while (1) {
79 current->state = TASK_INTERRUPTIBLE;
80 schedule();
81 if (ia64_do_signal(&oldset, scr, 1))
82 return -EINTR;
86 asmlinkage long
87 sys_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, long arg2,
88 long arg3, long arg4, long arg5, long arg6, long arg7,
89 struct pt_regs regs)
91 return do_sigaltstack(uss, uoss, regs.r12);
94 static long
95 restore_sigcontext (struct sigcontext __user *sc, struct sigscratch *scr)
97 unsigned long ip, flags, nat, um, cfm;
98 long err;
100 /* Always make any pending restarted system calls return -EINTR */
101 current_thread_info()->restart_block.fn = do_no_restart_syscall;
103 /* restore scratch that always needs gets updated during signal delivery: */
104 err = __get_user(flags, &sc->sc_flags);
105 err |= __get_user(nat, &sc->sc_nat);
106 err |= __get_user(ip, &sc->sc_ip); /* instruction pointer */
107 err |= __get_user(cfm, &sc->sc_cfm);
108 err |= __get_user(um, &sc->sc_um); /* user mask */
109 err |= __get_user(scr->pt.ar_rsc, &sc->sc_ar_rsc);
110 err |= __get_user(scr->pt.ar_unat, &sc->sc_ar_unat);
111 err |= __get_user(scr->pt.ar_fpsr, &sc->sc_ar_fpsr);
112 err |= __get_user(scr->pt.ar_pfs, &sc->sc_ar_pfs);
113 err |= __get_user(scr->pt.pr, &sc->sc_pr); /* predicates */
114 err |= __get_user(scr->pt.b0, &sc->sc_br[0]); /* b0 (rp) */
115 err |= __get_user(scr->pt.b6, &sc->sc_br[6]); /* b6 */
116 err |= __copy_from_user(&scr->pt.r1, &sc->sc_gr[1], 8); /* r1 */
117 err |= __copy_from_user(&scr->pt.r8, &sc->sc_gr[8], 4*8); /* r8-r11 */
118 err |= __copy_from_user(&scr->pt.r12, &sc->sc_gr[12], 2*8); /* r12-r13 */
119 err |= __copy_from_user(&scr->pt.r15, &sc->sc_gr[15], 8); /* r15 */
121 scr->pt.cr_ifs = cfm | (1UL << 63);
123 /* establish new instruction pointer: */
124 scr->pt.cr_iip = ip & ~0x3UL;
125 ia64_psr(&scr->pt)->ri = ip & 0x3;
126 scr->pt.cr_ipsr = (scr->pt.cr_ipsr & ~IA64_PSR_UM) | (um & IA64_PSR_UM);
128 scr->scratch_unat = ia64_put_scratch_nat_bits(&scr->pt, nat);
130 if (!(flags & IA64_SC_FLAG_IN_SYSCALL)) {
131 /* Restore most scratch-state only when not in syscall. */
132 err |= __get_user(scr->pt.ar_ccv, &sc->sc_ar_ccv); /* ar.ccv */
133 err |= __get_user(scr->pt.b7, &sc->sc_br[7]); /* b7 */
134 err |= __get_user(scr->pt.r14, &sc->sc_gr[14]); /* r14 */
135 err |= __copy_from_user(&scr->pt.ar_csd, &sc->sc_ar25, 2*8); /* ar.csd & ar.ssd */
136 err |= __copy_from_user(&scr->pt.r2, &sc->sc_gr[2], 2*8); /* r2-r3 */
137 err |= __copy_from_user(&scr->pt.r16, &sc->sc_gr[16], 16*8); /* r16-r31 */
140 if ((flags & IA64_SC_FLAG_FPH_VALID) != 0) {
141 struct ia64_psr *psr = ia64_psr(&scr->pt);
143 __copy_from_user(current->thread.fph, &sc->sc_fr[32], 96*16);
144 psr->mfh = 0; /* drop signal handler's fph contents... */
145 if (psr->dfh)
146 ia64_drop_fpu(current);
147 else {
148 /* We already own the local fph, otherwise psr->dfh wouldn't be 0. */
149 __ia64_load_fpu(current->thread.fph);
150 ia64_set_local_fpu_owner(current);
153 return err;
157 copy_siginfo_to_user (siginfo_t __user *to, siginfo_t *from)
159 if (!access_ok(VERIFY_WRITE, to, sizeof(siginfo_t)))
160 return -EFAULT;
161 if (from->si_code < 0) {
162 if (__copy_to_user(to, from, sizeof(siginfo_t)))
163 return -EFAULT;
164 return 0;
165 } else {
166 int err;
169 * If you change siginfo_t structure, please be sure this code is fixed
170 * accordingly. It should never copy any pad contained in the structure
171 * to avoid security leaks, but must copy the generic 3 ints plus the
172 * relevant union member.
174 err = __put_user(from->si_signo, &to->si_signo);
175 err |= __put_user(from->si_errno, &to->si_errno);
176 err |= __put_user((short)from->si_code, &to->si_code);
177 switch (from->si_code >> 16) {
178 case __SI_FAULT >> 16:
179 err |= __put_user(from->si_flags, &to->si_flags);
180 err |= __put_user(from->si_isr, &to->si_isr);
181 case __SI_POLL >> 16:
182 err |= __put_user(from->si_addr, &to->si_addr);
183 err |= __put_user(from->si_imm, &to->si_imm);
184 break;
185 case __SI_TIMER >> 16:
186 err |= __put_user(from->si_tid, &to->si_tid);
187 err |= __put_user(from->si_overrun, &to->si_overrun);
188 err |= __put_user(from->si_ptr, &to->si_ptr);
189 break;
190 case __SI_RT >> 16: /* Not generated by the kernel as of now. */
191 case __SI_MESGQ >> 16:
192 err |= __put_user(from->si_uid, &to->si_uid);
193 err |= __put_user(from->si_pid, &to->si_pid);
194 err |= __put_user(from->si_ptr, &to->si_ptr);
195 break;
196 case __SI_CHLD >> 16:
197 err |= __put_user(from->si_utime, &to->si_utime);
198 err |= __put_user(from->si_stime, &to->si_stime);
199 err |= __put_user(from->si_status, &to->si_status);
200 default:
201 err |= __put_user(from->si_uid, &to->si_uid);
202 err |= __put_user(from->si_pid, &to->si_pid);
203 break;
205 return err;
209 long
210 ia64_rt_sigreturn (struct sigscratch *scr)
212 extern char ia64_strace_leave_kernel, ia64_leave_kernel;
213 struct sigcontext __user *sc;
214 struct siginfo si;
215 sigset_t set;
216 long retval;
218 sc = &((struct sigframe __user *) (scr->pt.r12 + 16))->sc;
221 * When we return to the previously executing context, r8 and r10 have already
222 * been setup the way we want them. Indeed, if the signal wasn't delivered while
223 * in a system call, we must not touch r8 or r10 as otherwise user-level state
224 * could be corrupted.
226 retval = (long) &ia64_leave_kernel;
227 if (test_thread_flag(TIF_SYSCALL_TRACE)
228 || test_thread_flag(TIF_SYSCALL_AUDIT))
230 * strace expects to be notified after sigreturn returns even though the
231 * context to which we return may not be in the middle of a syscall.
232 * Thus, the return-value that strace displays for sigreturn is
233 * meaningless.
235 retval = (long) &ia64_strace_leave_kernel;
237 if (!access_ok(VERIFY_READ, sc, sizeof(*sc)))
238 goto give_sigsegv;
240 if (GET_SIGSET(&set, &sc->sc_mask))
241 goto give_sigsegv;
243 sigdelsetmask(&set, ~_BLOCKABLE);
245 spin_lock_irq(&current->sighand->siglock);
247 current->blocked = set;
248 recalc_sigpending();
250 spin_unlock_irq(&current->sighand->siglock);
252 if (restore_sigcontext(sc, scr))
253 goto give_sigsegv;
255 #if DEBUG_SIG
256 printk("SIG return (%s:%d): sp=%lx ip=%lx\n",
257 current->comm, current->pid, scr->pt.r12, scr->pt.cr_iip);
258 #endif
260 * It is more difficult to avoid calling this function than to
261 * call it and ignore errors.
263 do_sigaltstack(&sc->sc_stack, NULL, scr->pt.r12);
264 return retval;
266 give_sigsegv:
267 si.si_signo = SIGSEGV;
268 si.si_errno = 0;
269 si.si_code = SI_KERNEL;
270 si.si_pid = current->pid;
271 si.si_uid = current->uid;
272 si.si_addr = sc;
273 force_sig_info(SIGSEGV, &si, current);
274 return retval;
278 * This does just the minimum required setup of sigcontext.
279 * Specifically, it only installs data that is either not knowable at
280 * the user-level or that gets modified before execution in the
281 * trampoline starts. Everything else is done at the user-level.
283 static long
284 setup_sigcontext (struct sigcontext __user *sc, sigset_t *mask, struct sigscratch *scr)
286 unsigned long flags = 0, ifs, cfm, nat;
287 long err;
289 ifs = scr->pt.cr_ifs;
291 if (on_sig_stack((unsigned long) sc))
292 flags |= IA64_SC_FLAG_ONSTACK;
293 if ((ifs & (1UL << 63)) == 0)
294 /* if cr_ifs doesn't have the valid bit set, we got here through a syscall */
295 flags |= IA64_SC_FLAG_IN_SYSCALL;
296 cfm = ifs & ((1UL << 38) - 1);
297 ia64_flush_fph(current);
298 if ((current->thread.flags & IA64_THREAD_FPH_VALID)) {
299 flags |= IA64_SC_FLAG_FPH_VALID;
300 __copy_to_user(&sc->sc_fr[32], current->thread.fph, 96*16);
303 nat = ia64_get_scratch_nat_bits(&scr->pt, scr->scratch_unat);
305 err = __put_user(flags, &sc->sc_flags);
306 err |= __put_user(nat, &sc->sc_nat);
307 err |= PUT_SIGSET(mask, &sc->sc_mask);
308 err |= __put_user(cfm, &sc->sc_cfm);
309 err |= __put_user(scr->pt.cr_ipsr & IA64_PSR_UM, &sc->sc_um);
310 err |= __put_user(scr->pt.ar_rsc, &sc->sc_ar_rsc);
311 err |= __put_user(scr->pt.ar_unat, &sc->sc_ar_unat); /* ar.unat */
312 err |= __put_user(scr->pt.ar_fpsr, &sc->sc_ar_fpsr); /* ar.fpsr */
313 err |= __put_user(scr->pt.ar_pfs, &sc->sc_ar_pfs);
314 err |= __put_user(scr->pt.pr, &sc->sc_pr); /* predicates */
315 err |= __put_user(scr->pt.b0, &sc->sc_br[0]); /* b0 (rp) */
316 err |= __put_user(scr->pt.b6, &sc->sc_br[6]); /* b6 */
317 err |= __copy_to_user(&sc->sc_gr[1], &scr->pt.r1, 8); /* r1 */
318 err |= __copy_to_user(&sc->sc_gr[8], &scr->pt.r8, 4*8); /* r8-r11 */
319 err |= __copy_to_user(&sc->sc_gr[12], &scr->pt.r12, 2*8); /* r12-r13 */
320 err |= __copy_to_user(&sc->sc_gr[15], &scr->pt.r15, 8); /* r15 */
321 err |= __put_user(scr->pt.cr_iip + ia64_psr(&scr->pt)->ri, &sc->sc_ip);
323 if (flags & IA64_SC_FLAG_IN_SYSCALL) {
324 /* Clear scratch registers if the signal interrupted a system call. */
325 err |= __put_user(0, &sc->sc_ar_ccv); /* ar.ccv */
326 err |= __put_user(0, &sc->sc_br[7]); /* b7 */
327 err |= __put_user(0, &sc->sc_gr[14]); /* r14 */
328 err |= __clear_user(&sc->sc_ar25, 2*8); /* ar.csd & ar.ssd */
329 err |= __clear_user(&sc->sc_gr[2], 2*8); /* r2-r3 */
330 err |= __clear_user(&sc->sc_gr[16], 16*8); /* r16-r31 */
331 } else {
332 /* Copy scratch regs to sigcontext if the signal didn't interrupt a syscall. */
333 err |= __put_user(scr->pt.ar_ccv, &sc->sc_ar_ccv); /* ar.ccv */
334 err |= __put_user(scr->pt.b7, &sc->sc_br[7]); /* b7 */
335 err |= __put_user(scr->pt.r14, &sc->sc_gr[14]); /* r14 */
336 err |= __copy_to_user(&sc->sc_ar25, &scr->pt.ar_csd, 2*8); /* ar.csd & ar.ssd */
337 err |= __copy_to_user(&sc->sc_gr[2], &scr->pt.r2, 2*8); /* r2-r3 */
338 err |= __copy_to_user(&sc->sc_gr[16], &scr->pt.r16, 16*8); /* r16-r31 */
340 return err;
344 * Check whether the register-backing store is already on the signal stack.
346 static inline int
347 rbs_on_sig_stack (unsigned long bsp)
349 return (bsp - current->sas_ss_sp < current->sas_ss_size);
352 static long
353 force_sigsegv_info (int sig, void __user *addr)
355 unsigned long flags;
356 struct siginfo si;
358 if (sig == SIGSEGV) {
360 * Acquiring siglock around the sa_handler-update is almost
361 * certainly overkill, but this isn't a
362 * performance-critical path and I'd rather play it safe
363 * here than having to debug a nasty race if and when
364 * something changes in kernel/signal.c that would make it
365 * no longer safe to modify sa_handler without holding the
366 * lock.
368 spin_lock_irqsave(&current->sighand->siglock, flags);
369 current->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
370 spin_unlock_irqrestore(&current->sighand->siglock, flags);
372 si.si_signo = SIGSEGV;
373 si.si_errno = 0;
374 si.si_code = SI_KERNEL;
375 si.si_pid = current->pid;
376 si.si_uid = current->uid;
377 si.si_addr = addr;
378 force_sig_info(SIGSEGV, &si, current);
379 return 0;
382 static long
383 setup_frame (int sig, struct k_sigaction *ka, siginfo_t *info, sigset_t *set,
384 struct sigscratch *scr)
386 extern char __kernel_sigtramp[];
387 unsigned long tramp_addr, new_rbs = 0;
388 struct sigframe __user *frame;
389 long err;
391 frame = (void __user *) scr->pt.r12;
392 tramp_addr = (unsigned long) __kernel_sigtramp;
393 if ((ka->sa.sa_flags & SA_ONSTACK) && sas_ss_flags((unsigned long) frame) == 0) {
394 frame = (void __user *) ((current->sas_ss_sp + current->sas_ss_size)
395 & ~(STACK_ALIGN - 1));
397 * We need to check for the register stack being on the signal stack
398 * separately, because it's switched separately (memory stack is switched
399 * in the kernel, register stack is switched in the signal trampoline).
401 if (!rbs_on_sig_stack(scr->pt.ar_bspstore))
402 new_rbs = (current->sas_ss_sp + sizeof(long) - 1) & ~(sizeof(long) - 1);
404 frame = (void __user *) frame - ((sizeof(*frame) + STACK_ALIGN - 1) & ~(STACK_ALIGN - 1));
406 if (!access_ok(VERIFY_WRITE, frame, sizeof(*frame)))
407 return force_sigsegv_info(sig, frame);
409 err = __put_user(sig, &frame->arg0);
410 err |= __put_user(&frame->info, &frame->arg1);
411 err |= __put_user(&frame->sc, &frame->arg2);
412 err |= __put_user(new_rbs, &frame->sc.sc_rbs_base);
413 err |= __put_user(0, &frame->sc.sc_loadrs); /* initialize to zero */
414 err |= __put_user(ka->sa.sa_handler, &frame->handler);
416 err |= copy_siginfo_to_user(&frame->info, info);
418 err |= __put_user(current->sas_ss_sp, &frame->sc.sc_stack.ss_sp);
419 err |= __put_user(current->sas_ss_size, &frame->sc.sc_stack.ss_size);
420 err |= __put_user(sas_ss_flags(scr->pt.r12), &frame->sc.sc_stack.ss_flags);
421 err |= setup_sigcontext(&frame->sc, set, scr);
423 if (unlikely(err))
424 return force_sigsegv_info(sig, frame);
426 scr->pt.r12 = (unsigned long) frame - 16; /* new stack pointer */
427 scr->pt.ar_fpsr = FPSR_DEFAULT; /* reset fpsr for signal handler */
428 scr->pt.cr_iip = tramp_addr;
429 ia64_psr(&scr->pt)->ri = 0; /* start executing in first slot */
430 ia64_psr(&scr->pt)->be = 0; /* force little-endian byte-order */
432 * Force the interruption function mask to zero. This has no effect when a
433 * system-call got interrupted by a signal (since, in that case, scr->pt_cr_ifs is
434 * ignored), but it has the desirable effect of making it possible to deliver a
435 * signal with an incomplete register frame (which happens when a mandatory RSE
436 * load faults). Furthermore, it has no negative effect on the getting the user's
437 * dirty partition preserved, because that's governed by scr->pt.loadrs.
439 scr->pt.cr_ifs = (1UL << 63);
442 * Note: this affects only the NaT bits of the scratch regs (the ones saved in
443 * pt_regs), which is exactly what we want.
445 scr->scratch_unat = 0; /* ensure NaT bits of r12 is clear */
447 #if DEBUG_SIG
448 printk("SIG deliver (%s:%d): sig=%d sp=%lx ip=%lx handler=%p\n",
449 current->comm, current->pid, sig, scr->pt.r12, frame->sc.sc_ip, frame->handler);
450 #endif
451 return 1;
454 static long
455 handle_signal (unsigned long sig, struct k_sigaction *ka, siginfo_t *info, sigset_t *oldset,
456 struct sigscratch *scr)
458 if (IS_IA32_PROCESS(&scr->pt)) {
459 /* send signal to IA-32 process */
460 if (!ia32_setup_frame1(sig, ka, info, oldset, &scr->pt))
461 return 0;
462 } else
463 /* send signal to IA-64 process */
464 if (!setup_frame(sig, ka, info, oldset, scr))
465 return 0;
467 if (!(ka->sa.sa_flags & SA_NODEFER)) {
468 spin_lock_irq(&current->sighand->siglock);
470 sigorsets(&current->blocked, &current->blocked, &ka->sa.sa_mask);
471 sigaddset(&current->blocked, sig);
472 recalc_sigpending();
474 spin_unlock_irq(&current->sighand->siglock);
476 return 1;
480 * Note that `init' is a special process: it doesn't get signals it doesn't want to
481 * handle. Thus you cannot kill init even with a SIGKILL even by mistake.
483 long
484 ia64_do_signal (sigset_t *oldset, struct sigscratch *scr, long in_syscall)
486 struct k_sigaction ka;
487 siginfo_t info;
488 long restart = in_syscall;
489 long errno = scr->pt.r8;
490 # define ERR_CODE(c) (IS_IA32_PROCESS(&scr->pt) ? -(c) : (c))
493 * In the ia64_leave_kernel code path, we want the common case to go fast, which
494 * is why we may in certain cases get here from kernel mode. Just return without
495 * doing anything if so.
497 if (!user_mode(&scr->pt))
498 return 0;
500 if (!oldset)
501 oldset = &current->blocked;
504 * This only loops in the rare cases of handle_signal() failing, in which case we
505 * need to push through a forced SIGSEGV.
507 while (1) {
508 int signr = get_signal_to_deliver(&info, &ka, &scr->pt, NULL);
511 * get_signal_to_deliver() may have run a debugger (via notify_parent())
512 * and the debugger may have modified the state (e.g., to arrange for an
513 * inferior call), thus it's important to check for restarting _after_
514 * get_signal_to_deliver().
516 if (IS_IA32_PROCESS(&scr->pt)) {
517 if (in_syscall) {
518 if (errno >= 0)
519 restart = 0;
520 else
521 errno = -errno;
523 } else if ((long) scr->pt.r10 != -1)
525 * A system calls has to be restarted only if one of the error codes
526 * ERESTARTNOHAND, ERESTARTSYS, or ERESTARTNOINTR is returned. If r10
527 * isn't -1 then r8 doesn't hold an error code and we don't need to
528 * restart the syscall, so we can clear the "restart" flag here.
530 restart = 0;
532 if (signr <= 0)
533 break;
535 if (unlikely(restart)) {
536 switch (errno) {
537 case ERESTART_RESTARTBLOCK:
538 case ERESTARTNOHAND:
539 scr->pt.r8 = ERR_CODE(EINTR);
540 /* note: scr->pt.r10 is already -1 */
541 break;
543 case ERESTARTSYS:
544 if ((ka.sa.sa_flags & SA_RESTART) == 0) {
545 scr->pt.r8 = ERR_CODE(EINTR);
546 /* note: scr->pt.r10 is already -1 */
547 break;
549 case ERESTARTNOINTR:
550 if (IS_IA32_PROCESS(&scr->pt)) {
551 scr->pt.r8 = scr->pt.r1;
552 scr->pt.cr_iip -= 2;
553 } else
554 ia64_decrement_ip(&scr->pt);
555 restart = 0; /* don't restart twice if handle_signal() fails... */
560 * Whee! Actually deliver the signal. If the delivery failed, we need to
561 * continue to iterate in this loop so we can deliver the SIGSEGV...
563 if (handle_signal(signr, &ka, &info, oldset, scr))
564 return 1;
567 /* Did we come from a system call? */
568 if (restart) {
569 /* Restart the system call - no handlers present */
570 if (errno == ERESTARTNOHAND || errno == ERESTARTSYS || errno == ERESTARTNOINTR
571 || errno == ERESTART_RESTARTBLOCK)
573 if (IS_IA32_PROCESS(&scr->pt)) {
574 scr->pt.r8 = scr->pt.r1;
575 scr->pt.cr_iip -= 2;
576 if (errno == ERESTART_RESTARTBLOCK)
577 scr->pt.r8 = 0; /* x86 version of __NR_restart_syscall */
578 } else {
580 * Note: the syscall number is in r15 which is saved in
581 * pt_regs so all we need to do here is adjust ip so that
582 * the "break" instruction gets re-executed.
584 ia64_decrement_ip(&scr->pt);
585 if (errno == ERESTART_RESTARTBLOCK)
586 scr->pt.r15 = __NR_restart_syscall;
590 return 0;
593 /* Set a delayed signal that was detected in MCA/INIT/NMI/PMI context where it
594 * could not be delivered. It is important that the target process is not
595 * allowed to do any more work in user space. Possible cases for the target
596 * process:
598 * - It is sleeping and will wake up soon. Store the data in the current task,
599 * the signal will be sent when the current task returns from the next
600 * interrupt.
602 * - It is running in user context. Store the data in the current task, the
603 * signal will be sent when the current task returns from the next interrupt.
605 * - It is running in kernel context on this or another cpu and will return to
606 * user context. Store the data in the target task, the signal will be sent
607 * to itself when the target task returns to user space.
609 * - It is running in kernel context on this cpu and will sleep before
610 * returning to user context. Because this is also the current task, the
611 * signal will not get delivered and the task could sleep indefinitely.
612 * Store the data in the idle task for this cpu, the signal will be sent
613 * after the idle task processes its next interrupt.
615 * To cover all cases, store the data in the target task, the current task and
616 * the idle task on this cpu. Whatever happens, the signal will be delivered
617 * to the target task before it can do any useful user space work. Multiple
618 * deliveries have no unwanted side effects.
620 * Note: This code is executed in MCA/INIT/NMI/PMI context, with interrupts
621 * disabled. It must not take any locks nor use kernel structures or services
622 * that require locks.
625 /* To ensure that we get the right pid, check its start time. To avoid extra
626 * include files in thread_info.h, convert the task start_time to unsigned long,
627 * giving us a cycle time of > 580 years.
629 static inline unsigned long
630 start_time_ul(const struct task_struct *t)
632 return t->start_time.tv_sec * NSEC_PER_SEC + t->start_time.tv_nsec;
635 void
636 set_sigdelayed(pid_t pid, int signo, int code, void __user *addr)
638 struct task_struct *t;
639 unsigned long start_time = 0;
640 int i;
642 for (i = 1; i <= 3; ++i) {
643 switch (i) {
644 case 1:
645 t = find_task_by_pid(pid);
646 if (t)
647 start_time = start_time_ul(t);
648 break;
649 case 2:
650 t = current;
651 break;
652 default:
653 t = idle_task(smp_processor_id());
654 break;
657 if (!t)
658 return;
659 t->thread_info->sigdelayed.signo = signo;
660 t->thread_info->sigdelayed.code = code;
661 t->thread_info->sigdelayed.addr = addr;
662 t->thread_info->sigdelayed.start_time = start_time;
663 t->thread_info->sigdelayed.pid = pid;
664 wmb();
665 set_tsk_thread_flag(t, TIF_SIGDELAYED);
669 /* Called from entry.S when it detects TIF_SIGDELAYED, a delayed signal that
670 * was detected in MCA/INIT/NMI/PMI context where it could not be delivered.
673 void
674 do_sigdelayed(void)
676 struct siginfo siginfo;
677 pid_t pid;
678 struct task_struct *t;
680 clear_thread_flag(TIF_SIGDELAYED);
681 memset(&siginfo, 0, sizeof(siginfo));
682 siginfo.si_signo = current_thread_info()->sigdelayed.signo;
683 siginfo.si_code = current_thread_info()->sigdelayed.code;
684 siginfo.si_addr = current_thread_info()->sigdelayed.addr;
685 pid = current_thread_info()->sigdelayed.pid;
686 t = find_task_by_pid(pid);
687 if (!t)
688 return;
689 if (current_thread_info()->sigdelayed.start_time != start_time_ul(t))
690 return;
691 force_sig_info(siginfo.si_signo, &siginfo, t);