2 * SMP boot-related support
4 * Copyright (C) 1998-2003, 2005 Hewlett-Packard Co
5 * David Mosberger-Tang <davidm@hpl.hp.com>
6 * Copyright (C) 2001, 2004-2005 Intel Corp
7 * Rohit Seth <rohit.seth@intel.com>
8 * Suresh Siddha <suresh.b.siddha@intel.com>
9 * Gordon Jin <gordon.jin@intel.com>
10 * Ashok Raj <ashok.raj@intel.com>
12 * 01/05/16 Rohit Seth <rohit.seth@intel.com> Moved SMP booting functions from smp.c to here.
13 * 01/04/27 David Mosberger <davidm@hpl.hp.com> Added ITC synching code.
14 * 02/07/31 David Mosberger <davidm@hpl.hp.com> Switch over to hotplug-CPU boot-sequence.
15 * smp_boot_cpus()/smp_commence() is replaced by
16 * smp_prepare_cpus()/__cpu_up()/smp_cpus_done().
17 * 04/06/21 Ashok Raj <ashok.raj@intel.com> Added CPU Hotplug Support
18 * 04/12/26 Jin Gordon <gordon.jin@intel.com>
19 * 04/12/26 Rohit Seth <rohit.seth@intel.com>
20 * Add multi-threading and multi-core detection
21 * 05/01/30 Suresh Siddha <suresh.b.siddha@intel.com>
22 * Setup cpu_sibling_map and cpu_core_map
24 #include <linux/config.h>
26 #include <linux/module.h>
27 #include <linux/acpi.h>
28 #include <linux/bootmem.h>
29 #include <linux/cpu.h>
30 #include <linux/delay.h>
31 #include <linux/init.h>
32 #include <linux/interrupt.h>
33 #include <linux/irq.h>
34 #include <linux/kernel.h>
35 #include <linux/kernel_stat.h>
37 #include <linux/notifier.h>
38 #include <linux/smp.h>
39 #include <linux/smp_lock.h>
40 #include <linux/spinlock.h>
41 #include <linux/efi.h>
42 #include <linux/percpu.h>
43 #include <linux/bitops.h>
45 #include <asm/atomic.h>
46 #include <asm/cache.h>
47 #include <asm/current.h>
48 #include <asm/delay.h>
52 #include <asm/machvec.h>
55 #include <asm/pgalloc.h>
56 #include <asm/pgtable.h>
57 #include <asm/processor.h>
58 #include <asm/ptrace.h>
60 #include <asm/system.h>
61 #include <asm/tlbflush.h>
62 #include <asm/unistd.h>
67 #define Dprintk(x...) printk(x)
72 #ifdef CONFIG_HOTPLUG_CPU
74 * Store all idle threads, this can be reused instead of creating
75 * a new thread. Also avoids complicated thread destroy functionality
78 struct task_struct
*idle_thread_array
[NR_CPUS
];
81 * Global array allocated for NR_CPUS at boot time
83 struct sal_to_os_boot sal_boot_rendez_state
[NR_CPUS
];
86 * start_ap in head.S uses this to store current booting cpu
89 struct sal_to_os_boot
*sal_state_for_booting_cpu
= &sal_boot_rendez_state
[0];
91 #define set_brendez_area(x) (sal_state_for_booting_cpu = &sal_boot_rendez_state[(x)]);
93 #define get_idle_for_cpu(x) (idle_thread_array[(x)])
94 #define set_idle_for_cpu(x,p) (idle_thread_array[(x)] = (p))
98 #define get_idle_for_cpu(x) (NULL)
99 #define set_idle_for_cpu(x,p)
100 #define set_brendez_area(x)
105 * ITC synchronization related stuff:
108 #define SLAVE (SMP_CACHE_BYTES/8)
110 #define NUM_ROUNDS 64 /* magic value */
111 #define NUM_ITERS 5 /* likewise */
113 static DEFINE_SPINLOCK(itc_sync_lock
);
114 static volatile unsigned long go
[SLAVE
+ 1];
116 #define DEBUG_ITC_SYNC 0
118 extern void __devinit
calibrate_delay (void);
119 extern void start_ap (void);
120 extern unsigned long ia64_iobase
;
122 task_t
*task_for_booting_cpu
;
127 DEFINE_PER_CPU(int, cpu_state
);
129 /* Bitmasks of currently online, and possible CPUs */
130 cpumask_t cpu_online_map
;
131 EXPORT_SYMBOL(cpu_online_map
);
132 cpumask_t cpu_possible_map
;
133 EXPORT_SYMBOL(cpu_possible_map
);
135 cpumask_t cpu_core_map
[NR_CPUS
] __cacheline_aligned
;
136 cpumask_t cpu_sibling_map
[NR_CPUS
] __cacheline_aligned
;
137 int smp_num_siblings
= 1;
138 int smp_num_cpucores
= 1;
140 /* which logical CPU number maps to which CPU (physical APIC ID) */
141 volatile int ia64_cpu_to_sapicid
[NR_CPUS
];
142 EXPORT_SYMBOL(ia64_cpu_to_sapicid
);
144 static volatile cpumask_t cpu_callin_map
;
146 struct smp_boot_data smp_boot_data __initdata
;
148 unsigned long ap_wakeup_vector
= -1; /* External Int use to wakeup APs */
150 char __initdata no_int_routing
;
152 unsigned char smp_int_redirect
; /* are INT and IPI redirectable by the chipset? */
155 nointroute (char *str
)
158 printk ("no_int_routing on\n");
162 __setup("nointroute", nointroute
);
165 sync_master (void *arg
)
167 unsigned long flags
, i
;
171 local_irq_save(flags
);
173 for (i
= 0; i
< NUM_ROUNDS
*NUM_ITERS
; ++i
) {
177 go
[SLAVE
] = ia64_get_itc();
180 local_irq_restore(flags
);
184 * Return the number of cycles by which our itc differs from the itc on the master
185 * (time-keeper) CPU. A positive number indicates our itc is ahead of the master,
186 * negative that it is behind.
189 get_delta (long *rt
, long *master
)
191 unsigned long best_t0
= 0, best_t1
= ~0UL, best_tm
= 0;
192 unsigned long tcenter
, t0
, t1
, tm
;
195 for (i
= 0; i
< NUM_ITERS
; ++i
) {
198 while (!(tm
= go
[SLAVE
]))
203 if (t1
- t0
< best_t1
- best_t0
)
204 best_t0
= t0
, best_t1
= t1
, best_tm
= tm
;
207 *rt
= best_t1
- best_t0
;
208 *master
= best_tm
- best_t0
;
210 /* average best_t0 and best_t1 without overflow: */
211 tcenter
= (best_t0
/2 + best_t1
/2);
212 if (best_t0
% 2 + best_t1
% 2 == 2)
214 return tcenter
- best_tm
;
218 * Synchronize ar.itc of the current (slave) CPU with the ar.itc of the MASTER CPU
219 * (normally the time-keeper CPU). We use a closed loop to eliminate the possibility of
220 * unaccounted-for errors (such as getting a machine check in the middle of a calibration
221 * step). The basic idea is for the slave to ask the master what itc value it has and to
222 * read its own itc before and after the master responds. Each iteration gives us three
236 * The goal is to adjust the slave's ar.itc such that tm falls exactly half-way between t0
237 * and t1. If we achieve this, the clocks are synchronized provided the interconnect
238 * between the slave and the master is symmetric. Even if the interconnect were
239 * asymmetric, we would still know that the synchronization error is smaller than the
240 * roundtrip latency (t0 - t1).
242 * When the interconnect is quiet and symmetric, this lets us synchronize the itc to
243 * within one or two cycles. However, we can only *guarantee* that the synchronization is
244 * accurate to within a round-trip time, which is typically in the range of several
245 * hundred cycles (e.g., ~500 cycles). In practice, this means that the itc's are usually
246 * almost perfectly synchronized, but we shouldn't assume that the accuracy is much better
247 * than half a micro second or so.
250 ia64_sync_itc (unsigned int master
)
252 long i
, delta
, adj
, adjust_latency
= 0, done
= 0;
253 unsigned long flags
, rt
, master_time_stamp
, bound
;
256 long rt
; /* roundtrip time */
257 long master
; /* master's timestamp */
258 long diff
; /* difference between midpoint and master's timestamp */
259 long lat
; /* estimate of itc adjustment latency */
264 * Make sure local timer ticks are disabled while we sync. If
265 * they were enabled, we'd have to worry about nasty issues
266 * like setting the ITC ahead of (or a long time before) the
267 * next scheduled tick.
269 BUG_ON((ia64_get_itv() & (1 << 16)) == 0);
273 if (smp_call_function_single(master
, sync_master
, NULL
, 1, 0) < 0) {
274 printk(KERN_ERR
"sync_itc: failed to get attention of CPU %u!\n", master
);
279 cpu_relax(); /* wait for master to be ready */
281 spin_lock_irqsave(&itc_sync_lock
, flags
);
283 for (i
= 0; i
< NUM_ROUNDS
; ++i
) {
284 delta
= get_delta(&rt
, &master_time_stamp
);
286 done
= 1; /* let's lock on to this... */
292 adjust_latency
+= -delta
;
293 adj
= -delta
+ adjust_latency
/4;
297 ia64_set_itc(ia64_get_itc() + adj
);
301 t
[i
].master
= master_time_stamp
;
303 t
[i
].lat
= adjust_latency
/4;
307 spin_unlock_irqrestore(&itc_sync_lock
, flags
);
310 for (i
= 0; i
< NUM_ROUNDS
; ++i
)
311 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
312 t
[i
].rt
, t
[i
].master
, t
[i
].diff
, t
[i
].lat
);
315 printk(KERN_INFO
"CPU %d: synchronized ITC with CPU %u (last diff %ld cycles, "
316 "maxerr %lu cycles)\n", smp_processor_id(), master
, delta
, rt
);
320 * Ideally sets up per-cpu profiling hooks. Doesn't do much now...
322 static inline void __devinit
323 smp_setup_percpu_timer (void)
327 static void __devinit
331 extern void ia64_init_itm(void);
333 #ifdef CONFIG_PERFMON
334 extern void pfm_init_percpu(void);
337 cpuid
= smp_processor_id();
338 phys_id
= hard_smp_processor_id();
340 if (cpu_online(cpuid
)) {
341 printk(KERN_ERR
"huh, phys CPU#0x%x, CPU#0x%x already present??\n",
347 cpu_set(cpuid
, cpu_online_map
);
348 unlock_ipi_calllock();
350 smp_setup_percpu_timer();
352 ia64_mca_cmc_vector_setup(); /* Setup vector on AP */
354 #ifdef CONFIG_PERFMON
360 if (!(sal_platform_features
& IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT
)) {
362 * Synchronize the ITC with the BP. Need to do this after irqs are
363 * enabled because ia64_sync_itc() calls smp_call_function_single(), which
364 * calls spin_unlock_bh(), which calls spin_unlock_bh(), which calls
365 * local_bh_enable(), which bugs out if irqs are not enabled...
367 Dprintk("Going to syncup ITC with BP.\n");
376 local_cpu_data
->loops_per_jiffy
= loops_per_jiffy
;
378 #ifdef CONFIG_IA32_SUPPORT
383 * Allow the master to continue.
385 cpu_set(cpuid
, cpu_callin_map
);
386 Dprintk("Stack on CPU %d at about %p\n",cpuid
, &cpuid
);
391 * Activate a secondary processor. head.S calls this.
394 start_secondary (void *unused
)
396 /* Early console may use I/O ports */
397 ia64_set_kr(IA64_KR_IO_BASE
, __pa(ia64_iobase
));
398 Dprintk("start_secondary: starting CPU 0x%x\n", hard_smp_processor_id());
407 struct pt_regs
* __devinit
idle_regs(struct pt_regs
*regs
)
413 struct task_struct
*idle
;
414 struct completion done
;
419 do_fork_idle(void *_c_idle
)
421 struct create_idle
*c_idle
= _c_idle
;
423 c_idle
->idle
= fork_idle(c_idle
->cpu
);
424 complete(&c_idle
->done
);
428 do_boot_cpu (int sapicid
, int cpu
)
431 struct create_idle c_idle
= {
433 .done
= COMPLETION_INITIALIZER(c_idle
.done
),
435 DECLARE_WORK(work
, do_fork_idle
, &c_idle
);
437 c_idle
.idle
= get_idle_for_cpu(cpu
);
439 init_idle(c_idle
.idle
, cpu
);
444 * We can't use kernel_thread since we must avoid to reschedule the child.
446 if (!keventd_up() || current_is_keventd())
447 work
.func(work
.data
);
449 schedule_work(&work
);
450 wait_for_completion(&c_idle
.done
);
453 if (IS_ERR(c_idle
.idle
))
454 panic("failed fork for CPU %d", cpu
);
456 set_idle_for_cpu(cpu
, c_idle
.idle
);
459 task_for_booting_cpu
= c_idle
.idle
;
461 Dprintk("Sending wakeup vector %lu to AP 0x%x/0x%x.\n", ap_wakeup_vector
, cpu
, sapicid
);
463 set_brendez_area(cpu
);
464 platform_send_ipi(cpu
, ap_wakeup_vector
, IA64_IPI_DM_INT
, 0);
467 * Wait 10s total for the AP to start
469 Dprintk("Waiting on callin_map ...");
470 for (timeout
= 0; timeout
< 100000; timeout
++) {
471 if (cpu_isset(cpu
, cpu_callin_map
))
472 break; /* It has booted */
477 if (!cpu_isset(cpu
, cpu_callin_map
)) {
478 printk(KERN_ERR
"Processor 0x%x/0x%x is stuck.\n", cpu
, sapicid
);
479 ia64_cpu_to_sapicid
[cpu
] = -1;
480 cpu_clear(cpu
, cpu_online_map
); /* was set in smp_callin() */
490 get_option (&str
, &ticks
);
494 __setup("decay=", decay
);
497 * Initialize the logical CPU number to SAPICID mapping
500 smp_build_cpu_map (void)
503 int boot_cpu_id
= hard_smp_processor_id();
505 for (cpu
= 0; cpu
< NR_CPUS
; cpu
++) {
506 ia64_cpu_to_sapicid
[cpu
] = -1;
507 #ifdef CONFIG_HOTPLUG_CPU
508 cpu_set(cpu
, cpu_possible_map
);
512 ia64_cpu_to_sapicid
[0] = boot_cpu_id
;
513 cpus_clear(cpu_present_map
);
514 cpu_set(0, cpu_present_map
);
515 cpu_set(0, cpu_possible_map
);
516 for (cpu
= 1, i
= 0; i
< smp_boot_data
.cpu_count
; i
++) {
517 sapicid
= smp_boot_data
.cpu_phys_id
[i
];
518 if (sapicid
== boot_cpu_id
)
520 cpu_set(cpu
, cpu_present_map
);
521 cpu_set(cpu
, cpu_possible_map
);
522 ia64_cpu_to_sapicid
[cpu
] = sapicid
;
529 /* on which node is each logical CPU (one cacheline even for 64 CPUs) */
530 u8 cpu_to_node_map
[NR_CPUS
] __cacheline_aligned
;
531 EXPORT_SYMBOL(cpu_to_node_map
);
532 /* which logical CPUs are on which nodes */
533 cpumask_t node_to_cpu_mask
[MAX_NUMNODES
] __cacheline_aligned
;
536 * Build cpu to node mapping and initialize the per node cpu masks.
539 build_cpu_to_node_map (void)
543 for(node
=0; node
<MAX_NUMNODES
; node
++)
544 cpus_clear(node_to_cpu_mask
[node
]);
545 for(cpu
= 0; cpu
< NR_CPUS
; ++cpu
) {
547 * All Itanium NUMA platforms I know use ACPI, so maybe we
548 * can drop this ifdef completely. [EF]
550 #ifdef CONFIG_ACPI_NUMA
552 for (i
= 0; i
< NR_CPUS
; ++i
)
553 if (cpu_physical_id(cpu
) == node_cpuid
[i
].phys_id
) {
554 node
= node_cpuid
[i
].nid
;
558 # error Fixme: Dunno how to build CPU-to-node map.
560 cpu_to_node_map
[cpu
] = (node
>= 0) ? node
: 0;
562 cpu_set(cpu
, node_to_cpu_mask
[node
]);
566 #endif /* CONFIG_NUMA */
569 * Cycle through the APs sending Wakeup IPIs to boot each.
572 smp_prepare_cpus (unsigned int max_cpus
)
574 int boot_cpu_id
= hard_smp_processor_id();
577 * Initialize the per-CPU profiling counter/multiplier
580 smp_setup_percpu_timer();
583 * We have the boot CPU online for sure.
585 cpu_set(0, cpu_online_map
);
586 cpu_set(0, cpu_callin_map
);
588 local_cpu_data
->loops_per_jiffy
= loops_per_jiffy
;
589 ia64_cpu_to_sapicid
[0] = boot_cpu_id
;
591 printk(KERN_INFO
"Boot processor id 0x%x/0x%x\n", 0, boot_cpu_id
);
593 current_thread_info()->cpu
= 0;
596 * If SMP should be disabled, then really disable it!
599 printk(KERN_INFO
"SMP mode deactivated.\n");
600 cpus_clear(cpu_online_map
);
601 cpus_clear(cpu_present_map
);
602 cpus_clear(cpu_possible_map
);
603 cpu_set(0, cpu_online_map
);
604 cpu_set(0, cpu_present_map
);
605 cpu_set(0, cpu_possible_map
);
610 void __devinit
smp_prepare_boot_cpu(void)
612 cpu_set(smp_processor_id(), cpu_online_map
);
613 cpu_set(smp_processor_id(), cpu_callin_map
);
617 * mt_info[] is a temporary store for all info returned by
618 * PAL_LOGICAL_TO_PHYSICAL, to be copied into cpuinfo_ia64 when the
619 * specific cpu comes.
625 __u16 proc_fixed_addr
;
627 }mt_info
[NR_CPUS
] __devinit
;
629 #ifdef CONFIG_HOTPLUG_CPU
631 remove_from_mtinfo(int cpu
)
636 if (mt_info
[i
].valid
&& mt_info
[i
].socket_id
==
637 cpu_data(cpu
)->socket_id
)
638 mt_info
[i
].valid
= 0;
642 clear_cpu_sibling_map(int cpu
)
646 for_each_cpu_mask(i
, cpu_sibling_map
[cpu
])
647 cpu_clear(cpu
, cpu_sibling_map
[i
]);
648 for_each_cpu_mask(i
, cpu_core_map
[cpu
])
649 cpu_clear(cpu
, cpu_core_map
[i
]);
651 cpu_sibling_map
[cpu
] = cpu_core_map
[cpu
] = CPU_MASK_NONE
;
655 remove_siblinginfo(int cpu
)
659 if (cpu_data(cpu
)->threads_per_core
== 1 &&
660 cpu_data(cpu
)->cores_per_socket
== 1) {
661 cpu_clear(cpu
, cpu_core_map
[cpu
]);
662 cpu_clear(cpu
, cpu_sibling_map
[cpu
]);
666 last
= (cpus_weight(cpu_core_map
[cpu
]) == 1 ? 1 : 0);
668 /* remove it from all sibling map's */
669 clear_cpu_sibling_map(cpu
);
671 /* if this cpu is the last in the core group, remove all its info
672 * from mt_info structure
675 remove_from_mtinfo(cpu
);
678 extern void fixup_irqs(void);
679 /* must be called with cpucontrol mutex held */
680 int __cpu_disable(void)
682 int cpu
= smp_processor_id();
685 * dont permit boot processor for now
690 remove_siblinginfo(cpu
);
692 local_flush_tlb_all();
693 cpu_clear(cpu
, cpu_callin_map
);
697 void __cpu_die(unsigned int cpu
)
701 for (i
= 0; i
< 100; i
++) {
702 /* They ack this in play_dead by setting CPU_DEAD */
703 if (per_cpu(cpu_state
, cpu
) == CPU_DEAD
)
705 printk ("CPU %d is now offline\n", cpu
);
710 printk(KERN_ERR
"CPU %u didn't die...\n", cpu
);
712 #else /* !CONFIG_HOTPLUG_CPU */
713 int __cpu_disable(void)
718 void __cpu_die(unsigned int cpu
)
720 /* We said "no" in __cpu_disable */
723 #endif /* CONFIG_HOTPLUG_CPU */
726 smp_cpus_done (unsigned int dummy
)
729 unsigned long bogosum
= 0;
732 * Allow the user to impress friends.
735 for (cpu
= 0; cpu
< NR_CPUS
; cpu
++)
737 bogosum
+= cpu_data(cpu
)->loops_per_jiffy
;
739 printk(KERN_INFO
"Total of %d processors activated (%lu.%02lu BogoMIPS).\n",
740 (int)num_online_cpus(), bogosum
/(500000/HZ
), (bogosum
/(5000/HZ
))%100);
743 static inline void __devinit
744 set_cpu_sibling_map(int cpu
)
748 for_each_online_cpu(i
) {
749 if ((cpu_data(cpu
)->socket_id
== cpu_data(i
)->socket_id
)) {
750 cpu_set(i
, cpu_core_map
[cpu
]);
751 cpu_set(cpu
, cpu_core_map
[i
]);
752 if (cpu_data(cpu
)->core_id
== cpu_data(i
)->core_id
) {
753 cpu_set(i
, cpu_sibling_map
[cpu
]);
754 cpu_set(cpu
, cpu_sibling_map
[i
]);
761 __cpu_up (unsigned int cpu
)
766 sapicid
= ia64_cpu_to_sapicid
[cpu
];
771 * Already booted cpu? not valid anymore since we dont
772 * do idle loop tightspin anymore.
774 if (cpu_isset(cpu
, cpu_callin_map
))
777 /* Processor goes to start_secondary(), sets online flag */
778 ret
= do_boot_cpu(sapicid
, cpu
);
782 if (cpu_data(cpu
)->threads_per_core
== 1 &&
783 cpu_data(cpu
)->cores_per_socket
== 1) {
784 cpu_set(cpu
, cpu_sibling_map
[cpu
]);
785 cpu_set(cpu
, cpu_core_map
[cpu
]);
789 set_cpu_sibling_map(cpu
);
795 * Assume that CPU's have been discovered by some platform-dependent interface. For
796 * SoftSDV/Lion, that would be ACPI.
798 * Setup of the IPI irq handler is done in irq.c:init_IRQ_SMP().
801 init_smp_config(void)
809 /* Tell SAL where to drop the AP's. */
810 ap_startup
= (struct fptr
*) start_ap
;
811 sal_ret
= ia64_sal_set_vectors(SAL_VECTOR_OS_BOOT_RENDEZ
,
812 ia64_tpa(ap_startup
->fp
), ia64_tpa(ap_startup
->gp
), 0, 0, 0, 0);
814 printk(KERN_ERR
"SMP: Can't set SAL AP Boot Rendezvous: %s\n",
815 ia64_sal_strerror(sal_ret
));
818 static inline int __devinit
819 check_for_mtinfo_index(void)
824 if (!mt_info
[i
].valid
)
831 * Search the mt_info to find out if this socket's cid/tid information is
832 * cached or not. If the socket exists, fill in the core_id and thread_id
836 check_for_new_socket(__u16 logical_address
, struct cpuinfo_ia64
*c
)
839 __u32 sid
= c
->socket_id
;
842 if (mt_info
[i
].valid
&& mt_info
[i
].proc_fixed_addr
== logical_address
843 && mt_info
[i
].socket_id
== sid
) {
844 c
->core_id
= mt_info
[i
].core_id
;
845 c
->thread_id
= mt_info
[i
].thread_id
;
846 return 1; /* not a new socket */
853 * identify_siblings(cpu) gets called from identify_cpu. This populates the
854 * information related to logical execution units in per_cpu_data structure.
857 identify_siblings(struct cpuinfo_ia64
*c
)
863 pal_logical_to_physical_t info
;
865 if (smp_num_cpucores
== 1 && smp_num_siblings
== 1)
868 if ((status
= ia64_pal_logical_to_phys(0, &info
)) != PAL_STATUS_SUCCESS
) {
869 printk(KERN_ERR
"ia64_pal_logical_to_phys failed with %ld\n",
873 if ((status
= ia64_sal_physical_id_info(&pltid
)) != PAL_STATUS_SUCCESS
) {
874 printk(KERN_ERR
"ia64_sal_pltid failed with %ld\n", status
);
877 if ((status
= ia64_pal_fixed_addr(&proc_fixed_addr
)) != PAL_STATUS_SUCCESS
) {
878 printk(KERN_ERR
"ia64_pal_fixed_addr failed with %ld\n", status
);
882 c
->socket_id
= (pltid
<< 8) | info
.overview_ppid
;
883 c
->cores_per_socket
= info
.overview_cpp
;
884 c
->threads_per_core
= info
.overview_tpc
;
885 count
= c
->num_log
= info
.overview_num_log
;
887 /* If the thread and core id information is already cached, then
888 * we will simply update cpu_info and return. Otherwise, we will
889 * do the PAL calls and cache core and thread id's of all the siblings.
891 if (check_for_new_socket(proc_fixed_addr
, c
))
894 for (i
= 0; i
< count
; i
++) {
897 if (i
&& (status
= ia64_pal_logical_to_phys(i
, &info
))
898 != PAL_STATUS_SUCCESS
) {
899 printk(KERN_ERR
"ia64_pal_logical_to_phys failed"
900 " with %ld\n", status
);
903 if (info
.log2_la
== proc_fixed_addr
) {
904 c
->core_id
= info
.log1_cid
;
905 c
->thread_id
= info
.log1_tid
;
908 index
= check_for_mtinfo_index();
909 /* We will not do the mt_info caching optimization in this case.
914 mt_info
[index
].valid
= 1;
915 mt_info
[index
].socket_id
= c
->socket_id
;
916 mt_info
[index
].core_id
= info
.log1_cid
;
917 mt_info
[index
].thread_id
= info
.log1_tid
;
918 mt_info
[index
].proc_fixed_addr
= info
.log2_la
;