2 * ip27-irq.c: Highlevel interrupt handling for IP27 architecture.
4 * Copyright (C) 1999, 2000 Ralf Baechle (ralf@gnu.org)
5 * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
6 * Copyright (C) 1999 - 2001 Kanoj Sarcar
8 #include <linux/config.h>
9 #include <linux/init.h>
10 #include <linux/irq.h>
11 #include <linux/errno.h>
12 #include <linux/signal.h>
13 #include <linux/sched.h>
14 #include <linux/types.h>
15 #include <linux/interrupt.h>
16 #include <linux/ioport.h>
17 #include <linux/irq.h>
18 #include <linux/timex.h>
19 #include <linux/slab.h>
20 #include <linux/random.h>
21 #include <linux/smp_lock.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/delay.h>
24 #include <linux/bitops.h>
26 #include <asm/bootinfo.h>
28 #include <asm/mipsregs.h>
29 #include <asm/system.h>
31 #include <asm/ptrace.h>
32 #include <asm/processor.h>
33 #include <asm/pci/bridge.h>
34 #include <asm/sn/addrs.h>
35 #include <asm/sn/agent.h>
36 #include <asm/sn/arch.h>
37 #include <asm/sn/hub.h>
38 #include <asm/sn/intr.h>
42 #define DBG(x...) printk(x)
48 * Linux has a controller-independent x86 interrupt architecture.
49 * every controller has a 'controller-template', that is used
50 * by the main code to do the right thing. Each driver-visible
51 * interrupt source is transparently wired to the apropriate
52 * controller. Thus drivers need not be aware of the
53 * interrupt-controller.
55 * Various interrupt controllers we handle: 8259 PIC, SMP IO-APIC,
56 * PIIX4's internal 8259 PIC and SGI's Visual Workstation Cobalt (IO-)APIC.
57 * (IO-APICs assumed to be messaging to Pentium local-APICs)
59 * the code is designed to be easily extended with new/different
60 * interrupt controllers, without having to do assembly magic.
63 extern asmlinkage
void ip27_irq(void);
65 extern struct bridge_controller
*irq_to_bridge
[];
66 extern int irq_to_slot
[];
69 * use these macros to get the encoded nasid and widget id
72 #define IRQ_TO_BRIDGE(i) irq_to_bridge[(i)]
73 #define SLOT_FROM_PCI_IRQ(i) irq_to_slot[i]
75 static inline int alloc_level(int cpu
, int irq
)
77 struct slice_data
*si
= cpu_data
[cpu
].data
;
78 int level
; /* pre-allocated entries */
80 level
= find_first_zero_bit(si
->irq_alloc_mask
, LEVELS_PER_SLICE
);
81 if (level
>= LEVELS_PER_SLICE
)
82 panic("Cpu %d flooded with devices\n", cpu
);
84 __set_bit(level
, si
->irq_alloc_mask
);
85 si
->level_to_irq
[level
] = irq
;
90 static inline int find_level(cpuid_t
*cpunum
, int irq
)
94 for (cpu
= 0; cpu
<= NR_CPUS
; cpu
++) {
95 struct slice_data
*si
= cpu_data
[cpu
].data
;
100 for (i
= BASE_PCI_IRQ
; i
< LEVELS_PER_SLICE
; i
++)
101 if (si
->level_to_irq
[i
] == irq
) {
108 panic("Could not identify cpu/level for irq %d\n", irq
);
114 static int ms1bit(unsigned long x
)
118 s
= 16; if (x
>> 16 == 0) s
= 0; b
+= s
; x
>>= s
;
119 s
= 8; if (x
>> 8 == 0) s
= 0; b
+= s
; x
>>= s
;
120 s
= 4; if (x
>> 4 == 0) s
= 0; b
+= s
; x
>>= s
;
121 s
= 2; if (x
>> 2 == 0) s
= 0; b
+= s
; x
>>= s
;
122 s
= 1; if (x
>> 1 == 0) s
= 0; b
+= s
;
128 * This code is unnecessarily complex, because we do SA_INTERRUPT
129 * intr enabling. Basically, once we grab the set of intrs we need
130 * to service, we must mask _all_ these interrupts; firstly, to make
131 * sure the same intr does not intr again, causing recursion that
132 * can lead to stack overflow. Secondly, we can not just mask the
133 * one intr we are do_IRQing, because the non-masked intrs in the
134 * first set might intr again, causing multiple servicings of the
135 * same intr. This effect is mostly seen for intercpu intrs.
139 void ip27_do_irq_mask0(struct pt_regs
*regs
)
142 hubreg_t pend0
, mask0
;
143 cpuid_t cpu
= smp_processor_id();
145 (cputoslice(cpu
) == 0) ? PI_INT_MASK0_A
: PI_INT_MASK0_B
;
147 /* copied from Irix intpend0() */
148 pend0
= LOCAL_HUB_L(PI_INT_PEND0
);
149 mask0
= LOCAL_HUB_L(pi_int_mask0
);
151 pend0
&= mask0
; /* Pick intrs we should look at */
155 swlevel
= ms1bit(pend0
);
157 if (pend0
& (1UL << CPU_RESCHED_A_IRQ
)) {
158 LOCAL_HUB_CLR_INTR(CPU_RESCHED_A_IRQ
);
159 } else if (pend0
& (1UL << CPU_RESCHED_B_IRQ
)) {
160 LOCAL_HUB_CLR_INTR(CPU_RESCHED_B_IRQ
);
161 } else if (pend0
& (1UL << CPU_CALL_A_IRQ
)) {
162 LOCAL_HUB_CLR_INTR(CPU_CALL_A_IRQ
);
163 smp_call_function_interrupt();
164 } else if (pend0
& (1UL << CPU_CALL_B_IRQ
)) {
165 LOCAL_HUB_CLR_INTR(CPU_CALL_B_IRQ
);
166 smp_call_function_interrupt();
170 /* "map" swlevel to irq */
171 struct slice_data
*si
= cpu_data
[cpu
].data
;
173 irq
= si
->level_to_irq
[swlevel
];
177 LOCAL_HUB_L(PI_INT_PEND0
);
180 void ip27_do_irq_mask1(struct pt_regs
*regs
)
183 hubreg_t pend1
, mask1
;
184 cpuid_t cpu
= smp_processor_id();
185 int pi_int_mask1
= (cputoslice(cpu
) == 0) ? PI_INT_MASK1_A
: PI_INT_MASK1_B
;
186 struct slice_data
*si
= cpu_data
[cpu
].data
;
188 /* copied from Irix intpend0() */
189 pend1
= LOCAL_HUB_L(PI_INT_PEND1
);
190 mask1
= LOCAL_HUB_L(pi_int_mask1
);
192 pend1
&= mask1
; /* Pick intrs we should look at */
196 swlevel
= ms1bit(pend1
);
197 /* "map" swlevel to irq */
198 irq
= si
->level_to_irq
[swlevel
];
199 LOCAL_HUB_CLR_INTR(swlevel
);
202 LOCAL_HUB_L(PI_INT_PEND1
);
205 void ip27_prof_timer(struct pt_regs
*regs
)
207 panic("CPU %d got a profiling interrupt", smp_processor_id());
210 void ip27_hub_error(struct pt_regs
*regs
)
212 panic("CPU %d got a hub error interrupt", smp_processor_id());
215 static int intr_connect_level(int cpu
, int bit
)
217 nasid_t nasid
= COMPACT_TO_NASID_NODEID(cpu_to_node(cpu
));
218 struct slice_data
*si
= cpu_data
[cpu
].data
;
220 __set_bit(bit
, si
->irq_enable_mask
);
222 if (!cputoslice(cpu
)) {
223 REMOTE_HUB_S(nasid
, PI_INT_MASK0_A
, si
->irq_enable_mask
[0]);
224 REMOTE_HUB_S(nasid
, PI_INT_MASK1_A
, si
->irq_enable_mask
[1]);
226 REMOTE_HUB_S(nasid
, PI_INT_MASK0_B
, si
->irq_enable_mask
[0]);
227 REMOTE_HUB_S(nasid
, PI_INT_MASK1_B
, si
->irq_enable_mask
[1]);
233 static int intr_disconnect_level(int cpu
, int bit
)
235 nasid_t nasid
= COMPACT_TO_NASID_NODEID(cpu_to_node(cpu
));
236 struct slice_data
*si
= cpu_data
[cpu
].data
;
238 __clear_bit(bit
, si
->irq_enable_mask
);
240 if (!cputoslice(cpu
)) {
241 REMOTE_HUB_S(nasid
, PI_INT_MASK0_A
, si
->irq_enable_mask
[0]);
242 REMOTE_HUB_S(nasid
, PI_INT_MASK1_A
, si
->irq_enable_mask
[1]);
244 REMOTE_HUB_S(nasid
, PI_INT_MASK0_B
, si
->irq_enable_mask
[0]);
245 REMOTE_HUB_S(nasid
, PI_INT_MASK1_B
, si
->irq_enable_mask
[1]);
251 /* Startup one of the (PCI ...) IRQs routes over a bridge. */
252 static unsigned int startup_bridge_irq(unsigned int irq
)
254 struct bridge_controller
*bc
;
260 pin
= SLOT_FROM_PCI_IRQ(irq
);
261 bc
= IRQ_TO_BRIDGE(irq
);
264 DBG("bridge_startup(): irq= 0x%x pin=%d\n", irq
, pin
);
266 * "map" irq to a swlevel greater than 6 since the first 6 bits
267 * of INT_PEND0 are taken
269 swlevel
= find_level(&cpu
, irq
);
270 bridge
->b_int_addr
[pin
].addr
= (0x20000 | swlevel
| (bc
->nasid
<< 8));
271 bridge
->b_int_enable
|= (1 << pin
);
272 bridge
->b_int_enable
|= 0x7ffffe00; /* more stuff in int_enable */
275 * Enable sending of an interrupt clear packt to the hub on a high to
276 * low transition of the interrupt pin.
278 * IRIX sets additional bits in the address which are documented as
279 * reserved in the bridge docs.
281 bridge
->b_int_mode
|= (1UL << pin
);
284 * We assume the bridge to have a 1:1 mapping between devices
285 * (slots) and intr pins.
287 device
= bridge
->b_int_device
;
288 device
&= ~(7 << (pin
*3));
289 device
|= (pin
<< (pin
*3));
290 bridge
->b_int_device
= device
;
292 bridge
->b_wid_tflush
;
294 return 0; /* Never anything pending. */
297 /* Shutdown one of the (PCI ...) IRQs routes over a bridge. */
298 static void shutdown_bridge_irq(unsigned int irq
)
300 struct bridge_controller
*bc
= IRQ_TO_BRIDGE(irq
);
301 bridge_t
*bridge
= bc
->base
;
302 struct slice_data
*si
= cpu_data
[bc
->irq_cpu
].data
;
306 DBG("bridge_shutdown: irq 0x%x\n", irq
);
307 pin
= SLOT_FROM_PCI_IRQ(irq
);
310 * map irq to a swlevel greater than 6 since the first 6 bits
311 * of INT_PEND0 are taken
313 swlevel
= find_level(&cpu
, irq
);
314 intr_disconnect_level(cpu
, swlevel
);
316 __clear_bit(swlevel
, si
->irq_alloc_mask
);
317 si
->level_to_irq
[swlevel
] = -1;
319 bridge
->b_int_enable
&= ~(1 << pin
);
320 bridge
->b_wid_tflush
;
323 static inline void enable_bridge_irq(unsigned int irq
)
328 swlevel
= find_level(&cpu
, irq
); /* Criminal offence */
329 intr_connect_level(cpu
, swlevel
);
332 static inline void disable_bridge_irq(unsigned int irq
)
337 swlevel
= find_level(&cpu
, irq
); /* Criminal offence */
338 intr_disconnect_level(cpu
, swlevel
);
341 static void mask_and_ack_bridge_irq(unsigned int irq
)
343 disable_bridge_irq(irq
);
346 static void end_bridge_irq(unsigned int irq
)
348 if (!(irq_desc
[irq
].status
& (IRQ_DISABLED
|IRQ_INPROGRESS
)) &&
349 irq_desc
[irq
].action
)
350 enable_bridge_irq(irq
);
353 static struct hw_interrupt_type bridge_irq_type
= {
354 .typename
= "bridge",
355 .startup
= startup_bridge_irq
,
356 .shutdown
= shutdown_bridge_irq
,
357 .enable
= enable_bridge_irq
,
358 .disable
= disable_bridge_irq
,
359 .ack
= mask_and_ack_bridge_irq
,
360 .end
= end_bridge_irq
,
363 static unsigned long irq_map
[NR_IRQS
/ BITS_PER_LONG
];
365 static int allocate_irqno(void)
370 irq
= find_first_zero_bit(irq_map
, NR_IRQS
);
375 if (test_and_set_bit(irq
, irq_map
))
381 void free_irqno(unsigned int irq
)
383 clear_bit(irq
, irq_map
);
386 void __devinit
register_bridge_irq(unsigned int irq
)
388 irq_desc
[irq
].status
= IRQ_DISABLED
;
389 irq_desc
[irq
].action
= 0;
390 irq_desc
[irq
].depth
= 1;
391 irq_desc
[irq
].handler
= &bridge_irq_type
;
394 int __devinit
request_bridge_irq(struct bridge_controller
*bc
)
396 int irq
= allocate_irqno();
404 * "map" irq to a swlevel greater than 6 since the first 6 bits
405 * of INT_PEND0 are taken
408 swlevel
= alloc_level(cpu
, irq
);
409 if (unlikely(swlevel
< 0)) {
415 /* Make sure it's not already pending when we connect it. */
416 nasid
= COMPACT_TO_NASID_NODEID(cpu_to_node(cpu
));
417 REMOTE_HUB_CLR_INTR(nasid
, swlevel
);
419 intr_connect_level(cpu
, swlevel
);
421 register_bridge_irq(irq
);
426 void __init
arch_init_irq(void)
428 set_except_vector(0, ip27_irq
);
431 void install_ipi(void)
433 int slice
= LOCAL_HUB_L(PI_CPU_NUM
);
434 int cpu
= smp_processor_id();
435 struct slice_data
*si
= cpu_data
[cpu
].data
;
439 LOCAL_HUB_CLR_INTR(CPU_RESCHED_A_IRQ
);
440 LOCAL_HUB_CLR_INTR(CPU_CALL_A_IRQ
);
441 mask
= LOCAL_HUB_L(PI_INT_MASK0_A
); /* Slice A */
442 set
= (1UL << CPU_RESCHED_A_IRQ
) | (1UL << CPU_CALL_A_IRQ
);
444 si
->irq_enable_mask
[0] |= set
;
445 si
->irq_alloc_mask
[0] |= set
;
446 LOCAL_HUB_S(PI_INT_MASK0_A
, mask
);
448 LOCAL_HUB_CLR_INTR(CPU_RESCHED_B_IRQ
);
449 LOCAL_HUB_CLR_INTR(CPU_CALL_B_IRQ
);
450 mask
= LOCAL_HUB_L(PI_INT_MASK0_B
); /* Slice B */
451 set
= (1UL << CPU_RESCHED_B_IRQ
) | (1UL << CPU_CALL_B_IRQ
);
453 si
->irq_enable_mask
[1] |= set
;
454 si
->irq_alloc_mask
[1] |= set
;
455 LOCAL_HUB_S(PI_INT_MASK0_B
, mask
);