1 /* $Id: fault.c,v 1.5 2000/01/26 16:20:29 jsm Exp $
3 * This file is subject to the terms and conditions of the GNU General Public
4 * License. See the file "COPYING" in the main directory of this archive
8 * Copyright (C) 1995, 1996, 1997, 1998 by Ralf Baechle
9 * Copyright 1999 SuSE GmbH (Philipp Rumpf, prumpf@tux.org)
10 * Copyright 1999 Hewlett Packard Co.
15 #include <linux/ptrace.h>
16 #include <linux/sched.h>
17 #include <linux/interrupt.h>
18 #include <linux/module.h>
20 #include <asm/uaccess.h>
21 #include <asm/traps.h>
23 #define PRINT_USER_FAULTS /* (turn this on if you want user faults to be */
24 /* dumped to the console via printk) */
27 /* Defines for parisc_acctyp() */
31 /* Various important other fields */
32 #define bit22set(x) (x & 0x00000200)
33 #define bits23_25set(x) (x & 0x000001c0)
34 #define isGraphicsFlushRead(x) ((x & 0xfc003fdf) == 0x04001a80)
35 /* extended opcode is 0x6a */
37 #define BITSSET 0x1c0 /* for identifying LDCW */
40 DEFINE_PER_CPU(struct exception_data
, exception_data
);
43 * parisc_acctyp(unsigned int inst) --
44 * Given a PA-RISC memory access instruction, determine if the
45 * the instruction would perform a memory read or memory write
48 * This function assumes that the given instruction is a memory access
49 * instruction (i.e. you should really only call it if you know that
50 * the instruction has generated some sort of a memory access fault).
53 * VM_READ if read operation
54 * VM_WRITE if write operation
55 * VM_EXEC if execute operation
58 parisc_acctyp(unsigned long code
, unsigned int inst
)
60 if (code
== 6 || code
== 16)
63 switch (inst
& 0xf0000000) {
64 case 0x40000000: /* load */
65 case 0x50000000: /* new load */
68 case 0x60000000: /* store */
69 case 0x70000000: /* new store */
72 case 0x20000000: /* coproc */
73 case 0x30000000: /* coproc2 */
77 case 0x0: /* indexed/memory management */
80 * Check for the 'Graphics Flush Read' instruction.
81 * It resembles an FDC instruction, except for bits
82 * 20 and 21. Any combination other than zero will
83 * utilize the block mover functionality on some
84 * older PA-RISC platforms. The case where a block
85 * move is performed from VM to graphics IO space
86 * should be treated as a READ.
88 * The significance of bits 20,21 in the FDC
91 * 00 Flush data cache (normal instruction behavior)
92 * 01 Graphics flush write (IO space -> VM)
93 * 10 Graphics flush read (VM -> IO space)
94 * 11 Graphics flush read/write (VM <-> IO space)
96 if (isGraphicsFlushRead(inst
))
101 * Check for LDCWX and LDCWS (semaphore instructions).
102 * If bits 23 through 25 are all 1's it is one of
103 * the above two instructions and is a write.
105 * Note: With the limited bits we are looking at,
106 * this will also catch PROBEW and PROBEWI. However,
107 * these should never get in here because they don't
108 * generate exceptions of the type:
109 * Data TLB miss fault/data page fault
110 * Data memory protection trap
112 if (bits23_25set(inst
) == BITSSET
)
115 return VM_READ
; /* Default */
117 return VM_READ
; /* Default */
122 #undef isGraphicsFlushRead
127 /* This is the treewalk to find a vma which is the highest that has
128 * a start < addr. We're using find_vma_prev instead right now, but
129 * we might want to use this at some point in the future. Probably
130 * not, but I want it committed to CVS so I don't lose it :-)
132 while (tree
!= vm_avl_empty
) {
133 if (tree
->vm_start
> addr
) {
134 tree
= tree
->vm_avl_left
;
137 if (prev
->vm_next
== NULL
)
139 if (prev
->vm_next
->vm_start
> addr
)
141 tree
= tree
->vm_avl_right
;
146 void do_page_fault(struct pt_regs
*regs
, unsigned long code
,
147 unsigned long address
)
149 struct vm_area_struct
*vma
, *prev_vma
;
150 struct task_struct
*tsk
= current
;
151 struct mm_struct
*mm
= tsk
->mm
;
152 const struct exception_table_entry
*fix
;
153 unsigned long acc_type
;
155 if (in_interrupt() || !mm
)
158 down_read(&mm
->mmap_sem
);
159 vma
= find_vma_prev(mm
, address
, &prev_vma
);
160 if (!vma
|| address
< vma
->vm_start
)
161 goto check_expansion
;
163 * Ok, we have a good vm_area for this memory access. We still need to
164 * check the access permissions.
169 acc_type
= parisc_acctyp(code
,regs
->iir
);
171 if ((vma
->vm_flags
& acc_type
) != acc_type
)
175 * If for any reason at all we couldn't handle the fault, make
176 * sure we exit gracefully rather than endlessly redo the
180 switch (handle_mm_fault(mm
, vma
, address
, (acc_type
& VM_WRITE
) != 0)) {
189 * We ran out of memory, or some other thing happened
190 * to us that made us unable to handle the page fault
197 up_read(&mm
->mmap_sem
);
202 if (vma
&& (expand_stack(vma
, address
) == 0))
206 * Something tried to access memory that isn't in our memory map..
209 up_read(&mm
->mmap_sem
);
211 if (user_mode(regs
)) {
214 #ifdef PRINT_USER_FAULTS
215 printk(KERN_DEBUG
"\n");
216 printk(KERN_DEBUG
"do_page_fault() pid=%d command='%s' type=%lu address=0x%08lx\n",
217 tsk
->pid
, tsk
->comm
, code
, address
);
219 printk(KERN_DEBUG
"vm_start = 0x%08lx, vm_end = 0x%08lx\n",
220 vma
->vm_start
, vma
->vm_end
);
224 /* FIXME: actually we need to get the signo and code correct */
225 si
.si_signo
= SIGSEGV
;
227 si
.si_code
= SEGV_MAPERR
;
228 si
.si_addr
= (void __user
*) address
;
229 force_sig_info(SIGSEGV
, &si
, current
);
235 if (!user_mode(regs
)) {
236 fix
= search_exception_tables(regs
->iaoq
[0]);
239 struct exception_data
*d
;
241 d
= &__get_cpu_var(exception_data
);
242 d
->fault_ip
= regs
->iaoq
[0];
243 d
->fault_space
= regs
->isr
;
244 d
->fault_addr
= regs
->ior
;
246 regs
->iaoq
[0] = ((fix
->fixup
) & ~3);
249 * NOTE: In some cases the faulting instruction
250 * may be in the delay slot of a branch. We
251 * don't want to take the branch, so we don't
252 * increment iaoq[1], instead we set it to be
253 * iaoq[0]+4, and clear the B bit in the PSW
256 regs
->iaoq
[1] = regs
->iaoq
[0] + 4;
257 regs
->gr
[0] &= ~PSW_B
; /* IPSW in gr[0] */
263 parisc_terminate("Bad Address (null pointer deref?)", regs
, code
, address
);
266 up_read(&mm
->mmap_sem
);
267 printk(KERN_CRIT
"VM: killing process %s\n", current
->comm
);