2 * Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com>
3 * Copyright (c) 1999-2000 Grant Erickson <grant@lcse.umn.edu>
5 * Module name: iSeries_setup.c
8 * Architecture- / platform-specific boot-time initialization code for
9 * the IBM iSeries LPAR. Adapted from original code by Grant Erickson and
10 * code by Gary Thomas, Cort Dougan <cort@fsmlabs.com>, and Dan Malek
13 * This program is free software; you can redistribute it and/or
14 * modify it under the terms of the GNU General Public License
15 * as published by the Free Software Foundation; either version
16 * 2 of the License, or (at your option) any later version.
21 #include <linux/config.h>
22 #include <linux/init.h>
23 #include <linux/threads.h>
24 #include <linux/smp.h>
25 #include <linux/param.h>
26 #include <linux/string.h>
27 #include <linux/bootmem.h>
28 #include <linux/initrd.h>
29 #include <linux/seq_file.h>
30 #include <linux/kdev_t.h>
31 #include <linux/major.h>
32 #include <linux/root_dev.h>
34 #include <asm/processor.h>
35 #include <asm/machdep.h>
38 #include <asm/pgtable.h>
39 #include <asm/mmu_context.h>
40 #include <asm/cputable.h>
41 #include <asm/sections.h>
42 #include <asm/iommu.h>
45 #include "iSeries_setup.h"
48 #include <asm/cache.h>
49 #include <asm/sections.h>
50 #include <asm/iSeries/LparData.h>
51 #include <asm/iSeries/HvCallHpt.h>
52 #include <asm/iSeries/HvLpConfig.h>
53 #include <asm/iSeries/HvCallEvent.h>
54 #include <asm/iSeries/HvCallSm.h>
55 #include <asm/iSeries/HvCallXm.h>
56 #include <asm/iSeries/ItLpQueue.h>
57 #include <asm/iSeries/IoHriMainStore.h>
58 #include <asm/iSeries/iSeries_proc.h>
59 #include <asm/iSeries/mf.h>
60 #include <asm/iSeries/HvLpEvent.h>
61 #include <asm/iSeries/iSeries_irq.h>
63 extern void hvlog(char *fmt
, ...);
66 #define DBG(fmt...) hvlog(fmt)
71 /* Function Prototypes */
72 extern void ppcdbg_initialize(void);
74 static void build_iSeries_Memory_Map(void);
75 static void setup_iSeries_cache_sizes(void);
76 static void iSeries_bolt_kernel(unsigned long saddr
, unsigned long eaddr
);
77 extern void iSeries_pci_final_fixup(void);
79 /* Global Variables */
80 static unsigned long procFreqHz
;
81 static unsigned long procFreqMhz
;
82 static unsigned long procFreqMhzHundreths
;
84 static unsigned long tbFreqHz
;
85 static unsigned long tbFreqMhz
;
86 static unsigned long tbFreqMhzHundreths
;
88 int piranha_simulator
;
90 extern int rd_size
; /* Defined in drivers/block/rd.c */
91 extern unsigned long klimit
;
92 extern unsigned long embedded_sysmap_start
;
93 extern unsigned long embedded_sysmap_end
;
95 extern unsigned long iSeries_recal_tb
;
96 extern unsigned long iSeries_recal_titan
;
98 static int mf_initialized
;
101 unsigned long absStart
;
102 unsigned long absEnd
;
103 unsigned long logicalStart
;
104 unsigned long logicalEnd
;
108 * Process the main store vpd to determine where the holes in memory are
109 * and return the number of physical blocks and fill in the array of
112 static unsigned long iSeries_process_Condor_mainstore_vpd(
113 struct MemoryBlock
*mb_array
, unsigned long max_entries
)
115 unsigned long holeFirstChunk
, holeSizeChunks
;
116 unsigned long numMemoryBlocks
= 1;
117 struct IoHriMainStoreSegment4
*msVpd
=
118 (struct IoHriMainStoreSegment4
*)xMsVpd
;
119 unsigned long holeStart
= msVpd
->nonInterleavedBlocksStartAdr
;
120 unsigned long holeEnd
= msVpd
->nonInterleavedBlocksEndAdr
;
121 unsigned long holeSize
= holeEnd
- holeStart
;
123 printk("Mainstore_VPD: Condor\n");
125 * Determine if absolute memory has any
126 * holes so that we can interpret the
127 * access map we get back from the hypervisor
130 mb_array
[0].logicalStart
= 0;
131 mb_array
[0].logicalEnd
= 0x100000000;
132 mb_array
[0].absStart
= 0;
133 mb_array
[0].absEnd
= 0x100000000;
137 holeStart
= holeStart
& 0x000fffffffffffff;
138 holeStart
= addr_to_chunk(holeStart
);
139 holeFirstChunk
= holeStart
;
140 holeSize
= addr_to_chunk(holeSize
);
141 holeSizeChunks
= holeSize
;
142 printk( "Main store hole: start chunk = %0lx, size = %0lx chunks\n",
143 holeFirstChunk
, holeSizeChunks
);
144 mb_array
[0].logicalEnd
= holeFirstChunk
;
145 mb_array
[0].absEnd
= holeFirstChunk
;
146 mb_array
[1].logicalStart
= holeFirstChunk
;
147 mb_array
[1].logicalEnd
= 0x100000000 - holeSizeChunks
;
148 mb_array
[1].absStart
= holeFirstChunk
+ holeSizeChunks
;
149 mb_array
[1].absEnd
= 0x100000000;
151 return numMemoryBlocks
;
154 #define MaxSegmentAreas 32
155 #define MaxSegmentAdrRangeBlocks 128
156 #define MaxAreaRangeBlocks 4
158 static unsigned long iSeries_process_Regatta_mainstore_vpd(
159 struct MemoryBlock
*mb_array
, unsigned long max_entries
)
161 struct IoHriMainStoreSegment5
*msVpdP
=
162 (struct IoHriMainStoreSegment5
*)xMsVpd
;
163 unsigned long numSegmentBlocks
= 0;
164 u32 existsBits
= msVpdP
->msAreaExists
;
165 unsigned long area_num
;
167 printk("Mainstore_VPD: Regatta\n");
169 for (area_num
= 0; area_num
< MaxSegmentAreas
; ++area_num
) {
170 unsigned long numAreaBlocks
;
171 struct IoHriMainStoreArea4
*currentArea
;
173 if (existsBits
& 0x80000000) {
174 unsigned long block_num
;
176 currentArea
= &msVpdP
->msAreaArray
[area_num
];
177 numAreaBlocks
= currentArea
->numAdrRangeBlocks
;
178 printk("ms_vpd: processing area %2ld blocks=%ld",
179 area_num
, numAreaBlocks
);
180 for (block_num
= 0; block_num
< numAreaBlocks
;
182 /* Process an address range block */
183 struct MemoryBlock tempBlock
;
187 (unsigned long)currentArea
->xAdrRangeBlock
[block_num
].blockStart
;
189 (unsigned long)currentArea
->xAdrRangeBlock
[block_num
].blockEnd
;
190 tempBlock
.logicalStart
= 0;
191 tempBlock
.logicalEnd
= 0;
192 printk("\n block %ld absStart=%016lx absEnd=%016lx",
193 block_num
, tempBlock
.absStart
,
196 for (i
= 0; i
< numSegmentBlocks
; ++i
) {
197 if (mb_array
[i
].absStart
==
201 if (i
== numSegmentBlocks
) {
202 if (numSegmentBlocks
== max_entries
)
203 panic("iSeries_process_mainstore_vpd: too many memory blocks");
204 mb_array
[numSegmentBlocks
] = tempBlock
;
207 printk(" (duplicate)");
213 /* Now sort the blocks found into ascending sequence */
214 if (numSegmentBlocks
> 1) {
217 for (m
= 0; m
< numSegmentBlocks
- 1; ++m
) {
218 for (n
= numSegmentBlocks
- 1; m
< n
; --n
) {
219 if (mb_array
[n
].absStart
<
220 mb_array
[n
-1].absStart
) {
221 struct MemoryBlock tempBlock
;
223 tempBlock
= mb_array
[n
];
224 mb_array
[n
] = mb_array
[n
-1];
225 mb_array
[n
-1] = tempBlock
;
231 * Assign "logical" addresses to each block. These
232 * addresses correspond to the hypervisor "bitmap" space.
233 * Convert all addresses into units of 256K chunks.
236 unsigned long i
, nextBitmapAddress
;
238 printk("ms_vpd: %ld sorted memory blocks\n", numSegmentBlocks
);
239 nextBitmapAddress
= 0;
240 for (i
= 0; i
< numSegmentBlocks
; ++i
) {
241 unsigned long length
= mb_array
[i
].absEnd
-
242 mb_array
[i
].absStart
;
244 mb_array
[i
].logicalStart
= nextBitmapAddress
;
245 mb_array
[i
].logicalEnd
= nextBitmapAddress
+ length
;
246 nextBitmapAddress
+= length
;
247 printk(" Bitmap range: %016lx - %016lx\n"
248 " Absolute range: %016lx - %016lx\n",
249 mb_array
[i
].logicalStart
,
250 mb_array
[i
].logicalEnd
,
251 mb_array
[i
].absStart
, mb_array
[i
].absEnd
);
252 mb_array
[i
].absStart
= addr_to_chunk(mb_array
[i
].absStart
&
254 mb_array
[i
].absEnd
= addr_to_chunk(mb_array
[i
].absEnd
&
256 mb_array
[i
].logicalStart
=
257 addr_to_chunk(mb_array
[i
].logicalStart
);
258 mb_array
[i
].logicalEnd
= addr_to_chunk(mb_array
[i
].logicalEnd
);
262 return numSegmentBlocks
;
265 static unsigned long iSeries_process_mainstore_vpd(struct MemoryBlock
*mb_array
,
266 unsigned long max_entries
)
269 unsigned long mem_blocks
= 0;
271 if (cpu_has_feature(CPU_FTR_SLB
))
272 mem_blocks
= iSeries_process_Regatta_mainstore_vpd(mb_array
,
275 mem_blocks
= iSeries_process_Condor_mainstore_vpd(mb_array
,
278 printk("Mainstore_VPD: numMemoryBlocks = %ld \n", mem_blocks
);
279 for (i
= 0; i
< mem_blocks
; ++i
) {
280 printk("Mainstore_VPD: block %3ld logical chunks %016lx - %016lx\n"
281 " abs chunks %016lx - %016lx\n",
282 i
, mb_array
[i
].logicalStart
, mb_array
[i
].logicalEnd
,
283 mb_array
[i
].absStart
, mb_array
[i
].absEnd
);
288 static void __init
iSeries_get_cmdline(void)
292 /* copy the command line parameter from the primary VSP */
293 HvCallEvent_dmaToSp(cmd_line
, 2 * 64* 1024, 256,
294 HvLpDma_Direction_RemoteToLocal
);
299 if (!*p
|| *p
== '\n')
306 static void __init
iSeries_init_early(void)
308 extern unsigned long memory_limit
;
310 DBG(" -> iSeries_init_early()\n");
314 #if defined(CONFIG_BLK_DEV_INITRD)
316 * If the init RAM disk has been configured and there is
317 * a non-zero starting address for it, set it up
320 initrd_start
= (unsigned long)__va(naca
.xRamDisk
);
321 initrd_end
= initrd_start
+ naca
.xRamDiskSize
* PAGE_SIZE
;
322 initrd_below_start_ok
= 1; // ramdisk in kernel space
323 ROOT_DEV
= Root_RAM0
;
324 if (((rd_size
* 1024) / PAGE_SIZE
) < naca
.xRamDiskSize
)
325 rd_size
= (naca
.xRamDiskSize
* PAGE_SIZE
) / 1024;
327 #endif /* CONFIG_BLK_DEV_INITRD */
329 /* ROOT_DEV = MKDEV(VIODASD_MAJOR, 1); */
332 iSeries_recal_tb
= get_tb();
333 iSeries_recal_titan
= HvCallXm_loadTod();
336 * Cache sizes must be initialized before hpte_init_iSeries is called
337 * as the later need them for flush_icache_range()
339 setup_iSeries_cache_sizes();
342 * Initialize the hash table management pointers
347 * Initialize the DMA/TCE management
349 iommu_init_early_iSeries();
352 * Initialize the table which translate Linux physical addresses to
353 * AS/400 absolute addresses
355 build_iSeries_Memory_Map();
357 iSeries_get_cmdline();
359 /* Save unparsed command line copy for /proc/cmdline */
360 strlcpy(saved_command_line
, cmd_line
, COMMAND_LINE_SIZE
);
362 /* Parse early parameters, in particular mem=x */
366 if (memory_limit
< systemcfg
->physicalMemorySize
)
367 systemcfg
->physicalMemorySize
= memory_limit
;
369 printk("Ignoring mem=%lu >= ram_top.\n", memory_limit
);
374 /* Bolt kernel mappings for all of memory (or just a bit if we've got a limit) */
375 iSeries_bolt_kernel(0, systemcfg
->physicalMemorySize
);
378 lmb_add(0, systemcfg
->physicalMemorySize
);
380 lmb_reserve(0, __pa(klimit
));
382 /* Initialize machine-dependency vectors */
386 if (itLpNaca
.xPirEnvironMode
== 0)
387 piranha_simulator
= 1;
389 /* Associate Lp Event Queue 0 with processor 0 */
390 HvCallEvent_setLpEventQueueInterruptProc(0, 0);
396 /* If we were passed an initrd, set the ROOT_DEV properly if the values
397 * look sensible. If not, clear initrd reference.
399 #ifdef CONFIG_BLK_DEV_INITRD
400 if (initrd_start
>= KERNELBASE
&& initrd_end
>= KERNELBASE
&&
401 initrd_end
> initrd_start
)
402 ROOT_DEV
= Root_RAM0
;
404 initrd_start
= initrd_end
= 0;
405 #endif /* CONFIG_BLK_DEV_INITRD */
407 DBG(" <- iSeries_init_early()\n");
411 * The iSeries may have very large memories ( > 128 GB ) and a partition
412 * may get memory in "chunks" that may be anywhere in the 2**52 real
413 * address space. The chunks are 256K in size. To map this to the
414 * memory model Linux expects, the AS/400 specific code builds a
415 * translation table to translate what Linux thinks are "physical"
416 * addresses to the actual real addresses. This allows us to make
417 * it appear to Linux that we have contiguous memory starting at
418 * physical address zero while in fact this could be far from the truth.
419 * To avoid confusion, I'll let the words physical and/or real address
420 * apply to the Linux addresses while I'll use "absolute address" to
421 * refer to the actual hardware real address.
423 * build_iSeries_Memory_Map gets information from the Hypervisor and
424 * looks at the Main Store VPD to determine the absolute addresses
425 * of the memory that has been assigned to our partition and builds
426 * a table used to translate Linux's physical addresses to these
427 * absolute addresses. Absolute addresses are needed when
428 * communicating with the hypervisor (e.g. to build HPT entries)
431 static void __init
build_iSeries_Memory_Map(void)
433 u32 loadAreaFirstChunk
, loadAreaLastChunk
, loadAreaSize
;
435 u32 hptFirstChunk
, hptLastChunk
, hptSizeChunks
, hptSizePages
;
437 u32 totalChunks
,moreChunks
;
438 u32 currChunk
, thisChunk
, absChunk
;
442 struct MemoryBlock mb
[32];
443 unsigned long numMemoryBlocks
, curBlock
;
445 /* Chunk size on iSeries is 256K bytes */
446 totalChunks
= (u32
)HvLpConfig_getMsChunks();
447 klimit
= msChunks_alloc(klimit
, totalChunks
, 1UL << 18);
450 * Get absolute address of our load area
451 * and map it to physical address 0
452 * This guarantees that the loadarea ends up at physical 0
453 * otherwise, it might not be returned by PLIC as the first
457 loadAreaFirstChunk
= (u32
)addr_to_chunk(itLpNaca
.xLoadAreaAddr
);
458 loadAreaSize
= itLpNaca
.xLoadAreaChunks
;
461 * Only add the pages already mapped here.
462 * Otherwise we might add the hpt pages
463 * The rest of the pages of the load area
464 * aren't in the HPT yet and can still
465 * be assigned an arbitrary physical address
467 if ((loadAreaSize
* 64) > HvPagesToMap
)
468 loadAreaSize
= HvPagesToMap
/ 64;
470 loadAreaLastChunk
= loadAreaFirstChunk
+ loadAreaSize
- 1;
473 * TODO Do we need to do something if the HPT is in the 64MB load area?
474 * This would be required if the itLpNaca.xLoadAreaChunks includes
478 printk("Mapping load area - physical addr = 0000000000000000\n"
479 " absolute addr = %016lx\n",
480 chunk_to_addr(loadAreaFirstChunk
));
481 printk("Load area size %dK\n", loadAreaSize
* 256);
483 for (nextPhysChunk
= 0; nextPhysChunk
< loadAreaSize
; ++nextPhysChunk
)
484 msChunks
.abs
[nextPhysChunk
] =
485 loadAreaFirstChunk
+ nextPhysChunk
;
488 * Get absolute address of our HPT and remember it so
489 * we won't map it to any physical address
491 hptFirstChunk
= (u32
)addr_to_chunk(HvCallHpt_getHptAddress());
492 hptSizePages
= (u32
)HvCallHpt_getHptPages();
493 hptSizeChunks
= hptSizePages
>> (msChunks
.chunk_shift
- PAGE_SHIFT
);
494 hptLastChunk
= hptFirstChunk
+ hptSizeChunks
- 1;
496 printk("HPT absolute addr = %016lx, size = %dK\n",
497 chunk_to_addr(hptFirstChunk
), hptSizeChunks
* 256);
499 /* Fill in the hashed page table hash mask */
500 num_ptegs
= hptSizePages
*
501 (PAGE_SIZE
/ (sizeof(HPTE
) * HPTES_PER_GROUP
));
502 htab_hash_mask
= num_ptegs
- 1;
505 * The actual hashed page table is in the hypervisor,
506 * we have no direct access
511 * Determine if absolute memory has any
512 * holes so that we can interpret the
513 * access map we get back from the hypervisor
516 numMemoryBlocks
= iSeries_process_mainstore_vpd(mb
, 32);
519 * Process the main store access map from the hypervisor
520 * to build up our physical -> absolute translation table
525 moreChunks
= totalChunks
;
528 map
= HvCallSm_get64BitsOfAccessMap(itLpNaca
.xLpIndex
,
530 thisChunk
= currChunk
;
532 chunkBit
= map
>> 63;
536 while (thisChunk
>= mb
[curBlock
].logicalEnd
) {
538 if (curBlock
>= numMemoryBlocks
)
539 panic("out of memory blocks");
541 if (thisChunk
< mb
[curBlock
].logicalStart
)
542 panic("memory block error");
544 absChunk
= mb
[curBlock
].absStart
+
545 (thisChunk
- mb
[curBlock
].logicalStart
);
546 if (((absChunk
< hptFirstChunk
) ||
547 (absChunk
> hptLastChunk
)) &&
548 ((absChunk
< loadAreaFirstChunk
) ||
549 (absChunk
> loadAreaLastChunk
))) {
550 msChunks
.abs
[nextPhysChunk
] = absChunk
;
561 * main store size (in chunks) is
562 * totalChunks - hptSizeChunks
563 * which should be equal to
566 systemcfg
->physicalMemorySize
= chunk_to_addr(nextPhysChunk
);
570 * Set up the variables that describe the cache line sizes
573 static void __init
setup_iSeries_cache_sizes(void)
576 unsigned int procIx
= get_paca()->lppaca
.dyn_hv_phys_proc_index
;
578 systemcfg
->icache_size
=
579 ppc64_caches
.isize
= xIoHriProcessorVpd
[procIx
].xInstCacheSize
* 1024;
580 systemcfg
->icache_line_size
=
581 ppc64_caches
.iline_size
=
582 xIoHriProcessorVpd
[procIx
].xInstCacheOperandSize
;
583 systemcfg
->dcache_size
=
585 xIoHriProcessorVpd
[procIx
].xDataL1CacheSizeKB
* 1024;
586 systemcfg
->dcache_line_size
=
587 ppc64_caches
.dline_size
=
588 xIoHriProcessorVpd
[procIx
].xDataCacheOperandSize
;
589 ppc64_caches
.ilines_per_page
= PAGE_SIZE
/ ppc64_caches
.iline_size
;
590 ppc64_caches
.dlines_per_page
= PAGE_SIZE
/ ppc64_caches
.dline_size
;
592 i
= ppc64_caches
.iline_size
;
594 while ((i
= (i
/ 2)))
596 ppc64_caches
.log_iline_size
= n
;
598 i
= ppc64_caches
.dline_size
;
600 while ((i
= (i
/ 2)))
602 ppc64_caches
.log_dline_size
= n
;
604 printk("D-cache line size = %d\n",
605 (unsigned int)ppc64_caches
.dline_size
);
606 printk("I-cache line size = %d\n",
607 (unsigned int)ppc64_caches
.iline_size
);
611 * Create a pte. Used during initialization only.
613 static void iSeries_make_pte(unsigned long va
, unsigned long pa
,
616 HPTE local_hpte
, rhpte
;
617 unsigned long hash
, vpn
;
620 vpn
= va
>> PAGE_SHIFT
;
621 hash
= hpt_hash(vpn
, 0);
623 local_hpte
.dw1
.dword1
= pa
| mode
;
624 local_hpte
.dw0
.dword0
= 0;
625 local_hpte
.dw0
.dw0
.avpn
= va
>> 23;
626 local_hpte
.dw0
.dw0
.bolted
= 1; /* bolted */
627 local_hpte
.dw0
.dw0
.v
= 1;
629 slot
= HvCallHpt_findValid(&rhpte
, vpn
);
631 /* Must find space in primary group */
632 panic("hash_page: hpte already exists\n");
634 HvCallHpt_addValidate(slot
, 0, (HPTE
*)&local_hpte
);
638 * Bolt the kernel addr space into the HPT
640 static void __init
iSeries_bolt_kernel(unsigned long saddr
, unsigned long eaddr
)
643 unsigned long mode_rw
= _PAGE_ACCESSED
| _PAGE_COHERENT
| PP_RWXX
;
646 for (pa
= saddr
; pa
< eaddr
;pa
+= PAGE_SIZE
) {
647 unsigned long ea
= (unsigned long)__va(pa
);
648 unsigned long vsid
= get_kernel_vsid(ea
);
649 unsigned long va
= (vsid
<< 28) | (pa
& 0xfffffff);
650 unsigned long vpn
= va
>> PAGE_SHIFT
;
651 unsigned long slot
= HvCallHpt_findValid(&hpte
, vpn
);
653 /* Make non-kernel text non-executable */
654 if (!in_kernel_text(ea
))
655 mode_rw
|= HW_NO_EXEC
;
657 if (hpte
.dw0
.dw0
.v
) {
658 /* HPTE exists, so just bolt it */
659 HvCallHpt_setSwBits(slot
, 0x10, 0);
660 /* And make sure the pp bits are correct */
661 HvCallHpt_setPp(slot
, PP_RWXX
);
663 /* No HPTE exists, so create a new bolted one */
664 iSeries_make_pte(va
, phys_to_abs(pa
), mode_rw
);
668 extern unsigned long ppc_proc_freq
;
669 extern unsigned long ppc_tb_freq
;
674 static void __init
iSeries_setup_arch(void)
677 unsigned procIx
= get_paca()->lppaca
.dyn_hv_phys_proc_index
;
679 /* Add an eye catcher and the systemcfg layout version number */
680 strcpy(systemcfg
->eye_catcher
, "SYSTEMCFG:PPC64");
681 systemcfg
->version
.major
= SYSTEMCFG_MAJOR
;
682 systemcfg
->version
.minor
= SYSTEMCFG_MINOR
;
684 /* Setup the Lp Event Queue */
686 /* Allocate a page for the Event Stack
687 * The hypervisor wants the absolute real address, so
688 * we subtract out the KERNELBASE and add in the
689 * absolute real address of the kernel load area
691 eventStack
= alloc_bootmem_pages(LpEventStackSize
);
692 memset(eventStack
, 0, LpEventStackSize
);
694 /* Invoke the hypervisor to initialize the event stack */
695 HvCallEvent_setLpEventStack(0, eventStack
, LpEventStackSize
);
697 /* Initialize fields in our Lp Event Queue */
698 xItLpQueue
.xSlicEventStackPtr
= (char *)eventStack
;
699 xItLpQueue
.xSlicCurEventPtr
= (char *)eventStack
;
700 xItLpQueue
.xSlicLastValidEventPtr
= (char *)eventStack
+
701 (LpEventStackSize
- LpEventMaxSize
);
702 xItLpQueue
.xIndex
= 0;
704 /* Compute processor frequency */
705 procFreqHz
= ((1UL << 34) * 1000000) /
706 xIoHriProcessorVpd
[procIx
].xProcFreq
;
707 procFreqMhz
= procFreqHz
/ 1000000;
708 procFreqMhzHundreths
= (procFreqHz
/ 10000) - (procFreqMhz
* 100);
709 ppc_proc_freq
= procFreqHz
;
711 /* Compute time base frequency */
712 tbFreqHz
= ((1UL << 32) * 1000000) /
713 xIoHriProcessorVpd
[procIx
].xTimeBaseFreq
;
714 tbFreqMhz
= tbFreqHz
/ 1000000;
715 tbFreqMhzHundreths
= (tbFreqHz
/ 10000) - (tbFreqMhz
* 100);
716 ppc_tb_freq
= tbFreqHz
;
718 printk("Max logical processors = %d\n",
719 itVpdAreas
.xSlicMaxLogicalProcs
);
720 printk("Max physical processors = %d\n",
721 itVpdAreas
.xSlicMaxPhysicalProcs
);
722 printk("Processor frequency = %lu.%02lu\n", procFreqMhz
,
723 procFreqMhzHundreths
);
724 printk("Time base frequency = %lu.%02lu\n", tbFreqMhz
,
726 systemcfg
->processor
= xIoHriProcessorVpd
[procIx
].xPVR
;
727 printk("Processor version = %x\n", systemcfg
->processor
);
730 static void iSeries_get_cpuinfo(struct seq_file
*m
)
732 seq_printf(m
, "machine\t\t: 64-bit iSeries Logical Partition\n");
739 static int iSeries_get_irq(struct pt_regs
*regs
)
741 /* -2 means ignore this interrupt */
748 static void iSeries_restart(char *cmd
)
756 static void iSeries_power_off(void)
764 static void iSeries_halt(void)
769 extern void setup_default_decr(void);
772 * void __init iSeries_calibrate_decr()
775 * This routine retrieves the internal processor frequency from the VPD,
776 * and sets up the kernel timer decrementer based on that value.
779 static void __init
iSeries_calibrate_decr(void)
781 unsigned long cyclesPerUsec
;
782 struct div_result divres
;
784 /* Compute decrementer (and TB) frequency in cycles/sec */
785 cyclesPerUsec
= ppc_tb_freq
/ 1000000;
788 * Set the amount to refresh the decrementer by. This
789 * is the number of decrementer ticks it takes for
792 tb_ticks_per_jiffy
= ppc_tb_freq
/ HZ
;
795 /* TEST CODE FOR ADJTIME */
796 tb_ticks_per_jiffy
+= tb_ticks_per_jiffy
/ 5000;
797 /* END OF TEST CODE */
801 * tb_ticks_per_sec = freq; would give better accuracy
802 * but tb_ticks_per_sec = tb_ticks_per_jiffy*HZ; assures
803 * that jiffies (and xtime) will match the time returned
804 * by do_gettimeofday.
806 tb_ticks_per_sec
= tb_ticks_per_jiffy
* HZ
;
807 tb_ticks_per_usec
= cyclesPerUsec
;
808 tb_to_us
= mulhwu_scale_factor(ppc_tb_freq
, 1000000);
809 div128_by_32(1024 * 1024, 0, tb_ticks_per_sec
, &divres
);
810 tb_to_xs
= divres
.result_low
;
811 setup_default_decr();
814 static void __init
iSeries_progress(char * st
, unsigned short code
)
816 printk("Progress: [%04x] - %s\n", (unsigned)code
, st
);
817 if (!piranha_simulator
&& mf_initialized
) {
819 mf_display_progress(code
);
825 static void __init
iSeries_fixup_klimit(void)
828 * Change klimit to take into account any ram disk
829 * that may be included
832 klimit
= KERNELBASE
+ (u64
)naca
.xRamDisk
+
833 (naca
.xRamDiskSize
* PAGE_SIZE
);
836 * No ram disk was included - check and see if there
837 * was an embedded system map. Change klimit to take
838 * into account any embedded system map
840 if (embedded_sysmap_end
)
841 klimit
= KERNELBASE
+ ((embedded_sysmap_end
+ 4095) &
846 static int __init
iSeries_src_init(void)
848 /* clear the progress line */
849 ppc_md
.progress(" ", 0xffff);
853 late_initcall(iSeries_src_init
);
855 void __init
iSeries_early_setup(void)
857 iSeries_fixup_klimit();
859 ppc_md
.setup_arch
= iSeries_setup_arch
;
860 ppc_md
.get_cpuinfo
= iSeries_get_cpuinfo
;
861 ppc_md
.init_IRQ
= iSeries_init_IRQ
;
862 ppc_md
.get_irq
= iSeries_get_irq
;
863 ppc_md
.init_early
= iSeries_init_early
,
865 ppc_md
.pcibios_fixup
= iSeries_pci_final_fixup
;
867 ppc_md
.restart
= iSeries_restart
;
868 ppc_md
.power_off
= iSeries_power_off
;
869 ppc_md
.halt
= iSeries_halt
;
871 ppc_md
.get_boot_time
= iSeries_get_boot_time
;
872 ppc_md
.set_rtc_time
= iSeries_set_rtc_time
;
873 ppc_md
.get_rtc_time
= iSeries_get_rtc_time
;
874 ppc_md
.calibrate_decr
= iSeries_calibrate_decr
;
875 ppc_md
.progress
= iSeries_progress
;