2 * arch/ppc64/kernel/maple_time.c
4 * (c) Copyright 2004 Benjamin Herrenschmidt (benh@kernel.crashing.org),
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
16 #include <linux/config.h>
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/kernel.h>
20 #include <linux/param.h>
21 #include <linux/string.h>
23 #include <linux/init.h>
24 #include <linux/time.h>
25 #include <linux/adb.h>
26 #include <linux/pmu.h>
27 #include <linux/interrupt.h>
28 #include <linux/mc146818rtc.h>
29 #include <linux/bcd.h>
31 #include <asm/sections.h>
33 #include <asm/system.h>
35 #include <asm/pgtable.h>
36 #include <asm/machdep.h>
40 #define DBG(x...) printk(x)
45 extern void setup_default_decr(void);
46 extern void GregorianDay(struct rtc_time
* tm
);
48 extern unsigned long ppc_tb_freq
;
49 extern unsigned long ppc_proc_freq
;
50 static int maple_rtc_addr
;
52 static int maple_clock_read(int addr
)
54 outb_p(addr
, maple_rtc_addr
);
55 return inb_p(maple_rtc_addr
+1);
58 static void maple_clock_write(unsigned long val
, int addr
)
60 outb_p(addr
, maple_rtc_addr
);
61 outb_p(val
, maple_rtc_addr
+1);
64 void maple_get_rtc_time(struct rtc_time
*tm
)
68 /* The Linux interpretation of the CMOS clock register contents:
69 * When the Update-In-Progress (UIP) flag goes from 1 to 0, the
70 * RTC registers show the second which has precisely just started.
71 * Let's hope other operating systems interpret the RTC the same way.
74 /* Since the UIP flag is set for about 2.2 ms and the clock
75 * is typically written with a precision of 1 jiffy, trying
76 * to obtain a precision better than a few milliseconds is
77 * an illusion. Only consistency is interesting, this also
78 * allows to use the routine for /dev/rtc without a potential
79 * 1 second kernel busy loop triggered by any reader of /dev/rtc.
82 for (i
= 0; i
<1000000; i
++) {
83 uip
= maple_clock_read(RTC_FREQ_SELECT
);
84 tm
->tm_sec
= maple_clock_read(RTC_SECONDS
);
85 tm
->tm_min
= maple_clock_read(RTC_MINUTES
);
86 tm
->tm_hour
= maple_clock_read(RTC_HOURS
);
87 tm
->tm_mday
= maple_clock_read(RTC_DAY_OF_MONTH
);
88 tm
->tm_mon
= maple_clock_read(RTC_MONTH
);
89 tm
->tm_year
= maple_clock_read(RTC_YEAR
);
90 uip
|= maple_clock_read(RTC_FREQ_SELECT
);
91 if ((uip
& RTC_UIP
)==0)
95 if (!(maple_clock_read(RTC_CONTROL
) & RTC_DM_BINARY
)
97 BCD_TO_BIN(tm
->tm_sec
);
98 BCD_TO_BIN(tm
->tm_min
);
99 BCD_TO_BIN(tm
->tm_hour
);
100 BCD_TO_BIN(tm
->tm_mday
);
101 BCD_TO_BIN(tm
->tm_mon
);
102 BCD_TO_BIN(tm
->tm_year
);
104 if ((tm
->tm_year
+ 1900) < 1970)
110 int maple_set_rtc_time(struct rtc_time
*tm
)
112 unsigned char save_control
, save_freq_select
;
113 int sec
, min
, hour
, mon
, mday
, year
;
115 spin_lock(&rtc_lock
);
117 save_control
= maple_clock_read(RTC_CONTROL
); /* tell the clock it's being set */
119 maple_clock_write((save_control
|RTC_SET
), RTC_CONTROL
);
121 save_freq_select
= maple_clock_read(RTC_FREQ_SELECT
); /* stop and reset prescaler */
123 maple_clock_write((save_freq_select
|RTC_DIV_RESET2
), RTC_FREQ_SELECT
);
132 if (!(save_control
& RTC_DM_BINARY
) || RTC_ALWAYS_BCD
) {
140 maple_clock_write(sec
, RTC_SECONDS
);
141 maple_clock_write(min
, RTC_MINUTES
);
142 maple_clock_write(hour
, RTC_HOURS
);
143 maple_clock_write(mon
, RTC_MONTH
);
144 maple_clock_write(mday
, RTC_DAY_OF_MONTH
);
145 maple_clock_write(year
, RTC_YEAR
);
147 /* The following flags have to be released exactly in this order,
148 * otherwise the DS12887 (popular MC146818A clone with integrated
149 * battery and quartz) will not reset the oscillator and will not
150 * update precisely 500 ms later. You won't find this mentioned in
151 * the Dallas Semiconductor data sheets, but who believes data
152 * sheets anyway ... -- Markus Kuhn
154 maple_clock_write(save_control
, RTC_CONTROL
);
155 maple_clock_write(save_freq_select
, RTC_FREQ_SELECT
);
157 spin_unlock(&rtc_lock
);
162 void __init
maple_get_boot_time(struct rtc_time
*tm
)
164 struct device_node
*rtcs
;
166 rtcs
= find_compatible_devices("rtc", "pnpPNP,b00");
167 if (rtcs
&& rtcs
->addrs
) {
168 maple_rtc_addr
= rtcs
->addrs
[0].address
;
169 printk(KERN_INFO
"Maple: Found RTC at 0x%x\n", maple_rtc_addr
);
171 maple_rtc_addr
= RTC_PORT(0); /* legacy address */
172 printk(KERN_INFO
"Maple: No device node for RTC, assuming "
173 "legacy address (0x%x)\n", maple_rtc_addr
);
176 maple_get_rtc_time(tm
);
179 /* XXX FIXME: Some sane defaults: 125 MHz timebase, 1GHz processor */
180 #define DEFAULT_TB_FREQ 125000000UL
181 #define DEFAULT_PROC_FREQ (DEFAULT_TB_FREQ * 8)
183 void __init
maple_calibrate_decr(void)
185 struct device_node
*cpu
;
186 struct div_result divres
;
187 unsigned int *fp
= NULL
;
190 * The cpu node should have a timebase-frequency property
191 * to tell us the rate at which the decrementer counts.
193 cpu
= of_find_node_by_type(NULL
, "cpu");
195 ppc_tb_freq
= DEFAULT_TB_FREQ
;
197 fp
= (unsigned int *)get_property(cpu
, "timebase-frequency", NULL
);
201 printk(KERN_ERR
"WARNING: Estimating decrementer frequency (not found)\n");
203 ppc_proc_freq
= DEFAULT_PROC_FREQ
;
205 fp
= (unsigned int *)get_property(cpu
, "clock-frequency", NULL
);
209 printk(KERN_ERR
"WARNING: Estimating processor frequency (not found)\n");
213 printk(KERN_INFO
"time_init: decrementer frequency = %lu.%.6lu MHz\n",
214 ppc_tb_freq
/1000000, ppc_tb_freq
%1000000);
215 printk(KERN_INFO
"time_init: processor frequency = %lu.%.6lu MHz\n",
216 ppc_proc_freq
/1000000, ppc_proc_freq
%1000000);
218 tb_ticks_per_jiffy
= ppc_tb_freq
/ HZ
;
219 tb_ticks_per_sec
= tb_ticks_per_jiffy
* HZ
;
220 tb_ticks_per_usec
= ppc_tb_freq
/ 1000000;
221 tb_to_us
= mulhwu_scale_factor(ppc_tb_freq
, 1000000);
222 div128_by_32(1024*1024, 0, tb_ticks_per_sec
, &divres
);
223 tb_to_xs
= divres
.result_low
;
225 setup_default_decr();