[TG3]: Set minimal hw interrupt mitigation.
[linux-2.6/verdex.git] / arch / ppc64 / kernel / mf.c
blob1bd52ece497c6016a80ff535a68d52babbb139c6
1 /*
2 * mf.c
3 * Copyright (C) 2001 Troy D. Armstrong IBM Corporation
4 * Copyright (C) 2004 Stephen Rothwell IBM Corporation
6 * This modules exists as an interface between a Linux secondary partition
7 * running on an iSeries and the primary partition's Virtual Service
8 * Processor (VSP) object. The VSP has final authority over powering on/off
9 * all partitions in the iSeries. It also provides miscellaneous low-level
10 * machine facility type operations.
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
28 #include <linux/types.h>
29 #include <linux/errno.h>
30 #include <linux/kernel.h>
31 #include <linux/init.h>
32 #include <linux/completion.h>
33 #include <linux/delay.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/bcd.h>
37 #include <asm/time.h>
38 #include <asm/uaccess.h>
39 #include <asm/iSeries/vio.h>
40 #include <asm/iSeries/mf.h>
41 #include <asm/iSeries/HvLpConfig.h>
42 #include <asm/iSeries/ItSpCommArea.h>
45 * This is the structure layout for the Machine Facilites LPAR event
46 * flows.
48 struct vsp_cmd_data {
49 u64 token;
50 u16 cmd;
51 HvLpIndex lp_index;
52 u8 result_code;
53 u32 reserved;
54 union {
55 u64 state; /* GetStateOut */
56 u64 ipl_type; /* GetIplTypeOut, Function02SelectIplTypeIn */
57 u64 ipl_mode; /* GetIplModeOut, Function02SelectIplModeIn */
58 u64 page[4]; /* GetSrcHistoryIn */
59 u64 flag; /* GetAutoIplWhenPrimaryIplsOut,
60 SetAutoIplWhenPrimaryIplsIn,
61 WhiteButtonPowerOffIn,
62 Function08FastPowerOffIn,
63 IsSpcnRackPowerIncompleteOut */
64 struct {
65 u64 token;
66 u64 address_type;
67 u64 side;
68 u32 length;
69 u32 offset;
70 } kern; /* SetKernelImageIn, GetKernelImageIn,
71 SetKernelCmdLineIn, GetKernelCmdLineIn */
72 u32 length_out; /* GetKernelImageOut, GetKernelCmdLineOut */
73 u8 reserved[80];
74 } sub_data;
77 struct vsp_rsp_data {
78 struct completion com;
79 struct vsp_cmd_data *response;
82 struct alloc_data {
83 u16 size;
84 u16 type;
85 u32 count;
86 u16 reserved1;
87 u8 reserved2;
88 HvLpIndex target_lp;
91 struct ce_msg_data;
93 typedef void (*ce_msg_comp_hdlr)(void *token, struct ce_msg_data *vsp_cmd_rsp);
95 struct ce_msg_comp_data {
96 ce_msg_comp_hdlr handler;
97 void *token;
100 struct ce_msg_data {
101 u8 ce_msg[12];
102 char reserved[4];
103 struct ce_msg_comp_data *completion;
106 struct io_mf_lp_event {
107 struct HvLpEvent hp_lp_event;
108 u16 subtype_result_code;
109 u16 reserved1;
110 u32 reserved2;
111 union {
112 struct alloc_data alloc;
113 struct ce_msg_data ce_msg;
114 struct vsp_cmd_data vsp_cmd;
115 } data;
118 #define subtype_data(a, b, c, d) \
119 (((a) << 24) + ((b) << 16) + ((c) << 8) + (d))
122 * All outgoing event traffic is kept on a FIFO queue. The first
123 * pointer points to the one that is outstanding, and all new
124 * requests get stuck on the end. Also, we keep a certain number of
125 * preallocated pending events so that we can operate very early in
126 * the boot up sequence (before kmalloc is ready).
128 struct pending_event {
129 struct pending_event *next;
130 struct io_mf_lp_event event;
131 MFCompleteHandler hdlr;
132 char dma_data[72];
133 unsigned dma_data_length;
134 unsigned remote_address;
136 static spinlock_t pending_event_spinlock;
137 static struct pending_event *pending_event_head;
138 static struct pending_event *pending_event_tail;
139 static struct pending_event *pending_event_avail;
140 static struct pending_event pending_event_prealloc[16];
143 * Put a pending event onto the available queue, so it can get reused.
144 * Attention! You must have the pending_event_spinlock before calling!
146 static void free_pending_event(struct pending_event *ev)
148 if (ev != NULL) {
149 ev->next = pending_event_avail;
150 pending_event_avail = ev;
155 * Enqueue the outbound event onto the stack. If the queue was
156 * empty to begin with, we must also issue it via the Hypervisor
157 * interface. There is a section of code below that will touch
158 * the first stack pointer without the protection of the pending_event_spinlock.
159 * This is OK, because we know that nobody else will be modifying
160 * the first pointer when we do this.
162 static int signal_event(struct pending_event *ev)
164 int rc = 0;
165 unsigned long flags;
166 int go = 1;
167 struct pending_event *ev1;
168 HvLpEvent_Rc hv_rc;
170 /* enqueue the event */
171 if (ev != NULL) {
172 ev->next = NULL;
173 spin_lock_irqsave(&pending_event_spinlock, flags);
174 if (pending_event_head == NULL)
175 pending_event_head = ev;
176 else {
177 go = 0;
178 pending_event_tail->next = ev;
180 pending_event_tail = ev;
181 spin_unlock_irqrestore(&pending_event_spinlock, flags);
184 /* send the event */
185 while (go) {
186 go = 0;
188 /* any DMA data to send beforehand? */
189 if (pending_event_head->dma_data_length > 0)
190 HvCallEvent_dmaToSp(pending_event_head->dma_data,
191 pending_event_head->remote_address,
192 pending_event_head->dma_data_length,
193 HvLpDma_Direction_LocalToRemote);
195 hv_rc = HvCallEvent_signalLpEvent(
196 &pending_event_head->event.hp_lp_event);
197 if (hv_rc != HvLpEvent_Rc_Good) {
198 printk(KERN_ERR "mf.c: HvCallEvent_signalLpEvent() "
199 "failed with %d\n", (int)hv_rc);
201 spin_lock_irqsave(&pending_event_spinlock, flags);
202 ev1 = pending_event_head;
203 pending_event_head = pending_event_head->next;
204 if (pending_event_head != NULL)
205 go = 1;
206 spin_unlock_irqrestore(&pending_event_spinlock, flags);
208 if (ev1 == ev)
209 rc = -EIO;
210 else if (ev1->hdlr != NULL)
211 (*ev1->hdlr)((void *)ev1->event.hp_lp_event.xCorrelationToken, -EIO);
213 spin_lock_irqsave(&pending_event_spinlock, flags);
214 free_pending_event(ev1);
215 spin_unlock_irqrestore(&pending_event_spinlock, flags);
219 return rc;
223 * Allocate a new pending_event structure, and initialize it.
225 static struct pending_event *new_pending_event(void)
227 struct pending_event *ev = NULL;
228 HvLpIndex primary_lp = HvLpConfig_getPrimaryLpIndex();
229 unsigned long flags;
230 struct HvLpEvent *hev;
232 spin_lock_irqsave(&pending_event_spinlock, flags);
233 if (pending_event_avail != NULL) {
234 ev = pending_event_avail;
235 pending_event_avail = pending_event_avail->next;
237 spin_unlock_irqrestore(&pending_event_spinlock, flags);
238 if (ev == NULL) {
239 ev = kmalloc(sizeof(struct pending_event), GFP_ATOMIC);
240 if (ev == NULL) {
241 printk(KERN_ERR "mf.c: unable to kmalloc %ld bytes\n",
242 sizeof(struct pending_event));
243 return NULL;
246 memset(ev, 0, sizeof(struct pending_event));
247 hev = &ev->event.hp_lp_event;
248 hev->xFlags.xValid = 1;
249 hev->xFlags.xAckType = HvLpEvent_AckType_ImmediateAck;
250 hev->xFlags.xAckInd = HvLpEvent_AckInd_DoAck;
251 hev->xFlags.xFunction = HvLpEvent_Function_Int;
252 hev->xType = HvLpEvent_Type_MachineFac;
253 hev->xSourceLp = HvLpConfig_getLpIndex();
254 hev->xTargetLp = primary_lp;
255 hev->xSizeMinus1 = sizeof(ev->event) - 1;
256 hev->xRc = HvLpEvent_Rc_Good;
257 hev->xSourceInstanceId = HvCallEvent_getSourceLpInstanceId(primary_lp,
258 HvLpEvent_Type_MachineFac);
259 hev->xTargetInstanceId = HvCallEvent_getTargetLpInstanceId(primary_lp,
260 HvLpEvent_Type_MachineFac);
262 return ev;
265 static int signal_vsp_instruction(struct vsp_cmd_data *vsp_cmd)
267 struct pending_event *ev = new_pending_event();
268 int rc;
269 struct vsp_rsp_data response;
271 if (ev == NULL)
272 return -ENOMEM;
274 init_completion(&response.com);
275 response.response = vsp_cmd;
276 ev->event.hp_lp_event.xSubtype = 6;
277 ev->event.hp_lp_event.x.xSubtypeData =
278 subtype_data('M', 'F', 'V', 'I');
279 ev->event.data.vsp_cmd.token = (u64)&response;
280 ev->event.data.vsp_cmd.cmd = vsp_cmd->cmd;
281 ev->event.data.vsp_cmd.lp_index = HvLpConfig_getLpIndex();
282 ev->event.data.vsp_cmd.result_code = 0xFF;
283 ev->event.data.vsp_cmd.reserved = 0;
284 memcpy(&(ev->event.data.vsp_cmd.sub_data),
285 &(vsp_cmd->sub_data), sizeof(vsp_cmd->sub_data));
286 mb();
288 rc = signal_event(ev);
289 if (rc == 0)
290 wait_for_completion(&response.com);
291 return rc;
296 * Send a 12-byte CE message to the primary partition VSP object
298 static int signal_ce_msg(char *ce_msg, struct ce_msg_comp_data *completion)
300 struct pending_event *ev = new_pending_event();
302 if (ev == NULL)
303 return -ENOMEM;
305 ev->event.hp_lp_event.xSubtype = 0;
306 ev->event.hp_lp_event.x.xSubtypeData =
307 subtype_data('M', 'F', 'C', 'E');
308 memcpy(ev->event.data.ce_msg.ce_msg, ce_msg, 12);
309 ev->event.data.ce_msg.completion = completion;
310 return signal_event(ev);
314 * Send a 12-byte CE message (with no data) to the primary partition VSP object
316 static int signal_ce_msg_simple(u8 ce_op, struct ce_msg_comp_data *completion)
318 u8 ce_msg[12];
320 memset(ce_msg, 0, sizeof(ce_msg));
321 ce_msg[3] = ce_op;
322 return signal_ce_msg(ce_msg, completion);
326 * Send a 12-byte CE message and DMA data to the primary partition VSP object
328 static int dma_and_signal_ce_msg(char *ce_msg,
329 struct ce_msg_comp_data *completion, void *dma_data,
330 unsigned dma_data_length, unsigned remote_address)
332 struct pending_event *ev = new_pending_event();
334 if (ev == NULL)
335 return -ENOMEM;
337 ev->event.hp_lp_event.xSubtype = 0;
338 ev->event.hp_lp_event.x.xSubtypeData =
339 subtype_data('M', 'F', 'C', 'E');
340 memcpy(ev->event.data.ce_msg.ce_msg, ce_msg, 12);
341 ev->event.data.ce_msg.completion = completion;
342 memcpy(ev->dma_data, dma_data, dma_data_length);
343 ev->dma_data_length = dma_data_length;
344 ev->remote_address = remote_address;
345 return signal_event(ev);
349 * Initiate a nice (hopefully) shutdown of Linux. We simply are
350 * going to try and send the init process a SIGINT signal. If
351 * this fails (why?), we'll simply force it off in a not-so-nice
352 * manner.
354 static int shutdown(void)
356 int rc = kill_proc(1, SIGINT, 1);
358 if (rc) {
359 printk(KERN_ALERT "mf.c: SIGINT to init failed (%d), "
360 "hard shutdown commencing\n", rc);
361 mf_power_off();
362 } else
363 printk(KERN_INFO "mf.c: init has been successfully notified "
364 "to proceed with shutdown\n");
365 return rc;
369 * The primary partition VSP object is sending us a new
370 * event flow. Handle it...
372 static void handle_int(struct io_mf_lp_event *event)
374 struct ce_msg_data *ce_msg_data;
375 struct ce_msg_data *pce_msg_data;
376 unsigned long flags;
377 struct pending_event *pev;
379 /* ack the interrupt */
380 event->hp_lp_event.xRc = HvLpEvent_Rc_Good;
381 HvCallEvent_ackLpEvent(&event->hp_lp_event);
383 /* process interrupt */
384 switch (event->hp_lp_event.xSubtype) {
385 case 0: /* CE message */
386 ce_msg_data = &event->data.ce_msg;
387 switch (ce_msg_data->ce_msg[3]) {
388 case 0x5B: /* power control notification */
389 if ((ce_msg_data->ce_msg[5] & 0x20) != 0) {
390 printk(KERN_INFO "mf.c: Commencing partition shutdown\n");
391 if (shutdown() == 0)
392 signal_ce_msg_simple(0xDB, NULL);
394 break;
395 case 0xC0: /* get time */
396 spin_lock_irqsave(&pending_event_spinlock, flags);
397 pev = pending_event_head;
398 if (pev != NULL)
399 pending_event_head = pending_event_head->next;
400 spin_unlock_irqrestore(&pending_event_spinlock, flags);
401 if (pev == NULL)
402 break;
403 pce_msg_data = &pev->event.data.ce_msg;
404 if (pce_msg_data->ce_msg[3] != 0x40)
405 break;
406 if (pce_msg_data->completion != NULL) {
407 ce_msg_comp_hdlr handler =
408 pce_msg_data->completion->handler;
409 void *token = pce_msg_data->completion->token;
411 if (handler != NULL)
412 (*handler)(token, ce_msg_data);
414 spin_lock_irqsave(&pending_event_spinlock, flags);
415 free_pending_event(pev);
416 spin_unlock_irqrestore(&pending_event_spinlock, flags);
417 /* send next waiting event */
418 if (pending_event_head != NULL)
419 signal_event(NULL);
420 break;
422 break;
423 case 1: /* IT sys shutdown */
424 printk(KERN_INFO "mf.c: Commencing system shutdown\n");
425 shutdown();
426 break;
431 * The primary partition VSP object is acknowledging the receipt
432 * of a flow we sent to them. If there are other flows queued
433 * up, we must send another one now...
435 static void handle_ack(struct io_mf_lp_event *event)
437 unsigned long flags;
438 struct pending_event *two = NULL;
439 unsigned long free_it = 0;
440 struct ce_msg_data *ce_msg_data;
441 struct ce_msg_data *pce_msg_data;
442 struct vsp_rsp_data *rsp;
444 /* handle current event */
445 if (pending_event_head == NULL) {
446 printk(KERN_ERR "mf.c: stack empty for receiving ack\n");
447 return;
450 switch (event->hp_lp_event.xSubtype) {
451 case 0: /* CE msg */
452 ce_msg_data = &event->data.ce_msg;
453 if (ce_msg_data->ce_msg[3] != 0x40) {
454 free_it = 1;
455 break;
457 if (ce_msg_data->ce_msg[2] == 0)
458 break;
459 free_it = 1;
460 pce_msg_data = &pending_event_head->event.data.ce_msg;
461 if (pce_msg_data->completion != NULL) {
462 ce_msg_comp_hdlr handler =
463 pce_msg_data->completion->handler;
464 void *token = pce_msg_data->completion->token;
466 if (handler != NULL)
467 (*handler)(token, ce_msg_data);
469 break;
470 case 4: /* allocate */
471 case 5: /* deallocate */
472 if (pending_event_head->hdlr != NULL)
473 (*pending_event_head->hdlr)((void *)event->hp_lp_event.xCorrelationToken, event->data.alloc.count);
474 free_it = 1;
475 break;
476 case 6:
477 free_it = 1;
478 rsp = (struct vsp_rsp_data *)event->data.vsp_cmd.token;
479 if (rsp == NULL) {
480 printk(KERN_ERR "mf.c: no rsp\n");
481 break;
483 if (rsp->response != NULL)
484 memcpy(rsp->response, &event->data.vsp_cmd,
485 sizeof(event->data.vsp_cmd));
486 complete(&rsp->com);
487 break;
490 /* remove from queue */
491 spin_lock_irqsave(&pending_event_spinlock, flags);
492 if ((pending_event_head != NULL) && (free_it == 1)) {
493 struct pending_event *oldHead = pending_event_head;
495 pending_event_head = pending_event_head->next;
496 two = pending_event_head;
497 free_pending_event(oldHead);
499 spin_unlock_irqrestore(&pending_event_spinlock, flags);
501 /* send next waiting event */
502 if (two != NULL)
503 signal_event(NULL);
507 * This is the generic event handler we are registering with
508 * the Hypervisor. Ensure the flows are for us, and then
509 * parse it enough to know if it is an interrupt or an
510 * acknowledge.
512 static void hv_handler(struct HvLpEvent *event, struct pt_regs *regs)
514 if ((event != NULL) && (event->xType == HvLpEvent_Type_MachineFac)) {
515 switch(event->xFlags.xFunction) {
516 case HvLpEvent_Function_Ack:
517 handle_ack((struct io_mf_lp_event *)event);
518 break;
519 case HvLpEvent_Function_Int:
520 handle_int((struct io_mf_lp_event *)event);
521 break;
522 default:
523 printk(KERN_ERR "mf.c: non ack/int event received\n");
524 break;
526 } else
527 printk(KERN_ERR "mf.c: alien event received\n");
531 * Global kernel interface to allocate and seed events into the
532 * Hypervisor.
534 void mf_allocate_lp_events(HvLpIndex target_lp, HvLpEvent_Type type,
535 unsigned size, unsigned count, MFCompleteHandler hdlr,
536 void *user_token)
538 struct pending_event *ev = new_pending_event();
539 int rc;
541 if (ev == NULL) {
542 rc = -ENOMEM;
543 } else {
544 ev->event.hp_lp_event.xSubtype = 4;
545 ev->event.hp_lp_event.xCorrelationToken = (u64)user_token;
546 ev->event.hp_lp_event.x.xSubtypeData =
547 subtype_data('M', 'F', 'M', 'A');
548 ev->event.data.alloc.target_lp = target_lp;
549 ev->event.data.alloc.type = type;
550 ev->event.data.alloc.size = size;
551 ev->event.data.alloc.count = count;
552 ev->hdlr = hdlr;
553 rc = signal_event(ev);
555 if ((rc != 0) && (hdlr != NULL))
556 (*hdlr)(user_token, rc);
558 EXPORT_SYMBOL(mf_allocate_lp_events);
561 * Global kernel interface to unseed and deallocate events already in
562 * Hypervisor.
564 void mf_deallocate_lp_events(HvLpIndex target_lp, HvLpEvent_Type type,
565 unsigned count, MFCompleteHandler hdlr, void *user_token)
567 struct pending_event *ev = new_pending_event();
568 int rc;
570 if (ev == NULL)
571 rc = -ENOMEM;
572 else {
573 ev->event.hp_lp_event.xSubtype = 5;
574 ev->event.hp_lp_event.xCorrelationToken = (u64)user_token;
575 ev->event.hp_lp_event.x.xSubtypeData =
576 subtype_data('M', 'F', 'M', 'D');
577 ev->event.data.alloc.target_lp = target_lp;
578 ev->event.data.alloc.type = type;
579 ev->event.data.alloc.count = count;
580 ev->hdlr = hdlr;
581 rc = signal_event(ev);
583 if ((rc != 0) && (hdlr != NULL))
584 (*hdlr)(user_token, rc);
586 EXPORT_SYMBOL(mf_deallocate_lp_events);
589 * Global kernel interface to tell the VSP object in the primary
590 * partition to power this partition off.
592 void mf_power_off(void)
594 printk(KERN_INFO "mf.c: Down it goes...\n");
595 signal_ce_msg_simple(0x4d, NULL);
596 for (;;)
601 * Global kernel interface to tell the VSP object in the primary
602 * partition to reboot this partition.
604 void mf_reboot(void)
606 printk(KERN_INFO "mf.c: Preparing to bounce...\n");
607 signal_ce_msg_simple(0x4e, NULL);
608 for (;;)
613 * Display a single word SRC onto the VSP control panel.
615 void mf_display_src(u32 word)
617 u8 ce[12];
619 memset(ce, 0, sizeof(ce));
620 ce[3] = 0x4a;
621 ce[7] = 0x01;
622 ce[8] = word >> 24;
623 ce[9] = word >> 16;
624 ce[10] = word >> 8;
625 ce[11] = word;
626 signal_ce_msg(ce, NULL);
630 * Display a single word SRC of the form "PROGXXXX" on the VSP control panel.
632 void mf_display_progress(u16 value)
634 u8 ce[12];
635 u8 src[72];
637 memcpy(ce, "\x00\x00\x04\x4A\x00\x00\x00\x48\x00\x00\x00\x00", 12);
638 memcpy(src, "\x01\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00"
639 "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
640 "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
641 "\x00\x00\x00\x00PROGxxxx ",
642 72);
643 src[6] = value >> 8;
644 src[7] = value & 255;
645 src[44] = "0123456789ABCDEF"[(value >> 12) & 15];
646 src[45] = "0123456789ABCDEF"[(value >> 8) & 15];
647 src[46] = "0123456789ABCDEF"[(value >> 4) & 15];
648 src[47] = "0123456789ABCDEF"[value & 15];
649 dma_and_signal_ce_msg(ce, NULL, src, sizeof(src), 9 * 64 * 1024);
653 * Clear the VSP control panel. Used to "erase" an SRC that was
654 * previously displayed.
656 void mf_clear_src(void)
658 signal_ce_msg_simple(0x4b, NULL);
662 * Initialization code here.
664 void mf_init(void)
666 int i;
668 /* initialize */
669 spin_lock_init(&pending_event_spinlock);
670 for (i = 0;
671 i < sizeof(pending_event_prealloc) / sizeof(*pending_event_prealloc);
672 ++i)
673 free_pending_event(&pending_event_prealloc[i]);
674 HvLpEvent_registerHandler(HvLpEvent_Type_MachineFac, &hv_handler);
676 /* virtual continue ack */
677 signal_ce_msg_simple(0x57, NULL);
679 /* initialization complete */
680 printk(KERN_NOTICE "mf.c: iSeries Linux LPAR Machine Facilities "
681 "initialized\n");
684 struct rtc_time_data {
685 struct completion com;
686 struct ce_msg_data ce_msg;
687 int rc;
690 static void get_rtc_time_complete(void *token, struct ce_msg_data *ce_msg)
692 struct rtc_time_data *rtc = token;
694 memcpy(&rtc->ce_msg, ce_msg, sizeof(rtc->ce_msg));
695 rtc->rc = 0;
696 complete(&rtc->com);
699 int mf_get_rtc(struct rtc_time *tm)
701 struct ce_msg_comp_data ce_complete;
702 struct rtc_time_data rtc_data;
703 int rc;
705 memset(&ce_complete, 0, sizeof(ce_complete));
706 memset(&rtc_data, 0, sizeof(rtc_data));
707 init_completion(&rtc_data.com);
708 ce_complete.handler = &get_rtc_time_complete;
709 ce_complete.token = &rtc_data;
710 rc = signal_ce_msg_simple(0x40, &ce_complete);
711 if (rc)
712 return rc;
713 wait_for_completion(&rtc_data.com);
714 tm->tm_wday = 0;
715 tm->tm_yday = 0;
716 tm->tm_isdst = 0;
717 if (rtc_data.rc) {
718 tm->tm_sec = 0;
719 tm->tm_min = 0;
720 tm->tm_hour = 0;
721 tm->tm_mday = 15;
722 tm->tm_mon = 5;
723 tm->tm_year = 52;
724 return rtc_data.rc;
727 if ((rtc_data.ce_msg.ce_msg[2] == 0xa9) ||
728 (rtc_data.ce_msg.ce_msg[2] == 0xaf)) {
729 /* TOD clock is not set */
730 tm->tm_sec = 1;
731 tm->tm_min = 1;
732 tm->tm_hour = 1;
733 tm->tm_mday = 10;
734 tm->tm_mon = 8;
735 tm->tm_year = 71;
736 mf_set_rtc(tm);
739 u8 *ce_msg = rtc_data.ce_msg.ce_msg;
740 u8 year = ce_msg[5];
741 u8 sec = ce_msg[6];
742 u8 min = ce_msg[7];
743 u8 hour = ce_msg[8];
744 u8 day = ce_msg[10];
745 u8 mon = ce_msg[11];
747 BCD_TO_BIN(sec);
748 BCD_TO_BIN(min);
749 BCD_TO_BIN(hour);
750 BCD_TO_BIN(day);
751 BCD_TO_BIN(mon);
752 BCD_TO_BIN(year);
754 if (year <= 69)
755 year += 100;
757 tm->tm_sec = sec;
758 tm->tm_min = min;
759 tm->tm_hour = hour;
760 tm->tm_mday = day;
761 tm->tm_mon = mon;
762 tm->tm_year = year;
765 return 0;
768 int mf_set_rtc(struct rtc_time *tm)
770 char ce_time[12];
771 u8 day, mon, hour, min, sec, y1, y2;
772 unsigned year;
774 year = 1900 + tm->tm_year;
775 y1 = year / 100;
776 y2 = year % 100;
778 sec = tm->tm_sec;
779 min = tm->tm_min;
780 hour = tm->tm_hour;
781 day = tm->tm_mday;
782 mon = tm->tm_mon + 1;
784 BIN_TO_BCD(sec);
785 BIN_TO_BCD(min);
786 BIN_TO_BCD(hour);
787 BIN_TO_BCD(mon);
788 BIN_TO_BCD(day);
789 BIN_TO_BCD(y1);
790 BIN_TO_BCD(y2);
792 memset(ce_time, 0, sizeof(ce_time));
793 ce_time[3] = 0x41;
794 ce_time[4] = y1;
795 ce_time[5] = y2;
796 ce_time[6] = sec;
797 ce_time[7] = min;
798 ce_time[8] = hour;
799 ce_time[10] = day;
800 ce_time[11] = mon;
802 return signal_ce_msg(ce_time, NULL);
805 #ifdef CONFIG_PROC_FS
807 static int proc_mf_dump_cmdline(char *page, char **start, off_t off,
808 int count, int *eof, void *data)
810 int len;
811 char *p;
812 struct vsp_cmd_data vsp_cmd;
813 int rc;
814 dma_addr_t dma_addr;
816 /* The HV appears to return no more than 256 bytes of command line */
817 if (off >= 256)
818 return 0;
819 if ((off + count) > 256)
820 count = 256 - off;
822 dma_addr = dma_map_single(iSeries_vio_dev, page, off + count,
823 DMA_FROM_DEVICE);
824 if (dma_mapping_error(dma_addr))
825 return -ENOMEM;
826 memset(page, 0, off + count);
827 memset(&vsp_cmd, 0, sizeof(vsp_cmd));
828 vsp_cmd.cmd = 33;
829 vsp_cmd.sub_data.kern.token = dma_addr;
830 vsp_cmd.sub_data.kern.address_type = HvLpDma_AddressType_TceIndex;
831 vsp_cmd.sub_data.kern.side = (u64)data;
832 vsp_cmd.sub_data.kern.length = off + count;
833 mb();
834 rc = signal_vsp_instruction(&vsp_cmd);
835 dma_unmap_single(iSeries_vio_dev, dma_addr, off + count,
836 DMA_FROM_DEVICE);
837 if (rc)
838 return rc;
839 if (vsp_cmd.result_code != 0)
840 return -ENOMEM;
841 p = page;
842 len = 0;
843 while (len < (off + count)) {
844 if ((*p == '\0') || (*p == '\n')) {
845 if (*p == '\0')
846 *p = '\n';
847 p++;
848 len++;
849 *eof = 1;
850 break;
852 p++;
853 len++;
856 if (len < off) {
857 *eof = 1;
858 len = 0;
860 return len;
863 #if 0
864 static int mf_getVmlinuxChunk(char *buffer, int *size, int offset, u64 side)
866 struct vsp_cmd_data vsp_cmd;
867 int rc;
868 int len = *size;
869 dma_addr_t dma_addr;
871 dma_addr = dma_map_single(iSeries_vio_dev, buffer, len,
872 DMA_FROM_DEVICE);
873 memset(buffer, 0, len);
874 memset(&vsp_cmd, 0, sizeof(vsp_cmd));
875 vsp_cmd.cmd = 32;
876 vsp_cmd.sub_data.kern.token = dma_addr;
877 vsp_cmd.sub_data.kern.address_type = HvLpDma_AddressType_TceIndex;
878 vsp_cmd.sub_data.kern.side = side;
879 vsp_cmd.sub_data.kern.offset = offset;
880 vsp_cmd.sub_data.kern.length = len;
881 mb();
882 rc = signal_vsp_instruction(&vsp_cmd);
883 if (rc == 0) {
884 if (vsp_cmd.result_code == 0)
885 *size = vsp_cmd.sub_data.length_out;
886 else
887 rc = -ENOMEM;
890 dma_unmap_single(iSeries_vio_dev, dma_addr, len, DMA_FROM_DEVICE);
892 return rc;
895 static int proc_mf_dump_vmlinux(char *page, char **start, off_t off,
896 int count, int *eof, void *data)
898 int sizeToGet = count;
900 if (!capable(CAP_SYS_ADMIN))
901 return -EACCES;
903 if (mf_getVmlinuxChunk(page, &sizeToGet, off, (u64)data) == 0) {
904 if (sizeToGet != 0) {
905 *start = page + off;
906 return sizeToGet;
908 *eof = 1;
909 return 0;
911 *eof = 1;
912 return 0;
914 #endif
916 static int proc_mf_dump_side(char *page, char **start, off_t off,
917 int count, int *eof, void *data)
919 int len;
920 char mf_current_side = ' ';
921 struct vsp_cmd_data vsp_cmd;
923 memset(&vsp_cmd, 0, sizeof(vsp_cmd));
924 vsp_cmd.cmd = 2;
925 vsp_cmd.sub_data.ipl_type = 0;
926 mb();
928 if (signal_vsp_instruction(&vsp_cmd) == 0) {
929 if (vsp_cmd.result_code == 0) {
930 switch (vsp_cmd.sub_data.ipl_type) {
931 case 0: mf_current_side = 'A';
932 break;
933 case 1: mf_current_side = 'B';
934 break;
935 case 2: mf_current_side = 'C';
936 break;
937 default: mf_current_side = 'D';
938 break;
943 len = sprintf(page, "%c\n", mf_current_side);
945 if (len <= (off + count))
946 *eof = 1;
947 *start = page + off;
948 len -= off;
949 if (len > count)
950 len = count;
951 if (len < 0)
952 len = 0;
953 return len;
956 static int proc_mf_change_side(struct file *file, const char __user *buffer,
957 unsigned long count, void *data)
959 char side;
960 u64 newSide;
961 struct vsp_cmd_data vsp_cmd;
963 if (!capable(CAP_SYS_ADMIN))
964 return -EACCES;
966 if (count == 0)
967 return 0;
969 if (get_user(side, buffer))
970 return -EFAULT;
972 switch (side) {
973 case 'A': newSide = 0;
974 break;
975 case 'B': newSide = 1;
976 break;
977 case 'C': newSide = 2;
978 break;
979 case 'D': newSide = 3;
980 break;
981 default:
982 printk(KERN_ERR "mf_proc.c: proc_mf_change_side: invalid side\n");
983 return -EINVAL;
986 memset(&vsp_cmd, 0, sizeof(vsp_cmd));
987 vsp_cmd.sub_data.ipl_type = newSide;
988 vsp_cmd.cmd = 10;
990 (void)signal_vsp_instruction(&vsp_cmd);
992 return count;
995 #if 0
996 static void mf_getSrcHistory(char *buffer, int size)
998 struct IplTypeReturnStuff return_stuff;
999 struct pending_event *ev = new_pending_event();
1000 int rc = 0;
1001 char *pages[4];
1003 pages[0] = kmalloc(4096, GFP_ATOMIC);
1004 pages[1] = kmalloc(4096, GFP_ATOMIC);
1005 pages[2] = kmalloc(4096, GFP_ATOMIC);
1006 pages[3] = kmalloc(4096, GFP_ATOMIC);
1007 if ((ev == NULL) || (pages[0] == NULL) || (pages[1] == NULL)
1008 || (pages[2] == NULL) || (pages[3] == NULL))
1009 return -ENOMEM;
1011 return_stuff.xType = 0;
1012 return_stuff.xRc = 0;
1013 return_stuff.xDone = 0;
1014 ev->event.hp_lp_event.xSubtype = 6;
1015 ev->event.hp_lp_event.x.xSubtypeData =
1016 subtype_data('M', 'F', 'V', 'I');
1017 ev->event.data.vsp_cmd.xEvent = &return_stuff;
1018 ev->event.data.vsp_cmd.cmd = 4;
1019 ev->event.data.vsp_cmd.lp_index = HvLpConfig_getLpIndex();
1020 ev->event.data.vsp_cmd.result_code = 0xFF;
1021 ev->event.data.vsp_cmd.reserved = 0;
1022 ev->event.data.vsp_cmd.sub_data.page[0] = ISERIES_HV_ADDR(pages[0]);
1023 ev->event.data.vsp_cmd.sub_data.page[1] = ISERIES_HV_ADDR(pages[1]);
1024 ev->event.data.vsp_cmd.sub_data.page[2] = ISERIES_HV_ADDR(pages[2]);
1025 ev->event.data.vsp_cmd.sub_data.page[3] = ISERIES_HV_ADDR(pages[3]);
1026 mb();
1027 if (signal_event(ev) != 0)
1028 return;
1030 while (return_stuff.xDone != 1)
1031 udelay(10);
1032 if (return_stuff.xRc == 0)
1033 memcpy(buffer, pages[0], size);
1034 kfree(pages[0]);
1035 kfree(pages[1]);
1036 kfree(pages[2]);
1037 kfree(pages[3]);
1039 #endif
1041 static int proc_mf_dump_src(char *page, char **start, off_t off,
1042 int count, int *eof, void *data)
1044 #if 0
1045 int len;
1047 mf_getSrcHistory(page, count);
1048 len = count;
1049 len -= off;
1050 if (len < count) {
1051 *eof = 1;
1052 if (len <= 0)
1053 return 0;
1054 } else
1055 len = count;
1056 *start = page + off;
1057 return len;
1058 #else
1059 return 0;
1060 #endif
1063 static int proc_mf_change_src(struct file *file, const char __user *buffer,
1064 unsigned long count, void *data)
1066 char stkbuf[10];
1068 if (!capable(CAP_SYS_ADMIN))
1069 return -EACCES;
1071 if ((count < 4) && (count != 1)) {
1072 printk(KERN_ERR "mf_proc: invalid src\n");
1073 return -EINVAL;
1076 if (count > (sizeof(stkbuf) - 1))
1077 count = sizeof(stkbuf) - 1;
1078 if (copy_from_user(stkbuf, buffer, count))
1079 return -EFAULT;
1081 if ((count == 1) && (*stkbuf == '\0'))
1082 mf_clear_src();
1083 else
1084 mf_display_src(*(u32 *)stkbuf);
1086 return count;
1089 static int proc_mf_change_cmdline(struct file *file, const char __user *buffer,
1090 unsigned long count, void *data)
1092 struct vsp_cmd_data vsp_cmd;
1093 dma_addr_t dma_addr;
1094 char *page;
1095 int ret = -EACCES;
1097 if (!capable(CAP_SYS_ADMIN))
1098 goto out;
1100 dma_addr = 0;
1101 page = dma_alloc_coherent(iSeries_vio_dev, count, &dma_addr,
1102 GFP_ATOMIC);
1103 ret = -ENOMEM;
1104 if (page == NULL)
1105 goto out;
1107 ret = -EFAULT;
1108 if (copy_from_user(page, buffer, count))
1109 goto out_free;
1111 memset(&vsp_cmd, 0, sizeof(vsp_cmd));
1112 vsp_cmd.cmd = 31;
1113 vsp_cmd.sub_data.kern.token = dma_addr;
1114 vsp_cmd.sub_data.kern.address_type = HvLpDma_AddressType_TceIndex;
1115 vsp_cmd.sub_data.kern.side = (u64)data;
1116 vsp_cmd.sub_data.kern.length = count;
1117 mb();
1118 (void)signal_vsp_instruction(&vsp_cmd);
1119 ret = count;
1121 out_free:
1122 dma_free_coherent(iSeries_vio_dev, count, page, dma_addr);
1123 out:
1124 return ret;
1127 static ssize_t proc_mf_change_vmlinux(struct file *file,
1128 const char __user *buf,
1129 size_t count, loff_t *ppos)
1131 struct proc_dir_entry *dp = PDE(file->f_dentry->d_inode);
1132 ssize_t rc;
1133 dma_addr_t dma_addr;
1134 char *page;
1135 struct vsp_cmd_data vsp_cmd;
1137 rc = -EACCES;
1138 if (!capable(CAP_SYS_ADMIN))
1139 goto out;
1141 dma_addr = 0;
1142 page = dma_alloc_coherent(iSeries_vio_dev, count, &dma_addr,
1143 GFP_ATOMIC);
1144 rc = -ENOMEM;
1145 if (page == NULL) {
1146 printk(KERN_ERR "mf.c: couldn't allocate memory to set vmlinux chunk\n");
1147 goto out;
1149 rc = -EFAULT;
1150 if (copy_from_user(page, buf, count))
1151 goto out_free;
1153 memset(&vsp_cmd, 0, sizeof(vsp_cmd));
1154 vsp_cmd.cmd = 30;
1155 vsp_cmd.sub_data.kern.token = dma_addr;
1156 vsp_cmd.sub_data.kern.address_type = HvLpDma_AddressType_TceIndex;
1157 vsp_cmd.sub_data.kern.side = (u64)dp->data;
1158 vsp_cmd.sub_data.kern.offset = *ppos;
1159 vsp_cmd.sub_data.kern.length = count;
1160 mb();
1161 rc = signal_vsp_instruction(&vsp_cmd);
1162 if (rc)
1163 goto out_free;
1164 rc = -ENOMEM;
1165 if (vsp_cmd.result_code != 0)
1166 goto out_free;
1168 *ppos += count;
1169 rc = count;
1170 out_free:
1171 dma_free_coherent(iSeries_vio_dev, count, page, dma_addr);
1172 out:
1173 return rc;
1176 static struct file_operations proc_vmlinux_operations = {
1177 .write = proc_mf_change_vmlinux,
1180 static int __init mf_proc_init(void)
1182 struct proc_dir_entry *mf_proc_root;
1183 struct proc_dir_entry *ent;
1184 struct proc_dir_entry *mf;
1185 char name[2];
1186 int i;
1188 mf_proc_root = proc_mkdir("iSeries/mf", NULL);
1189 if (!mf_proc_root)
1190 return 1;
1192 name[1] = '\0';
1193 for (i = 0; i < 4; i++) {
1194 name[0] = 'A' + i;
1195 mf = proc_mkdir(name, mf_proc_root);
1196 if (!mf)
1197 return 1;
1199 ent = create_proc_entry("cmdline", S_IFREG|S_IRUSR|S_IWUSR, mf);
1200 if (!ent)
1201 return 1;
1202 ent->nlink = 1;
1203 ent->data = (void *)(long)i;
1204 ent->read_proc = proc_mf_dump_cmdline;
1205 ent->write_proc = proc_mf_change_cmdline;
1207 if (i == 3) /* no vmlinux entry for 'D' */
1208 continue;
1210 ent = create_proc_entry("vmlinux", S_IFREG|S_IWUSR, mf);
1211 if (!ent)
1212 return 1;
1213 ent->nlink = 1;
1214 ent->data = (void *)(long)i;
1215 ent->proc_fops = &proc_vmlinux_operations;
1218 ent = create_proc_entry("side", S_IFREG|S_IRUSR|S_IWUSR, mf_proc_root);
1219 if (!ent)
1220 return 1;
1221 ent->nlink = 1;
1222 ent->data = (void *)0;
1223 ent->read_proc = proc_mf_dump_side;
1224 ent->write_proc = proc_mf_change_side;
1226 ent = create_proc_entry("src", S_IFREG|S_IRUSR|S_IWUSR, mf_proc_root);
1227 if (!ent)
1228 return 1;
1229 ent->nlink = 1;
1230 ent->data = (void *)0;
1231 ent->read_proc = proc_mf_dump_src;
1232 ent->write_proc = proc_mf_change_src;
1234 return 0;
1237 __initcall(mf_proc_init);
1239 #endif /* CONFIG_PROC_FS */