[TG3]: Set minimal hw interrupt mitigation.
[linux-2.6/verdex.git] / arch / ppc64 / mm / init.c
blob4b42aff74d7312e7f2cdad4aa58dcdaa13a04e1b
1 /*
2 * PowerPC version
3 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
5 * Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
6 * and Cort Dougan (PReP) (cort@cs.nmt.edu)
7 * Copyright (C) 1996 Paul Mackerras
8 * Amiga/APUS changes by Jesper Skov (jskov@cygnus.co.uk).
10 * Derived from "arch/i386/mm/init.c"
11 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
13 * Dave Engebretsen <engebret@us.ibm.com>
14 * Rework for PPC64 port.
16 * This program is free software; you can redistribute it and/or
17 * modify it under the terms of the GNU General Public License
18 * as published by the Free Software Foundation; either version
19 * 2 of the License, or (at your option) any later version.
23 #include <linux/config.h>
24 #include <linux/signal.h>
25 #include <linux/sched.h>
26 #include <linux/kernel.h>
27 #include <linux/errno.h>
28 #include <linux/string.h>
29 #include <linux/types.h>
30 #include <linux/mman.h>
31 #include <linux/mm.h>
32 #include <linux/swap.h>
33 #include <linux/stddef.h>
34 #include <linux/vmalloc.h>
35 #include <linux/init.h>
36 #include <linux/delay.h>
37 #include <linux/bootmem.h>
38 #include <linux/highmem.h>
39 #include <linux/idr.h>
40 #include <linux/nodemask.h>
41 #include <linux/module.h>
43 #include <asm/pgalloc.h>
44 #include <asm/page.h>
45 #include <asm/abs_addr.h>
46 #include <asm/prom.h>
47 #include <asm/lmb.h>
48 #include <asm/rtas.h>
49 #include <asm/io.h>
50 #include <asm/mmu_context.h>
51 #include <asm/pgtable.h>
52 #include <asm/mmu.h>
53 #include <asm/uaccess.h>
54 #include <asm/smp.h>
55 #include <asm/machdep.h>
56 #include <asm/tlb.h>
57 #include <asm/eeh.h>
58 #include <asm/processor.h>
59 #include <asm/mmzone.h>
60 #include <asm/cputable.h>
61 #include <asm/ppcdebug.h>
62 #include <asm/sections.h>
63 #include <asm/system.h>
64 #include <asm/iommu.h>
65 #include <asm/abs_addr.h>
66 #include <asm/vdso.h>
67 #include <asm/imalloc.h>
69 int mem_init_done;
70 unsigned long ioremap_bot = IMALLOC_BASE;
71 static unsigned long phbs_io_bot = PHBS_IO_BASE;
73 extern pgd_t swapper_pg_dir[];
74 extern struct task_struct *current_set[NR_CPUS];
76 extern pgd_t ioremap_dir[];
77 pgd_t * ioremap_pgd = (pgd_t *)&ioremap_dir;
79 unsigned long klimit = (unsigned long)_end;
81 unsigned long _SDR1=0;
82 unsigned long _ASR=0;
84 /* max amount of RAM to use */
85 unsigned long __max_memory;
87 /* info on what we think the IO hole is */
88 unsigned long io_hole_start;
89 unsigned long io_hole_size;
91 void show_mem(void)
93 unsigned long total = 0, reserved = 0;
94 unsigned long shared = 0, cached = 0;
95 struct page *page;
96 pg_data_t *pgdat;
97 unsigned long i;
99 printk("Mem-info:\n");
100 show_free_areas();
101 printk("Free swap: %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10));
102 for_each_pgdat(pgdat) {
103 for (i = 0; i < pgdat->node_spanned_pages; i++) {
104 page = pgdat->node_mem_map + i;
105 total++;
106 if (PageReserved(page))
107 reserved++;
108 else if (PageSwapCache(page))
109 cached++;
110 else if (page_count(page))
111 shared += page_count(page) - 1;
114 printk("%ld pages of RAM\n", total);
115 printk("%ld reserved pages\n", reserved);
116 printk("%ld pages shared\n", shared);
117 printk("%ld pages swap cached\n", cached);
120 #ifdef CONFIG_PPC_ISERIES
122 void __iomem *ioremap(unsigned long addr, unsigned long size)
124 return (void __iomem *)addr;
127 extern void __iomem *__ioremap(unsigned long addr, unsigned long size,
128 unsigned long flags)
130 return (void __iomem *)addr;
133 void iounmap(volatile void __iomem *addr)
135 return;
138 #else
140 static void unmap_im_area_pte(pmd_t *pmd, unsigned long addr,
141 unsigned long end)
143 pte_t *pte;
145 pte = pte_offset_kernel(pmd, addr);
146 do {
147 pte_t ptent = ptep_get_and_clear(&ioremap_mm, addr, pte);
148 WARN_ON(!pte_none(ptent) && !pte_present(ptent));
149 } while (pte++, addr += PAGE_SIZE, addr != end);
152 static inline void unmap_im_area_pmd(pud_t *pud, unsigned long addr,
153 unsigned long end)
155 pmd_t *pmd;
156 unsigned long next;
158 pmd = pmd_offset(pud, addr);
159 do {
160 next = pmd_addr_end(addr, end);
161 if (pmd_none_or_clear_bad(pmd))
162 continue;
163 unmap_im_area_pte(pmd, addr, next);
164 } while (pmd++, addr = next, addr != end);
167 static inline void unmap_im_area_pud(pgd_t *pgd, unsigned long addr,
168 unsigned long end)
170 pud_t *pud;
171 unsigned long next;
173 pud = pud_offset(pgd, addr);
174 do {
175 next = pud_addr_end(addr, end);
176 if (pud_none_or_clear_bad(pud))
177 continue;
178 unmap_im_area_pmd(pud, addr, next);
179 } while (pud++, addr = next, addr != end);
182 static void unmap_im_area(unsigned long addr, unsigned long end)
184 struct mm_struct *mm = &ioremap_mm;
185 unsigned long next;
186 pgd_t *pgd;
188 spin_lock(&mm->page_table_lock);
190 pgd = pgd_offset_i(addr);
191 flush_cache_vunmap(addr, end);
192 do {
193 next = pgd_addr_end(addr, end);
194 if (pgd_none_or_clear_bad(pgd))
195 continue;
196 unmap_im_area_pud(pgd, addr, next);
197 } while (pgd++, addr = next, addr != end);
198 flush_tlb_kernel_range(start, end);
200 spin_unlock(&mm->page_table_lock);
204 * map_io_page currently only called by __ioremap
205 * map_io_page adds an entry to the ioremap page table
206 * and adds an entry to the HPT, possibly bolting it
208 static int map_io_page(unsigned long ea, unsigned long pa, int flags)
210 pgd_t *pgdp;
211 pud_t *pudp;
212 pmd_t *pmdp;
213 pte_t *ptep;
214 unsigned long vsid;
216 if (mem_init_done) {
217 spin_lock(&ioremap_mm.page_table_lock);
218 pgdp = pgd_offset_i(ea);
219 pudp = pud_alloc(&ioremap_mm, pgdp, ea);
220 if (!pudp)
221 return -ENOMEM;
222 pmdp = pmd_alloc(&ioremap_mm, pudp, ea);
223 if (!pmdp)
224 return -ENOMEM;
225 ptep = pte_alloc_kernel(&ioremap_mm, pmdp, ea);
226 if (!ptep)
227 return -ENOMEM;
228 pa = abs_to_phys(pa);
229 set_pte_at(&ioremap_mm, ea, ptep, pfn_pte(pa >> PAGE_SHIFT,
230 __pgprot(flags)));
231 spin_unlock(&ioremap_mm.page_table_lock);
232 } else {
233 unsigned long va, vpn, hash, hpteg;
236 * If the mm subsystem is not fully up, we cannot create a
237 * linux page table entry for this mapping. Simply bolt an
238 * entry in the hardware page table.
240 vsid = get_kernel_vsid(ea);
241 va = (vsid << 28) | (ea & 0xFFFFFFF);
242 vpn = va >> PAGE_SHIFT;
244 hash = hpt_hash(vpn, 0);
246 hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP);
248 /* Panic if a pte grpup is full */
249 if (ppc_md.hpte_insert(hpteg, va, pa >> PAGE_SHIFT, 0,
250 _PAGE_NO_CACHE|_PAGE_GUARDED|PP_RWXX,
251 1, 0) == -1) {
252 panic("map_io_page: could not insert mapping");
255 return 0;
259 static void __iomem * __ioremap_com(unsigned long addr, unsigned long pa,
260 unsigned long ea, unsigned long size,
261 unsigned long flags)
263 unsigned long i;
265 if ((flags & _PAGE_PRESENT) == 0)
266 flags |= pgprot_val(PAGE_KERNEL);
268 for (i = 0; i < size; i += PAGE_SIZE)
269 if (map_io_page(ea+i, pa+i, flags))
270 goto failure;
272 return (void __iomem *) (ea + (addr & ~PAGE_MASK));
273 failure:
274 if (mem_init_done)
275 unmap_im_area(ea, ea + size);
276 return NULL;
280 void __iomem *
281 ioremap(unsigned long addr, unsigned long size)
283 return __ioremap(addr, size, _PAGE_NO_CACHE | _PAGE_GUARDED);
286 void __iomem * __ioremap(unsigned long addr, unsigned long size,
287 unsigned long flags)
289 unsigned long pa, ea;
290 void __iomem *ret;
293 * Choose an address to map it to.
294 * Once the imalloc system is running, we use it.
295 * Before that, we map using addresses going
296 * up from ioremap_bot. imalloc will use
297 * the addresses from ioremap_bot through
298 * IMALLOC_END (0xE000001fffffffff)
301 pa = addr & PAGE_MASK;
302 size = PAGE_ALIGN(addr + size) - pa;
304 if (size == 0)
305 return NULL;
307 if (mem_init_done) {
308 struct vm_struct *area;
309 area = im_get_free_area(size);
310 if (area == NULL)
311 return NULL;
312 ea = (unsigned long)(area->addr);
313 ret = __ioremap_com(addr, pa, ea, size, flags);
314 if (!ret)
315 im_free(area->addr);
316 } else {
317 ea = ioremap_bot;
318 ret = __ioremap_com(addr, pa, ea, size, flags);
319 if (ret)
320 ioremap_bot += size;
322 return ret;
325 #define IS_PAGE_ALIGNED(_val) ((_val) == ((_val) & PAGE_MASK))
327 int __ioremap_explicit(unsigned long pa, unsigned long ea,
328 unsigned long size, unsigned long flags)
330 struct vm_struct *area;
331 void __iomem *ret;
333 /* For now, require page-aligned values for pa, ea, and size */
334 if (!IS_PAGE_ALIGNED(pa) || !IS_PAGE_ALIGNED(ea) ||
335 !IS_PAGE_ALIGNED(size)) {
336 printk(KERN_ERR "unaligned value in %s\n", __FUNCTION__);
337 return 1;
340 if (!mem_init_done) {
341 /* Two things to consider in this case:
342 * 1) No records will be kept (imalloc, etc) that the region
343 * has been remapped
344 * 2) It won't be easy to iounmap() the region later (because
345 * of 1)
348 } else {
349 area = im_get_area(ea, size,
350 IM_REGION_UNUSED|IM_REGION_SUBSET|IM_REGION_EXISTS);
351 if (area == NULL) {
352 /* Expected when PHB-dlpar is in play */
353 return 1;
355 if (ea != (unsigned long) area->addr) {
356 printk(KERN_ERR "unexpected addr return from "
357 "im_get_area\n");
358 return 1;
362 ret = __ioremap_com(pa, pa, ea, size, flags);
363 if (ret == NULL) {
364 printk(KERN_ERR "ioremap_explicit() allocation failure !\n");
365 return 1;
367 if (ret != (void *) ea) {
368 printk(KERN_ERR "__ioremap_com() returned unexpected addr\n");
369 return 1;
372 return 0;
376 * Unmap an IO region and remove it from imalloc'd list.
377 * Access to IO memory should be serialized by driver.
378 * This code is modeled after vmalloc code - unmap_vm_area()
380 * XXX what about calls before mem_init_done (ie python_countermeasures())
382 void iounmap(volatile void __iomem *token)
384 unsigned long address, size;
385 void *addr;
387 if (!mem_init_done)
388 return;
390 addr = (void *) ((unsigned long __force) token & PAGE_MASK);
392 if ((size = im_free(addr)) == 0)
393 return;
395 address = (unsigned long)addr;
396 unmap_im_area(address, address + size);
399 static int iounmap_subset_regions(unsigned long addr, unsigned long size)
401 struct vm_struct *area;
403 /* Check whether subsets of this region exist */
404 area = im_get_area(addr, size, IM_REGION_SUPERSET);
405 if (area == NULL)
406 return 1;
408 while (area) {
409 iounmap((void __iomem *) area->addr);
410 area = im_get_area(addr, size,
411 IM_REGION_SUPERSET);
414 return 0;
417 int iounmap_explicit(volatile void __iomem *start, unsigned long size)
419 struct vm_struct *area;
420 unsigned long addr;
421 int rc;
423 addr = (unsigned long __force) start & PAGE_MASK;
425 /* Verify that the region either exists or is a subset of an existing
426 * region. In the latter case, split the parent region to create
427 * the exact region
429 area = im_get_area(addr, size,
430 IM_REGION_EXISTS | IM_REGION_SUBSET);
431 if (area == NULL) {
432 /* Determine whether subset regions exist. If so, unmap */
433 rc = iounmap_subset_regions(addr, size);
434 if (rc) {
435 printk(KERN_ERR
436 "%s() cannot unmap nonexistent range 0x%lx\n",
437 __FUNCTION__, addr);
438 return 1;
440 } else {
441 iounmap((void __iomem *) area->addr);
444 * FIXME! This can't be right:
445 iounmap(area->addr);
446 * Maybe it should be "iounmap(area);"
448 return 0;
451 #endif
453 EXPORT_SYMBOL(ioremap);
454 EXPORT_SYMBOL(__ioremap);
455 EXPORT_SYMBOL(iounmap);
457 void free_initmem(void)
459 unsigned long addr;
461 addr = (unsigned long)__init_begin;
462 for (; addr < (unsigned long)__init_end; addr += PAGE_SIZE) {
463 ClearPageReserved(virt_to_page(addr));
464 set_page_count(virt_to_page(addr), 1);
465 free_page(addr);
466 totalram_pages++;
468 printk ("Freeing unused kernel memory: %luk freed\n",
469 ((unsigned long)__init_end - (unsigned long)__init_begin) >> 10);
472 #ifdef CONFIG_BLK_DEV_INITRD
473 void free_initrd_mem(unsigned long start, unsigned long end)
475 if (start < end)
476 printk ("Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
477 for (; start < end; start += PAGE_SIZE) {
478 ClearPageReserved(virt_to_page(start));
479 set_page_count(virt_to_page(start), 1);
480 free_page(start);
481 totalram_pages++;
484 #endif
486 static DEFINE_SPINLOCK(mmu_context_lock);
487 static DEFINE_IDR(mmu_context_idr);
489 int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
491 int index;
492 int err;
494 #ifdef CONFIG_HUGETLB_PAGE
495 /* We leave htlb_segs as it was, but for a fork, we need to
496 * clear the huge_pgdir. */
497 mm->context.huge_pgdir = NULL;
498 #endif
500 again:
501 if (!idr_pre_get(&mmu_context_idr, GFP_KERNEL))
502 return -ENOMEM;
504 spin_lock(&mmu_context_lock);
505 err = idr_get_new_above(&mmu_context_idr, NULL, 1, &index);
506 spin_unlock(&mmu_context_lock);
508 if (err == -EAGAIN)
509 goto again;
510 else if (err)
511 return err;
513 if (index > MAX_CONTEXT) {
514 idr_remove(&mmu_context_idr, index);
515 return -ENOMEM;
518 mm->context.id = index;
520 return 0;
523 void destroy_context(struct mm_struct *mm)
525 spin_lock(&mmu_context_lock);
526 idr_remove(&mmu_context_idr, mm->context.id);
527 spin_unlock(&mmu_context_lock);
529 mm->context.id = NO_CONTEXT;
531 hugetlb_mm_free_pgd(mm);
535 * Do very early mm setup.
537 void __init mm_init_ppc64(void)
539 #ifndef CONFIG_PPC_ISERIES
540 unsigned long i;
541 #endif
543 ppc64_boot_msg(0x100, "MM Init");
545 /* This is the story of the IO hole... please, keep seated,
546 * unfortunately, we are out of oxygen masks at the moment.
547 * So we need some rough way to tell where your big IO hole
548 * is. On pmac, it's between 2G and 4G, on POWER3, it's around
549 * that area as well, on POWER4 we don't have one, etc...
550 * We need that as a "hint" when sizing the TCE table on POWER3
551 * So far, the simplest way that seem work well enough for us it
552 * to just assume that the first discontinuity in our physical
553 * RAM layout is the IO hole. That may not be correct in the future
554 * (and isn't on iSeries but then we don't care ;)
557 #ifndef CONFIG_PPC_ISERIES
558 for (i = 1; i < lmb.memory.cnt; i++) {
559 unsigned long base, prevbase, prevsize;
561 prevbase = lmb.memory.region[i-1].physbase;
562 prevsize = lmb.memory.region[i-1].size;
563 base = lmb.memory.region[i].physbase;
564 if (base > (prevbase + prevsize)) {
565 io_hole_start = prevbase + prevsize;
566 io_hole_size = base - (prevbase + prevsize);
567 break;
570 #endif /* CONFIG_PPC_ISERIES */
571 if (io_hole_start)
572 printk("IO Hole assumed to be %lx -> %lx\n",
573 io_hole_start, io_hole_start + io_hole_size - 1);
575 ppc64_boot_msg(0x100, "MM Init Done");
579 * This is called by /dev/mem to know if a given address has to
580 * be mapped non-cacheable or not
582 int page_is_ram(unsigned long pfn)
584 int i;
585 unsigned long paddr = (pfn << PAGE_SHIFT);
587 for (i=0; i < lmb.memory.cnt; i++) {
588 unsigned long base;
590 #ifdef CONFIG_MSCHUNKS
591 base = lmb.memory.region[i].physbase;
592 #else
593 base = lmb.memory.region[i].base;
594 #endif
595 if ((paddr >= base) &&
596 (paddr < (base + lmb.memory.region[i].size))) {
597 return 1;
601 return 0;
603 EXPORT_SYMBOL(page_is_ram);
606 * Initialize the bootmem system and give it all the memory we
607 * have available.
609 #ifndef CONFIG_DISCONTIGMEM
610 void __init do_init_bootmem(void)
612 unsigned long i;
613 unsigned long start, bootmap_pages;
614 unsigned long total_pages = lmb_end_of_DRAM() >> PAGE_SHIFT;
615 int boot_mapsize;
618 * Find an area to use for the bootmem bitmap. Calculate the size of
619 * bitmap required as (Total Memory) / PAGE_SIZE / BITS_PER_BYTE.
620 * Add 1 additional page in case the address isn't page-aligned.
622 bootmap_pages = bootmem_bootmap_pages(total_pages);
624 start = abs_to_phys(lmb_alloc(bootmap_pages<<PAGE_SHIFT, PAGE_SIZE));
625 BUG_ON(!start);
627 boot_mapsize = init_bootmem(start >> PAGE_SHIFT, total_pages);
629 max_pfn = max_low_pfn;
631 /* add all physical memory to the bootmem map. Also find the first */
632 for (i=0; i < lmb.memory.cnt; i++) {
633 unsigned long physbase, size;
635 physbase = lmb.memory.region[i].physbase;
636 size = lmb.memory.region[i].size;
637 free_bootmem(physbase, size);
640 /* reserve the sections we're already using */
641 for (i=0; i < lmb.reserved.cnt; i++) {
642 unsigned long physbase = lmb.reserved.region[i].physbase;
643 unsigned long size = lmb.reserved.region[i].size;
645 reserve_bootmem(physbase, size);
650 * paging_init() sets up the page tables - in fact we've already done this.
652 void __init paging_init(void)
654 unsigned long zones_size[MAX_NR_ZONES];
655 unsigned long zholes_size[MAX_NR_ZONES];
656 unsigned long total_ram = lmb_phys_mem_size();
657 unsigned long top_of_ram = lmb_end_of_DRAM();
659 printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
660 top_of_ram, total_ram);
661 printk(KERN_INFO "Memory hole size: %ldMB\n",
662 (top_of_ram - total_ram) >> 20);
664 * All pages are DMA-able so we put them all in the DMA zone.
666 memset(zones_size, 0, sizeof(zones_size));
667 memset(zholes_size, 0, sizeof(zholes_size));
669 zones_size[ZONE_DMA] = top_of_ram >> PAGE_SHIFT;
670 zholes_size[ZONE_DMA] = (top_of_ram - total_ram) >> PAGE_SHIFT;
672 free_area_init_node(0, NODE_DATA(0), zones_size,
673 __pa(PAGE_OFFSET) >> PAGE_SHIFT, zholes_size);
675 #endif /* CONFIG_DISCONTIGMEM */
677 static struct kcore_list kcore_vmem;
679 static int __init setup_kcore(void)
681 int i;
683 for (i=0; i < lmb.memory.cnt; i++) {
684 unsigned long physbase, size;
685 struct kcore_list *kcore_mem;
687 physbase = lmb.memory.region[i].physbase;
688 size = lmb.memory.region[i].size;
690 /* GFP_ATOMIC to avoid might_sleep warnings during boot */
691 kcore_mem = kmalloc(sizeof(struct kcore_list), GFP_ATOMIC);
692 if (!kcore_mem)
693 panic("mem_init: kmalloc failed\n");
695 kclist_add(kcore_mem, __va(physbase), size);
698 kclist_add(&kcore_vmem, (void *)VMALLOC_START, VMALLOC_END-VMALLOC_START);
700 return 0;
702 module_init(setup_kcore);
704 void __init mem_init(void)
706 #ifdef CONFIG_DISCONTIGMEM
707 int nid;
708 #endif
709 pg_data_t *pgdat;
710 unsigned long i;
711 struct page *page;
712 unsigned long reservedpages = 0, codesize, initsize, datasize, bsssize;
714 num_physpages = max_low_pfn; /* RAM is assumed contiguous */
715 high_memory = (void *) __va(max_low_pfn * PAGE_SIZE);
717 #ifdef CONFIG_DISCONTIGMEM
718 for_each_online_node(nid) {
719 if (NODE_DATA(nid)->node_spanned_pages != 0) {
720 printk("freeing bootmem node %x\n", nid);
721 totalram_pages +=
722 free_all_bootmem_node(NODE_DATA(nid));
725 #else
726 max_mapnr = num_physpages;
727 totalram_pages += free_all_bootmem();
728 #endif
730 for_each_pgdat(pgdat) {
731 for (i = 0; i < pgdat->node_spanned_pages; i++) {
732 page = pgdat->node_mem_map + i;
733 if (PageReserved(page))
734 reservedpages++;
738 codesize = (unsigned long)&_etext - (unsigned long)&_stext;
739 initsize = (unsigned long)&__init_end - (unsigned long)&__init_begin;
740 datasize = (unsigned long)&_edata - (unsigned long)&__init_end;
741 bsssize = (unsigned long)&__bss_stop - (unsigned long)&__bss_start;
743 printk(KERN_INFO "Memory: %luk/%luk available (%luk kernel code, "
744 "%luk reserved, %luk data, %luk bss, %luk init)\n",
745 (unsigned long)nr_free_pages() << (PAGE_SHIFT-10),
746 num_physpages << (PAGE_SHIFT-10),
747 codesize >> 10,
748 reservedpages << (PAGE_SHIFT-10),
749 datasize >> 10,
750 bsssize >> 10,
751 initsize >> 10);
753 mem_init_done = 1;
755 #ifdef CONFIG_PPC_ISERIES
756 iommu_vio_init();
757 #endif
758 /* Initialize the vDSO */
759 vdso_init();
763 * This is called when a page has been modified by the kernel.
764 * It just marks the page as not i-cache clean. We do the i-cache
765 * flush later when the page is given to a user process, if necessary.
767 void flush_dcache_page(struct page *page)
769 if (cpu_has_feature(CPU_FTR_COHERENT_ICACHE))
770 return;
771 /* avoid an atomic op if possible */
772 if (test_bit(PG_arch_1, &page->flags))
773 clear_bit(PG_arch_1, &page->flags);
775 EXPORT_SYMBOL(flush_dcache_page);
777 void clear_user_page(void *page, unsigned long vaddr, struct page *pg)
779 clear_page(page);
781 if (cpu_has_feature(CPU_FTR_COHERENT_ICACHE))
782 return;
784 * We shouldnt have to do this, but some versions of glibc
785 * require it (ld.so assumes zero filled pages are icache clean)
786 * - Anton
789 /* avoid an atomic op if possible */
790 if (test_bit(PG_arch_1, &pg->flags))
791 clear_bit(PG_arch_1, &pg->flags);
793 EXPORT_SYMBOL(clear_user_page);
795 void copy_user_page(void *vto, void *vfrom, unsigned long vaddr,
796 struct page *pg)
798 copy_page(vto, vfrom);
801 * We should be able to use the following optimisation, however
802 * there are two problems.
803 * Firstly a bug in some versions of binutils meant PLT sections
804 * were not marked executable.
805 * Secondly the first word in the GOT section is blrl, used
806 * to establish the GOT address. Until recently the GOT was
807 * not marked executable.
808 * - Anton
810 #if 0
811 if (!vma->vm_file && ((vma->vm_flags & VM_EXEC) == 0))
812 return;
813 #endif
815 if (cpu_has_feature(CPU_FTR_COHERENT_ICACHE))
816 return;
818 /* avoid an atomic op if possible */
819 if (test_bit(PG_arch_1, &pg->flags))
820 clear_bit(PG_arch_1, &pg->flags);
823 void flush_icache_user_range(struct vm_area_struct *vma, struct page *page,
824 unsigned long addr, int len)
826 unsigned long maddr;
828 maddr = (unsigned long)page_address(page) + (addr & ~PAGE_MASK);
829 flush_icache_range(maddr, maddr + len);
831 EXPORT_SYMBOL(flush_icache_user_range);
834 * This is called at the end of handling a user page fault, when the
835 * fault has been handled by updating a PTE in the linux page tables.
836 * We use it to preload an HPTE into the hash table corresponding to
837 * the updated linux PTE.
839 * This must always be called with the mm->page_table_lock held
841 void update_mmu_cache(struct vm_area_struct *vma, unsigned long ea,
842 pte_t pte)
844 unsigned long vsid;
845 void *pgdir;
846 pte_t *ptep;
847 int local = 0;
848 cpumask_t tmp;
849 unsigned long flags;
851 /* handle i-cache coherency */
852 if (!cpu_has_feature(CPU_FTR_COHERENT_ICACHE) &&
853 !cpu_has_feature(CPU_FTR_NOEXECUTE)) {
854 unsigned long pfn = pte_pfn(pte);
855 if (pfn_valid(pfn)) {
856 struct page *page = pfn_to_page(pfn);
857 if (!PageReserved(page)
858 && !test_bit(PG_arch_1, &page->flags)) {
859 __flush_dcache_icache(page_address(page));
860 set_bit(PG_arch_1, &page->flags);
865 /* We only want HPTEs for linux PTEs that have _PAGE_ACCESSED set */
866 if (!pte_young(pte))
867 return;
869 pgdir = vma->vm_mm->pgd;
870 if (pgdir == NULL)
871 return;
873 ptep = find_linux_pte(pgdir, ea);
874 if (!ptep)
875 return;
877 vsid = get_vsid(vma->vm_mm->context.id, ea);
879 local_irq_save(flags);
880 tmp = cpumask_of_cpu(smp_processor_id());
881 if (cpus_equal(vma->vm_mm->cpu_vm_mask, tmp))
882 local = 1;
884 __hash_page(ea, pte_val(pte) & (_PAGE_USER|_PAGE_RW), vsid, ptep,
885 0x300, local);
886 local_irq_restore(flags);
889 void __iomem * reserve_phb_iospace(unsigned long size)
891 void __iomem *virt_addr;
893 if (phbs_io_bot >= IMALLOC_BASE)
894 panic("reserve_phb_iospace(): phb io space overflow\n");
896 virt_addr = (void __iomem *) phbs_io_bot;
897 phbs_io_bot += size;
899 return virt_addr;
902 kmem_cache_t *zero_cache;
904 static void zero_ctor(void *pte, kmem_cache_t *cache, unsigned long flags)
906 memset(pte, 0, PAGE_SIZE);
909 void pgtable_cache_init(void)
911 zero_cache = kmem_cache_create("zero",
912 PAGE_SIZE,
914 SLAB_HWCACHE_ALIGN | SLAB_MUST_HWCACHE_ALIGN,
915 zero_ctor,
916 NULL);
917 if (!zero_cache)
918 panic("pgtable_cache_init(): could not create zero_cache!\n");
921 pgprot_t phys_mem_access_prot(struct file *file, unsigned long addr,
922 unsigned long size, pgprot_t vma_prot)
924 if (ppc_md.phys_mem_access_prot)
925 return ppc_md.phys_mem_access_prot(file, addr, size, vma_prot);
927 if (!page_is_ram(addr >> PAGE_SHIFT))
928 vma_prot = __pgprot(pgprot_val(vma_prot)
929 | _PAGE_GUARDED | _PAGE_NO_CACHE);
930 return vma_prot;
932 EXPORT_SYMBOL(phys_mem_access_prot);