2 * linux/drivers/block/ll_rw_blk.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
6 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
7 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
8 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> - July2000
9 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
13 * This handles all read/write requests to block devices
15 #include <linux/config.h>
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/backing-dev.h>
19 #include <linux/bio.h>
20 #include <linux/blkdev.h>
21 #include <linux/highmem.h>
23 #include <linux/kernel_stat.h>
24 #include <linux/string.h>
25 #include <linux/init.h>
26 #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
27 #include <linux/completion.h>
28 #include <linux/slab.h>
29 #include <linux/swap.h>
30 #include <linux/writeback.h>
35 #include <scsi/scsi_cmnd.h>
37 static void blk_unplug_work(void *data
);
38 static void blk_unplug_timeout(unsigned long data
);
41 * For the allocated request tables
43 static kmem_cache_t
*request_cachep
;
46 * For queue allocation
48 static kmem_cache_t
*requestq_cachep
;
51 * For io context allocations
53 static kmem_cache_t
*iocontext_cachep
;
55 static wait_queue_head_t congestion_wqh
[2] = {
56 __WAIT_QUEUE_HEAD_INITIALIZER(congestion_wqh
[0]),
57 __WAIT_QUEUE_HEAD_INITIALIZER(congestion_wqh
[1])
61 * Controlling structure to kblockd
63 static struct workqueue_struct
*kblockd_workqueue
;
65 unsigned long blk_max_low_pfn
, blk_max_pfn
;
67 EXPORT_SYMBOL(blk_max_low_pfn
);
68 EXPORT_SYMBOL(blk_max_pfn
);
70 /* Amount of time in which a process may batch requests */
71 #define BLK_BATCH_TIME (HZ/50UL)
73 /* Number of requests a "batching" process may submit */
74 #define BLK_BATCH_REQ 32
77 * Return the threshold (number of used requests) at which the queue is
78 * considered to be congested. It include a little hysteresis to keep the
79 * context switch rate down.
81 static inline int queue_congestion_on_threshold(struct request_queue
*q
)
83 return q
->nr_congestion_on
;
87 * The threshold at which a queue is considered to be uncongested
89 static inline int queue_congestion_off_threshold(struct request_queue
*q
)
91 return q
->nr_congestion_off
;
94 static void blk_queue_congestion_threshold(struct request_queue
*q
)
98 nr
= q
->nr_requests
- (q
->nr_requests
/ 8) + 1;
99 if (nr
> q
->nr_requests
)
101 q
->nr_congestion_on
= nr
;
103 nr
= q
->nr_requests
- (q
->nr_requests
/ 8) - (q
->nr_requests
/ 16) - 1;
106 q
->nr_congestion_off
= nr
;
110 * A queue has just exitted congestion. Note this in the global counter of
111 * congested queues, and wake up anyone who was waiting for requests to be
114 static void clear_queue_congested(request_queue_t
*q
, int rw
)
117 wait_queue_head_t
*wqh
= &congestion_wqh
[rw
];
119 bit
= (rw
== WRITE
) ? BDI_write_congested
: BDI_read_congested
;
120 clear_bit(bit
, &q
->backing_dev_info
.state
);
121 smp_mb__after_clear_bit();
122 if (waitqueue_active(wqh
))
127 * A queue has just entered congestion. Flag that in the queue's VM-visible
128 * state flags and increment the global gounter of congested queues.
130 static void set_queue_congested(request_queue_t
*q
, int rw
)
134 bit
= (rw
== WRITE
) ? BDI_write_congested
: BDI_read_congested
;
135 set_bit(bit
, &q
->backing_dev_info
.state
);
139 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
142 * Locates the passed device's request queue and returns the address of its
145 * Will return NULL if the request queue cannot be located.
147 struct backing_dev_info
*blk_get_backing_dev_info(struct block_device
*bdev
)
149 struct backing_dev_info
*ret
= NULL
;
150 request_queue_t
*q
= bdev_get_queue(bdev
);
153 ret
= &q
->backing_dev_info
;
157 EXPORT_SYMBOL(blk_get_backing_dev_info
);
159 void blk_queue_activity_fn(request_queue_t
*q
, activity_fn
*fn
, void *data
)
162 q
->activity_data
= data
;
165 EXPORT_SYMBOL(blk_queue_activity_fn
);
168 * blk_queue_prep_rq - set a prepare_request function for queue
170 * @pfn: prepare_request function
172 * It's possible for a queue to register a prepare_request callback which
173 * is invoked before the request is handed to the request_fn. The goal of
174 * the function is to prepare a request for I/O, it can be used to build a
175 * cdb from the request data for instance.
178 void blk_queue_prep_rq(request_queue_t
*q
, prep_rq_fn
*pfn
)
183 EXPORT_SYMBOL(blk_queue_prep_rq
);
186 * blk_queue_merge_bvec - set a merge_bvec function for queue
188 * @mbfn: merge_bvec_fn
190 * Usually queues have static limitations on the max sectors or segments that
191 * we can put in a request. Stacking drivers may have some settings that
192 * are dynamic, and thus we have to query the queue whether it is ok to
193 * add a new bio_vec to a bio at a given offset or not. If the block device
194 * has such limitations, it needs to register a merge_bvec_fn to control
195 * the size of bio's sent to it. Note that a block device *must* allow a
196 * single page to be added to an empty bio. The block device driver may want
197 * to use the bio_split() function to deal with these bio's. By default
198 * no merge_bvec_fn is defined for a queue, and only the fixed limits are
201 void blk_queue_merge_bvec(request_queue_t
*q
, merge_bvec_fn
*mbfn
)
203 q
->merge_bvec_fn
= mbfn
;
206 EXPORT_SYMBOL(blk_queue_merge_bvec
);
209 * blk_queue_make_request - define an alternate make_request function for a device
210 * @q: the request queue for the device to be affected
211 * @mfn: the alternate make_request function
214 * The normal way for &struct bios to be passed to a device
215 * driver is for them to be collected into requests on a request
216 * queue, and then to allow the device driver to select requests
217 * off that queue when it is ready. This works well for many block
218 * devices. However some block devices (typically virtual devices
219 * such as md or lvm) do not benefit from the processing on the
220 * request queue, and are served best by having the requests passed
221 * directly to them. This can be achieved by providing a function
222 * to blk_queue_make_request().
225 * The driver that does this *must* be able to deal appropriately
226 * with buffers in "highmemory". This can be accomplished by either calling
227 * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
228 * blk_queue_bounce() to create a buffer in normal memory.
230 void blk_queue_make_request(request_queue_t
* q
, make_request_fn
* mfn
)
235 q
->nr_requests
= BLKDEV_MAX_RQ
;
236 q
->max_phys_segments
= MAX_PHYS_SEGMENTS
;
237 q
->max_hw_segments
= MAX_HW_SEGMENTS
;
238 q
->make_request_fn
= mfn
;
239 q
->backing_dev_info
.ra_pages
= (VM_MAX_READAHEAD
* 1024) / PAGE_CACHE_SIZE
;
240 q
->backing_dev_info
.state
= 0;
241 q
->backing_dev_info
.capabilities
= BDI_CAP_MAP_COPY
;
242 blk_queue_max_sectors(q
, MAX_SECTORS
);
243 blk_queue_hardsect_size(q
, 512);
244 blk_queue_dma_alignment(q
, 511);
245 blk_queue_congestion_threshold(q
);
246 q
->nr_batching
= BLK_BATCH_REQ
;
248 q
->unplug_thresh
= 4; /* hmm */
249 q
->unplug_delay
= (3 * HZ
) / 1000; /* 3 milliseconds */
250 if (q
->unplug_delay
== 0)
253 INIT_WORK(&q
->unplug_work
, blk_unplug_work
, q
);
255 q
->unplug_timer
.function
= blk_unplug_timeout
;
256 q
->unplug_timer
.data
= (unsigned long)q
;
259 * by default assume old behaviour and bounce for any highmem page
261 blk_queue_bounce_limit(q
, BLK_BOUNCE_HIGH
);
263 blk_queue_activity_fn(q
, NULL
, NULL
);
265 INIT_LIST_HEAD(&q
->drain_list
);
268 EXPORT_SYMBOL(blk_queue_make_request
);
270 static inline void rq_init(request_queue_t
*q
, struct request
*rq
)
272 INIT_LIST_HEAD(&rq
->queuelist
);
275 rq
->rq_status
= RQ_ACTIVE
;
276 rq
->bio
= rq
->biotail
= NULL
;
286 rq
->end_io_data
= NULL
;
290 * blk_queue_ordered - does this queue support ordered writes
291 * @q: the request queue
295 * For journalled file systems, doing ordered writes on a commit
296 * block instead of explicitly doing wait_on_buffer (which is bad
297 * for performance) can be a big win. Block drivers supporting this
298 * feature should call this function and indicate so.
301 void blk_queue_ordered(request_queue_t
*q
, int flag
)
304 case QUEUE_ORDERED_NONE
:
306 kmem_cache_free(request_cachep
, q
->flush_rq
);
310 case QUEUE_ORDERED_TAG
:
313 case QUEUE_ORDERED_FLUSH
:
316 q
->flush_rq
= kmem_cache_alloc(request_cachep
,
320 printk("blk_queue_ordered: bad value %d\n", flag
);
325 EXPORT_SYMBOL(blk_queue_ordered
);
328 * blk_queue_issue_flush_fn - set function for issuing a flush
329 * @q: the request queue
330 * @iff: the function to be called issuing the flush
333 * If a driver supports issuing a flush command, the support is notified
334 * to the block layer by defining it through this call.
337 void blk_queue_issue_flush_fn(request_queue_t
*q
, issue_flush_fn
*iff
)
339 q
->issue_flush_fn
= iff
;
342 EXPORT_SYMBOL(blk_queue_issue_flush_fn
);
345 * Cache flushing for ordered writes handling
347 static void blk_pre_flush_end_io(struct request
*flush_rq
)
349 struct request
*rq
= flush_rq
->end_io_data
;
350 request_queue_t
*q
= rq
->q
;
352 rq
->flags
|= REQ_BAR_PREFLUSH
;
354 if (!flush_rq
->errors
)
355 elv_requeue_request(q
, rq
);
357 q
->end_flush_fn(q
, flush_rq
);
358 clear_bit(QUEUE_FLAG_FLUSH
, &q
->queue_flags
);
363 static void blk_post_flush_end_io(struct request
*flush_rq
)
365 struct request
*rq
= flush_rq
->end_io_data
;
366 request_queue_t
*q
= rq
->q
;
368 rq
->flags
|= REQ_BAR_POSTFLUSH
;
370 q
->end_flush_fn(q
, flush_rq
);
371 clear_bit(QUEUE_FLAG_FLUSH
, &q
->queue_flags
);
375 struct request
*blk_start_pre_flush(request_queue_t
*q
, struct request
*rq
)
377 struct request
*flush_rq
= q
->flush_rq
;
379 BUG_ON(!blk_barrier_rq(rq
));
381 if (test_and_set_bit(QUEUE_FLAG_FLUSH
, &q
->queue_flags
))
384 rq_init(q
, flush_rq
);
385 flush_rq
->elevator_private
= NULL
;
386 flush_rq
->flags
= REQ_BAR_FLUSH
;
387 flush_rq
->rq_disk
= rq
->rq_disk
;
391 * prepare_flush returns 0 if no flush is needed, just mark both
392 * pre and post flush as done in that case
394 if (!q
->prepare_flush_fn(q
, flush_rq
)) {
395 rq
->flags
|= REQ_BAR_PREFLUSH
| REQ_BAR_POSTFLUSH
;
396 clear_bit(QUEUE_FLAG_FLUSH
, &q
->queue_flags
);
401 * some drivers dequeue requests right away, some only after io
402 * completion. make sure the request is dequeued.
404 if (!list_empty(&rq
->queuelist
))
405 blkdev_dequeue_request(rq
);
407 elv_deactivate_request(q
, rq
);
409 flush_rq
->end_io_data
= rq
;
410 flush_rq
->end_io
= blk_pre_flush_end_io
;
412 __elv_add_request(q
, flush_rq
, ELEVATOR_INSERT_FRONT
, 0);
416 static void blk_start_post_flush(request_queue_t
*q
, struct request
*rq
)
418 struct request
*flush_rq
= q
->flush_rq
;
420 BUG_ON(!blk_barrier_rq(rq
));
422 rq_init(q
, flush_rq
);
423 flush_rq
->elevator_private
= NULL
;
424 flush_rq
->flags
= REQ_BAR_FLUSH
;
425 flush_rq
->rq_disk
= rq
->rq_disk
;
428 if (q
->prepare_flush_fn(q
, flush_rq
)) {
429 flush_rq
->end_io_data
= rq
;
430 flush_rq
->end_io
= blk_post_flush_end_io
;
432 __elv_add_request(q
, flush_rq
, ELEVATOR_INSERT_FRONT
, 0);
437 static inline int blk_check_end_barrier(request_queue_t
*q
, struct request
*rq
,
440 if (sectors
> rq
->nr_sectors
)
441 sectors
= rq
->nr_sectors
;
443 rq
->nr_sectors
-= sectors
;
444 return rq
->nr_sectors
;
447 static int __blk_complete_barrier_rq(request_queue_t
*q
, struct request
*rq
,
448 int sectors
, int queue_locked
)
450 if (q
->ordered
!= QUEUE_ORDERED_FLUSH
)
452 if (!blk_fs_request(rq
) || !blk_barrier_rq(rq
))
454 if (blk_barrier_postflush(rq
))
457 if (!blk_check_end_barrier(q
, rq
, sectors
)) {
458 unsigned long flags
= 0;
461 spin_lock_irqsave(q
->queue_lock
, flags
);
463 blk_start_post_flush(q
, rq
);
466 spin_unlock_irqrestore(q
->queue_lock
, flags
);
473 * blk_complete_barrier_rq - complete possible barrier request
474 * @q: the request queue for the device
476 * @sectors: number of sectors to complete
479 * Used in driver end_io handling to determine whether to postpone
480 * completion of a barrier request until a post flush has been done. This
481 * is the unlocked variant, used if the caller doesn't already hold the
484 int blk_complete_barrier_rq(request_queue_t
*q
, struct request
*rq
, int sectors
)
486 return __blk_complete_barrier_rq(q
, rq
, sectors
, 0);
488 EXPORT_SYMBOL(blk_complete_barrier_rq
);
491 * blk_complete_barrier_rq_locked - complete possible barrier request
492 * @q: the request queue for the device
494 * @sectors: number of sectors to complete
497 * See blk_complete_barrier_rq(). This variant must be used if the caller
498 * holds the queue lock.
500 int blk_complete_barrier_rq_locked(request_queue_t
*q
, struct request
*rq
,
503 return __blk_complete_barrier_rq(q
, rq
, sectors
, 1);
505 EXPORT_SYMBOL(blk_complete_barrier_rq_locked
);
508 * blk_queue_bounce_limit - set bounce buffer limit for queue
509 * @q: the request queue for the device
510 * @dma_addr: bus address limit
513 * Different hardware can have different requirements as to what pages
514 * it can do I/O directly to. A low level driver can call
515 * blk_queue_bounce_limit to have lower memory pages allocated as bounce
516 * buffers for doing I/O to pages residing above @page. By default
517 * the block layer sets this to the highest numbered "low" memory page.
519 void blk_queue_bounce_limit(request_queue_t
*q
, u64 dma_addr
)
521 unsigned long bounce_pfn
= dma_addr
>> PAGE_SHIFT
;
524 * set appropriate bounce gfp mask -- unfortunately we don't have a
525 * full 4GB zone, so we have to resort to low memory for any bounces.
526 * ISA has its own < 16MB zone.
528 if (bounce_pfn
< blk_max_low_pfn
) {
529 BUG_ON(dma_addr
< BLK_BOUNCE_ISA
);
530 init_emergency_isa_pool();
531 q
->bounce_gfp
= GFP_NOIO
| GFP_DMA
;
533 q
->bounce_gfp
= GFP_NOIO
;
535 q
->bounce_pfn
= bounce_pfn
;
538 EXPORT_SYMBOL(blk_queue_bounce_limit
);
541 * blk_queue_max_sectors - set max sectors for a request for this queue
542 * @q: the request queue for the device
543 * @max_sectors: max sectors in the usual 512b unit
546 * Enables a low level driver to set an upper limit on the size of
549 void blk_queue_max_sectors(request_queue_t
*q
, unsigned short max_sectors
)
551 if ((max_sectors
<< 9) < PAGE_CACHE_SIZE
) {
552 max_sectors
= 1 << (PAGE_CACHE_SHIFT
- 9);
553 printk("%s: set to minimum %d\n", __FUNCTION__
, max_sectors
);
556 q
->max_sectors
= q
->max_hw_sectors
= max_sectors
;
559 EXPORT_SYMBOL(blk_queue_max_sectors
);
562 * blk_queue_max_phys_segments - set max phys segments for a request for this queue
563 * @q: the request queue for the device
564 * @max_segments: max number of segments
567 * Enables a low level driver to set an upper limit on the number of
568 * physical data segments in a request. This would be the largest sized
569 * scatter list the driver could handle.
571 void blk_queue_max_phys_segments(request_queue_t
*q
, unsigned short max_segments
)
575 printk("%s: set to minimum %d\n", __FUNCTION__
, max_segments
);
578 q
->max_phys_segments
= max_segments
;
581 EXPORT_SYMBOL(blk_queue_max_phys_segments
);
584 * blk_queue_max_hw_segments - set max hw segments for a request for this queue
585 * @q: the request queue for the device
586 * @max_segments: max number of segments
589 * Enables a low level driver to set an upper limit on the number of
590 * hw data segments in a request. This would be the largest number of
591 * address/length pairs the host adapter can actually give as once
594 void blk_queue_max_hw_segments(request_queue_t
*q
, unsigned short max_segments
)
598 printk("%s: set to minimum %d\n", __FUNCTION__
, max_segments
);
601 q
->max_hw_segments
= max_segments
;
604 EXPORT_SYMBOL(blk_queue_max_hw_segments
);
607 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
608 * @q: the request queue for the device
609 * @max_size: max size of segment in bytes
612 * Enables a low level driver to set an upper limit on the size of a
615 void blk_queue_max_segment_size(request_queue_t
*q
, unsigned int max_size
)
617 if (max_size
< PAGE_CACHE_SIZE
) {
618 max_size
= PAGE_CACHE_SIZE
;
619 printk("%s: set to minimum %d\n", __FUNCTION__
, max_size
);
622 q
->max_segment_size
= max_size
;
625 EXPORT_SYMBOL(blk_queue_max_segment_size
);
628 * blk_queue_hardsect_size - set hardware sector size for the queue
629 * @q: the request queue for the device
630 * @size: the hardware sector size, in bytes
633 * This should typically be set to the lowest possible sector size
634 * that the hardware can operate on (possible without reverting to
635 * even internal read-modify-write operations). Usually the default
636 * of 512 covers most hardware.
638 void blk_queue_hardsect_size(request_queue_t
*q
, unsigned short size
)
640 q
->hardsect_size
= size
;
643 EXPORT_SYMBOL(blk_queue_hardsect_size
);
646 * Returns the minimum that is _not_ zero, unless both are zero.
648 #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
651 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
652 * @t: the stacking driver (top)
653 * @b: the underlying device (bottom)
655 void blk_queue_stack_limits(request_queue_t
*t
, request_queue_t
*b
)
657 /* zero is "infinity" */
658 t
->max_sectors
= t
->max_hw_sectors
=
659 min_not_zero(t
->max_sectors
,b
->max_sectors
);
661 t
->max_phys_segments
= min(t
->max_phys_segments
,b
->max_phys_segments
);
662 t
->max_hw_segments
= min(t
->max_hw_segments
,b
->max_hw_segments
);
663 t
->max_segment_size
= min(t
->max_segment_size
,b
->max_segment_size
);
664 t
->hardsect_size
= max(t
->hardsect_size
,b
->hardsect_size
);
667 EXPORT_SYMBOL(blk_queue_stack_limits
);
670 * blk_queue_segment_boundary - set boundary rules for segment merging
671 * @q: the request queue for the device
672 * @mask: the memory boundary mask
674 void blk_queue_segment_boundary(request_queue_t
*q
, unsigned long mask
)
676 if (mask
< PAGE_CACHE_SIZE
- 1) {
677 mask
= PAGE_CACHE_SIZE
- 1;
678 printk("%s: set to minimum %lx\n", __FUNCTION__
, mask
);
681 q
->seg_boundary_mask
= mask
;
684 EXPORT_SYMBOL(blk_queue_segment_boundary
);
687 * blk_queue_dma_alignment - set dma length and memory alignment
688 * @q: the request queue for the device
689 * @mask: alignment mask
692 * set required memory and length aligment for direct dma transactions.
693 * this is used when buiding direct io requests for the queue.
696 void blk_queue_dma_alignment(request_queue_t
*q
, int mask
)
698 q
->dma_alignment
= mask
;
701 EXPORT_SYMBOL(blk_queue_dma_alignment
);
704 * blk_queue_find_tag - find a request by its tag and queue
706 * @q: The request queue for the device
707 * @tag: The tag of the request
710 * Should be used when a device returns a tag and you want to match
713 * no locks need be held.
715 struct request
*blk_queue_find_tag(request_queue_t
*q
, int tag
)
717 struct blk_queue_tag
*bqt
= q
->queue_tags
;
719 if (unlikely(bqt
== NULL
|| tag
>= bqt
->real_max_depth
))
722 return bqt
->tag_index
[tag
];
725 EXPORT_SYMBOL(blk_queue_find_tag
);
728 * __blk_queue_free_tags - release tag maintenance info
729 * @q: the request queue for the device
732 * blk_cleanup_queue() will take care of calling this function, if tagging
733 * has been used. So there's no need to call this directly.
735 static void __blk_queue_free_tags(request_queue_t
*q
)
737 struct blk_queue_tag
*bqt
= q
->queue_tags
;
742 if (atomic_dec_and_test(&bqt
->refcnt
)) {
744 BUG_ON(!list_empty(&bqt
->busy_list
));
746 kfree(bqt
->tag_index
);
747 bqt
->tag_index
= NULL
;
755 q
->queue_tags
= NULL
;
756 q
->queue_flags
&= ~(1 << QUEUE_FLAG_QUEUED
);
760 * blk_queue_free_tags - release tag maintenance info
761 * @q: the request queue for the device
764 * This is used to disabled tagged queuing to a device, yet leave
767 void blk_queue_free_tags(request_queue_t
*q
)
769 clear_bit(QUEUE_FLAG_QUEUED
, &q
->queue_flags
);
772 EXPORT_SYMBOL(blk_queue_free_tags
);
775 init_tag_map(request_queue_t
*q
, struct blk_queue_tag
*tags
, int depth
)
778 struct request
**tag_index
;
779 unsigned long *tag_map
;
781 if (depth
> q
->nr_requests
* 2) {
782 depth
= q
->nr_requests
* 2;
783 printk(KERN_ERR
"%s: adjusted depth to %d\n",
784 __FUNCTION__
, depth
);
787 tag_index
= kmalloc(depth
* sizeof(struct request
*), GFP_ATOMIC
);
791 bits
= (depth
/ BLK_TAGS_PER_LONG
) + 1;
792 tag_map
= kmalloc(bits
* sizeof(unsigned long), GFP_ATOMIC
);
796 memset(tag_index
, 0, depth
* sizeof(struct request
*));
797 memset(tag_map
, 0, bits
* sizeof(unsigned long));
798 tags
->max_depth
= depth
;
799 tags
->real_max_depth
= bits
* BITS_PER_LONG
;
800 tags
->tag_index
= tag_index
;
801 tags
->tag_map
= tag_map
;
804 * set the upper bits if the depth isn't a multiple of the word size
806 for (i
= depth
; i
< bits
* BLK_TAGS_PER_LONG
; i
++)
807 __set_bit(i
, tag_map
);
816 * blk_queue_init_tags - initialize the queue tag info
817 * @q: the request queue for the device
818 * @depth: the maximum queue depth supported
819 * @tags: the tag to use
821 int blk_queue_init_tags(request_queue_t
*q
, int depth
,
822 struct blk_queue_tag
*tags
)
826 BUG_ON(tags
&& q
->queue_tags
&& tags
!= q
->queue_tags
);
828 if (!tags
&& !q
->queue_tags
) {
829 tags
= kmalloc(sizeof(struct blk_queue_tag
), GFP_ATOMIC
);
833 if (init_tag_map(q
, tags
, depth
))
836 INIT_LIST_HEAD(&tags
->busy_list
);
838 atomic_set(&tags
->refcnt
, 1);
839 } else if (q
->queue_tags
) {
840 if ((rc
= blk_queue_resize_tags(q
, depth
)))
842 set_bit(QUEUE_FLAG_QUEUED
, &q
->queue_flags
);
845 atomic_inc(&tags
->refcnt
);
848 * assign it, all done
850 q
->queue_tags
= tags
;
851 q
->queue_flags
|= (1 << QUEUE_FLAG_QUEUED
);
858 EXPORT_SYMBOL(blk_queue_init_tags
);
861 * blk_queue_resize_tags - change the queueing depth
862 * @q: the request queue for the device
863 * @new_depth: the new max command queueing depth
866 * Must be called with the queue lock held.
868 int blk_queue_resize_tags(request_queue_t
*q
, int new_depth
)
870 struct blk_queue_tag
*bqt
= q
->queue_tags
;
871 struct request
**tag_index
;
872 unsigned long *tag_map
;
879 * don't bother sizing down
881 if (new_depth
<= bqt
->real_max_depth
) {
882 bqt
->max_depth
= new_depth
;
887 * save the old state info, so we can copy it back
889 tag_index
= bqt
->tag_index
;
890 tag_map
= bqt
->tag_map
;
891 max_depth
= bqt
->real_max_depth
;
893 if (init_tag_map(q
, bqt
, new_depth
))
896 memcpy(bqt
->tag_index
, tag_index
, max_depth
* sizeof(struct request
*));
897 bits
= max_depth
/ BLK_TAGS_PER_LONG
;
898 memcpy(bqt
->tag_map
, tag_map
, bits
* sizeof(unsigned long));
905 EXPORT_SYMBOL(blk_queue_resize_tags
);
908 * blk_queue_end_tag - end tag operations for a request
909 * @q: the request queue for the device
910 * @rq: the request that has completed
913 * Typically called when end_that_request_first() returns 0, meaning
914 * all transfers have been done for a request. It's important to call
915 * this function before end_that_request_last(), as that will put the
916 * request back on the free list thus corrupting the internal tag list.
919 * queue lock must be held.
921 void blk_queue_end_tag(request_queue_t
*q
, struct request
*rq
)
923 struct blk_queue_tag
*bqt
= q
->queue_tags
;
928 if (unlikely(tag
>= bqt
->real_max_depth
))
931 if (unlikely(!__test_and_clear_bit(tag
, bqt
->tag_map
))) {
932 printk("attempt to clear non-busy tag (%d)\n", tag
);
936 list_del_init(&rq
->queuelist
);
937 rq
->flags
&= ~REQ_QUEUED
;
940 if (unlikely(bqt
->tag_index
[tag
] == NULL
))
941 printk("tag %d is missing\n", tag
);
943 bqt
->tag_index
[tag
] = NULL
;
947 EXPORT_SYMBOL(blk_queue_end_tag
);
950 * blk_queue_start_tag - find a free tag and assign it
951 * @q: the request queue for the device
952 * @rq: the block request that needs tagging
955 * This can either be used as a stand-alone helper, or possibly be
956 * assigned as the queue &prep_rq_fn (in which case &struct request
957 * automagically gets a tag assigned). Note that this function
958 * assumes that any type of request can be queued! if this is not
959 * true for your device, you must check the request type before
960 * calling this function. The request will also be removed from
961 * the request queue, so it's the drivers responsibility to readd
962 * it if it should need to be restarted for some reason.
965 * queue lock must be held.
967 int blk_queue_start_tag(request_queue_t
*q
, struct request
*rq
)
969 struct blk_queue_tag
*bqt
= q
->queue_tags
;
970 unsigned long *map
= bqt
->tag_map
;
973 if (unlikely((rq
->flags
& REQ_QUEUED
))) {
975 "request %p for device [%s] already tagged %d",
976 rq
, rq
->rq_disk
? rq
->rq_disk
->disk_name
: "?", rq
->tag
);
980 for (map
= bqt
->tag_map
; *map
== -1UL; map
++) {
981 tag
+= BLK_TAGS_PER_LONG
;
983 if (tag
>= bqt
->max_depth
)
988 __set_bit(tag
, bqt
->tag_map
);
990 rq
->flags
|= REQ_QUEUED
;
992 bqt
->tag_index
[tag
] = rq
;
993 blkdev_dequeue_request(rq
);
994 list_add(&rq
->queuelist
, &bqt
->busy_list
);
999 EXPORT_SYMBOL(blk_queue_start_tag
);
1002 * blk_queue_invalidate_tags - invalidate all pending tags
1003 * @q: the request queue for the device
1006 * Hardware conditions may dictate a need to stop all pending requests.
1007 * In this case, we will safely clear the block side of the tag queue and
1008 * readd all requests to the request queue in the right order.
1011 * queue lock must be held.
1013 void blk_queue_invalidate_tags(request_queue_t
*q
)
1015 struct blk_queue_tag
*bqt
= q
->queue_tags
;
1016 struct list_head
*tmp
, *n
;
1019 list_for_each_safe(tmp
, n
, &bqt
->busy_list
) {
1020 rq
= list_entry_rq(tmp
);
1022 if (rq
->tag
== -1) {
1023 printk("bad tag found on list\n");
1024 list_del_init(&rq
->queuelist
);
1025 rq
->flags
&= ~REQ_QUEUED
;
1027 blk_queue_end_tag(q
, rq
);
1029 rq
->flags
&= ~REQ_STARTED
;
1030 __elv_add_request(q
, rq
, ELEVATOR_INSERT_BACK
, 0);
1034 EXPORT_SYMBOL(blk_queue_invalidate_tags
);
1036 static char *rq_flags
[] = {
1054 "REQ_DRIVE_TASKFILE",
1061 void blk_dump_rq_flags(struct request
*rq
, char *msg
)
1065 printk("%s: dev %s: flags = ", msg
,
1066 rq
->rq_disk
? rq
->rq_disk
->disk_name
: "?");
1069 if (rq
->flags
& (1 << bit
))
1070 printk("%s ", rq_flags
[bit
]);
1072 } while (bit
< __REQ_NR_BITS
);
1074 printk("\nsector %llu, nr/cnr %lu/%u\n", (unsigned long long)rq
->sector
,
1076 rq
->current_nr_sectors
);
1077 printk("bio %p, biotail %p, buffer %p, data %p, len %u\n", rq
->bio
, rq
->biotail
, rq
->buffer
, rq
->data
, rq
->data_len
);
1079 if (rq
->flags
& (REQ_BLOCK_PC
| REQ_PC
)) {
1081 for (bit
= 0; bit
< sizeof(rq
->cmd
); bit
++)
1082 printk("%02x ", rq
->cmd
[bit
]);
1087 EXPORT_SYMBOL(blk_dump_rq_flags
);
1089 void blk_recount_segments(request_queue_t
*q
, struct bio
*bio
)
1091 struct bio_vec
*bv
, *bvprv
= NULL
;
1092 int i
, nr_phys_segs
, nr_hw_segs
, seg_size
, hw_seg_size
, cluster
;
1093 int high
, highprv
= 1;
1095 if (unlikely(!bio
->bi_io_vec
))
1098 cluster
= q
->queue_flags
& (1 << QUEUE_FLAG_CLUSTER
);
1099 hw_seg_size
= seg_size
= nr_phys_segs
= nr_hw_segs
= 0;
1100 bio_for_each_segment(bv
, bio
, i
) {
1102 * the trick here is making sure that a high page is never
1103 * considered part of another segment, since that might
1104 * change with the bounce page.
1106 high
= page_to_pfn(bv
->bv_page
) >= q
->bounce_pfn
;
1107 if (high
|| highprv
)
1108 goto new_hw_segment
;
1110 if (seg_size
+ bv
->bv_len
> q
->max_segment_size
)
1112 if (!BIOVEC_PHYS_MERGEABLE(bvprv
, bv
))
1114 if (!BIOVEC_SEG_BOUNDARY(q
, bvprv
, bv
))
1116 if (BIOVEC_VIRT_OVERSIZE(hw_seg_size
+ bv
->bv_len
))
1117 goto new_hw_segment
;
1119 seg_size
+= bv
->bv_len
;
1120 hw_seg_size
+= bv
->bv_len
;
1125 if (BIOVEC_VIRT_MERGEABLE(bvprv
, bv
) &&
1126 !BIOVEC_VIRT_OVERSIZE(hw_seg_size
+ bv
->bv_len
)) {
1127 hw_seg_size
+= bv
->bv_len
;
1130 if (hw_seg_size
> bio
->bi_hw_front_size
)
1131 bio
->bi_hw_front_size
= hw_seg_size
;
1132 hw_seg_size
= BIOVEC_VIRT_START_SIZE(bv
) + bv
->bv_len
;
1138 seg_size
= bv
->bv_len
;
1141 if (hw_seg_size
> bio
->bi_hw_back_size
)
1142 bio
->bi_hw_back_size
= hw_seg_size
;
1143 if (nr_hw_segs
== 1 && hw_seg_size
> bio
->bi_hw_front_size
)
1144 bio
->bi_hw_front_size
= hw_seg_size
;
1145 bio
->bi_phys_segments
= nr_phys_segs
;
1146 bio
->bi_hw_segments
= nr_hw_segs
;
1147 bio
->bi_flags
|= (1 << BIO_SEG_VALID
);
1151 int blk_phys_contig_segment(request_queue_t
*q
, struct bio
*bio
,
1154 if (!(q
->queue_flags
& (1 << QUEUE_FLAG_CLUSTER
)))
1157 if (!BIOVEC_PHYS_MERGEABLE(__BVEC_END(bio
), __BVEC_START(nxt
)))
1159 if (bio
->bi_size
+ nxt
->bi_size
> q
->max_segment_size
)
1163 * bio and nxt are contigous in memory, check if the queue allows
1164 * these two to be merged into one
1166 if (BIO_SEG_BOUNDARY(q
, bio
, nxt
))
1172 EXPORT_SYMBOL(blk_phys_contig_segment
);
1174 int blk_hw_contig_segment(request_queue_t
*q
, struct bio
*bio
,
1177 if (unlikely(!bio_flagged(bio
, BIO_SEG_VALID
)))
1178 blk_recount_segments(q
, bio
);
1179 if (unlikely(!bio_flagged(nxt
, BIO_SEG_VALID
)))
1180 blk_recount_segments(q
, nxt
);
1181 if (!BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio
), __BVEC_START(nxt
)) ||
1182 BIOVEC_VIRT_OVERSIZE(bio
->bi_hw_front_size
+ bio
->bi_hw_back_size
))
1184 if (bio
->bi_size
+ nxt
->bi_size
> q
->max_segment_size
)
1190 EXPORT_SYMBOL(blk_hw_contig_segment
);
1193 * map a request to scatterlist, return number of sg entries setup. Caller
1194 * must make sure sg can hold rq->nr_phys_segments entries
1196 int blk_rq_map_sg(request_queue_t
*q
, struct request
*rq
, struct scatterlist
*sg
)
1198 struct bio_vec
*bvec
, *bvprv
;
1200 int nsegs
, i
, cluster
;
1203 cluster
= q
->queue_flags
& (1 << QUEUE_FLAG_CLUSTER
);
1206 * for each bio in rq
1209 rq_for_each_bio(bio
, rq
) {
1211 * for each segment in bio
1213 bio_for_each_segment(bvec
, bio
, i
) {
1214 int nbytes
= bvec
->bv_len
;
1216 if (bvprv
&& cluster
) {
1217 if (sg
[nsegs
- 1].length
+ nbytes
> q
->max_segment_size
)
1220 if (!BIOVEC_PHYS_MERGEABLE(bvprv
, bvec
))
1222 if (!BIOVEC_SEG_BOUNDARY(q
, bvprv
, bvec
))
1225 sg
[nsegs
- 1].length
+= nbytes
;
1228 memset(&sg
[nsegs
],0,sizeof(struct scatterlist
));
1229 sg
[nsegs
].page
= bvec
->bv_page
;
1230 sg
[nsegs
].length
= nbytes
;
1231 sg
[nsegs
].offset
= bvec
->bv_offset
;
1236 } /* segments in bio */
1242 EXPORT_SYMBOL(blk_rq_map_sg
);
1245 * the standard queue merge functions, can be overridden with device
1246 * specific ones if so desired
1249 static inline int ll_new_mergeable(request_queue_t
*q
,
1250 struct request
*req
,
1253 int nr_phys_segs
= bio_phys_segments(q
, bio
);
1255 if (req
->nr_phys_segments
+ nr_phys_segs
> q
->max_phys_segments
) {
1256 req
->flags
|= REQ_NOMERGE
;
1257 if (req
== q
->last_merge
)
1258 q
->last_merge
= NULL
;
1263 * A hw segment is just getting larger, bump just the phys
1266 req
->nr_phys_segments
+= nr_phys_segs
;
1270 static inline int ll_new_hw_segment(request_queue_t
*q
,
1271 struct request
*req
,
1274 int nr_hw_segs
= bio_hw_segments(q
, bio
);
1275 int nr_phys_segs
= bio_phys_segments(q
, bio
);
1277 if (req
->nr_hw_segments
+ nr_hw_segs
> q
->max_hw_segments
1278 || req
->nr_phys_segments
+ nr_phys_segs
> q
->max_phys_segments
) {
1279 req
->flags
|= REQ_NOMERGE
;
1280 if (req
== q
->last_merge
)
1281 q
->last_merge
= NULL
;
1286 * This will form the start of a new hw segment. Bump both
1289 req
->nr_hw_segments
+= nr_hw_segs
;
1290 req
->nr_phys_segments
+= nr_phys_segs
;
1294 static int ll_back_merge_fn(request_queue_t
*q
, struct request
*req
,
1299 if (req
->nr_sectors
+ bio_sectors(bio
) > q
->max_sectors
) {
1300 req
->flags
|= REQ_NOMERGE
;
1301 if (req
== q
->last_merge
)
1302 q
->last_merge
= NULL
;
1305 if (unlikely(!bio_flagged(req
->biotail
, BIO_SEG_VALID
)))
1306 blk_recount_segments(q
, req
->biotail
);
1307 if (unlikely(!bio_flagged(bio
, BIO_SEG_VALID
)))
1308 blk_recount_segments(q
, bio
);
1309 len
= req
->biotail
->bi_hw_back_size
+ bio
->bi_hw_front_size
;
1310 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(req
->biotail
), __BVEC_START(bio
)) &&
1311 !BIOVEC_VIRT_OVERSIZE(len
)) {
1312 int mergeable
= ll_new_mergeable(q
, req
, bio
);
1315 if (req
->nr_hw_segments
== 1)
1316 req
->bio
->bi_hw_front_size
= len
;
1317 if (bio
->bi_hw_segments
== 1)
1318 bio
->bi_hw_back_size
= len
;
1323 return ll_new_hw_segment(q
, req
, bio
);
1326 static int ll_front_merge_fn(request_queue_t
*q
, struct request
*req
,
1331 if (req
->nr_sectors
+ bio_sectors(bio
) > q
->max_sectors
) {
1332 req
->flags
|= REQ_NOMERGE
;
1333 if (req
== q
->last_merge
)
1334 q
->last_merge
= NULL
;
1337 len
= bio
->bi_hw_back_size
+ req
->bio
->bi_hw_front_size
;
1338 if (unlikely(!bio_flagged(bio
, BIO_SEG_VALID
)))
1339 blk_recount_segments(q
, bio
);
1340 if (unlikely(!bio_flagged(req
->bio
, BIO_SEG_VALID
)))
1341 blk_recount_segments(q
, req
->bio
);
1342 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio
), __BVEC_START(req
->bio
)) &&
1343 !BIOVEC_VIRT_OVERSIZE(len
)) {
1344 int mergeable
= ll_new_mergeable(q
, req
, bio
);
1347 if (bio
->bi_hw_segments
== 1)
1348 bio
->bi_hw_front_size
= len
;
1349 if (req
->nr_hw_segments
== 1)
1350 req
->biotail
->bi_hw_back_size
= len
;
1355 return ll_new_hw_segment(q
, req
, bio
);
1358 static int ll_merge_requests_fn(request_queue_t
*q
, struct request
*req
,
1359 struct request
*next
)
1361 int total_phys_segments
= req
->nr_phys_segments
+next
->nr_phys_segments
;
1362 int total_hw_segments
= req
->nr_hw_segments
+ next
->nr_hw_segments
;
1365 * First check if the either of the requests are re-queued
1366 * requests. Can't merge them if they are.
1368 if (req
->special
|| next
->special
)
1372 * Will it become to large?
1374 if ((req
->nr_sectors
+ next
->nr_sectors
) > q
->max_sectors
)
1377 total_phys_segments
= req
->nr_phys_segments
+ next
->nr_phys_segments
;
1378 if (blk_phys_contig_segment(q
, req
->biotail
, next
->bio
))
1379 total_phys_segments
--;
1381 if (total_phys_segments
> q
->max_phys_segments
)
1384 total_hw_segments
= req
->nr_hw_segments
+ next
->nr_hw_segments
;
1385 if (blk_hw_contig_segment(q
, req
->biotail
, next
->bio
)) {
1386 int len
= req
->biotail
->bi_hw_back_size
+ next
->bio
->bi_hw_front_size
;
1388 * propagate the combined length to the end of the requests
1390 if (req
->nr_hw_segments
== 1)
1391 req
->bio
->bi_hw_front_size
= len
;
1392 if (next
->nr_hw_segments
== 1)
1393 next
->biotail
->bi_hw_back_size
= len
;
1394 total_hw_segments
--;
1397 if (total_hw_segments
> q
->max_hw_segments
)
1400 /* Merge is OK... */
1401 req
->nr_phys_segments
= total_phys_segments
;
1402 req
->nr_hw_segments
= total_hw_segments
;
1407 * "plug" the device if there are no outstanding requests: this will
1408 * force the transfer to start only after we have put all the requests
1411 * This is called with interrupts off and no requests on the queue and
1412 * with the queue lock held.
1414 void blk_plug_device(request_queue_t
*q
)
1416 WARN_ON(!irqs_disabled());
1419 * don't plug a stopped queue, it must be paired with blk_start_queue()
1420 * which will restart the queueing
1422 if (test_bit(QUEUE_FLAG_STOPPED
, &q
->queue_flags
))
1425 if (!test_and_set_bit(QUEUE_FLAG_PLUGGED
, &q
->queue_flags
))
1426 mod_timer(&q
->unplug_timer
, jiffies
+ q
->unplug_delay
);
1429 EXPORT_SYMBOL(blk_plug_device
);
1432 * remove the queue from the plugged list, if present. called with
1433 * queue lock held and interrupts disabled.
1435 int blk_remove_plug(request_queue_t
*q
)
1437 WARN_ON(!irqs_disabled());
1439 if (!test_and_clear_bit(QUEUE_FLAG_PLUGGED
, &q
->queue_flags
))
1442 del_timer(&q
->unplug_timer
);
1446 EXPORT_SYMBOL(blk_remove_plug
);
1449 * remove the plug and let it rip..
1451 void __generic_unplug_device(request_queue_t
*q
)
1453 if (test_bit(QUEUE_FLAG_STOPPED
, &q
->queue_flags
))
1456 if (!blk_remove_plug(q
))
1460 * was plugged, fire request_fn if queue has stuff to do
1462 if (elv_next_request(q
))
1465 EXPORT_SYMBOL(__generic_unplug_device
);
1468 * generic_unplug_device - fire a request queue
1469 * @q: The &request_queue_t in question
1472 * Linux uses plugging to build bigger requests queues before letting
1473 * the device have at them. If a queue is plugged, the I/O scheduler
1474 * is still adding and merging requests on the queue. Once the queue
1475 * gets unplugged, the request_fn defined for the queue is invoked and
1476 * transfers started.
1478 void generic_unplug_device(request_queue_t
*q
)
1480 spin_lock_irq(q
->queue_lock
);
1481 __generic_unplug_device(q
);
1482 spin_unlock_irq(q
->queue_lock
);
1484 EXPORT_SYMBOL(generic_unplug_device
);
1486 static void blk_backing_dev_unplug(struct backing_dev_info
*bdi
,
1489 request_queue_t
*q
= bdi
->unplug_io_data
;
1492 * devices don't necessarily have an ->unplug_fn defined
1498 static void blk_unplug_work(void *data
)
1500 request_queue_t
*q
= data
;
1505 static void blk_unplug_timeout(unsigned long data
)
1507 request_queue_t
*q
= (request_queue_t
*)data
;
1509 kblockd_schedule_work(&q
->unplug_work
);
1513 * blk_start_queue - restart a previously stopped queue
1514 * @q: The &request_queue_t in question
1517 * blk_start_queue() will clear the stop flag on the queue, and call
1518 * the request_fn for the queue if it was in a stopped state when
1519 * entered. Also see blk_stop_queue(). Queue lock must be held.
1521 void blk_start_queue(request_queue_t
*q
)
1523 clear_bit(QUEUE_FLAG_STOPPED
, &q
->queue_flags
);
1526 * one level of recursion is ok and is much faster than kicking
1527 * the unplug handling
1529 if (!test_and_set_bit(QUEUE_FLAG_REENTER
, &q
->queue_flags
)) {
1531 clear_bit(QUEUE_FLAG_REENTER
, &q
->queue_flags
);
1534 kblockd_schedule_work(&q
->unplug_work
);
1538 EXPORT_SYMBOL(blk_start_queue
);
1541 * blk_stop_queue - stop a queue
1542 * @q: The &request_queue_t in question
1545 * The Linux block layer assumes that a block driver will consume all
1546 * entries on the request queue when the request_fn strategy is called.
1547 * Often this will not happen, because of hardware limitations (queue
1548 * depth settings). If a device driver gets a 'queue full' response,
1549 * or if it simply chooses not to queue more I/O at one point, it can
1550 * call this function to prevent the request_fn from being called until
1551 * the driver has signalled it's ready to go again. This happens by calling
1552 * blk_start_queue() to restart queue operations. Queue lock must be held.
1554 void blk_stop_queue(request_queue_t
*q
)
1557 set_bit(QUEUE_FLAG_STOPPED
, &q
->queue_flags
);
1559 EXPORT_SYMBOL(blk_stop_queue
);
1562 * blk_sync_queue - cancel any pending callbacks on a queue
1566 * The block layer may perform asynchronous callback activity
1567 * on a queue, such as calling the unplug function after a timeout.
1568 * A block device may call blk_sync_queue to ensure that any
1569 * such activity is cancelled, thus allowing it to release resources
1570 * the the callbacks might use. The caller must already have made sure
1571 * that its ->make_request_fn will not re-add plugging prior to calling
1575 void blk_sync_queue(struct request_queue
*q
)
1577 del_timer_sync(&q
->unplug_timer
);
1580 EXPORT_SYMBOL(blk_sync_queue
);
1583 * blk_run_queue - run a single device queue
1584 * @q: The queue to run
1586 void blk_run_queue(struct request_queue
*q
)
1588 unsigned long flags
;
1590 spin_lock_irqsave(q
->queue_lock
, flags
);
1592 if (!elv_queue_empty(q
))
1594 spin_unlock_irqrestore(q
->queue_lock
, flags
);
1596 EXPORT_SYMBOL(blk_run_queue
);
1599 * blk_cleanup_queue: - release a &request_queue_t when it is no longer needed
1600 * @q: the request queue to be released
1603 * blk_cleanup_queue is the pair to blk_init_queue() or
1604 * blk_queue_make_request(). It should be called when a request queue is
1605 * being released; typically when a block device is being de-registered.
1606 * Currently, its primary task it to free all the &struct request
1607 * structures that were allocated to the queue and the queue itself.
1610 * Hopefully the low level driver will have finished any
1611 * outstanding requests first...
1613 void blk_cleanup_queue(request_queue_t
* q
)
1615 struct request_list
*rl
= &q
->rq
;
1617 if (!atomic_dec_and_test(&q
->refcnt
))
1621 elevator_exit(q
->elevator
);
1626 mempool_destroy(rl
->rq_pool
);
1629 __blk_queue_free_tags(q
);
1631 blk_queue_ordered(q
, QUEUE_ORDERED_NONE
);
1633 kmem_cache_free(requestq_cachep
, q
);
1636 EXPORT_SYMBOL(blk_cleanup_queue
);
1638 static int blk_init_free_list(request_queue_t
*q
)
1640 struct request_list
*rl
= &q
->rq
;
1642 rl
->count
[READ
] = rl
->count
[WRITE
] = 0;
1643 rl
->starved
[READ
] = rl
->starved
[WRITE
] = 0;
1644 init_waitqueue_head(&rl
->wait
[READ
]);
1645 init_waitqueue_head(&rl
->wait
[WRITE
]);
1646 init_waitqueue_head(&rl
->drain
);
1648 rl
->rq_pool
= mempool_create(BLKDEV_MIN_RQ
, mempool_alloc_slab
, mempool_free_slab
, request_cachep
);
1656 static int __make_request(request_queue_t
*, struct bio
*);
1658 request_queue_t
*blk_alloc_queue(int gfp_mask
)
1660 request_queue_t
*q
= kmem_cache_alloc(requestq_cachep
, gfp_mask
);
1665 memset(q
, 0, sizeof(*q
));
1666 init_timer(&q
->unplug_timer
);
1667 atomic_set(&q
->refcnt
, 1);
1669 q
->backing_dev_info
.unplug_io_fn
= blk_backing_dev_unplug
;
1670 q
->backing_dev_info
.unplug_io_data
= q
;
1675 EXPORT_SYMBOL(blk_alloc_queue
);
1678 * blk_init_queue - prepare a request queue for use with a block device
1679 * @rfn: The function to be called to process requests that have been
1680 * placed on the queue.
1681 * @lock: Request queue spin lock
1684 * If a block device wishes to use the standard request handling procedures,
1685 * which sorts requests and coalesces adjacent requests, then it must
1686 * call blk_init_queue(). The function @rfn will be called when there
1687 * are requests on the queue that need to be processed. If the device
1688 * supports plugging, then @rfn may not be called immediately when requests
1689 * are available on the queue, but may be called at some time later instead.
1690 * Plugged queues are generally unplugged when a buffer belonging to one
1691 * of the requests on the queue is needed, or due to memory pressure.
1693 * @rfn is not required, or even expected, to remove all requests off the
1694 * queue, but only as many as it can handle at a time. If it does leave
1695 * requests on the queue, it is responsible for arranging that the requests
1696 * get dealt with eventually.
1698 * The queue spin lock must be held while manipulating the requests on the
1701 * Function returns a pointer to the initialized request queue, or NULL if
1702 * it didn't succeed.
1705 * blk_init_queue() must be paired with a blk_cleanup_queue() call
1706 * when the block device is deactivated (such as at module unload).
1708 request_queue_t
*blk_init_queue(request_fn_proc
*rfn
, spinlock_t
*lock
)
1710 request_queue_t
*q
= blk_alloc_queue(GFP_KERNEL
);
1715 if (blk_init_free_list(q
))
1719 * if caller didn't supply a lock, they get per-queue locking with
1723 spin_lock_init(&q
->__queue_lock
);
1724 lock
= &q
->__queue_lock
;
1727 q
->request_fn
= rfn
;
1728 q
->back_merge_fn
= ll_back_merge_fn
;
1729 q
->front_merge_fn
= ll_front_merge_fn
;
1730 q
->merge_requests_fn
= ll_merge_requests_fn
;
1731 q
->prep_rq_fn
= NULL
;
1732 q
->unplug_fn
= generic_unplug_device
;
1733 q
->queue_flags
= (1 << QUEUE_FLAG_CLUSTER
);
1734 q
->queue_lock
= lock
;
1736 blk_queue_segment_boundary(q
, 0xffffffff);
1738 blk_queue_make_request(q
, __make_request
);
1739 blk_queue_max_segment_size(q
, MAX_SEGMENT_SIZE
);
1741 blk_queue_max_hw_segments(q
, MAX_HW_SEGMENTS
);
1742 blk_queue_max_phys_segments(q
, MAX_PHYS_SEGMENTS
);
1747 if (!elevator_init(q
, NULL
)) {
1748 blk_queue_congestion_threshold(q
);
1752 blk_cleanup_queue(q
);
1754 kmem_cache_free(requestq_cachep
, q
);
1758 EXPORT_SYMBOL(blk_init_queue
);
1760 int blk_get_queue(request_queue_t
*q
)
1762 if (!test_bit(QUEUE_FLAG_DEAD
, &q
->queue_flags
)) {
1763 atomic_inc(&q
->refcnt
);
1770 EXPORT_SYMBOL(blk_get_queue
);
1772 static inline void blk_free_request(request_queue_t
*q
, struct request
*rq
)
1774 elv_put_request(q
, rq
);
1775 mempool_free(rq
, q
->rq
.rq_pool
);
1778 static inline struct request
*blk_alloc_request(request_queue_t
*q
, int rw
,
1781 struct request
*rq
= mempool_alloc(q
->rq
.rq_pool
, gfp_mask
);
1787 * first three bits are identical in rq->flags and bio->bi_rw,
1788 * see bio.h and blkdev.h
1792 if (!elv_set_request(q
, rq
, gfp_mask
))
1795 mempool_free(rq
, q
->rq
.rq_pool
);
1800 * ioc_batching returns true if the ioc is a valid batching request and
1801 * should be given priority access to a request.
1803 static inline int ioc_batching(request_queue_t
*q
, struct io_context
*ioc
)
1809 * Make sure the process is able to allocate at least 1 request
1810 * even if the batch times out, otherwise we could theoretically
1813 return ioc
->nr_batch_requests
== q
->nr_batching
||
1814 (ioc
->nr_batch_requests
> 0
1815 && time_before(jiffies
, ioc
->last_waited
+ BLK_BATCH_TIME
));
1819 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
1820 * will cause the process to be a "batcher" on all queues in the system. This
1821 * is the behaviour we want though - once it gets a wakeup it should be given
1824 void ioc_set_batching(request_queue_t
*q
, struct io_context
*ioc
)
1826 if (!ioc
|| ioc_batching(q
, ioc
))
1829 ioc
->nr_batch_requests
= q
->nr_batching
;
1830 ioc
->last_waited
= jiffies
;
1833 static void __freed_request(request_queue_t
*q
, int rw
)
1835 struct request_list
*rl
= &q
->rq
;
1837 if (rl
->count
[rw
] < queue_congestion_off_threshold(q
))
1838 clear_queue_congested(q
, rw
);
1840 if (rl
->count
[rw
] + 1 <= q
->nr_requests
) {
1842 if (waitqueue_active(&rl
->wait
[rw
]))
1843 wake_up(&rl
->wait
[rw
]);
1845 blk_clear_queue_full(q
, rw
);
1850 * A request has just been released. Account for it, update the full and
1851 * congestion status, wake up any waiters. Called under q->queue_lock.
1853 static void freed_request(request_queue_t
*q
, int rw
)
1855 struct request_list
*rl
= &q
->rq
;
1859 __freed_request(q
, rw
);
1861 if (unlikely(rl
->starved
[rw
^ 1]))
1862 __freed_request(q
, rw
^ 1);
1864 if (!rl
->count
[READ
] && !rl
->count
[WRITE
]) {
1866 if (unlikely(waitqueue_active(&rl
->drain
)))
1867 wake_up(&rl
->drain
);
1871 #define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
1873 * Get a free request, queue_lock must not be held
1875 static struct request
*get_request(request_queue_t
*q
, int rw
, int gfp_mask
)
1877 struct request
*rq
= NULL
;
1878 struct request_list
*rl
= &q
->rq
;
1879 struct io_context
*ioc
= get_io_context(gfp_mask
);
1881 if (unlikely(test_bit(QUEUE_FLAG_DRAIN
, &q
->queue_flags
)))
1884 spin_lock_irq(q
->queue_lock
);
1885 if (rl
->count
[rw
]+1 >= q
->nr_requests
) {
1887 * The queue will fill after this allocation, so set it as
1888 * full, and mark this process as "batching". This process
1889 * will be allowed to complete a batch of requests, others
1892 if (!blk_queue_full(q
, rw
)) {
1893 ioc_set_batching(q
, ioc
);
1894 blk_set_queue_full(q
, rw
);
1898 switch (elv_may_queue(q
, rw
)) {
1901 case ELV_MQUEUE_MAY
:
1903 case ELV_MQUEUE_MUST
:
1907 if (blk_queue_full(q
, rw
) && !ioc_batching(q
, ioc
)) {
1909 * The queue is full and the allocating process is not a
1910 * "batcher", and not exempted by the IO scheduler
1912 spin_unlock_irq(q
->queue_lock
);
1918 rl
->starved
[rw
] = 0;
1919 if (rl
->count
[rw
] >= queue_congestion_on_threshold(q
))
1920 set_queue_congested(q
, rw
);
1921 spin_unlock_irq(q
->queue_lock
);
1923 rq
= blk_alloc_request(q
, rw
, gfp_mask
);
1926 * Allocation failed presumably due to memory. Undo anything
1927 * we might have messed up.
1929 * Allocating task should really be put onto the front of the
1930 * wait queue, but this is pretty rare.
1932 spin_lock_irq(q
->queue_lock
);
1933 freed_request(q
, rw
);
1936 * in the very unlikely event that allocation failed and no
1937 * requests for this direction was pending, mark us starved
1938 * so that freeing of a request in the other direction will
1939 * notice us. another possible fix would be to split the
1940 * rq mempool into READ and WRITE
1943 if (unlikely(rl
->count
[rw
] == 0))
1944 rl
->starved
[rw
] = 1;
1946 spin_unlock_irq(q
->queue_lock
);
1950 if (ioc_batching(q
, ioc
))
1951 ioc
->nr_batch_requests
--;
1956 put_io_context(ioc
);
1961 * No available requests for this queue, unplug the device and wait for some
1962 * requests to become available.
1964 static struct request
*get_request_wait(request_queue_t
*q
, int rw
)
1969 generic_unplug_device(q
);
1971 struct request_list
*rl
= &q
->rq
;
1973 prepare_to_wait_exclusive(&rl
->wait
[rw
], &wait
,
1974 TASK_UNINTERRUPTIBLE
);
1976 rq
= get_request(q
, rw
, GFP_NOIO
);
1979 struct io_context
*ioc
;
1984 * After sleeping, we become a "batching" process and
1985 * will be able to allocate at least one request, and
1986 * up to a big batch of them for a small period time.
1987 * See ioc_batching, ioc_set_batching
1989 ioc
= get_io_context(GFP_NOIO
);
1990 ioc_set_batching(q
, ioc
);
1991 put_io_context(ioc
);
1993 finish_wait(&rl
->wait
[rw
], &wait
);
1999 struct request
*blk_get_request(request_queue_t
*q
, int rw
, int gfp_mask
)
2003 BUG_ON(rw
!= READ
&& rw
!= WRITE
);
2005 if (gfp_mask
& __GFP_WAIT
)
2006 rq
= get_request_wait(q
, rw
);
2008 rq
= get_request(q
, rw
, gfp_mask
);
2013 EXPORT_SYMBOL(blk_get_request
);
2016 * blk_requeue_request - put a request back on queue
2017 * @q: request queue where request should be inserted
2018 * @rq: request to be inserted
2021 * Drivers often keep queueing requests until the hardware cannot accept
2022 * more, when that condition happens we need to put the request back
2023 * on the queue. Must be called with queue lock held.
2025 void blk_requeue_request(request_queue_t
*q
, struct request
*rq
)
2027 if (blk_rq_tagged(rq
))
2028 blk_queue_end_tag(q
, rq
);
2030 elv_requeue_request(q
, rq
);
2033 EXPORT_SYMBOL(blk_requeue_request
);
2036 * blk_insert_request - insert a special request in to a request queue
2037 * @q: request queue where request should be inserted
2038 * @rq: request to be inserted
2039 * @at_head: insert request at head or tail of queue
2040 * @data: private data
2041 * @reinsert: true if request it a reinsertion of previously processed one
2044 * Many block devices need to execute commands asynchronously, so they don't
2045 * block the whole kernel from preemption during request execution. This is
2046 * accomplished normally by inserting aritficial requests tagged as
2047 * REQ_SPECIAL in to the corresponding request queue, and letting them be
2048 * scheduled for actual execution by the request queue.
2050 * We have the option of inserting the head or the tail of the queue.
2051 * Typically we use the tail for new ioctls and so forth. We use the head
2052 * of the queue for things like a QUEUE_FULL message from a device, or a
2053 * host that is unable to accept a particular command.
2055 void blk_insert_request(request_queue_t
*q
, struct request
*rq
,
2056 int at_head
, void *data
, int reinsert
)
2058 unsigned long flags
;
2061 * tell I/O scheduler that this isn't a regular read/write (ie it
2062 * must not attempt merges on this) and that it acts as a soft
2065 rq
->flags
|= REQ_SPECIAL
| REQ_SOFTBARRIER
;
2069 spin_lock_irqsave(q
->queue_lock
, flags
);
2072 * If command is tagged, release the tag
2075 blk_requeue_request(q
, rq
);
2077 int where
= ELEVATOR_INSERT_BACK
;
2080 where
= ELEVATOR_INSERT_FRONT
;
2082 if (blk_rq_tagged(rq
))
2083 blk_queue_end_tag(q
, rq
);
2085 drive_stat_acct(rq
, rq
->nr_sectors
, 1);
2086 __elv_add_request(q
, rq
, where
, 0);
2088 if (blk_queue_plugged(q
))
2089 __generic_unplug_device(q
);
2092 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2095 EXPORT_SYMBOL(blk_insert_request
);
2098 * blk_rq_map_user - map user data to a request, for REQ_BLOCK_PC usage
2099 * @q: request queue where request should be inserted
2100 * @rw: READ or WRITE data
2101 * @ubuf: the user buffer
2102 * @len: length of user data
2105 * Data will be mapped directly for zero copy io, if possible. Otherwise
2106 * a kernel bounce buffer is used.
2108 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2109 * still in process context.
2111 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2112 * before being submitted to the device, as pages mapped may be out of
2113 * reach. It's the callers responsibility to make sure this happens. The
2114 * original bio must be passed back in to blk_rq_unmap_user() for proper
2117 struct request
*blk_rq_map_user(request_queue_t
*q
, int rw
, void __user
*ubuf
,
2120 unsigned long uaddr
;
2124 if (len
> (q
->max_sectors
<< 9))
2125 return ERR_PTR(-EINVAL
);
2126 if ((!len
&& ubuf
) || (len
&& !ubuf
))
2127 return ERR_PTR(-EINVAL
);
2129 rq
= blk_get_request(q
, rw
, __GFP_WAIT
);
2131 return ERR_PTR(-ENOMEM
);
2134 * if alignment requirement is satisfied, map in user pages for
2135 * direct dma. else, set up kernel bounce buffers
2137 uaddr
= (unsigned long) ubuf
;
2138 if (!(uaddr
& queue_dma_alignment(q
)) && !(len
& queue_dma_alignment(q
)))
2139 bio
= bio_map_user(q
, NULL
, uaddr
, len
, rw
== READ
);
2141 bio
= bio_copy_user(q
, uaddr
, len
, rw
== READ
);
2144 rq
->bio
= rq
->biotail
= bio
;
2145 blk_rq_bio_prep(q
, rq
, bio
);
2147 rq
->buffer
= rq
->data
= NULL
;
2153 * bio is the err-ptr
2155 blk_put_request(rq
);
2156 return (struct request
*) bio
;
2159 EXPORT_SYMBOL(blk_rq_map_user
);
2162 * blk_rq_unmap_user - unmap a request with user data
2163 * @rq: request to be unmapped
2164 * @bio: bio for the request
2165 * @ulen: length of user buffer
2168 * Unmap a request previously mapped by blk_rq_map_user().
2170 int blk_rq_unmap_user(struct request
*rq
, struct bio
*bio
, unsigned int ulen
)
2175 if (bio_flagged(bio
, BIO_USER_MAPPED
))
2176 bio_unmap_user(bio
);
2178 ret
= bio_uncopy_user(bio
);
2181 blk_put_request(rq
);
2185 EXPORT_SYMBOL(blk_rq_unmap_user
);
2188 * blk_execute_rq - insert a request into queue for execution
2189 * @q: queue to insert the request in
2190 * @bd_disk: matching gendisk
2191 * @rq: request to insert
2194 * Insert a fully prepared request at the back of the io scheduler queue
2197 int blk_execute_rq(request_queue_t
*q
, struct gendisk
*bd_disk
,
2200 DECLARE_COMPLETION(wait
);
2201 char sense
[SCSI_SENSE_BUFFERSIZE
];
2204 rq
->rq_disk
= bd_disk
;
2207 * we need an extra reference to the request, so we can look at
2208 * it after io completion
2213 memset(sense
, 0, sizeof(sense
));
2218 rq
->flags
|= REQ_NOMERGE
;
2219 rq
->waiting
= &wait
;
2220 rq
->end_io
= blk_end_sync_rq
;
2221 elv_add_request(q
, rq
, ELEVATOR_INSERT_BACK
, 1);
2222 generic_unplug_device(q
);
2223 wait_for_completion(&wait
);
2232 EXPORT_SYMBOL(blk_execute_rq
);
2235 * blkdev_issue_flush - queue a flush
2236 * @bdev: blockdev to issue flush for
2237 * @error_sector: error sector
2240 * Issue a flush for the block device in question. Caller can supply
2241 * room for storing the error offset in case of a flush error, if they
2242 * wish to. Caller must run wait_for_completion() on its own.
2244 int blkdev_issue_flush(struct block_device
*bdev
, sector_t
*error_sector
)
2248 if (bdev
->bd_disk
== NULL
)
2251 q
= bdev_get_queue(bdev
);
2254 if (!q
->issue_flush_fn
)
2257 return q
->issue_flush_fn(q
, bdev
->bd_disk
, error_sector
);
2260 EXPORT_SYMBOL(blkdev_issue_flush
);
2263 * blkdev_scsi_issue_flush_fn - issue flush for SCSI devices
2266 * @error_sector: error offset
2269 * Devices understanding the SCSI command set, can use this function as
2270 * a helper for issuing a cache flush. Note: driver is required to store
2271 * the error offset (in case of error flushing) in ->sector of struct
2274 int blkdev_scsi_issue_flush_fn(request_queue_t
*q
, struct gendisk
*disk
,
2275 sector_t
*error_sector
)
2277 struct request
*rq
= blk_get_request(q
, WRITE
, __GFP_WAIT
);
2280 rq
->flags
|= REQ_BLOCK_PC
| REQ_SOFTBARRIER
;
2282 memset(rq
->cmd
, 0, sizeof(rq
->cmd
));
2287 rq
->timeout
= 60 * HZ
;
2289 ret
= blk_execute_rq(q
, disk
, rq
);
2291 if (ret
&& error_sector
)
2292 *error_sector
= rq
->sector
;
2294 blk_put_request(rq
);
2298 EXPORT_SYMBOL(blkdev_scsi_issue_flush_fn
);
2300 void drive_stat_acct(struct request
*rq
, int nr_sectors
, int new_io
)
2302 int rw
= rq_data_dir(rq
);
2304 if (!blk_fs_request(rq
) || !rq
->rq_disk
)
2308 __disk_stat_add(rq
->rq_disk
, read_sectors
, nr_sectors
);
2310 __disk_stat_inc(rq
->rq_disk
, read_merges
);
2311 } else if (rw
== WRITE
) {
2312 __disk_stat_add(rq
->rq_disk
, write_sectors
, nr_sectors
);
2314 __disk_stat_inc(rq
->rq_disk
, write_merges
);
2317 disk_round_stats(rq
->rq_disk
);
2318 rq
->rq_disk
->in_flight
++;
2323 * add-request adds a request to the linked list.
2324 * queue lock is held and interrupts disabled, as we muck with the
2325 * request queue list.
2327 static inline void add_request(request_queue_t
* q
, struct request
* req
)
2329 drive_stat_acct(req
, req
->nr_sectors
, 1);
2332 q
->activity_fn(q
->activity_data
, rq_data_dir(req
));
2335 * elevator indicated where it wants this request to be
2336 * inserted at elevator_merge time
2338 __elv_add_request(q
, req
, ELEVATOR_INSERT_SORT
, 0);
2342 * disk_round_stats() - Round off the performance stats on a struct
2345 * The average IO queue length and utilisation statistics are maintained
2346 * by observing the current state of the queue length and the amount of
2347 * time it has been in this state for.
2349 * Normally, that accounting is done on IO completion, but that can result
2350 * in more than a second's worth of IO being accounted for within any one
2351 * second, leading to >100% utilisation. To deal with that, we call this
2352 * function to do a round-off before returning the results when reading
2353 * /proc/diskstats. This accounts immediately for all queue usage up to
2354 * the current jiffies and restarts the counters again.
2356 void disk_round_stats(struct gendisk
*disk
)
2358 unsigned long now
= jiffies
;
2360 __disk_stat_add(disk
, time_in_queue
,
2361 disk
->in_flight
* (now
- disk
->stamp
));
2364 if (disk
->in_flight
)
2365 __disk_stat_add(disk
, io_ticks
, (now
- disk
->stamp_idle
));
2366 disk
->stamp_idle
= now
;
2370 * queue lock must be held
2372 static void __blk_put_request(request_queue_t
*q
, struct request
*req
)
2374 struct request_list
*rl
= req
->rl
;
2378 if (unlikely(--req
->ref_count
))
2381 req
->rq_status
= RQ_INACTIVE
;
2386 * Request may not have originated from ll_rw_blk. if not,
2387 * it didn't come out of our reserved rq pools
2390 int rw
= rq_data_dir(req
);
2392 elv_completed_request(q
, req
);
2394 BUG_ON(!list_empty(&req
->queuelist
));
2396 blk_free_request(q
, req
);
2397 freed_request(q
, rw
);
2401 void blk_put_request(struct request
*req
)
2404 * if req->rl isn't set, this request didnt originate from the
2405 * block layer, so it's safe to just disregard it
2408 unsigned long flags
;
2409 request_queue_t
*q
= req
->q
;
2411 spin_lock_irqsave(q
->queue_lock
, flags
);
2412 __blk_put_request(q
, req
);
2413 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2417 EXPORT_SYMBOL(blk_put_request
);
2420 * blk_end_sync_rq - executes a completion event on a request
2421 * @rq: request to complete
2423 void blk_end_sync_rq(struct request
*rq
)
2425 struct completion
*waiting
= rq
->waiting
;
2428 __blk_put_request(rq
->q
, rq
);
2431 * complete last, if this is a stack request the process (and thus
2432 * the rq pointer) could be invalid right after this complete()
2436 EXPORT_SYMBOL(blk_end_sync_rq
);
2439 * blk_congestion_wait - wait for a queue to become uncongested
2440 * @rw: READ or WRITE
2441 * @timeout: timeout in jiffies
2443 * Waits for up to @timeout jiffies for a queue (any queue) to exit congestion.
2444 * If no queues are congested then just wait for the next request to be
2447 long blk_congestion_wait(int rw
, long timeout
)
2451 wait_queue_head_t
*wqh
= &congestion_wqh
[rw
];
2453 prepare_to_wait(wqh
, &wait
, TASK_UNINTERRUPTIBLE
);
2454 ret
= io_schedule_timeout(timeout
);
2455 finish_wait(wqh
, &wait
);
2459 EXPORT_SYMBOL(blk_congestion_wait
);
2462 * Has to be called with the request spinlock acquired
2464 static int attempt_merge(request_queue_t
*q
, struct request
*req
,
2465 struct request
*next
)
2467 if (!rq_mergeable(req
) || !rq_mergeable(next
))
2473 if (req
->sector
+ req
->nr_sectors
!= next
->sector
)
2476 if (rq_data_dir(req
) != rq_data_dir(next
)
2477 || req
->rq_disk
!= next
->rq_disk
2478 || next
->waiting
|| next
->special
)
2482 * If we are allowed to merge, then append bio list
2483 * from next to rq and release next. merge_requests_fn
2484 * will have updated segment counts, update sector
2487 if (!q
->merge_requests_fn(q
, req
, next
))
2491 * At this point we have either done a back merge
2492 * or front merge. We need the smaller start_time of
2493 * the merged requests to be the current request
2494 * for accounting purposes.
2496 if (time_after(req
->start_time
, next
->start_time
))
2497 req
->start_time
= next
->start_time
;
2499 req
->biotail
->bi_next
= next
->bio
;
2500 req
->biotail
= next
->biotail
;
2502 req
->nr_sectors
= req
->hard_nr_sectors
+= next
->hard_nr_sectors
;
2504 elv_merge_requests(q
, req
, next
);
2507 disk_round_stats(req
->rq_disk
);
2508 req
->rq_disk
->in_flight
--;
2511 __blk_put_request(q
, next
);
2515 static inline int attempt_back_merge(request_queue_t
*q
, struct request
*rq
)
2517 struct request
*next
= elv_latter_request(q
, rq
);
2520 return attempt_merge(q
, rq
, next
);
2525 static inline int attempt_front_merge(request_queue_t
*q
, struct request
*rq
)
2527 struct request
*prev
= elv_former_request(q
, rq
);
2530 return attempt_merge(q
, prev
, rq
);
2536 * blk_attempt_remerge - attempt to remerge active head with next request
2537 * @q: The &request_queue_t belonging to the device
2538 * @rq: The head request (usually)
2541 * For head-active devices, the queue can easily be unplugged so quickly
2542 * that proper merging is not done on the front request. This may hurt
2543 * performance greatly for some devices. The block layer cannot safely
2544 * do merging on that first request for these queues, but the driver can
2545 * call this function and make it happen any way. Only the driver knows
2546 * when it is safe to do so.
2548 void blk_attempt_remerge(request_queue_t
*q
, struct request
*rq
)
2550 unsigned long flags
;
2552 spin_lock_irqsave(q
->queue_lock
, flags
);
2553 attempt_back_merge(q
, rq
);
2554 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2557 EXPORT_SYMBOL(blk_attempt_remerge
);
2560 * Non-locking blk_attempt_remerge variant.
2562 void __blk_attempt_remerge(request_queue_t
*q
, struct request
*rq
)
2564 attempt_back_merge(q
, rq
);
2567 EXPORT_SYMBOL(__blk_attempt_remerge
);
2569 static int __make_request(request_queue_t
*q
, struct bio
*bio
)
2571 struct request
*req
, *freereq
= NULL
;
2572 int el_ret
, rw
, nr_sectors
, cur_nr_sectors
, barrier
, err
, sync
;
2575 sector
= bio
->bi_sector
;
2576 nr_sectors
= bio_sectors(bio
);
2577 cur_nr_sectors
= bio_cur_sectors(bio
);
2579 rw
= bio_data_dir(bio
);
2580 sync
= bio_sync(bio
);
2583 * low level driver can indicate that it wants pages above a
2584 * certain limit bounced to low memory (ie for highmem, or even
2585 * ISA dma in theory)
2587 blk_queue_bounce(q
, &bio
);
2589 spin_lock_prefetch(q
->queue_lock
);
2591 barrier
= bio_barrier(bio
);
2592 if (barrier
&& (q
->ordered
== QUEUE_ORDERED_NONE
)) {
2598 spin_lock_irq(q
->queue_lock
);
2600 if (elv_queue_empty(q
)) {
2607 el_ret
= elv_merge(q
, &req
, bio
);
2609 case ELEVATOR_BACK_MERGE
:
2610 BUG_ON(!rq_mergeable(req
));
2612 if (!q
->back_merge_fn(q
, req
, bio
))
2615 req
->biotail
->bi_next
= bio
;
2617 req
->nr_sectors
= req
->hard_nr_sectors
+= nr_sectors
;
2618 drive_stat_acct(req
, nr_sectors
, 0);
2619 if (!attempt_back_merge(q
, req
))
2620 elv_merged_request(q
, req
);
2623 case ELEVATOR_FRONT_MERGE
:
2624 BUG_ON(!rq_mergeable(req
));
2626 if (!q
->front_merge_fn(q
, req
, bio
))
2629 bio
->bi_next
= req
->bio
;
2633 * may not be valid. if the low level driver said
2634 * it didn't need a bounce buffer then it better
2635 * not touch req->buffer either...
2637 req
->buffer
= bio_data(bio
);
2638 req
->current_nr_sectors
= cur_nr_sectors
;
2639 req
->hard_cur_sectors
= cur_nr_sectors
;
2640 req
->sector
= req
->hard_sector
= sector
;
2641 req
->nr_sectors
= req
->hard_nr_sectors
+= nr_sectors
;
2642 drive_stat_acct(req
, nr_sectors
, 0);
2643 if (!attempt_front_merge(q
, req
))
2644 elv_merged_request(q
, req
);
2648 * elevator says don't/can't merge. get new request
2650 case ELEVATOR_NO_MERGE
:
2654 printk("elevator returned crap (%d)\n", el_ret
);
2659 * Grab a free request from the freelist - if that is empty, check
2660 * if we are doing read ahead and abort instead of blocking for
2668 spin_unlock_irq(q
->queue_lock
);
2669 if ((freereq
= get_request(q
, rw
, GFP_ATOMIC
)) == NULL
) {
2674 if (bio_rw_ahead(bio
))
2677 freereq
= get_request_wait(q
, rw
);
2682 req
->flags
|= REQ_CMD
;
2685 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
2687 if (bio_rw_ahead(bio
) || bio_failfast(bio
))
2688 req
->flags
|= REQ_FAILFAST
;
2691 * REQ_BARRIER implies no merging, but lets make it explicit
2694 req
->flags
|= (REQ_HARDBARRIER
| REQ_NOMERGE
);
2697 req
->hard_sector
= req
->sector
= sector
;
2698 req
->hard_nr_sectors
= req
->nr_sectors
= nr_sectors
;
2699 req
->current_nr_sectors
= req
->hard_cur_sectors
= cur_nr_sectors
;
2700 req
->nr_phys_segments
= bio_phys_segments(q
, bio
);
2701 req
->nr_hw_segments
= bio_hw_segments(q
, bio
);
2702 req
->buffer
= bio_data(bio
); /* see ->buffer comment above */
2703 req
->waiting
= NULL
;
2704 req
->bio
= req
->biotail
= bio
;
2705 req
->rq_disk
= bio
->bi_bdev
->bd_disk
;
2706 req
->start_time
= jiffies
;
2708 add_request(q
, req
);
2711 __blk_put_request(q
, freereq
);
2713 __generic_unplug_device(q
);
2715 spin_unlock_irq(q
->queue_lock
);
2719 bio_endio(bio
, nr_sectors
<< 9, err
);
2724 * If bio->bi_dev is a partition, remap the location
2726 static inline void blk_partition_remap(struct bio
*bio
)
2728 struct block_device
*bdev
= bio
->bi_bdev
;
2730 if (bdev
!= bdev
->bd_contains
) {
2731 struct hd_struct
*p
= bdev
->bd_part
;
2733 switch (bio
->bi_rw
) {
2735 p
->read_sectors
+= bio_sectors(bio
);
2739 p
->write_sectors
+= bio_sectors(bio
);
2743 bio
->bi_sector
+= p
->start_sect
;
2744 bio
->bi_bdev
= bdev
->bd_contains
;
2748 void blk_finish_queue_drain(request_queue_t
*q
)
2750 struct request_list
*rl
= &q
->rq
;
2753 spin_lock_irq(q
->queue_lock
);
2754 clear_bit(QUEUE_FLAG_DRAIN
, &q
->queue_flags
);
2756 while (!list_empty(&q
->drain_list
)) {
2757 rq
= list_entry_rq(q
->drain_list
.next
);
2759 list_del_init(&rq
->queuelist
);
2760 __elv_add_request(q
, rq
, ELEVATOR_INSERT_BACK
, 1);
2763 spin_unlock_irq(q
->queue_lock
);
2765 wake_up(&rl
->wait
[0]);
2766 wake_up(&rl
->wait
[1]);
2767 wake_up(&rl
->drain
);
2770 static int wait_drain(request_queue_t
*q
, struct request_list
*rl
, int dispatch
)
2772 int wait
= rl
->count
[READ
] + rl
->count
[WRITE
];
2775 wait
+= !list_empty(&q
->queue_head
);
2781 * We rely on the fact that only requests allocated through blk_alloc_request()
2782 * have io scheduler private data structures associated with them. Any other
2783 * type of request (allocated on stack or through kmalloc()) should not go
2784 * to the io scheduler core, but be attached to the queue head instead.
2786 void blk_wait_queue_drained(request_queue_t
*q
, int wait_dispatch
)
2788 struct request_list
*rl
= &q
->rq
;
2791 spin_lock_irq(q
->queue_lock
);
2792 set_bit(QUEUE_FLAG_DRAIN
, &q
->queue_flags
);
2794 while (wait_drain(q
, rl
, wait_dispatch
)) {
2795 prepare_to_wait(&rl
->drain
, &wait
, TASK_UNINTERRUPTIBLE
);
2797 if (wait_drain(q
, rl
, wait_dispatch
)) {
2798 __generic_unplug_device(q
);
2799 spin_unlock_irq(q
->queue_lock
);
2801 spin_lock_irq(q
->queue_lock
);
2804 finish_wait(&rl
->drain
, &wait
);
2807 spin_unlock_irq(q
->queue_lock
);
2811 * block waiting for the io scheduler being started again.
2813 static inline void block_wait_queue_running(request_queue_t
*q
)
2817 while (test_bit(QUEUE_FLAG_DRAIN
, &q
->queue_flags
)) {
2818 struct request_list
*rl
= &q
->rq
;
2820 prepare_to_wait_exclusive(&rl
->drain
, &wait
,
2821 TASK_UNINTERRUPTIBLE
);
2824 * re-check the condition. avoids using prepare_to_wait()
2825 * in the fast path (queue is running)
2827 if (test_bit(QUEUE_FLAG_DRAIN
, &q
->queue_flags
))
2830 finish_wait(&rl
->drain
, &wait
);
2834 static void handle_bad_sector(struct bio
*bio
)
2836 char b
[BDEVNAME_SIZE
];
2838 printk(KERN_INFO
"attempt to access beyond end of device\n");
2839 printk(KERN_INFO
"%s: rw=%ld, want=%Lu, limit=%Lu\n",
2840 bdevname(bio
->bi_bdev
, b
),
2842 (unsigned long long)bio
->bi_sector
+ bio_sectors(bio
),
2843 (long long)(bio
->bi_bdev
->bd_inode
->i_size
>> 9));
2845 set_bit(BIO_EOF
, &bio
->bi_flags
);
2849 * generic_make_request: hand a buffer to its device driver for I/O
2850 * @bio: The bio describing the location in memory and on the device.
2852 * generic_make_request() is used to make I/O requests of block
2853 * devices. It is passed a &struct bio, which describes the I/O that needs
2856 * generic_make_request() does not return any status. The
2857 * success/failure status of the request, along with notification of
2858 * completion, is delivered asynchronously through the bio->bi_end_io
2859 * function described (one day) else where.
2861 * The caller of generic_make_request must make sure that bi_io_vec
2862 * are set to describe the memory buffer, and that bi_dev and bi_sector are
2863 * set to describe the device address, and the
2864 * bi_end_io and optionally bi_private are set to describe how
2865 * completion notification should be signaled.
2867 * generic_make_request and the drivers it calls may use bi_next if this
2868 * bio happens to be merged with someone else, and may change bi_dev and
2869 * bi_sector for remaps as it sees fit. So the values of these fields
2870 * should NOT be depended on after the call to generic_make_request.
2872 void generic_make_request(struct bio
*bio
)
2876 int ret
, nr_sectors
= bio_sectors(bio
);
2879 /* Test device or partition size, when known. */
2880 maxsector
= bio
->bi_bdev
->bd_inode
->i_size
>> 9;
2882 sector_t sector
= bio
->bi_sector
;
2884 if (maxsector
< nr_sectors
|| maxsector
- nr_sectors
< sector
) {
2886 * This may well happen - the kernel calls bread()
2887 * without checking the size of the device, e.g., when
2888 * mounting a device.
2890 handle_bad_sector(bio
);
2896 * Resolve the mapping until finished. (drivers are
2897 * still free to implement/resolve their own stacking
2898 * by explicitly returning 0)
2900 * NOTE: we don't repeat the blk_size check for each new device.
2901 * Stacking drivers are expected to know what they are doing.
2904 char b
[BDEVNAME_SIZE
];
2906 q
= bdev_get_queue(bio
->bi_bdev
);
2909 "generic_make_request: Trying to access "
2910 "nonexistent block-device %s (%Lu)\n",
2911 bdevname(bio
->bi_bdev
, b
),
2912 (long long) bio
->bi_sector
);
2914 bio_endio(bio
, bio
->bi_size
, -EIO
);
2918 if (unlikely(bio_sectors(bio
) > q
->max_hw_sectors
)) {
2919 printk("bio too big device %s (%u > %u)\n",
2920 bdevname(bio
->bi_bdev
, b
),
2926 if (test_bit(QUEUE_FLAG_DEAD
, &q
->queue_flags
))
2929 block_wait_queue_running(q
);
2932 * If this device has partitions, remap block n
2933 * of partition p to block n+start(p) of the disk.
2935 blk_partition_remap(bio
);
2937 ret
= q
->make_request_fn(q
, bio
);
2941 EXPORT_SYMBOL(generic_make_request
);
2944 * submit_bio: submit a bio to the block device layer for I/O
2945 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
2946 * @bio: The &struct bio which describes the I/O
2948 * submit_bio() is very similar in purpose to generic_make_request(), and
2949 * uses that function to do most of the work. Both are fairly rough
2950 * interfaces, @bio must be presetup and ready for I/O.
2953 void submit_bio(int rw
, struct bio
*bio
)
2955 int count
= bio_sectors(bio
);
2957 BIO_BUG_ON(!bio
->bi_size
);
2958 BIO_BUG_ON(!bio
->bi_io_vec
);
2961 mod_page_state(pgpgout
, count
);
2963 mod_page_state(pgpgin
, count
);
2965 if (unlikely(block_dump
)) {
2966 char b
[BDEVNAME_SIZE
];
2967 printk(KERN_DEBUG
"%s(%d): %s block %Lu on %s\n",
2968 current
->comm
, current
->pid
,
2969 (rw
& WRITE
) ? "WRITE" : "READ",
2970 (unsigned long long)bio
->bi_sector
,
2971 bdevname(bio
->bi_bdev
,b
));
2974 generic_make_request(bio
);
2977 EXPORT_SYMBOL(submit_bio
);
2979 void blk_recalc_rq_segments(struct request
*rq
)
2981 struct bio
*bio
, *prevbio
= NULL
;
2982 int nr_phys_segs
, nr_hw_segs
;
2983 unsigned int phys_size
, hw_size
;
2984 request_queue_t
*q
= rq
->q
;
2989 phys_size
= hw_size
= nr_phys_segs
= nr_hw_segs
= 0;
2990 rq_for_each_bio(bio
, rq
) {
2991 /* Force bio hw/phys segs to be recalculated. */
2992 bio
->bi_flags
&= ~(1 << BIO_SEG_VALID
);
2994 nr_phys_segs
+= bio_phys_segments(q
, bio
);
2995 nr_hw_segs
+= bio_hw_segments(q
, bio
);
2997 int pseg
= phys_size
+ prevbio
->bi_size
+ bio
->bi_size
;
2998 int hseg
= hw_size
+ prevbio
->bi_size
+ bio
->bi_size
;
3000 if (blk_phys_contig_segment(q
, prevbio
, bio
) &&
3001 pseg
<= q
->max_segment_size
) {
3003 phys_size
+= prevbio
->bi_size
+ bio
->bi_size
;
3007 if (blk_hw_contig_segment(q
, prevbio
, bio
) &&
3008 hseg
<= q
->max_segment_size
) {
3010 hw_size
+= prevbio
->bi_size
+ bio
->bi_size
;
3017 rq
->nr_phys_segments
= nr_phys_segs
;
3018 rq
->nr_hw_segments
= nr_hw_segs
;
3021 void blk_recalc_rq_sectors(struct request
*rq
, int nsect
)
3023 if (blk_fs_request(rq
)) {
3024 rq
->hard_sector
+= nsect
;
3025 rq
->hard_nr_sectors
-= nsect
;
3028 * Move the I/O submission pointers ahead if required.
3030 if ((rq
->nr_sectors
>= rq
->hard_nr_sectors
) &&
3031 (rq
->sector
<= rq
->hard_sector
)) {
3032 rq
->sector
= rq
->hard_sector
;
3033 rq
->nr_sectors
= rq
->hard_nr_sectors
;
3034 rq
->hard_cur_sectors
= bio_cur_sectors(rq
->bio
);
3035 rq
->current_nr_sectors
= rq
->hard_cur_sectors
;
3036 rq
->buffer
= bio_data(rq
->bio
);
3040 * if total number of sectors is less than the first segment
3041 * size, something has gone terribly wrong
3043 if (rq
->nr_sectors
< rq
->current_nr_sectors
) {
3044 printk("blk: request botched\n");
3045 rq
->nr_sectors
= rq
->current_nr_sectors
;
3050 static int __end_that_request_first(struct request
*req
, int uptodate
,
3053 int total_bytes
, bio_nbytes
, error
, next_idx
= 0;
3057 * extend uptodate bool to allow < 0 value to be direct io error
3060 if (end_io_error(uptodate
))
3061 error
= !uptodate
? -EIO
: uptodate
;
3064 * for a REQ_BLOCK_PC request, we want to carry any eventual
3065 * sense key with us all the way through
3067 if (!blk_pc_request(req
))
3071 if (blk_fs_request(req
) && !(req
->flags
& REQ_QUIET
))
3072 printk("end_request: I/O error, dev %s, sector %llu\n",
3073 req
->rq_disk
? req
->rq_disk
->disk_name
: "?",
3074 (unsigned long long)req
->sector
);
3077 total_bytes
= bio_nbytes
= 0;
3078 while ((bio
= req
->bio
) != NULL
) {
3081 if (nr_bytes
>= bio
->bi_size
) {
3082 req
->bio
= bio
->bi_next
;
3083 nbytes
= bio
->bi_size
;
3084 bio_endio(bio
, nbytes
, error
);
3088 int idx
= bio
->bi_idx
+ next_idx
;
3090 if (unlikely(bio
->bi_idx
>= bio
->bi_vcnt
)) {
3091 blk_dump_rq_flags(req
, "__end_that");
3092 printk("%s: bio idx %d >= vcnt %d\n",
3094 bio
->bi_idx
, bio
->bi_vcnt
);
3098 nbytes
= bio_iovec_idx(bio
, idx
)->bv_len
;
3099 BIO_BUG_ON(nbytes
> bio
->bi_size
);
3102 * not a complete bvec done
3104 if (unlikely(nbytes
> nr_bytes
)) {
3105 bio_nbytes
+= nr_bytes
;
3106 total_bytes
+= nr_bytes
;
3111 * advance to the next vector
3114 bio_nbytes
+= nbytes
;
3117 total_bytes
+= nbytes
;
3120 if ((bio
= req
->bio
)) {
3122 * end more in this run, or just return 'not-done'
3124 if (unlikely(nr_bytes
<= 0))
3136 * if the request wasn't completed, update state
3139 bio_endio(bio
, bio_nbytes
, error
);
3140 bio
->bi_idx
+= next_idx
;
3141 bio_iovec(bio
)->bv_offset
+= nr_bytes
;
3142 bio_iovec(bio
)->bv_len
-= nr_bytes
;
3145 blk_recalc_rq_sectors(req
, total_bytes
>> 9);
3146 blk_recalc_rq_segments(req
);
3151 * end_that_request_first - end I/O on a request
3152 * @req: the request being processed
3153 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3154 * @nr_sectors: number of sectors to end I/O on
3157 * Ends I/O on a number of sectors attached to @req, and sets it up
3158 * for the next range of segments (if any) in the cluster.
3161 * 0 - we are done with this request, call end_that_request_last()
3162 * 1 - still buffers pending for this request
3164 int end_that_request_first(struct request
*req
, int uptodate
, int nr_sectors
)
3166 return __end_that_request_first(req
, uptodate
, nr_sectors
<< 9);
3169 EXPORT_SYMBOL(end_that_request_first
);
3172 * end_that_request_chunk - end I/O on a request
3173 * @req: the request being processed
3174 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3175 * @nr_bytes: number of bytes to complete
3178 * Ends I/O on a number of bytes attached to @req, and sets it up
3179 * for the next range of segments (if any). Like end_that_request_first(),
3180 * but deals with bytes instead of sectors.
3183 * 0 - we are done with this request, call end_that_request_last()
3184 * 1 - still buffers pending for this request
3186 int end_that_request_chunk(struct request
*req
, int uptodate
, int nr_bytes
)
3188 return __end_that_request_first(req
, uptodate
, nr_bytes
);
3191 EXPORT_SYMBOL(end_that_request_chunk
);
3194 * queue lock must be held
3196 void end_that_request_last(struct request
*req
)
3198 struct gendisk
*disk
= req
->rq_disk
;
3200 if (unlikely(laptop_mode
) && blk_fs_request(req
))
3201 laptop_io_completion();
3203 if (disk
&& blk_fs_request(req
)) {
3204 unsigned long duration
= jiffies
- req
->start_time
;
3205 switch (rq_data_dir(req
)) {
3207 __disk_stat_inc(disk
, writes
);
3208 __disk_stat_add(disk
, write_ticks
, duration
);
3211 __disk_stat_inc(disk
, reads
);
3212 __disk_stat_add(disk
, read_ticks
, duration
);
3215 disk_round_stats(disk
);
3221 __blk_put_request(req
->q
, req
);
3224 EXPORT_SYMBOL(end_that_request_last
);
3226 void end_request(struct request
*req
, int uptodate
)
3228 if (!end_that_request_first(req
, uptodate
, req
->hard_cur_sectors
)) {
3229 add_disk_randomness(req
->rq_disk
);
3230 blkdev_dequeue_request(req
);
3231 end_that_request_last(req
);
3235 EXPORT_SYMBOL(end_request
);
3237 void blk_rq_bio_prep(request_queue_t
*q
, struct request
*rq
, struct bio
*bio
)
3239 /* first three bits are identical in rq->flags and bio->bi_rw */
3240 rq
->flags
|= (bio
->bi_rw
& 7);
3242 rq
->nr_phys_segments
= bio_phys_segments(q
, bio
);
3243 rq
->nr_hw_segments
= bio_hw_segments(q
, bio
);
3244 rq
->current_nr_sectors
= bio_cur_sectors(bio
);
3245 rq
->hard_cur_sectors
= rq
->current_nr_sectors
;
3246 rq
->hard_nr_sectors
= rq
->nr_sectors
= bio_sectors(bio
);
3247 rq
->buffer
= bio_data(bio
);
3249 rq
->bio
= rq
->biotail
= bio
;
3252 EXPORT_SYMBOL(blk_rq_bio_prep
);
3254 int kblockd_schedule_work(struct work_struct
*work
)
3256 return queue_work(kblockd_workqueue
, work
);
3259 EXPORT_SYMBOL(kblockd_schedule_work
);
3261 void kblockd_flush(void)
3263 flush_workqueue(kblockd_workqueue
);
3265 EXPORT_SYMBOL(kblockd_flush
);
3267 int __init
blk_dev_init(void)
3269 kblockd_workqueue
= create_workqueue("kblockd");
3270 if (!kblockd_workqueue
)
3271 panic("Failed to create kblockd\n");
3273 request_cachep
= kmem_cache_create("blkdev_requests",
3274 sizeof(struct request
), 0, SLAB_PANIC
, NULL
, NULL
);
3276 requestq_cachep
= kmem_cache_create("blkdev_queue",
3277 sizeof(request_queue_t
), 0, SLAB_PANIC
, NULL
, NULL
);
3279 iocontext_cachep
= kmem_cache_create("blkdev_ioc",
3280 sizeof(struct io_context
), 0, SLAB_PANIC
, NULL
, NULL
);
3282 blk_max_low_pfn
= max_low_pfn
;
3283 blk_max_pfn
= max_pfn
;
3289 * IO Context helper functions
3291 void put_io_context(struct io_context
*ioc
)
3296 BUG_ON(atomic_read(&ioc
->refcount
) == 0);
3298 if (atomic_dec_and_test(&ioc
->refcount
)) {
3299 if (ioc
->aic
&& ioc
->aic
->dtor
)
3300 ioc
->aic
->dtor(ioc
->aic
);
3301 if (ioc
->cic
&& ioc
->cic
->dtor
)
3302 ioc
->cic
->dtor(ioc
->cic
);
3304 kmem_cache_free(iocontext_cachep
, ioc
);
3307 EXPORT_SYMBOL(put_io_context
);
3309 /* Called by the exitting task */
3310 void exit_io_context(void)
3312 unsigned long flags
;
3313 struct io_context
*ioc
;
3315 local_irq_save(flags
);
3316 ioc
= current
->io_context
;
3317 current
->io_context
= NULL
;
3318 local_irq_restore(flags
);
3320 if (ioc
->aic
&& ioc
->aic
->exit
)
3321 ioc
->aic
->exit(ioc
->aic
);
3322 if (ioc
->cic
&& ioc
->cic
->exit
)
3323 ioc
->cic
->exit(ioc
->cic
);
3325 put_io_context(ioc
);
3329 * If the current task has no IO context then create one and initialise it.
3330 * If it does have a context, take a ref on it.
3332 * This is always called in the context of the task which submitted the I/O.
3333 * But weird things happen, so we disable local interrupts to ensure exclusive
3334 * access to *current.
3336 struct io_context
*get_io_context(int gfp_flags
)
3338 struct task_struct
*tsk
= current
;
3339 unsigned long flags
;
3340 struct io_context
*ret
;
3342 local_irq_save(flags
);
3343 ret
= tsk
->io_context
;
3347 local_irq_restore(flags
);
3349 ret
= kmem_cache_alloc(iocontext_cachep
, gfp_flags
);
3351 atomic_set(&ret
->refcount
, 1);
3352 ret
->pid
= tsk
->pid
;
3353 ret
->last_waited
= jiffies
; /* doesn't matter... */
3354 ret
->nr_batch_requests
= 0; /* because this is 0 */
3357 spin_lock_init(&ret
->lock
);
3359 local_irq_save(flags
);
3362 * very unlikely, someone raced with us in setting up the task
3363 * io context. free new context and just grab a reference.
3365 if (!tsk
->io_context
)
3366 tsk
->io_context
= ret
;
3368 kmem_cache_free(iocontext_cachep
, ret
);
3369 ret
= tsk
->io_context
;
3373 atomic_inc(&ret
->refcount
);
3374 local_irq_restore(flags
);
3379 EXPORT_SYMBOL(get_io_context
);
3381 void copy_io_context(struct io_context
**pdst
, struct io_context
**psrc
)
3383 struct io_context
*src
= *psrc
;
3384 struct io_context
*dst
= *pdst
;
3387 BUG_ON(atomic_read(&src
->refcount
) == 0);
3388 atomic_inc(&src
->refcount
);
3389 put_io_context(dst
);
3393 EXPORT_SYMBOL(copy_io_context
);
3395 void swap_io_context(struct io_context
**ioc1
, struct io_context
**ioc2
)
3397 struct io_context
*temp
;
3402 EXPORT_SYMBOL(swap_io_context
);
3407 struct queue_sysfs_entry
{
3408 struct attribute attr
;
3409 ssize_t (*show
)(struct request_queue
*, char *);
3410 ssize_t (*store
)(struct request_queue
*, const char *, size_t);
3414 queue_var_show(unsigned int var
, char *page
)
3416 return sprintf(page
, "%d\n", var
);
3420 queue_var_store(unsigned long *var
, const char *page
, size_t count
)
3422 char *p
= (char *) page
;
3424 *var
= simple_strtoul(p
, &p
, 10);
3428 static ssize_t
queue_requests_show(struct request_queue
*q
, char *page
)
3430 return queue_var_show(q
->nr_requests
, (page
));
3434 queue_requests_store(struct request_queue
*q
, const char *page
, size_t count
)
3436 struct request_list
*rl
= &q
->rq
;
3438 int ret
= queue_var_store(&q
->nr_requests
, page
, count
);
3439 if (q
->nr_requests
< BLKDEV_MIN_RQ
)
3440 q
->nr_requests
= BLKDEV_MIN_RQ
;
3441 blk_queue_congestion_threshold(q
);
3443 if (rl
->count
[READ
] >= queue_congestion_on_threshold(q
))
3444 set_queue_congested(q
, READ
);
3445 else if (rl
->count
[READ
] < queue_congestion_off_threshold(q
))
3446 clear_queue_congested(q
, READ
);
3448 if (rl
->count
[WRITE
] >= queue_congestion_on_threshold(q
))
3449 set_queue_congested(q
, WRITE
);
3450 else if (rl
->count
[WRITE
] < queue_congestion_off_threshold(q
))
3451 clear_queue_congested(q
, WRITE
);
3453 if (rl
->count
[READ
] >= q
->nr_requests
) {
3454 blk_set_queue_full(q
, READ
);
3455 } else if (rl
->count
[READ
]+1 <= q
->nr_requests
) {
3456 blk_clear_queue_full(q
, READ
);
3457 wake_up(&rl
->wait
[READ
]);
3460 if (rl
->count
[WRITE
] >= q
->nr_requests
) {
3461 blk_set_queue_full(q
, WRITE
);
3462 } else if (rl
->count
[WRITE
]+1 <= q
->nr_requests
) {
3463 blk_clear_queue_full(q
, WRITE
);
3464 wake_up(&rl
->wait
[WRITE
]);
3469 static ssize_t
queue_ra_show(struct request_queue
*q
, char *page
)
3471 int ra_kb
= q
->backing_dev_info
.ra_pages
<< (PAGE_CACHE_SHIFT
- 10);
3473 return queue_var_show(ra_kb
, (page
));
3477 queue_ra_store(struct request_queue
*q
, const char *page
, size_t count
)
3479 unsigned long ra_kb
;
3480 ssize_t ret
= queue_var_store(&ra_kb
, page
, count
);
3482 spin_lock_irq(q
->queue_lock
);
3483 if (ra_kb
> (q
->max_sectors
>> 1))
3484 ra_kb
= (q
->max_sectors
>> 1);
3486 q
->backing_dev_info
.ra_pages
= ra_kb
>> (PAGE_CACHE_SHIFT
- 10);
3487 spin_unlock_irq(q
->queue_lock
);
3492 static ssize_t
queue_max_sectors_show(struct request_queue
*q
, char *page
)
3494 int max_sectors_kb
= q
->max_sectors
>> 1;
3496 return queue_var_show(max_sectors_kb
, (page
));
3500 queue_max_sectors_store(struct request_queue
*q
, const char *page
, size_t count
)
3502 unsigned long max_sectors_kb
,
3503 max_hw_sectors_kb
= q
->max_hw_sectors
>> 1,
3504 page_kb
= 1 << (PAGE_CACHE_SHIFT
- 10);
3505 ssize_t ret
= queue_var_store(&max_sectors_kb
, page
, count
);
3508 if (max_sectors_kb
> max_hw_sectors_kb
|| max_sectors_kb
< page_kb
)
3511 * Take the queue lock to update the readahead and max_sectors
3512 * values synchronously:
3514 spin_lock_irq(q
->queue_lock
);
3516 * Trim readahead window as well, if necessary:
3518 ra_kb
= q
->backing_dev_info
.ra_pages
<< (PAGE_CACHE_SHIFT
- 10);
3519 if (ra_kb
> max_sectors_kb
)
3520 q
->backing_dev_info
.ra_pages
=
3521 max_sectors_kb
>> (PAGE_CACHE_SHIFT
- 10);
3523 q
->max_sectors
= max_sectors_kb
<< 1;
3524 spin_unlock_irq(q
->queue_lock
);
3529 static ssize_t
queue_max_hw_sectors_show(struct request_queue
*q
, char *page
)
3531 int max_hw_sectors_kb
= q
->max_hw_sectors
>> 1;
3533 return queue_var_show(max_hw_sectors_kb
, (page
));
3537 static struct queue_sysfs_entry queue_requests_entry
= {
3538 .attr
= {.name
= "nr_requests", .mode
= S_IRUGO
| S_IWUSR
},
3539 .show
= queue_requests_show
,
3540 .store
= queue_requests_store
,
3543 static struct queue_sysfs_entry queue_ra_entry
= {
3544 .attr
= {.name
= "read_ahead_kb", .mode
= S_IRUGO
| S_IWUSR
},
3545 .show
= queue_ra_show
,
3546 .store
= queue_ra_store
,
3549 static struct queue_sysfs_entry queue_max_sectors_entry
= {
3550 .attr
= {.name
= "max_sectors_kb", .mode
= S_IRUGO
| S_IWUSR
},
3551 .show
= queue_max_sectors_show
,
3552 .store
= queue_max_sectors_store
,
3555 static struct queue_sysfs_entry queue_max_hw_sectors_entry
= {
3556 .attr
= {.name
= "max_hw_sectors_kb", .mode
= S_IRUGO
},
3557 .show
= queue_max_hw_sectors_show
,
3560 static struct queue_sysfs_entry queue_iosched_entry
= {
3561 .attr
= {.name
= "scheduler", .mode
= S_IRUGO
| S_IWUSR
},
3562 .show
= elv_iosched_show
,
3563 .store
= elv_iosched_store
,
3566 static struct attribute
*default_attrs
[] = {
3567 &queue_requests_entry
.attr
,
3568 &queue_ra_entry
.attr
,
3569 &queue_max_hw_sectors_entry
.attr
,
3570 &queue_max_sectors_entry
.attr
,
3571 &queue_iosched_entry
.attr
,
3575 #define to_queue(atr) container_of((atr), struct queue_sysfs_entry, attr)
3578 queue_attr_show(struct kobject
*kobj
, struct attribute
*attr
, char *page
)
3580 struct queue_sysfs_entry
*entry
= to_queue(attr
);
3581 struct request_queue
*q
;
3583 q
= container_of(kobj
, struct request_queue
, kobj
);
3587 return entry
->show(q
, page
);
3591 queue_attr_store(struct kobject
*kobj
, struct attribute
*attr
,
3592 const char *page
, size_t length
)
3594 struct queue_sysfs_entry
*entry
= to_queue(attr
);
3595 struct request_queue
*q
;
3597 q
= container_of(kobj
, struct request_queue
, kobj
);
3601 return entry
->store(q
, page
, length
);
3604 static struct sysfs_ops queue_sysfs_ops
= {
3605 .show
= queue_attr_show
,
3606 .store
= queue_attr_store
,
3609 struct kobj_type queue_ktype
= {
3610 .sysfs_ops
= &queue_sysfs_ops
,
3611 .default_attrs
= default_attrs
,
3614 int blk_register_queue(struct gendisk
*disk
)
3618 request_queue_t
*q
= disk
->queue
;
3620 if (!q
|| !q
->request_fn
)
3623 q
->kobj
.parent
= kobject_get(&disk
->kobj
);
3624 if (!q
->kobj
.parent
)
3627 snprintf(q
->kobj
.name
, KOBJ_NAME_LEN
, "%s", "queue");
3628 q
->kobj
.ktype
= &queue_ktype
;
3630 ret
= kobject_register(&q
->kobj
);
3634 ret
= elv_register_queue(q
);
3636 kobject_unregister(&q
->kobj
);
3643 void blk_unregister_queue(struct gendisk
*disk
)
3645 request_queue_t
*q
= disk
->queue
;
3647 if (q
&& q
->request_fn
) {
3648 elv_unregister_queue(q
);
3650 kobject_unregister(&q
->kobj
);
3651 kobject_put(&disk
->kobj
);