[TG3]: Set minimal hw interrupt mitigation.
[linux-2.6/verdex.git] / drivers / isdn / hisax / avm_pci.c
blob6fcb2cf7b0b69f97b1532c9728dc49785401d4cc
1 /* $Id: avm_pci.c,v 1.29.2.4 2004/02/11 13:21:32 keil Exp $
3 * low level stuff for AVM Fritz!PCI and ISA PnP isdn cards
5 * Author Karsten Keil
6 * Copyright by Karsten Keil <keil@isdn4linux.de>
8 * This software may be used and distributed according to the terms
9 * of the GNU General Public License, incorporated herein by reference.
11 * Thanks to AVM, Berlin for information
15 #include <linux/config.h>
16 #include <linux/init.h>
17 #include "hisax.h"
18 #include "isac.h"
19 #include "isdnl1.h"
20 #include <linux/pci.h>
21 #include <linux/isapnp.h>
22 #include <linux/interrupt.h>
24 extern const char *CardType[];
25 static const char *avm_pci_rev = "$Revision: 1.29.2.4 $";
27 #define AVM_FRITZ_PCI 1
28 #define AVM_FRITZ_PNP 2
30 #define HDLC_FIFO 0x0
31 #define HDLC_STATUS 0x4
33 #define AVM_HDLC_1 0x00
34 #define AVM_HDLC_2 0x01
35 #define AVM_ISAC_FIFO 0x02
36 #define AVM_ISAC_REG_LOW 0x04
37 #define AVM_ISAC_REG_HIGH 0x06
39 #define AVM_STATUS0_IRQ_ISAC 0x01
40 #define AVM_STATUS0_IRQ_HDLC 0x02
41 #define AVM_STATUS0_IRQ_TIMER 0x04
42 #define AVM_STATUS0_IRQ_MASK 0x07
44 #define AVM_STATUS0_RESET 0x01
45 #define AVM_STATUS0_DIS_TIMER 0x02
46 #define AVM_STATUS0_RES_TIMER 0x04
47 #define AVM_STATUS0_ENA_IRQ 0x08
48 #define AVM_STATUS0_TESTBIT 0x10
50 #define AVM_STATUS1_INT_SEL 0x0f
51 #define AVM_STATUS1_ENA_IOM 0x80
53 #define HDLC_MODE_ITF_FLG 0x01
54 #define HDLC_MODE_TRANS 0x02
55 #define HDLC_MODE_CCR_7 0x04
56 #define HDLC_MODE_CCR_16 0x08
57 #define HDLC_MODE_TESTLOOP 0x80
59 #define HDLC_INT_XPR 0x80
60 #define HDLC_INT_XDU 0x40
61 #define HDLC_INT_RPR 0x20
62 #define HDLC_INT_MASK 0xE0
64 #define HDLC_STAT_RME 0x01
65 #define HDLC_STAT_RDO 0x10
66 #define HDLC_STAT_CRCVFRRAB 0x0E
67 #define HDLC_STAT_CRCVFR 0x06
68 #define HDLC_STAT_RML_MASK 0x3f00
70 #define HDLC_CMD_XRS 0x80
71 #define HDLC_CMD_XME 0x01
72 #define HDLC_CMD_RRS 0x20
73 #define HDLC_CMD_XML_MASK 0x3f00
76 /* Interface functions */
78 static u_char
79 ReadISAC(struct IsdnCardState *cs, u_char offset)
81 register u_char idx = (offset > 0x2f) ? AVM_ISAC_REG_HIGH : AVM_ISAC_REG_LOW;
82 register u_char val;
84 outb(idx, cs->hw.avm.cfg_reg + 4);
85 val = inb(cs->hw.avm.isac + (offset & 0xf));
86 return (val);
89 static void
90 WriteISAC(struct IsdnCardState *cs, u_char offset, u_char value)
92 register u_char idx = (offset > 0x2f) ? AVM_ISAC_REG_HIGH : AVM_ISAC_REG_LOW;
94 outb(idx, cs->hw.avm.cfg_reg + 4);
95 outb(value, cs->hw.avm.isac + (offset & 0xf));
98 static void
99 ReadISACfifo(struct IsdnCardState *cs, u_char * data, int size)
101 outb(AVM_ISAC_FIFO, cs->hw.avm.cfg_reg + 4);
102 insb(cs->hw.avm.isac, data, size);
105 static void
106 WriteISACfifo(struct IsdnCardState *cs, u_char * data, int size)
108 outb(AVM_ISAC_FIFO, cs->hw.avm.cfg_reg + 4);
109 outsb(cs->hw.avm.isac, data, size);
112 static inline u_int
113 ReadHDLCPCI(struct IsdnCardState *cs, int chan, u_char offset)
115 register u_int idx = chan ? AVM_HDLC_2 : AVM_HDLC_1;
116 register u_int val;
118 outl(idx, cs->hw.avm.cfg_reg + 4);
119 val = inl(cs->hw.avm.isac + offset);
120 return (val);
123 static inline void
124 WriteHDLCPCI(struct IsdnCardState *cs, int chan, u_char offset, u_int value)
126 register u_int idx = chan ? AVM_HDLC_2 : AVM_HDLC_1;
128 outl(idx, cs->hw.avm.cfg_reg + 4);
129 outl(value, cs->hw.avm.isac + offset);
132 static inline u_char
133 ReadHDLCPnP(struct IsdnCardState *cs, int chan, u_char offset)
135 register u_char idx = chan ? AVM_HDLC_2 : AVM_HDLC_1;
136 register u_char val;
138 outb(idx, cs->hw.avm.cfg_reg + 4);
139 val = inb(cs->hw.avm.isac + offset);
140 return (val);
143 static inline void
144 WriteHDLCPnP(struct IsdnCardState *cs, int chan, u_char offset, u_char value)
146 register u_char idx = chan ? AVM_HDLC_2 : AVM_HDLC_1;
148 outb(idx, cs->hw.avm.cfg_reg + 4);
149 outb(value, cs->hw.avm.isac + offset);
152 static u_char
153 ReadHDLC_s(struct IsdnCardState *cs, int chan, u_char offset)
155 return(0xff & ReadHDLCPCI(cs, chan, offset));
158 static void
159 WriteHDLC_s(struct IsdnCardState *cs, int chan, u_char offset, u_char value)
161 WriteHDLCPCI(cs, chan, offset, value);
164 static inline
165 struct BCState *Sel_BCS(struct IsdnCardState *cs, int channel)
167 if (cs->bcs[0].mode && (cs->bcs[0].channel == channel))
168 return(&cs->bcs[0]);
169 else if (cs->bcs[1].mode && (cs->bcs[1].channel == channel))
170 return(&cs->bcs[1]);
171 else
172 return(NULL);
175 void
176 write_ctrl(struct BCState *bcs, int which) {
178 if (bcs->cs->debug & L1_DEB_HSCX)
179 debugl1(bcs->cs, "hdlc %c wr%x ctrl %x",
180 'A' + bcs->channel, which, bcs->hw.hdlc.ctrl.ctrl);
181 if (bcs->cs->subtyp == AVM_FRITZ_PCI) {
182 WriteHDLCPCI(bcs->cs, bcs->channel, HDLC_STATUS, bcs->hw.hdlc.ctrl.ctrl);
183 } else {
184 if (which & 4)
185 WriteHDLCPnP(bcs->cs, bcs->channel, HDLC_STATUS + 2,
186 bcs->hw.hdlc.ctrl.sr.mode);
187 if (which & 2)
188 WriteHDLCPnP(bcs->cs, bcs->channel, HDLC_STATUS + 1,
189 bcs->hw.hdlc.ctrl.sr.xml);
190 if (which & 1)
191 WriteHDLCPnP(bcs->cs, bcs->channel, HDLC_STATUS,
192 bcs->hw.hdlc.ctrl.sr.cmd);
196 void
197 modehdlc(struct BCState *bcs, int mode, int bc)
199 struct IsdnCardState *cs = bcs->cs;
200 int hdlc = bcs->channel;
202 if (cs->debug & L1_DEB_HSCX)
203 debugl1(cs, "hdlc %c mode %d --> %d ichan %d --> %d",
204 'A' + hdlc, bcs->mode, mode, hdlc, bc);
205 bcs->hw.hdlc.ctrl.ctrl = 0;
206 switch (mode) {
207 case (-1): /* used for init */
208 bcs->mode = 1;
209 bcs->channel = bc;
210 bc = 0;
211 case (L1_MODE_NULL):
212 if (bcs->mode == L1_MODE_NULL)
213 return;
214 bcs->hw.hdlc.ctrl.sr.cmd = HDLC_CMD_XRS | HDLC_CMD_RRS;
215 bcs->hw.hdlc.ctrl.sr.mode = HDLC_MODE_TRANS;
216 write_ctrl(bcs, 5);
217 bcs->mode = L1_MODE_NULL;
218 bcs->channel = bc;
219 break;
220 case (L1_MODE_TRANS):
221 bcs->mode = mode;
222 bcs->channel = bc;
223 bcs->hw.hdlc.ctrl.sr.cmd = HDLC_CMD_XRS | HDLC_CMD_RRS;
224 bcs->hw.hdlc.ctrl.sr.mode = HDLC_MODE_TRANS;
225 write_ctrl(bcs, 5);
226 bcs->hw.hdlc.ctrl.sr.cmd = HDLC_CMD_XRS;
227 write_ctrl(bcs, 1);
228 bcs->hw.hdlc.ctrl.sr.cmd = 0;
229 schedule_event(bcs, B_XMTBUFREADY);
230 break;
231 case (L1_MODE_HDLC):
232 bcs->mode = mode;
233 bcs->channel = bc;
234 bcs->hw.hdlc.ctrl.sr.cmd = HDLC_CMD_XRS | HDLC_CMD_RRS;
235 bcs->hw.hdlc.ctrl.sr.mode = HDLC_MODE_ITF_FLG;
236 write_ctrl(bcs, 5);
237 bcs->hw.hdlc.ctrl.sr.cmd = HDLC_CMD_XRS;
238 write_ctrl(bcs, 1);
239 bcs->hw.hdlc.ctrl.sr.cmd = 0;
240 schedule_event(bcs, B_XMTBUFREADY);
241 break;
245 static inline void
246 hdlc_empty_fifo(struct BCState *bcs, int count)
248 register u_int *ptr;
249 u_char *p;
250 u_char idx = bcs->channel ? AVM_HDLC_2 : AVM_HDLC_1;
251 int cnt=0;
252 struct IsdnCardState *cs = bcs->cs;
254 if ((cs->debug & L1_DEB_HSCX) && !(cs->debug & L1_DEB_HSCX_FIFO))
255 debugl1(cs, "hdlc_empty_fifo %d", count);
256 if (bcs->hw.hdlc.rcvidx + count > HSCX_BUFMAX) {
257 if (cs->debug & L1_DEB_WARN)
258 debugl1(cs, "hdlc_empty_fifo: incoming packet too large");
259 return;
261 p = bcs->hw.hdlc.rcvbuf + bcs->hw.hdlc.rcvidx;
262 ptr = (u_int *)p;
263 bcs->hw.hdlc.rcvidx += count;
264 if (cs->subtyp == AVM_FRITZ_PCI) {
265 outl(idx, cs->hw.avm.cfg_reg + 4);
266 while (cnt < count) {
267 #ifdef __powerpc__
268 #ifdef CONFIG_APUS
269 *ptr++ = in_le32((unsigned *)(cs->hw.avm.isac +_IO_BASE));
270 #else
271 *ptr++ = in_be32((unsigned *)(cs->hw.avm.isac +_IO_BASE));
272 #endif /* CONFIG_APUS */
273 #else
274 *ptr++ = inl(cs->hw.avm.isac);
275 #endif /* __powerpc__ */
276 cnt += 4;
278 } else {
279 outb(idx, cs->hw.avm.cfg_reg + 4);
280 while (cnt < count) {
281 *p++ = inb(cs->hw.avm.isac);
282 cnt++;
285 if (cs->debug & L1_DEB_HSCX_FIFO) {
286 char *t = bcs->blog;
288 if (cs->subtyp == AVM_FRITZ_PNP)
289 p = (u_char *) ptr;
290 t += sprintf(t, "hdlc_empty_fifo %c cnt %d",
291 bcs->channel ? 'B' : 'A', count);
292 QuickHex(t, p, count);
293 debugl1(cs, bcs->blog);
297 static inline void
298 hdlc_fill_fifo(struct BCState *bcs)
300 struct IsdnCardState *cs = bcs->cs;
301 int count, cnt =0;
302 int fifo_size = 32;
303 u_char *p;
304 u_int *ptr;
306 if ((cs->debug & L1_DEB_HSCX) && !(cs->debug & L1_DEB_HSCX_FIFO))
307 debugl1(cs, "hdlc_fill_fifo");
308 if (!bcs->tx_skb)
309 return;
310 if (bcs->tx_skb->len <= 0)
311 return;
313 bcs->hw.hdlc.ctrl.sr.cmd &= ~HDLC_CMD_XME;
314 if (bcs->tx_skb->len > fifo_size) {
315 count = fifo_size;
316 } else {
317 count = bcs->tx_skb->len;
318 if (bcs->mode != L1_MODE_TRANS)
319 bcs->hw.hdlc.ctrl.sr.cmd |= HDLC_CMD_XME;
321 if ((cs->debug & L1_DEB_HSCX) && !(cs->debug & L1_DEB_HSCX_FIFO))
322 debugl1(cs, "hdlc_fill_fifo %d/%ld", count, bcs->tx_skb->len);
323 p = bcs->tx_skb->data;
324 ptr = (u_int *)p;
325 skb_pull(bcs->tx_skb, count);
326 bcs->tx_cnt -= count;
327 bcs->hw.hdlc.count += count;
328 bcs->hw.hdlc.ctrl.sr.xml = ((count == fifo_size) ? 0 : count);
329 write_ctrl(bcs, 3); /* sets the correct index too */
330 if (cs->subtyp == AVM_FRITZ_PCI) {
331 while (cnt<count) {
332 #ifdef __powerpc__
333 #ifdef CONFIG_APUS
334 out_le32((unsigned *)(cs->hw.avm.isac +_IO_BASE), *ptr++);
335 #else
336 out_be32((unsigned *)(cs->hw.avm.isac +_IO_BASE), *ptr++);
337 #endif /* CONFIG_APUS */
338 #else
339 outl(*ptr++, cs->hw.avm.isac);
340 #endif /* __powerpc__ */
341 cnt += 4;
343 } else {
344 while (cnt<count) {
345 outb(*p++, cs->hw.avm.isac);
346 cnt++;
349 if (cs->debug & L1_DEB_HSCX_FIFO) {
350 char *t = bcs->blog;
352 if (cs->subtyp == AVM_FRITZ_PNP)
353 p = (u_char *) ptr;
354 t += sprintf(t, "hdlc_fill_fifo %c cnt %d",
355 bcs->channel ? 'B' : 'A', count);
356 QuickHex(t, p, count);
357 debugl1(cs, bcs->blog);
361 static inline void
362 HDLC_irq(struct BCState *bcs, u_int stat) {
363 int len;
364 struct sk_buff *skb;
366 if (bcs->cs->debug & L1_DEB_HSCX)
367 debugl1(bcs->cs, "ch%d stat %#x", bcs->channel, stat);
368 if (stat & HDLC_INT_RPR) {
369 if (stat & HDLC_STAT_RDO) {
370 if (bcs->cs->debug & L1_DEB_HSCX)
371 debugl1(bcs->cs, "RDO");
372 else
373 debugl1(bcs->cs, "ch%d stat %#x", bcs->channel, stat);
374 bcs->hw.hdlc.ctrl.sr.xml = 0;
375 bcs->hw.hdlc.ctrl.sr.cmd |= HDLC_CMD_RRS;
376 write_ctrl(bcs, 1);
377 bcs->hw.hdlc.ctrl.sr.cmd &= ~HDLC_CMD_RRS;
378 write_ctrl(bcs, 1);
379 bcs->hw.hdlc.rcvidx = 0;
380 } else {
381 if (!(len = (stat & HDLC_STAT_RML_MASK)>>8))
382 len = 32;
383 hdlc_empty_fifo(bcs, len);
384 if ((stat & HDLC_STAT_RME) || (bcs->mode == L1_MODE_TRANS)) {
385 if (((stat & HDLC_STAT_CRCVFRRAB)==HDLC_STAT_CRCVFR) ||
386 (bcs->mode == L1_MODE_TRANS)) {
387 if (!(skb = dev_alloc_skb(bcs->hw.hdlc.rcvidx)))
388 printk(KERN_WARNING "HDLC: receive out of memory\n");
389 else {
390 memcpy(skb_put(skb, bcs->hw.hdlc.rcvidx),
391 bcs->hw.hdlc.rcvbuf, bcs->hw.hdlc.rcvidx);
392 skb_queue_tail(&bcs->rqueue, skb);
394 bcs->hw.hdlc.rcvidx = 0;
395 schedule_event(bcs, B_RCVBUFREADY);
396 } else {
397 if (bcs->cs->debug & L1_DEB_HSCX)
398 debugl1(bcs->cs, "invalid frame");
399 else
400 debugl1(bcs->cs, "ch%d invalid frame %#x", bcs->channel, stat);
401 bcs->hw.hdlc.rcvidx = 0;
406 if (stat & HDLC_INT_XDU) {
407 /* Here we lost an TX interrupt, so
408 * restart transmitting the whole frame.
410 if (bcs->tx_skb) {
411 skb_push(bcs->tx_skb, bcs->hw.hdlc.count);
412 bcs->tx_cnt += bcs->hw.hdlc.count;
413 bcs->hw.hdlc.count = 0;
414 if (bcs->cs->debug & L1_DEB_WARN)
415 debugl1(bcs->cs, "ch%d XDU", bcs->channel);
416 } else if (bcs->cs->debug & L1_DEB_WARN)
417 debugl1(bcs->cs, "ch%d XDU without skb", bcs->channel);
418 bcs->hw.hdlc.ctrl.sr.xml = 0;
419 bcs->hw.hdlc.ctrl.sr.cmd |= HDLC_CMD_XRS;
420 write_ctrl(bcs, 1);
421 bcs->hw.hdlc.ctrl.sr.cmd &= ~HDLC_CMD_XRS;
422 write_ctrl(bcs, 1);
423 hdlc_fill_fifo(bcs);
424 } else if (stat & HDLC_INT_XPR) {
425 if (bcs->tx_skb) {
426 if (bcs->tx_skb->len) {
427 hdlc_fill_fifo(bcs);
428 return;
429 } else {
430 if (test_bit(FLG_LLI_L1WAKEUP,&bcs->st->lli.flag) &&
431 (PACKET_NOACK != bcs->tx_skb->pkt_type)) {
432 u_long flags;
433 spin_lock_irqsave(&bcs->aclock, flags);
434 bcs->ackcnt += bcs->hw.hdlc.count;
435 spin_unlock_irqrestore(&bcs->aclock, flags);
436 schedule_event(bcs, B_ACKPENDING);
438 dev_kfree_skb_irq(bcs->tx_skb);
439 bcs->hw.hdlc.count = 0;
440 bcs->tx_skb = NULL;
443 if ((bcs->tx_skb = skb_dequeue(&bcs->squeue))) {
444 bcs->hw.hdlc.count = 0;
445 test_and_set_bit(BC_FLG_BUSY, &bcs->Flag);
446 hdlc_fill_fifo(bcs);
447 } else {
448 test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag);
449 schedule_event(bcs, B_XMTBUFREADY);
454 inline void
455 HDLC_irq_main(struct IsdnCardState *cs)
457 u_int stat;
458 struct BCState *bcs;
460 if (cs->subtyp == AVM_FRITZ_PCI) {
461 stat = ReadHDLCPCI(cs, 0, HDLC_STATUS);
462 } else {
463 stat = ReadHDLCPnP(cs, 0, HDLC_STATUS);
464 if (stat & HDLC_INT_RPR)
465 stat |= (ReadHDLCPnP(cs, 0, HDLC_STATUS+1))<<8;
467 if (stat & HDLC_INT_MASK) {
468 if (!(bcs = Sel_BCS(cs, 0))) {
469 if (cs->debug)
470 debugl1(cs, "hdlc spurious channel 0 IRQ");
471 } else
472 HDLC_irq(bcs, stat);
474 if (cs->subtyp == AVM_FRITZ_PCI) {
475 stat = ReadHDLCPCI(cs, 1, HDLC_STATUS);
476 } else {
477 stat = ReadHDLCPnP(cs, 1, HDLC_STATUS);
478 if (stat & HDLC_INT_RPR)
479 stat |= (ReadHDLCPnP(cs, 1, HDLC_STATUS+1))<<8;
481 if (stat & HDLC_INT_MASK) {
482 if (!(bcs = Sel_BCS(cs, 1))) {
483 if (cs->debug)
484 debugl1(cs, "hdlc spurious channel 1 IRQ");
485 } else
486 HDLC_irq(bcs, stat);
490 void
491 hdlc_l2l1(struct PStack *st, int pr, void *arg)
493 struct BCState *bcs = st->l1.bcs;
494 struct sk_buff *skb = arg;
495 u_long flags;
497 switch (pr) {
498 case (PH_DATA | REQUEST):
499 spin_lock_irqsave(&bcs->cs->lock, flags);
500 if (bcs->tx_skb) {
501 skb_queue_tail(&bcs->squeue, skb);
502 } else {
503 bcs->tx_skb = skb;
504 test_and_set_bit(BC_FLG_BUSY, &bcs->Flag);
505 bcs->hw.hdlc.count = 0;
506 bcs->cs->BC_Send_Data(bcs);
508 spin_unlock_irqrestore(&bcs->cs->lock, flags);
509 break;
510 case (PH_PULL | INDICATION):
511 spin_lock_irqsave(&bcs->cs->lock, flags);
512 if (bcs->tx_skb) {
513 printk(KERN_WARNING "hdlc_l2l1: this shouldn't happen\n");
514 } else {
515 test_and_set_bit(BC_FLG_BUSY, &bcs->Flag);
516 bcs->tx_skb = skb;
517 bcs->hw.hdlc.count = 0;
518 bcs->cs->BC_Send_Data(bcs);
520 spin_unlock_irqrestore(&bcs->cs->lock, flags);
521 break;
522 case (PH_PULL | REQUEST):
523 if (!bcs->tx_skb) {
524 test_and_clear_bit(FLG_L1_PULL_REQ, &st->l1.Flags);
525 st->l1.l1l2(st, PH_PULL | CONFIRM, NULL);
526 } else
527 test_and_set_bit(FLG_L1_PULL_REQ, &st->l1.Flags);
528 break;
529 case (PH_ACTIVATE | REQUEST):
530 spin_lock_irqsave(&bcs->cs->lock, flags);
531 test_and_set_bit(BC_FLG_ACTIV, &bcs->Flag);
532 modehdlc(bcs, st->l1.mode, st->l1.bc);
533 spin_unlock_irqrestore(&bcs->cs->lock, flags);
534 l1_msg_b(st, pr, arg);
535 break;
536 case (PH_DEACTIVATE | REQUEST):
537 l1_msg_b(st, pr, arg);
538 break;
539 case (PH_DEACTIVATE | CONFIRM):
540 spin_lock_irqsave(&bcs->cs->lock, flags);
541 test_and_clear_bit(BC_FLG_ACTIV, &bcs->Flag);
542 test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag);
543 modehdlc(bcs, 0, st->l1.bc);
544 spin_unlock_irqrestore(&bcs->cs->lock, flags);
545 st->l1.l1l2(st, PH_DEACTIVATE | CONFIRM, NULL);
546 break;
550 void
551 close_hdlcstate(struct BCState *bcs)
553 modehdlc(bcs, 0, 0);
554 if (test_and_clear_bit(BC_FLG_INIT, &bcs->Flag)) {
555 if (bcs->hw.hdlc.rcvbuf) {
556 kfree(bcs->hw.hdlc.rcvbuf);
557 bcs->hw.hdlc.rcvbuf = NULL;
559 if (bcs->blog) {
560 kfree(bcs->blog);
561 bcs->blog = NULL;
563 skb_queue_purge(&bcs->rqueue);
564 skb_queue_purge(&bcs->squeue);
565 if (bcs->tx_skb) {
566 dev_kfree_skb_any(bcs->tx_skb);
567 bcs->tx_skb = NULL;
568 test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag);
574 open_hdlcstate(struct IsdnCardState *cs, struct BCState *bcs)
576 if (!test_and_set_bit(BC_FLG_INIT, &bcs->Flag)) {
577 if (!(bcs->hw.hdlc.rcvbuf = kmalloc(HSCX_BUFMAX, GFP_ATOMIC))) {
578 printk(KERN_WARNING
579 "HiSax: No memory for hdlc.rcvbuf\n");
580 return (1);
582 if (!(bcs->blog = kmalloc(MAX_BLOG_SPACE, GFP_ATOMIC))) {
583 printk(KERN_WARNING
584 "HiSax: No memory for bcs->blog\n");
585 test_and_clear_bit(BC_FLG_INIT, &bcs->Flag);
586 kfree(bcs->hw.hdlc.rcvbuf);
587 bcs->hw.hdlc.rcvbuf = NULL;
588 return (2);
590 skb_queue_head_init(&bcs->rqueue);
591 skb_queue_head_init(&bcs->squeue);
593 bcs->tx_skb = NULL;
594 test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag);
595 bcs->event = 0;
596 bcs->hw.hdlc.rcvidx = 0;
597 bcs->tx_cnt = 0;
598 return (0);
602 setstack_hdlc(struct PStack *st, struct BCState *bcs)
604 bcs->channel = st->l1.bc;
605 if (open_hdlcstate(st->l1.hardware, bcs))
606 return (-1);
607 st->l1.bcs = bcs;
608 st->l2.l2l1 = hdlc_l2l1;
609 setstack_manager(st);
610 bcs->st = st;
611 setstack_l1_B(st);
612 return (0);
615 void __init
616 clear_pending_hdlc_ints(struct IsdnCardState *cs)
618 u_int val;
620 if (cs->subtyp == AVM_FRITZ_PCI) {
621 val = ReadHDLCPCI(cs, 0, HDLC_STATUS);
622 debugl1(cs, "HDLC 1 STA %x", val);
623 val = ReadHDLCPCI(cs, 1, HDLC_STATUS);
624 debugl1(cs, "HDLC 2 STA %x", val);
625 } else {
626 val = ReadHDLCPnP(cs, 0, HDLC_STATUS);
627 debugl1(cs, "HDLC 1 STA %x", val);
628 val = ReadHDLCPnP(cs, 0, HDLC_STATUS + 1);
629 debugl1(cs, "HDLC 1 RML %x", val);
630 val = ReadHDLCPnP(cs, 0, HDLC_STATUS + 2);
631 debugl1(cs, "HDLC 1 MODE %x", val);
632 val = ReadHDLCPnP(cs, 0, HDLC_STATUS + 3);
633 debugl1(cs, "HDLC 1 VIN %x", val);
634 val = ReadHDLCPnP(cs, 1, HDLC_STATUS);
635 debugl1(cs, "HDLC 2 STA %x", val);
636 val = ReadHDLCPnP(cs, 1, HDLC_STATUS + 1);
637 debugl1(cs, "HDLC 2 RML %x", val);
638 val = ReadHDLCPnP(cs, 1, HDLC_STATUS + 2);
639 debugl1(cs, "HDLC 2 MODE %x", val);
640 val = ReadHDLCPnP(cs, 1, HDLC_STATUS + 3);
641 debugl1(cs, "HDLC 2 VIN %x", val);
645 void __init
646 inithdlc(struct IsdnCardState *cs)
648 cs->bcs[0].BC_SetStack = setstack_hdlc;
649 cs->bcs[1].BC_SetStack = setstack_hdlc;
650 cs->bcs[0].BC_Close = close_hdlcstate;
651 cs->bcs[1].BC_Close = close_hdlcstate;
652 modehdlc(cs->bcs, -1, 0);
653 modehdlc(cs->bcs + 1, -1, 1);
656 static irqreturn_t
657 avm_pcipnp_interrupt(int intno, void *dev_id, struct pt_regs *regs)
659 struct IsdnCardState *cs = dev_id;
660 u_long flags;
661 u_char val;
662 u_char sval;
664 spin_lock_irqsave(&cs->lock, flags);
665 sval = inb(cs->hw.avm.cfg_reg + 2);
666 if ((sval & AVM_STATUS0_IRQ_MASK) == AVM_STATUS0_IRQ_MASK) {
667 /* possible a shared IRQ reqest */
668 spin_unlock_irqrestore(&cs->lock, flags);
669 return IRQ_NONE;
671 if (!(sval & AVM_STATUS0_IRQ_ISAC)) {
672 val = ReadISAC(cs, ISAC_ISTA);
673 isac_interrupt(cs, val);
675 if (!(sval & AVM_STATUS0_IRQ_HDLC)) {
676 HDLC_irq_main(cs);
678 WriteISAC(cs, ISAC_MASK, 0xFF);
679 WriteISAC(cs, ISAC_MASK, 0x0);
680 spin_unlock_irqrestore(&cs->lock, flags);
681 return IRQ_HANDLED;
684 static void
685 reset_avmpcipnp(struct IsdnCardState *cs)
687 printk(KERN_INFO "AVM PCI/PnP: reset\n");
688 outb(AVM_STATUS0_RESET | AVM_STATUS0_DIS_TIMER, cs->hw.avm.cfg_reg + 2);
689 mdelay(10);
690 outb(AVM_STATUS0_DIS_TIMER | AVM_STATUS0_RES_TIMER | AVM_STATUS0_ENA_IRQ, cs->hw.avm.cfg_reg + 2);
691 outb(AVM_STATUS1_ENA_IOM | cs->irq, cs->hw.avm.cfg_reg + 3);
692 mdelay(10);
693 printk(KERN_INFO "AVM PCI/PnP: S1 %x\n", inb(cs->hw.avm.cfg_reg + 3));
696 static int
697 AVM_card_msg(struct IsdnCardState *cs, int mt, void *arg)
699 u_long flags;
701 switch (mt) {
702 case CARD_RESET:
703 spin_lock_irqsave(&cs->lock, flags);
704 reset_avmpcipnp(cs);
705 spin_unlock_irqrestore(&cs->lock, flags);
706 return(0);
707 case CARD_RELEASE:
708 outb(0, cs->hw.avm.cfg_reg + 2);
709 release_region(cs->hw.avm.cfg_reg, 32);
710 return(0);
711 case CARD_INIT:
712 spin_lock_irqsave(&cs->lock, flags);
713 reset_avmpcipnp(cs);
714 clear_pending_isac_ints(cs);
715 initisac(cs);
716 inithdlc(cs);
717 outb(AVM_STATUS0_DIS_TIMER | AVM_STATUS0_RES_TIMER,
718 cs->hw.avm.cfg_reg + 2);
719 WriteISAC(cs, ISAC_MASK, 0);
720 outb(AVM_STATUS0_DIS_TIMER | AVM_STATUS0_RES_TIMER |
721 AVM_STATUS0_ENA_IRQ, cs->hw.avm.cfg_reg + 2);
722 /* RESET Receiver and Transmitter */
723 WriteISAC(cs, ISAC_CMDR, 0x41);
724 spin_unlock_irqrestore(&cs->lock, flags);
725 return(0);
726 case CARD_TEST:
727 return(0);
729 return(0);
732 #ifdef CONFIG_PCI
733 static struct pci_dev *dev_avm __initdata = NULL;
734 #endif
735 #ifdef __ISAPNP__
736 static struct pnp_card *pnp_avm_c __initdata = NULL;
737 #endif
739 int __init
740 setup_avm_pcipnp(struct IsdnCard *card)
742 u_int val, ver;
743 struct IsdnCardState *cs = card->cs;
744 char tmp[64];
746 strcpy(tmp, avm_pci_rev);
747 printk(KERN_INFO "HiSax: AVM PCI driver Rev. %s\n", HiSax_getrev(tmp));
748 if (cs->typ != ISDN_CTYPE_FRITZPCI)
749 return (0);
750 if (card->para[1]) {
751 /* old manual method */
752 cs->hw.avm.cfg_reg = card->para[1];
753 cs->irq = card->para[0];
754 cs->subtyp = AVM_FRITZ_PNP;
755 goto ready;
757 #ifdef __ISAPNP__
758 if (isapnp_present()) {
759 struct pnp_dev *pnp_avm_d = NULL;
760 if ((pnp_avm_c = pnp_find_card(
761 ISAPNP_VENDOR('A', 'V', 'M'),
762 ISAPNP_FUNCTION(0x0900), pnp_avm_c))) {
763 if ((pnp_avm_d = pnp_find_dev(pnp_avm_c,
764 ISAPNP_VENDOR('A', 'V', 'M'),
765 ISAPNP_FUNCTION(0x0900), pnp_avm_d))) {
766 int err;
768 pnp_disable_dev(pnp_avm_d);
769 err = pnp_activate_dev(pnp_avm_d);
770 if (err<0) {
771 printk(KERN_WARNING "%s: pnp_activate_dev ret(%d)\n",
772 __FUNCTION__, err);
773 return(0);
775 cs->hw.avm.cfg_reg =
776 pnp_port_start(pnp_avm_d, 0);
777 cs->irq = pnp_irq(pnp_avm_d, 0);
778 if (!cs->irq) {
779 printk(KERN_ERR "FritzPnP:No IRQ\n");
780 return(0);
782 if (!cs->hw.avm.cfg_reg) {
783 printk(KERN_ERR "FritzPnP:No IO address\n");
784 return(0);
786 cs->subtyp = AVM_FRITZ_PNP;
787 goto ready;
790 } else {
791 printk(KERN_INFO "FritzPnP: no ISA PnP present\n");
793 #endif
794 #ifdef CONFIG_PCI
795 if ((dev_avm = pci_find_device(PCI_VENDOR_ID_AVM,
796 PCI_DEVICE_ID_AVM_A1, dev_avm))) {
797 if (pci_enable_device(dev_avm))
798 return(0);
799 cs->irq = dev_avm->irq;
800 if (!cs->irq) {
801 printk(KERN_ERR "FritzPCI: No IRQ for PCI card found\n");
802 return(0);
804 cs->hw.avm.cfg_reg = pci_resource_start(dev_avm, 1);
805 if (!cs->hw.avm.cfg_reg) {
806 printk(KERN_ERR "FritzPCI: No IO-Adr for PCI card found\n");
807 return(0);
809 cs->subtyp = AVM_FRITZ_PCI;
810 } else {
811 printk(KERN_WARNING "FritzPCI: No PCI card found\n");
812 return(0);
814 cs->irq_flags |= SA_SHIRQ;
815 #else
816 printk(KERN_WARNING "FritzPCI: NO_PCI_BIOS\n");
817 return (0);
818 #endif /* CONFIG_PCI */
819 ready:
820 cs->hw.avm.isac = cs->hw.avm.cfg_reg + 0x10;
821 if (!request_region(cs->hw.avm.cfg_reg, 32,
822 (cs->subtyp == AVM_FRITZ_PCI) ? "avm PCI" : "avm PnP")) {
823 printk(KERN_WARNING
824 "HiSax: %s config port %x-%x already in use\n",
825 CardType[card->typ],
826 cs->hw.avm.cfg_reg,
827 cs->hw.avm.cfg_reg + 31);
828 return (0);
830 switch (cs->subtyp) {
831 case AVM_FRITZ_PCI:
832 val = inl(cs->hw.avm.cfg_reg);
833 printk(KERN_INFO "AVM PCI: stat %#x\n", val);
834 printk(KERN_INFO "AVM PCI: Class %X Rev %d\n",
835 val & 0xff, (val>>8) & 0xff);
836 cs->BC_Read_Reg = &ReadHDLC_s;
837 cs->BC_Write_Reg = &WriteHDLC_s;
838 break;
839 case AVM_FRITZ_PNP:
840 val = inb(cs->hw.avm.cfg_reg);
841 ver = inb(cs->hw.avm.cfg_reg + 1);
842 printk(KERN_INFO "AVM PnP: Class %X Rev %d\n", val, ver);
843 cs->BC_Read_Reg = &ReadHDLCPnP;
844 cs->BC_Write_Reg = &WriteHDLCPnP;
845 break;
846 default:
847 printk(KERN_WARNING "AVM unknown subtype %d\n", cs->subtyp);
848 return(0);
850 printk(KERN_INFO "HiSax: %s config irq:%d base:0x%X\n",
851 (cs->subtyp == AVM_FRITZ_PCI) ? "AVM Fritz!PCI" : "AVM Fritz!PnP",
852 cs->irq, cs->hw.avm.cfg_reg);
854 setup_isac(cs);
855 cs->readisac = &ReadISAC;
856 cs->writeisac = &WriteISAC;
857 cs->readisacfifo = &ReadISACfifo;
858 cs->writeisacfifo = &WriteISACfifo;
859 cs->BC_Send_Data = &hdlc_fill_fifo;
860 cs->cardmsg = &AVM_card_msg;
861 cs->irq_func = &avm_pcipnp_interrupt;
862 cs->writeisac(cs, ISAC_MASK, 0xFF);
863 ISACVersion(cs, (cs->subtyp == AVM_FRITZ_PCI) ? "AVM PCI:" : "AVM PnP:");
864 return (1);