2 md.c : Multiple Devices driver for Linux
3 Copyright (C) 1998, 1999, 2000 Ingo Molnar
5 completely rewritten, based on the MD driver code from Marc Zyngier
9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13 - kmod support by: Cyrus Durgin
14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
17 - lots of fixes and improvements to the RAID1/RAID5 and generic
18 RAID code (such as request based resynchronization):
20 Neil Brown <neilb@cse.unsw.edu.au>.
22 This program is free software; you can redistribute it and/or modify
23 it under the terms of the GNU General Public License as published by
24 the Free Software Foundation; either version 2, or (at your option)
27 You should have received a copy of the GNU General Public License
28 (for example /usr/src/linux/COPYING); if not, write to the Free
29 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32 #include <linux/module.h>
33 #include <linux/config.h>
34 #include <linux/linkage.h>
35 #include <linux/raid/md.h>
36 #include <linux/sysctl.h>
37 #include <linux/devfs_fs_kernel.h>
38 #include <linux/buffer_head.h> /* for invalidate_bdev */
39 #include <linux/suspend.h>
41 #include <linux/init.h>
44 #include <linux/kmod.h>
47 #include <asm/unaligned.h>
49 #define MAJOR_NR MD_MAJOR
52 /* 63 partitions with the alternate major number (mdp) */
53 #define MdpMinorShift 6
56 #define dprintk(x...) ((void)(DEBUG && printk(x)))
60 static void autostart_arrays (int part
);
63 static mdk_personality_t
*pers
[MAX_PERSONALITY
];
64 static DEFINE_SPINLOCK(pers_lock
);
67 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
68 * is 1000 KB/sec, so the extra system load does not show up that much.
69 * Increase it if you want to have more _guaranteed_ speed. Note that
70 * the RAID driver will use the maximum available bandwith if the IO
71 * subsystem is idle. There is also an 'absolute maximum' reconstruction
72 * speed limit - in case reconstruction slows down your system despite
75 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
78 static int sysctl_speed_limit_min
= 1000;
79 static int sysctl_speed_limit_max
= 200000;
81 static struct ctl_table_header
*raid_table_header
;
83 static ctl_table raid_table
[] = {
85 .ctl_name
= DEV_RAID_SPEED_LIMIT_MIN
,
86 .procname
= "speed_limit_min",
87 .data
= &sysctl_speed_limit_min
,
88 .maxlen
= sizeof(int),
90 .proc_handler
= &proc_dointvec
,
93 .ctl_name
= DEV_RAID_SPEED_LIMIT_MAX
,
94 .procname
= "speed_limit_max",
95 .data
= &sysctl_speed_limit_max
,
96 .maxlen
= sizeof(int),
98 .proc_handler
= &proc_dointvec
,
103 static ctl_table raid_dir_table
[] = {
105 .ctl_name
= DEV_RAID
,
114 static ctl_table raid_root_table
[] = {
120 .child
= raid_dir_table
,
125 static struct block_device_operations md_fops
;
128 * Enables to iterate over all existing md arrays
129 * all_mddevs_lock protects this list.
131 static LIST_HEAD(all_mddevs
);
132 static DEFINE_SPINLOCK(all_mddevs_lock
);
136 * iterates through all used mddevs in the system.
137 * We take care to grab the all_mddevs_lock whenever navigating
138 * the list, and to always hold a refcount when unlocked.
139 * Any code which breaks out of this loop while own
140 * a reference to the current mddev and must mddev_put it.
142 #define ITERATE_MDDEV(mddev,tmp) \
144 for (({ spin_lock(&all_mddevs_lock); \
145 tmp = all_mddevs.next; \
147 ({ if (tmp != &all_mddevs) \
148 mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
149 spin_unlock(&all_mddevs_lock); \
150 if (mddev) mddev_put(mddev); \
151 mddev = list_entry(tmp, mddev_t, all_mddevs); \
152 tmp != &all_mddevs;}); \
153 ({ spin_lock(&all_mddevs_lock); \
158 static int md_fail_request (request_queue_t
*q
, struct bio
*bio
)
160 bio_io_error(bio
, bio
->bi_size
);
164 static inline mddev_t
*mddev_get(mddev_t
*mddev
)
166 atomic_inc(&mddev
->active
);
170 static void mddev_put(mddev_t
*mddev
)
172 if (!atomic_dec_and_lock(&mddev
->active
, &all_mddevs_lock
))
174 if (!mddev
->raid_disks
&& list_empty(&mddev
->disks
)) {
175 list_del(&mddev
->all_mddevs
);
176 blk_put_queue(mddev
->queue
);
179 spin_unlock(&all_mddevs_lock
);
182 static mddev_t
* mddev_find(dev_t unit
)
184 mddev_t
*mddev
, *new = NULL
;
187 spin_lock(&all_mddevs_lock
);
188 list_for_each_entry(mddev
, &all_mddevs
, all_mddevs
)
189 if (mddev
->unit
== unit
) {
191 spin_unlock(&all_mddevs_lock
);
198 list_add(&new->all_mddevs
, &all_mddevs
);
199 spin_unlock(&all_mddevs_lock
);
202 spin_unlock(&all_mddevs_lock
);
204 new = (mddev_t
*) kmalloc(sizeof(*new), GFP_KERNEL
);
208 memset(new, 0, sizeof(*new));
211 if (MAJOR(unit
) == MD_MAJOR
)
212 new->md_minor
= MINOR(unit
);
214 new->md_minor
= MINOR(unit
) >> MdpMinorShift
;
216 init_MUTEX(&new->reconfig_sem
);
217 INIT_LIST_HEAD(&new->disks
);
218 INIT_LIST_HEAD(&new->all_mddevs
);
219 init_timer(&new->safemode_timer
);
220 atomic_set(&new->active
, 1);
222 new->queue
= blk_alloc_queue(GFP_KERNEL
);
228 blk_queue_make_request(new->queue
, md_fail_request
);
233 static inline int mddev_lock(mddev_t
* mddev
)
235 return down_interruptible(&mddev
->reconfig_sem
);
238 static inline void mddev_lock_uninterruptible(mddev_t
* mddev
)
240 down(&mddev
->reconfig_sem
);
243 static inline int mddev_trylock(mddev_t
* mddev
)
245 return down_trylock(&mddev
->reconfig_sem
);
248 static inline void mddev_unlock(mddev_t
* mddev
)
250 up(&mddev
->reconfig_sem
);
253 md_wakeup_thread(mddev
->thread
);
256 mdk_rdev_t
* find_rdev_nr(mddev_t
*mddev
, int nr
)
259 struct list_head
*tmp
;
261 ITERATE_RDEV(mddev
,rdev
,tmp
) {
262 if (rdev
->desc_nr
== nr
)
268 static mdk_rdev_t
* find_rdev(mddev_t
* mddev
, dev_t dev
)
270 struct list_head
*tmp
;
273 ITERATE_RDEV(mddev
,rdev
,tmp
) {
274 if (rdev
->bdev
->bd_dev
== dev
)
280 inline static sector_t
calc_dev_sboffset(struct block_device
*bdev
)
282 sector_t size
= bdev
->bd_inode
->i_size
>> BLOCK_SIZE_BITS
;
283 return MD_NEW_SIZE_BLOCKS(size
);
286 static sector_t
calc_dev_size(mdk_rdev_t
*rdev
, unsigned chunk_size
)
290 size
= rdev
->sb_offset
;
293 size
&= ~((sector_t
)chunk_size
/1024 - 1);
297 static int alloc_disk_sb(mdk_rdev_t
* rdev
)
302 rdev
->sb_page
= alloc_page(GFP_KERNEL
);
303 if (!rdev
->sb_page
) {
304 printk(KERN_ALERT
"md: out of memory.\n");
311 static void free_disk_sb(mdk_rdev_t
* rdev
)
314 page_cache_release(rdev
->sb_page
);
316 rdev
->sb_page
= NULL
;
323 static int bi_complete(struct bio
*bio
, unsigned int bytes_done
, int error
)
328 complete((struct completion
*)bio
->bi_private
);
332 static int sync_page_io(struct block_device
*bdev
, sector_t sector
, int size
,
333 struct page
*page
, int rw
)
335 struct bio
*bio
= bio_alloc(GFP_NOIO
, 1);
336 struct completion event
;
339 rw
|= (1 << BIO_RW_SYNC
);
342 bio
->bi_sector
= sector
;
343 bio_add_page(bio
, page
, size
, 0);
344 init_completion(&event
);
345 bio
->bi_private
= &event
;
346 bio
->bi_end_io
= bi_complete
;
348 wait_for_completion(&event
);
350 ret
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
355 static int read_disk_sb(mdk_rdev_t
* rdev
)
357 char b
[BDEVNAME_SIZE
];
358 if (!rdev
->sb_page
) {
366 if (!sync_page_io(rdev
->bdev
, rdev
->sb_offset
<<1, MD_SB_BYTES
, rdev
->sb_page
, READ
))
372 printk(KERN_WARNING
"md: disabled device %s, could not read superblock.\n",
373 bdevname(rdev
->bdev
,b
));
377 static int uuid_equal(mdp_super_t
*sb1
, mdp_super_t
*sb2
)
379 if ( (sb1
->set_uuid0
== sb2
->set_uuid0
) &&
380 (sb1
->set_uuid1
== sb2
->set_uuid1
) &&
381 (sb1
->set_uuid2
== sb2
->set_uuid2
) &&
382 (sb1
->set_uuid3
== sb2
->set_uuid3
))
390 static int sb_equal(mdp_super_t
*sb1
, mdp_super_t
*sb2
)
393 mdp_super_t
*tmp1
, *tmp2
;
395 tmp1
= kmalloc(sizeof(*tmp1
),GFP_KERNEL
);
396 tmp2
= kmalloc(sizeof(*tmp2
),GFP_KERNEL
);
398 if (!tmp1
|| !tmp2
) {
400 printk(KERN_INFO
"md.c: sb1 is not equal to sb2!\n");
408 * nr_disks is not constant
413 if (memcmp(tmp1
, tmp2
, MD_SB_GENERIC_CONSTANT_WORDS
* 4))
427 static unsigned int calc_sb_csum(mdp_super_t
* sb
)
429 unsigned int disk_csum
, csum
;
431 disk_csum
= sb
->sb_csum
;
433 csum
= csum_partial((void *)sb
, MD_SB_BYTES
, 0);
434 sb
->sb_csum
= disk_csum
;
440 * Handle superblock details.
441 * We want to be able to handle multiple superblock formats
442 * so we have a common interface to them all, and an array of
443 * different handlers.
444 * We rely on user-space to write the initial superblock, and support
445 * reading and updating of superblocks.
446 * Interface methods are:
447 * int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
448 * loads and validates a superblock on dev.
449 * if refdev != NULL, compare superblocks on both devices
451 * 0 - dev has a superblock that is compatible with refdev
452 * 1 - dev has a superblock that is compatible and newer than refdev
453 * so dev should be used as the refdev in future
454 * -EINVAL superblock incompatible or invalid
455 * -othererror e.g. -EIO
457 * int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
458 * Verify that dev is acceptable into mddev.
459 * The first time, mddev->raid_disks will be 0, and data from
460 * dev should be merged in. Subsequent calls check that dev
461 * is new enough. Return 0 or -EINVAL
463 * void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
464 * Update the superblock for rdev with data in mddev
465 * This does not write to disc.
471 struct module
*owner
;
472 int (*load_super
)(mdk_rdev_t
*rdev
, mdk_rdev_t
*refdev
, int minor_version
);
473 int (*validate_super
)(mddev_t
*mddev
, mdk_rdev_t
*rdev
);
474 void (*sync_super
)(mddev_t
*mddev
, mdk_rdev_t
*rdev
);
478 * load_super for 0.90.0
480 static int super_90_load(mdk_rdev_t
*rdev
, mdk_rdev_t
*refdev
, int minor_version
)
482 char b
[BDEVNAME_SIZE
], b2
[BDEVNAME_SIZE
];
488 * Calculate the position of the superblock,
489 * it's at the end of the disk.
491 * It also happens to be a multiple of 4Kb.
493 sb_offset
= calc_dev_sboffset(rdev
->bdev
);
494 rdev
->sb_offset
= sb_offset
;
496 ret
= read_disk_sb(rdev
);
501 bdevname(rdev
->bdev
, b
);
502 sb
= (mdp_super_t
*)page_address(rdev
->sb_page
);
504 if (sb
->md_magic
!= MD_SB_MAGIC
) {
505 printk(KERN_ERR
"md: invalid raid superblock magic on %s\n",
510 if (sb
->major_version
!= 0 ||
511 sb
->minor_version
!= 90) {
512 printk(KERN_WARNING
"Bad version number %d.%d on %s\n",
513 sb
->major_version
, sb
->minor_version
,
518 if (sb
->raid_disks
<= 0)
521 if (csum_fold(calc_sb_csum(sb
)) != csum_fold(sb
->sb_csum
)) {
522 printk(KERN_WARNING
"md: invalid superblock checksum on %s\n",
527 rdev
->preferred_minor
= sb
->md_minor
;
528 rdev
->data_offset
= 0;
530 if (sb
->level
== LEVEL_MULTIPATH
)
533 rdev
->desc_nr
= sb
->this_disk
.number
;
539 mdp_super_t
*refsb
= (mdp_super_t
*)page_address(refdev
->sb_page
);
540 if (!uuid_equal(refsb
, sb
)) {
541 printk(KERN_WARNING
"md: %s has different UUID to %s\n",
542 b
, bdevname(refdev
->bdev
,b2
));
545 if (!sb_equal(refsb
, sb
)) {
546 printk(KERN_WARNING
"md: %s has same UUID"
547 " but different superblock to %s\n",
548 b
, bdevname(refdev
->bdev
, b2
));
552 ev2
= md_event(refsb
);
558 rdev
->size
= calc_dev_size(rdev
, sb
->chunk_size
);
565 * validate_super for 0.90.0
567 static int super_90_validate(mddev_t
*mddev
, mdk_rdev_t
*rdev
)
570 mdp_super_t
*sb
= (mdp_super_t
*)page_address(rdev
->sb_page
);
572 if (mddev
->raid_disks
== 0) {
573 mddev
->major_version
= 0;
574 mddev
->minor_version
= sb
->minor_version
;
575 mddev
->patch_version
= sb
->patch_version
;
576 mddev
->persistent
= ! sb
->not_persistent
;
577 mddev
->chunk_size
= sb
->chunk_size
;
578 mddev
->ctime
= sb
->ctime
;
579 mddev
->utime
= sb
->utime
;
580 mddev
->level
= sb
->level
;
581 mddev
->layout
= sb
->layout
;
582 mddev
->raid_disks
= sb
->raid_disks
;
583 mddev
->size
= sb
->size
;
584 mddev
->events
= md_event(sb
);
586 if (sb
->state
& (1<<MD_SB_CLEAN
))
587 mddev
->recovery_cp
= MaxSector
;
589 if (sb
->events_hi
== sb
->cp_events_hi
&&
590 sb
->events_lo
== sb
->cp_events_lo
) {
591 mddev
->recovery_cp
= sb
->recovery_cp
;
593 mddev
->recovery_cp
= 0;
596 memcpy(mddev
->uuid
+0, &sb
->set_uuid0
, 4);
597 memcpy(mddev
->uuid
+4, &sb
->set_uuid1
, 4);
598 memcpy(mddev
->uuid
+8, &sb
->set_uuid2
, 4);
599 memcpy(mddev
->uuid
+12,&sb
->set_uuid3
, 4);
601 mddev
->max_disks
= MD_SB_DISKS
;
606 if (ev1
< mddev
->events
)
609 if (mddev
->level
!= LEVEL_MULTIPATH
) {
610 rdev
->raid_disk
= -1;
611 rdev
->in_sync
= rdev
->faulty
= 0;
612 desc
= sb
->disks
+ rdev
->desc_nr
;
614 if (desc
->state
& (1<<MD_DISK_FAULTY
))
616 else if (desc
->state
& (1<<MD_DISK_SYNC
) &&
617 desc
->raid_disk
< mddev
->raid_disks
) {
619 rdev
->raid_disk
= desc
->raid_disk
;
626 * sync_super for 0.90.0
628 static void super_90_sync(mddev_t
*mddev
, mdk_rdev_t
*rdev
)
631 struct list_head
*tmp
;
633 int next_spare
= mddev
->raid_disks
;
635 /* make rdev->sb match mddev data..
638 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
639 * 3/ any empty disks < next_spare become removed
641 * disks[0] gets initialised to REMOVED because
642 * we cannot be sure from other fields if it has
643 * been initialised or not.
646 int active
=0, working
=0,failed
=0,spare
=0,nr_disks
=0;
648 sb
= (mdp_super_t
*)page_address(rdev
->sb_page
);
650 memset(sb
, 0, sizeof(*sb
));
652 sb
->md_magic
= MD_SB_MAGIC
;
653 sb
->major_version
= mddev
->major_version
;
654 sb
->minor_version
= mddev
->minor_version
;
655 sb
->patch_version
= mddev
->patch_version
;
656 sb
->gvalid_words
= 0; /* ignored */
657 memcpy(&sb
->set_uuid0
, mddev
->uuid
+0, 4);
658 memcpy(&sb
->set_uuid1
, mddev
->uuid
+4, 4);
659 memcpy(&sb
->set_uuid2
, mddev
->uuid
+8, 4);
660 memcpy(&sb
->set_uuid3
, mddev
->uuid
+12,4);
662 sb
->ctime
= mddev
->ctime
;
663 sb
->level
= mddev
->level
;
664 sb
->size
= mddev
->size
;
665 sb
->raid_disks
= mddev
->raid_disks
;
666 sb
->md_minor
= mddev
->md_minor
;
667 sb
->not_persistent
= !mddev
->persistent
;
668 sb
->utime
= mddev
->utime
;
670 sb
->events_hi
= (mddev
->events
>>32);
671 sb
->events_lo
= (u32
)mddev
->events
;
675 sb
->recovery_cp
= mddev
->recovery_cp
;
676 sb
->cp_events_hi
= (mddev
->events
>>32);
677 sb
->cp_events_lo
= (u32
)mddev
->events
;
678 if (mddev
->recovery_cp
== MaxSector
)
679 sb
->state
= (1<< MD_SB_CLEAN
);
683 sb
->layout
= mddev
->layout
;
684 sb
->chunk_size
= mddev
->chunk_size
;
686 sb
->disks
[0].state
= (1<<MD_DISK_REMOVED
);
687 ITERATE_RDEV(mddev
,rdev2
,tmp
) {
689 if (rdev2
->raid_disk
>= 0 && rdev2
->in_sync
&& !rdev2
->faulty
)
690 rdev2
->desc_nr
= rdev2
->raid_disk
;
692 rdev2
->desc_nr
= next_spare
++;
693 d
= &sb
->disks
[rdev2
->desc_nr
];
695 d
->number
= rdev2
->desc_nr
;
696 d
->major
= MAJOR(rdev2
->bdev
->bd_dev
);
697 d
->minor
= MINOR(rdev2
->bdev
->bd_dev
);
698 if (rdev2
->raid_disk
>= 0 && rdev
->in_sync
&& !rdev2
->faulty
)
699 d
->raid_disk
= rdev2
->raid_disk
;
701 d
->raid_disk
= rdev2
->desc_nr
; /* compatibility */
703 d
->state
= (1<<MD_DISK_FAULTY
);
705 } else if (rdev2
->in_sync
) {
706 d
->state
= (1<<MD_DISK_ACTIVE
);
707 d
->state
|= (1<<MD_DISK_SYNC
);
717 /* now set the "removed" and "faulty" bits on any missing devices */
718 for (i
=0 ; i
< mddev
->raid_disks
; i
++) {
719 mdp_disk_t
*d
= &sb
->disks
[i
];
720 if (d
->state
== 0 && d
->number
== 0) {
723 d
->state
= (1<<MD_DISK_REMOVED
);
724 d
->state
|= (1<<MD_DISK_FAULTY
);
728 sb
->nr_disks
= nr_disks
;
729 sb
->active_disks
= active
;
730 sb
->working_disks
= working
;
731 sb
->failed_disks
= failed
;
732 sb
->spare_disks
= spare
;
734 sb
->this_disk
= sb
->disks
[rdev
->desc_nr
];
735 sb
->sb_csum
= calc_sb_csum(sb
);
739 * version 1 superblock
742 static unsigned int calc_sb_1_csum(struct mdp_superblock_1
* sb
)
744 unsigned int disk_csum
, csum
;
745 unsigned long long newcsum
;
746 int size
= 256 + le32_to_cpu(sb
->max_dev
)*2;
747 unsigned int *isuper
= (unsigned int*)sb
;
750 disk_csum
= sb
->sb_csum
;
753 for (i
=0; size
>=4; size
-= 4 )
754 newcsum
+= le32_to_cpu(*isuper
++);
757 newcsum
+= le16_to_cpu(*(unsigned short*) isuper
);
759 csum
= (newcsum
& 0xffffffff) + (newcsum
>> 32);
760 sb
->sb_csum
= disk_csum
;
761 return cpu_to_le32(csum
);
764 static int super_1_load(mdk_rdev_t
*rdev
, mdk_rdev_t
*refdev
, int minor_version
)
766 struct mdp_superblock_1
*sb
;
769 char b
[BDEVNAME_SIZE
], b2
[BDEVNAME_SIZE
];
772 * Calculate the position of the superblock.
773 * It is always aligned to a 4K boundary and
774 * depeding on minor_version, it can be:
775 * 0: At least 8K, but less than 12K, from end of device
776 * 1: At start of device
777 * 2: 4K from start of device.
779 switch(minor_version
) {
781 sb_offset
= rdev
->bdev
->bd_inode
->i_size
>> 9;
783 sb_offset
&= ~(4*2-1);
784 /* convert from sectors to K */
796 rdev
->sb_offset
= sb_offset
;
798 ret
= read_disk_sb(rdev
);
802 sb
= (struct mdp_superblock_1
*)page_address(rdev
->sb_page
);
804 if (sb
->magic
!= cpu_to_le32(MD_SB_MAGIC
) ||
805 sb
->major_version
!= cpu_to_le32(1) ||
806 le32_to_cpu(sb
->max_dev
) > (4096-256)/2 ||
807 le64_to_cpu(sb
->super_offset
) != (rdev
->sb_offset
<<1) ||
808 sb
->feature_map
!= 0)
811 if (calc_sb_1_csum(sb
) != sb
->sb_csum
) {
812 printk("md: invalid superblock checksum on %s\n",
813 bdevname(rdev
->bdev
,b
));
816 if (le64_to_cpu(sb
->data_size
) < 10) {
817 printk("md: data_size too small on %s\n",
818 bdevname(rdev
->bdev
,b
));
821 rdev
->preferred_minor
= 0xffff;
822 rdev
->data_offset
= le64_to_cpu(sb
->data_offset
);
828 struct mdp_superblock_1
*refsb
=
829 (struct mdp_superblock_1
*)page_address(refdev
->sb_page
);
831 if (memcmp(sb
->set_uuid
, refsb
->set_uuid
, 16) != 0 ||
832 sb
->level
!= refsb
->level
||
833 sb
->layout
!= refsb
->layout
||
834 sb
->chunksize
!= refsb
->chunksize
) {
835 printk(KERN_WARNING
"md: %s has strangely different"
836 " superblock to %s\n",
837 bdevname(rdev
->bdev
,b
),
838 bdevname(refdev
->bdev
,b2
));
841 ev1
= le64_to_cpu(sb
->events
);
842 ev2
= le64_to_cpu(refsb
->events
);
848 rdev
->size
= ((rdev
->bdev
->bd_inode
->i_size
>>9) - le64_to_cpu(sb
->data_offset
)) / 2;
850 rdev
->size
= rdev
->sb_offset
;
851 if (rdev
->size
< le64_to_cpu(sb
->data_size
)/2)
853 rdev
->size
= le64_to_cpu(sb
->data_size
)/2;
854 if (le32_to_cpu(sb
->chunksize
))
855 rdev
->size
&= ~((sector_t
)le32_to_cpu(sb
->chunksize
)/2 - 1);
859 static int super_1_validate(mddev_t
*mddev
, mdk_rdev_t
*rdev
)
861 struct mdp_superblock_1
*sb
= (struct mdp_superblock_1
*)page_address(rdev
->sb_page
);
863 if (mddev
->raid_disks
== 0) {
864 mddev
->major_version
= 1;
865 mddev
->patch_version
= 0;
866 mddev
->persistent
= 1;
867 mddev
->chunk_size
= le32_to_cpu(sb
->chunksize
) << 9;
868 mddev
->ctime
= le64_to_cpu(sb
->ctime
) & ((1ULL << 32)-1);
869 mddev
->utime
= le64_to_cpu(sb
->utime
) & ((1ULL << 32)-1);
870 mddev
->level
= le32_to_cpu(sb
->level
);
871 mddev
->layout
= le32_to_cpu(sb
->layout
);
872 mddev
->raid_disks
= le32_to_cpu(sb
->raid_disks
);
873 mddev
->size
= le64_to_cpu(sb
->size
)/2;
874 mddev
->events
= le64_to_cpu(sb
->events
);
876 mddev
->recovery_cp
= le64_to_cpu(sb
->resync_offset
);
877 memcpy(mddev
->uuid
, sb
->set_uuid
, 16);
879 mddev
->max_disks
= (4096-256)/2;
882 ev1
= le64_to_cpu(sb
->events
);
884 if (ev1
< mddev
->events
)
888 if (mddev
->level
!= LEVEL_MULTIPATH
) {
890 rdev
->desc_nr
= le32_to_cpu(sb
->dev_number
);
891 role
= le16_to_cpu(sb
->dev_roles
[rdev
->desc_nr
]);
893 case 0xffff: /* spare */
896 rdev
->raid_disk
= -1;
898 case 0xfffe: /* faulty */
901 rdev
->raid_disk
= -1;
906 rdev
->raid_disk
= role
;
913 static void super_1_sync(mddev_t
*mddev
, mdk_rdev_t
*rdev
)
915 struct mdp_superblock_1
*sb
;
916 struct list_head
*tmp
;
919 /* make rdev->sb match mddev and rdev data. */
921 sb
= (struct mdp_superblock_1
*)page_address(rdev
->sb_page
);
925 memset(sb
->pad1
, 0, sizeof(sb
->pad1
));
926 memset(sb
->pad2
, 0, sizeof(sb
->pad2
));
927 memset(sb
->pad3
, 0, sizeof(sb
->pad3
));
929 sb
->utime
= cpu_to_le64((__u64
)mddev
->utime
);
930 sb
->events
= cpu_to_le64(mddev
->events
);
932 sb
->resync_offset
= cpu_to_le64(mddev
->recovery_cp
);
934 sb
->resync_offset
= cpu_to_le64(0);
937 ITERATE_RDEV(mddev
,rdev2
,tmp
)
938 if (rdev2
->desc_nr
+1 > max_dev
)
939 max_dev
= rdev2
->desc_nr
+1;
941 sb
->max_dev
= cpu_to_le32(max_dev
);
942 for (i
=0; i
<max_dev
;i
++)
943 sb
->dev_roles
[i
] = cpu_to_le16(0xfffe);
945 ITERATE_RDEV(mddev
,rdev2
,tmp
) {
948 sb
->dev_roles
[i
] = cpu_to_le16(0xfffe);
949 else if (rdev2
->in_sync
)
950 sb
->dev_roles
[i
] = cpu_to_le16(rdev2
->raid_disk
);
952 sb
->dev_roles
[i
] = cpu_to_le16(0xffff);
955 sb
->recovery_offset
= cpu_to_le64(0); /* not supported yet */
956 sb
->sb_csum
= calc_sb_1_csum(sb
);
960 static struct super_type super_types
[] = {
963 .owner
= THIS_MODULE
,
964 .load_super
= super_90_load
,
965 .validate_super
= super_90_validate
,
966 .sync_super
= super_90_sync
,
970 .owner
= THIS_MODULE
,
971 .load_super
= super_1_load
,
972 .validate_super
= super_1_validate
,
973 .sync_super
= super_1_sync
,
977 static mdk_rdev_t
* match_dev_unit(mddev_t
*mddev
, mdk_rdev_t
*dev
)
979 struct list_head
*tmp
;
982 ITERATE_RDEV(mddev
,rdev
,tmp
)
983 if (rdev
->bdev
->bd_contains
== dev
->bdev
->bd_contains
)
989 static int match_mddev_units(mddev_t
*mddev1
, mddev_t
*mddev2
)
991 struct list_head
*tmp
;
994 ITERATE_RDEV(mddev1
,rdev
,tmp
)
995 if (match_dev_unit(mddev2
, rdev
))
1001 static LIST_HEAD(pending_raid_disks
);
1003 static int bind_rdev_to_array(mdk_rdev_t
* rdev
, mddev_t
* mddev
)
1005 mdk_rdev_t
*same_pdev
;
1006 char b
[BDEVNAME_SIZE
], b2
[BDEVNAME_SIZE
];
1012 same_pdev
= match_dev_unit(mddev
, rdev
);
1015 "%s: WARNING: %s appears to be on the same physical"
1016 " disk as %s. True\n protection against single-disk"
1017 " failure might be compromised.\n",
1018 mdname(mddev
), bdevname(rdev
->bdev
,b
),
1019 bdevname(same_pdev
->bdev
,b2
));
1021 /* Verify rdev->desc_nr is unique.
1022 * If it is -1, assign a free number, else
1023 * check number is not in use
1025 if (rdev
->desc_nr
< 0) {
1027 if (mddev
->pers
) choice
= mddev
->raid_disks
;
1028 while (find_rdev_nr(mddev
, choice
))
1030 rdev
->desc_nr
= choice
;
1032 if (find_rdev_nr(mddev
, rdev
->desc_nr
))
1036 list_add(&rdev
->same_set
, &mddev
->disks
);
1037 rdev
->mddev
= mddev
;
1038 printk(KERN_INFO
"md: bind<%s>\n", bdevname(rdev
->bdev
,b
));
1042 static void unbind_rdev_from_array(mdk_rdev_t
* rdev
)
1044 char b
[BDEVNAME_SIZE
];
1049 list_del_init(&rdev
->same_set
);
1050 printk(KERN_INFO
"md: unbind<%s>\n", bdevname(rdev
->bdev
,b
));
1055 * prevent the device from being mounted, repartitioned or
1056 * otherwise reused by a RAID array (or any other kernel
1057 * subsystem), by bd_claiming the device.
1059 static int lock_rdev(mdk_rdev_t
*rdev
, dev_t dev
)
1062 struct block_device
*bdev
;
1063 char b
[BDEVNAME_SIZE
];
1065 bdev
= open_by_devnum(dev
, FMODE_READ
|FMODE_WRITE
);
1067 printk(KERN_ERR
"md: could not open %s.\n",
1068 __bdevname(dev
, b
));
1069 return PTR_ERR(bdev
);
1071 err
= bd_claim(bdev
, rdev
);
1073 printk(KERN_ERR
"md: could not bd_claim %s.\n",
1082 static void unlock_rdev(mdk_rdev_t
*rdev
)
1084 struct block_device
*bdev
= rdev
->bdev
;
1092 void md_autodetect_dev(dev_t dev
);
1094 static void export_rdev(mdk_rdev_t
* rdev
)
1096 char b
[BDEVNAME_SIZE
];
1097 printk(KERN_INFO
"md: export_rdev(%s)\n",
1098 bdevname(rdev
->bdev
,b
));
1102 list_del_init(&rdev
->same_set
);
1104 md_autodetect_dev(rdev
->bdev
->bd_dev
);
1110 static void kick_rdev_from_array(mdk_rdev_t
* rdev
)
1112 unbind_rdev_from_array(rdev
);
1116 static void export_array(mddev_t
*mddev
)
1118 struct list_head
*tmp
;
1121 ITERATE_RDEV(mddev
,rdev
,tmp
) {
1126 kick_rdev_from_array(rdev
);
1128 if (!list_empty(&mddev
->disks
))
1130 mddev
->raid_disks
= 0;
1131 mddev
->major_version
= 0;
1134 static void print_desc(mdp_disk_t
*desc
)
1136 printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc
->number
,
1137 desc
->major
,desc
->minor
,desc
->raid_disk
,desc
->state
);
1140 static void print_sb(mdp_super_t
*sb
)
1145 "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
1146 sb
->major_version
, sb
->minor_version
, sb
->patch_version
,
1147 sb
->set_uuid0
, sb
->set_uuid1
, sb
->set_uuid2
, sb
->set_uuid3
,
1149 printk(KERN_INFO
"md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
1150 sb
->level
, sb
->size
, sb
->nr_disks
, sb
->raid_disks
,
1151 sb
->md_minor
, sb
->layout
, sb
->chunk_size
);
1152 printk(KERN_INFO
"md: UT:%08x ST:%d AD:%d WD:%d"
1153 " FD:%d SD:%d CSUM:%08x E:%08lx\n",
1154 sb
->utime
, sb
->state
, sb
->active_disks
, sb
->working_disks
,
1155 sb
->failed_disks
, sb
->spare_disks
,
1156 sb
->sb_csum
, (unsigned long)sb
->events_lo
);
1159 for (i
= 0; i
< MD_SB_DISKS
; i
++) {
1162 desc
= sb
->disks
+ i
;
1163 if (desc
->number
|| desc
->major
|| desc
->minor
||
1164 desc
->raid_disk
|| (desc
->state
&& (desc
->state
!= 4))) {
1165 printk(" D %2d: ", i
);
1169 printk(KERN_INFO
"md: THIS: ");
1170 print_desc(&sb
->this_disk
);
1174 static void print_rdev(mdk_rdev_t
*rdev
)
1176 char b
[BDEVNAME_SIZE
];
1177 printk(KERN_INFO
"md: rdev %s, SZ:%08llu F:%d S:%d DN:%u\n",
1178 bdevname(rdev
->bdev
,b
), (unsigned long long)rdev
->size
,
1179 rdev
->faulty
, rdev
->in_sync
, rdev
->desc_nr
);
1180 if (rdev
->sb_loaded
) {
1181 printk(KERN_INFO
"md: rdev superblock:\n");
1182 print_sb((mdp_super_t
*)page_address(rdev
->sb_page
));
1184 printk(KERN_INFO
"md: no rdev superblock!\n");
1187 void md_print_devices(void)
1189 struct list_head
*tmp
, *tmp2
;
1192 char b
[BDEVNAME_SIZE
];
1195 printk("md: **********************************\n");
1196 printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
1197 printk("md: **********************************\n");
1198 ITERATE_MDDEV(mddev
,tmp
) {
1199 printk("%s: ", mdname(mddev
));
1201 ITERATE_RDEV(mddev
,rdev
,tmp2
)
1202 printk("<%s>", bdevname(rdev
->bdev
,b
));
1205 ITERATE_RDEV(mddev
,rdev
,tmp2
)
1208 printk("md: **********************************\n");
1213 static int write_disk_sb(mdk_rdev_t
* rdev
)
1215 char b
[BDEVNAME_SIZE
];
1216 if (!rdev
->sb_loaded
) {
1225 dprintk(KERN_INFO
"(write) %s's sb offset: %llu\n",
1226 bdevname(rdev
->bdev
,b
),
1227 (unsigned long long)rdev
->sb_offset
);
1229 if (sync_page_io(rdev
->bdev
, rdev
->sb_offset
<<1, MD_SB_BYTES
, rdev
->sb_page
, WRITE
))
1232 printk("md: write_disk_sb failed for device %s\n",
1233 bdevname(rdev
->bdev
,b
));
1237 static void sync_sbs(mddev_t
* mddev
)
1240 struct list_head
*tmp
;
1242 ITERATE_RDEV(mddev
,rdev
,tmp
) {
1243 super_types
[mddev
->major_version
].
1244 sync_super(mddev
, rdev
);
1245 rdev
->sb_loaded
= 1;
1249 static void md_update_sb(mddev_t
* mddev
)
1251 int err
, count
= 100;
1252 struct list_head
*tmp
;
1255 mddev
->sb_dirty
= 0;
1257 mddev
->utime
= get_seconds();
1260 if (!mddev
->events
) {
1262 * oops, this 64-bit counter should never wrap.
1263 * Either we are in around ~1 trillion A.C., assuming
1264 * 1 reboot per second, or we have a bug:
1272 * do not write anything to disk if using
1273 * nonpersistent superblocks
1275 if (!mddev
->persistent
)
1279 "md: updating %s RAID superblock on device (in sync %d)\n",
1280 mdname(mddev
),mddev
->in_sync
);
1283 ITERATE_RDEV(mddev
,rdev
,tmp
) {
1284 char b
[BDEVNAME_SIZE
];
1285 dprintk(KERN_INFO
"md: ");
1287 dprintk("(skipping faulty ");
1289 dprintk("%s ", bdevname(rdev
->bdev
,b
));
1290 if (!rdev
->faulty
) {
1291 err
+= write_disk_sb(rdev
);
1294 if (!err
&& mddev
->level
== LEVEL_MULTIPATH
)
1295 /* only need to write one superblock... */
1300 printk(KERN_ERR
"md: errors occurred during superblock"
1301 " update, repeating\n");
1305 "md: excessive errors occurred during superblock update, exiting\n");
1310 * Import a device. If 'super_format' >= 0, then sanity check the superblock
1312 * mark the device faulty if:
1314 * - the device is nonexistent (zero size)
1315 * - the device has no valid superblock
1317 * a faulty rdev _never_ has rdev->sb set.
1319 static mdk_rdev_t
*md_import_device(dev_t newdev
, int super_format
, int super_minor
)
1321 char b
[BDEVNAME_SIZE
];
1326 rdev
= (mdk_rdev_t
*) kmalloc(sizeof(*rdev
), GFP_KERNEL
);
1328 printk(KERN_ERR
"md: could not alloc mem for new device!\n");
1329 return ERR_PTR(-ENOMEM
);
1331 memset(rdev
, 0, sizeof(*rdev
));
1333 if ((err
= alloc_disk_sb(rdev
)))
1336 err
= lock_rdev(rdev
, newdev
);
1343 rdev
->data_offset
= 0;
1344 atomic_set(&rdev
->nr_pending
, 0);
1346 size
= rdev
->bdev
->bd_inode
->i_size
>> BLOCK_SIZE_BITS
;
1349 "md: %s has zero or unknown size, marking faulty!\n",
1350 bdevname(rdev
->bdev
,b
));
1355 if (super_format
>= 0) {
1356 err
= super_types
[super_format
].
1357 load_super(rdev
, NULL
, super_minor
);
1358 if (err
== -EINVAL
) {
1360 "md: %s has invalid sb, not importing!\n",
1361 bdevname(rdev
->bdev
,b
));
1366 "md: could not read %s's sb, not importing!\n",
1367 bdevname(rdev
->bdev
,b
));
1371 INIT_LIST_HEAD(&rdev
->same_set
);
1376 if (rdev
->sb_page
) {
1382 return ERR_PTR(err
);
1386 * Check a full RAID array for plausibility
1390 static void analyze_sbs(mddev_t
* mddev
)
1393 struct list_head
*tmp
;
1394 mdk_rdev_t
*rdev
, *freshest
;
1395 char b
[BDEVNAME_SIZE
];
1398 ITERATE_RDEV(mddev
,rdev
,tmp
)
1399 switch (super_types
[mddev
->major_version
].
1400 load_super(rdev
, freshest
, mddev
->minor_version
)) {
1408 "md: fatal superblock inconsistency in %s"
1409 " -- removing from array\n",
1410 bdevname(rdev
->bdev
,b
));
1411 kick_rdev_from_array(rdev
);
1415 super_types
[mddev
->major_version
].
1416 validate_super(mddev
, freshest
);
1419 ITERATE_RDEV(mddev
,rdev
,tmp
) {
1420 if (rdev
!= freshest
)
1421 if (super_types
[mddev
->major_version
].
1422 validate_super(mddev
, rdev
)) {
1423 printk(KERN_WARNING
"md: kicking non-fresh %s"
1425 bdevname(rdev
->bdev
,b
));
1426 kick_rdev_from_array(rdev
);
1429 if (mddev
->level
== LEVEL_MULTIPATH
) {
1430 rdev
->desc_nr
= i
++;
1431 rdev
->raid_disk
= rdev
->desc_nr
;
1438 if (mddev
->recovery_cp
!= MaxSector
&&
1440 printk(KERN_ERR
"md: %s: raid array is not clean"
1441 " -- starting background reconstruction\n",
1448 static struct kobject
*md_probe(dev_t dev
, int *part
, void *data
)
1450 static DECLARE_MUTEX(disks_sem
);
1451 mddev_t
*mddev
= mddev_find(dev
);
1452 struct gendisk
*disk
;
1453 int partitioned
= (MAJOR(dev
) != MD_MAJOR
);
1454 int shift
= partitioned
? MdpMinorShift
: 0;
1455 int unit
= MINOR(dev
) >> shift
;
1461 if (mddev
->gendisk
) {
1466 disk
= alloc_disk(1 << shift
);
1472 disk
->major
= MAJOR(dev
);
1473 disk
->first_minor
= unit
<< shift
;
1475 sprintf(disk
->disk_name
, "md_d%d", unit
);
1476 sprintf(disk
->devfs_name
, "md/d%d", unit
);
1478 sprintf(disk
->disk_name
, "md%d", unit
);
1479 sprintf(disk
->devfs_name
, "md/%d", unit
);
1481 disk
->fops
= &md_fops
;
1482 disk
->private_data
= mddev
;
1483 disk
->queue
= mddev
->queue
;
1485 mddev
->gendisk
= disk
;
1490 void md_wakeup_thread(mdk_thread_t
*thread
);
1492 static void md_safemode_timeout(unsigned long data
)
1494 mddev_t
*mddev
= (mddev_t
*) data
;
1496 mddev
->safemode
= 1;
1497 md_wakeup_thread(mddev
->thread
);
1501 static int do_md_run(mddev_t
* mddev
)
1505 struct list_head
*tmp
;
1507 struct gendisk
*disk
;
1508 char b
[BDEVNAME_SIZE
];
1510 if (list_empty(&mddev
->disks
))
1511 /* cannot run an array with no devices.. */
1518 * Analyze all RAID superblock(s)
1520 if (!mddev
->raid_disks
)
1523 chunk_size
= mddev
->chunk_size
;
1524 pnum
= level_to_pers(mddev
->level
);
1526 if ((pnum
!= MULTIPATH
) && (pnum
!= RAID1
)) {
1529 * 'default chunksize' in the old md code used to
1530 * be PAGE_SIZE, baaad.
1531 * we abort here to be on the safe side. We don't
1532 * want to continue the bad practice.
1535 "no chunksize specified, see 'man raidtab'\n");
1538 if (chunk_size
> MAX_CHUNK_SIZE
) {
1539 printk(KERN_ERR
"too big chunk_size: %d > %d\n",
1540 chunk_size
, MAX_CHUNK_SIZE
);
1544 * chunk-size has to be a power of 2 and multiples of PAGE_SIZE
1546 if ( (1 << ffz(~chunk_size
)) != chunk_size
) {
1547 printk(KERN_ERR
"chunk_size of %d not valid\n", chunk_size
);
1550 if (chunk_size
< PAGE_SIZE
) {
1551 printk(KERN_ERR
"too small chunk_size: %d < %ld\n",
1552 chunk_size
, PAGE_SIZE
);
1556 /* devices must have minimum size of one chunk */
1557 ITERATE_RDEV(mddev
,rdev
,tmp
) {
1560 if (rdev
->size
< chunk_size
/ 1024) {
1562 "md: Dev %s smaller than chunk_size:"
1564 bdevname(rdev
->bdev
,b
),
1565 (unsigned long long)rdev
->size
,
1575 request_module("md-personality-%d", pnum
);
1580 * Drop all container device buffers, from now on
1581 * the only valid external interface is through the md
1583 * Also find largest hardsector size
1585 ITERATE_RDEV(mddev
,rdev
,tmp
) {
1588 sync_blockdev(rdev
->bdev
);
1589 invalidate_bdev(rdev
->bdev
, 0);
1592 md_probe(mddev
->unit
, NULL
, NULL
);
1593 disk
= mddev
->gendisk
;
1597 spin_lock(&pers_lock
);
1598 if (!pers
[pnum
] || !try_module_get(pers
[pnum
]->owner
)) {
1599 spin_unlock(&pers_lock
);
1600 printk(KERN_WARNING
"md: personality %d is not loaded!\n",
1605 mddev
->pers
= pers
[pnum
];
1606 spin_unlock(&pers_lock
);
1608 mddev
->resync_max_sectors
= mddev
->size
<< 1; /* may be over-ridden by personality */
1610 err
= mddev
->pers
->run(mddev
);
1612 printk(KERN_ERR
"md: pers->run() failed ...\n");
1613 module_put(mddev
->pers
->owner
);
1617 atomic_set(&mddev
->writes_pending
,0);
1618 mddev
->safemode
= 0;
1619 mddev
->safemode_timer
.function
= md_safemode_timeout
;
1620 mddev
->safemode_timer
.data
= (unsigned long) mddev
;
1621 mddev
->safemode_delay
= (20 * HZ
)/1000 +1; /* 20 msec delay */
1624 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
1626 if (mddev
->sb_dirty
)
1627 md_update_sb(mddev
);
1629 set_capacity(disk
, mddev
->array_size
<<1);
1631 /* If we call blk_queue_make_request here, it will
1632 * re-initialise max_sectors etc which may have been
1633 * refined inside -> run. So just set the bits we need to set.
1634 * Most initialisation happended when we called
1635 * blk_queue_make_request(..., md_fail_request)
1638 mddev
->queue
->queuedata
= mddev
;
1639 mddev
->queue
->make_request_fn
= mddev
->pers
->make_request
;
1645 static int restart_array(mddev_t
*mddev
)
1647 struct gendisk
*disk
= mddev
->gendisk
;
1651 * Complain if it has no devices
1654 if (list_empty(&mddev
->disks
))
1662 mddev
->safemode
= 0;
1664 set_disk_ro(disk
, 0);
1666 printk(KERN_INFO
"md: %s switched to read-write mode.\n",
1669 * Kick recovery or resync if necessary
1671 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
1672 md_wakeup_thread(mddev
->thread
);
1675 printk(KERN_ERR
"md: %s has no personality assigned.\n",
1684 static int do_md_stop(mddev_t
* mddev
, int ro
)
1687 struct gendisk
*disk
= mddev
->gendisk
;
1690 if (atomic_read(&mddev
->active
)>2) {
1691 printk("md: %s still in use.\n",mdname(mddev
));
1695 if (mddev
->sync_thread
) {
1696 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
1697 md_unregister_thread(mddev
->sync_thread
);
1698 mddev
->sync_thread
= NULL
;
1701 del_timer_sync(&mddev
->safemode_timer
);
1703 invalidate_partition(disk
, 0);
1712 set_disk_ro(disk
, 0);
1713 blk_queue_make_request(mddev
->queue
, md_fail_request
);
1714 mddev
->pers
->stop(mddev
);
1715 module_put(mddev
->pers
->owner
);
1720 if (!mddev
->in_sync
) {
1721 /* mark array as shutdown cleanly */
1723 md_update_sb(mddev
);
1726 set_disk_ro(disk
, 1);
1729 * Free resources if final stop
1732 struct gendisk
*disk
;
1733 printk(KERN_INFO
"md: %s stopped.\n", mdname(mddev
));
1735 export_array(mddev
);
1737 mddev
->array_size
= 0;
1738 disk
= mddev
->gendisk
;
1740 set_capacity(disk
, 0);
1743 printk(KERN_INFO
"md: %s switched to read-only mode.\n",
1750 static void autorun_array(mddev_t
*mddev
)
1753 struct list_head
*tmp
;
1756 if (list_empty(&mddev
->disks
))
1759 printk(KERN_INFO
"md: running: ");
1761 ITERATE_RDEV(mddev
,rdev
,tmp
) {
1762 char b
[BDEVNAME_SIZE
];
1763 printk("<%s>", bdevname(rdev
->bdev
,b
));
1767 err
= do_md_run (mddev
);
1769 printk(KERN_WARNING
"md: do_md_run() returned %d\n", err
);
1770 do_md_stop (mddev
, 0);
1775 * lets try to run arrays based on all disks that have arrived
1776 * until now. (those are in pending_raid_disks)
1778 * the method: pick the first pending disk, collect all disks with
1779 * the same UUID, remove all from the pending list and put them into
1780 * the 'same_array' list. Then order this list based on superblock
1781 * update time (freshest comes first), kick out 'old' disks and
1782 * compare superblocks. If everything's fine then run it.
1784 * If "unit" is allocated, then bump its reference count
1786 static void autorun_devices(int part
)
1788 struct list_head candidates
;
1789 struct list_head
*tmp
;
1790 mdk_rdev_t
*rdev0
, *rdev
;
1792 char b
[BDEVNAME_SIZE
];
1794 printk(KERN_INFO
"md: autorun ...\n");
1795 while (!list_empty(&pending_raid_disks
)) {
1797 rdev0
= list_entry(pending_raid_disks
.next
,
1798 mdk_rdev_t
, same_set
);
1800 printk(KERN_INFO
"md: considering %s ...\n",
1801 bdevname(rdev0
->bdev
,b
));
1802 INIT_LIST_HEAD(&candidates
);
1803 ITERATE_RDEV_PENDING(rdev
,tmp
)
1804 if (super_90_load(rdev
, rdev0
, 0) >= 0) {
1805 printk(KERN_INFO
"md: adding %s ...\n",
1806 bdevname(rdev
->bdev
,b
));
1807 list_move(&rdev
->same_set
, &candidates
);
1810 * now we have a set of devices, with all of them having
1811 * mostly sane superblocks. It's time to allocate the
1814 if (rdev0
->preferred_minor
< 0 || rdev0
->preferred_minor
>= MAX_MD_DEVS
) {
1815 printk(KERN_INFO
"md: unit number in %s is bad: %d\n",
1816 bdevname(rdev0
->bdev
, b
), rdev0
->preferred_minor
);
1820 dev
= MKDEV(mdp_major
,
1821 rdev0
->preferred_minor
<< MdpMinorShift
);
1823 dev
= MKDEV(MD_MAJOR
, rdev0
->preferred_minor
);
1825 md_probe(dev
, NULL
, NULL
);
1826 mddev
= mddev_find(dev
);
1829 "md: cannot allocate memory for md drive.\n");
1832 if (mddev_lock(mddev
))
1833 printk(KERN_WARNING
"md: %s locked, cannot run\n",
1835 else if (mddev
->raid_disks
|| mddev
->major_version
1836 || !list_empty(&mddev
->disks
)) {
1838 "md: %s already running, cannot run %s\n",
1839 mdname(mddev
), bdevname(rdev0
->bdev
,b
));
1840 mddev_unlock(mddev
);
1842 printk(KERN_INFO
"md: created %s\n", mdname(mddev
));
1843 ITERATE_RDEV_GENERIC(candidates
,rdev
,tmp
) {
1844 list_del_init(&rdev
->same_set
);
1845 if (bind_rdev_to_array(rdev
, mddev
))
1848 autorun_array(mddev
);
1849 mddev_unlock(mddev
);
1851 /* on success, candidates will be empty, on error
1854 ITERATE_RDEV_GENERIC(candidates
,rdev
,tmp
)
1858 printk(KERN_INFO
"md: ... autorun DONE.\n");
1862 * import RAID devices based on one partition
1863 * if possible, the array gets run as well.
1866 static int autostart_array(dev_t startdev
)
1868 char b
[BDEVNAME_SIZE
];
1869 int err
= -EINVAL
, i
;
1870 mdp_super_t
*sb
= NULL
;
1871 mdk_rdev_t
*start_rdev
= NULL
, *rdev
;
1873 start_rdev
= md_import_device(startdev
, 0, 0);
1874 if (IS_ERR(start_rdev
))
1878 /* NOTE: this can only work for 0.90.0 superblocks */
1879 sb
= (mdp_super_t
*)page_address(start_rdev
->sb_page
);
1880 if (sb
->major_version
!= 0 ||
1881 sb
->minor_version
!= 90 ) {
1882 printk(KERN_WARNING
"md: can only autostart 0.90.0 arrays\n");
1883 export_rdev(start_rdev
);
1887 if (start_rdev
->faulty
) {
1889 "md: can not autostart based on faulty %s!\n",
1890 bdevname(start_rdev
->bdev
,b
));
1891 export_rdev(start_rdev
);
1894 list_add(&start_rdev
->same_set
, &pending_raid_disks
);
1896 for (i
= 0; i
< MD_SB_DISKS
; i
++) {
1897 mdp_disk_t
*desc
= sb
->disks
+ i
;
1898 dev_t dev
= MKDEV(desc
->major
, desc
->minor
);
1902 if (dev
== startdev
)
1904 if (MAJOR(dev
) != desc
->major
|| MINOR(dev
) != desc
->minor
)
1906 rdev
= md_import_device(dev
, 0, 0);
1910 list_add(&rdev
->same_set
, &pending_raid_disks
);
1914 * possibly return codes
1922 static int get_version(void __user
* arg
)
1926 ver
.major
= MD_MAJOR_VERSION
;
1927 ver
.minor
= MD_MINOR_VERSION
;
1928 ver
.patchlevel
= MD_PATCHLEVEL_VERSION
;
1930 if (copy_to_user(arg
, &ver
, sizeof(ver
)))
1936 static int get_array_info(mddev_t
* mddev
, void __user
* arg
)
1938 mdu_array_info_t info
;
1939 int nr
,working
,active
,failed
,spare
;
1941 struct list_head
*tmp
;
1943 nr
=working
=active
=failed
=spare
=0;
1944 ITERATE_RDEV(mddev
,rdev
,tmp
) {
1957 info
.major_version
= mddev
->major_version
;
1958 info
.minor_version
= mddev
->minor_version
;
1959 info
.patch_version
= MD_PATCHLEVEL_VERSION
;
1960 info
.ctime
= mddev
->ctime
;
1961 info
.level
= mddev
->level
;
1962 info
.size
= mddev
->size
;
1964 info
.raid_disks
= mddev
->raid_disks
;
1965 info
.md_minor
= mddev
->md_minor
;
1966 info
.not_persistent
= !mddev
->persistent
;
1968 info
.utime
= mddev
->utime
;
1971 info
.state
= (1<<MD_SB_CLEAN
);
1972 info
.active_disks
= active
;
1973 info
.working_disks
= working
;
1974 info
.failed_disks
= failed
;
1975 info
.spare_disks
= spare
;
1977 info
.layout
= mddev
->layout
;
1978 info
.chunk_size
= mddev
->chunk_size
;
1980 if (copy_to_user(arg
, &info
, sizeof(info
)))
1986 static int get_disk_info(mddev_t
* mddev
, void __user
* arg
)
1988 mdu_disk_info_t info
;
1992 if (copy_from_user(&info
, arg
, sizeof(info
)))
1997 rdev
= find_rdev_nr(mddev
, nr
);
1999 info
.major
= MAJOR(rdev
->bdev
->bd_dev
);
2000 info
.minor
= MINOR(rdev
->bdev
->bd_dev
);
2001 info
.raid_disk
= rdev
->raid_disk
;
2004 info
.state
|= (1<<MD_DISK_FAULTY
);
2005 else if (rdev
->in_sync
) {
2006 info
.state
|= (1<<MD_DISK_ACTIVE
);
2007 info
.state
|= (1<<MD_DISK_SYNC
);
2010 info
.major
= info
.minor
= 0;
2011 info
.raid_disk
= -1;
2012 info
.state
= (1<<MD_DISK_REMOVED
);
2015 if (copy_to_user(arg
, &info
, sizeof(info
)))
2021 static int add_new_disk(mddev_t
* mddev
, mdu_disk_info_t
*info
)
2023 char b
[BDEVNAME_SIZE
], b2
[BDEVNAME_SIZE
];
2025 dev_t dev
= MKDEV(info
->major
,info
->minor
);
2027 if (info
->major
!= MAJOR(dev
) || info
->minor
!= MINOR(dev
))
2030 if (!mddev
->raid_disks
) {
2032 /* expecting a device which has a superblock */
2033 rdev
= md_import_device(dev
, mddev
->major_version
, mddev
->minor_version
);
2036 "md: md_import_device returned %ld\n",
2038 return PTR_ERR(rdev
);
2040 if (!list_empty(&mddev
->disks
)) {
2041 mdk_rdev_t
*rdev0
= list_entry(mddev
->disks
.next
,
2042 mdk_rdev_t
, same_set
);
2043 int err
= super_types
[mddev
->major_version
]
2044 .load_super(rdev
, rdev0
, mddev
->minor_version
);
2047 "md: %s has different UUID to %s\n",
2048 bdevname(rdev
->bdev
,b
),
2049 bdevname(rdev0
->bdev
,b2
));
2054 err
= bind_rdev_to_array(rdev
, mddev
);
2061 * add_new_disk can be used once the array is assembled
2062 * to add "hot spares". They must already have a superblock
2067 if (!mddev
->pers
->hot_add_disk
) {
2069 "%s: personality does not support diskops!\n",
2073 rdev
= md_import_device(dev
, mddev
->major_version
,
2074 mddev
->minor_version
);
2077 "md: md_import_device returned %ld\n",
2079 return PTR_ERR(rdev
);
2081 rdev
->in_sync
= 0; /* just to be sure */
2082 rdev
->raid_disk
= -1;
2083 err
= bind_rdev_to_array(rdev
, mddev
);
2087 md_wakeup_thread(mddev
->thread
);
2091 /* otherwise, add_new_disk is only allowed
2092 * for major_version==0 superblocks
2094 if (mddev
->major_version
!= 0) {
2095 printk(KERN_WARNING
"%s: ADD_NEW_DISK not supported\n",
2100 if (!(info
->state
& (1<<MD_DISK_FAULTY
))) {
2102 rdev
= md_import_device (dev
, -1, 0);
2105 "md: error, md_import_device() returned %ld\n",
2107 return PTR_ERR(rdev
);
2109 rdev
->desc_nr
= info
->number
;
2110 if (info
->raid_disk
< mddev
->raid_disks
)
2111 rdev
->raid_disk
= info
->raid_disk
;
2113 rdev
->raid_disk
= -1;
2116 if (rdev
->raid_disk
< mddev
->raid_disks
)
2117 rdev
->in_sync
= (info
->state
& (1<<MD_DISK_SYNC
));
2121 err
= bind_rdev_to_array(rdev
, mddev
);
2127 if (!mddev
->persistent
) {
2128 printk(KERN_INFO
"md: nonpersistent superblock ...\n");
2129 rdev
->sb_offset
= rdev
->bdev
->bd_inode
->i_size
>> BLOCK_SIZE_BITS
;
2131 rdev
->sb_offset
= calc_dev_sboffset(rdev
->bdev
);
2132 rdev
->size
= calc_dev_size(rdev
, mddev
->chunk_size
);
2134 if (!mddev
->size
|| (mddev
->size
> rdev
->size
))
2135 mddev
->size
= rdev
->size
;
2141 static int hot_remove_disk(mddev_t
* mddev
, dev_t dev
)
2143 char b
[BDEVNAME_SIZE
];
2149 rdev
= find_rdev(mddev
, dev
);
2153 if (rdev
->raid_disk
>= 0)
2156 kick_rdev_from_array(rdev
);
2157 md_update_sb(mddev
);
2161 printk(KERN_WARNING
"md: cannot remove active disk %s from %s ... \n",
2162 bdevname(rdev
->bdev
,b
), mdname(mddev
));
2166 static int hot_add_disk(mddev_t
* mddev
, dev_t dev
)
2168 char b
[BDEVNAME_SIZE
];
2176 if (mddev
->major_version
!= 0) {
2177 printk(KERN_WARNING
"%s: HOT_ADD may only be used with"
2178 " version-0 superblocks.\n",
2182 if (!mddev
->pers
->hot_add_disk
) {
2184 "%s: personality does not support diskops!\n",
2189 rdev
= md_import_device (dev
, -1, 0);
2192 "md: error, md_import_device() returned %ld\n",
2197 if (mddev
->persistent
)
2198 rdev
->sb_offset
= calc_dev_sboffset(rdev
->bdev
);
2201 rdev
->bdev
->bd_inode
->i_size
>> BLOCK_SIZE_BITS
;
2203 size
= calc_dev_size(rdev
, mddev
->chunk_size
);
2206 if (size
< mddev
->size
) {
2208 "%s: disk size %llu blocks < array size %llu\n",
2209 mdname(mddev
), (unsigned long long)size
,
2210 (unsigned long long)mddev
->size
);
2217 "md: can not hot-add faulty %s disk to %s!\n",
2218 bdevname(rdev
->bdev
,b
), mdname(mddev
));
2224 bind_rdev_to_array(rdev
, mddev
);
2227 * The rest should better be atomic, we can have disk failures
2228 * noticed in interrupt contexts ...
2231 if (rdev
->desc_nr
== mddev
->max_disks
) {
2232 printk(KERN_WARNING
"%s: can not hot-add to full array!\n",
2235 goto abort_unbind_export
;
2238 rdev
->raid_disk
= -1;
2240 md_update_sb(mddev
);
2243 * Kick recovery, maybe this spare has to be added to the
2244 * array immediately.
2246 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
2247 md_wakeup_thread(mddev
->thread
);
2251 abort_unbind_export
:
2252 unbind_rdev_from_array(rdev
);
2260 * set_array_info is used two different ways
2261 * The original usage is when creating a new array.
2262 * In this usage, raid_disks is > 0 and it together with
2263 * level, size, not_persistent,layout,chunksize determine the
2264 * shape of the array.
2265 * This will always create an array with a type-0.90.0 superblock.
2266 * The newer usage is when assembling an array.
2267 * In this case raid_disks will be 0, and the major_version field is
2268 * use to determine which style super-blocks are to be found on the devices.
2269 * The minor and patch _version numbers are also kept incase the
2270 * super_block handler wishes to interpret them.
2272 static int set_array_info(mddev_t
* mddev
, mdu_array_info_t
*info
)
2275 if (info
->raid_disks
== 0) {
2276 /* just setting version number for superblock loading */
2277 if (info
->major_version
< 0 ||
2278 info
->major_version
>= sizeof(super_types
)/sizeof(super_types
[0]) ||
2279 super_types
[info
->major_version
].name
== NULL
) {
2280 /* maybe try to auto-load a module? */
2282 "md: superblock version %d not known\n",
2283 info
->major_version
);
2286 mddev
->major_version
= info
->major_version
;
2287 mddev
->minor_version
= info
->minor_version
;
2288 mddev
->patch_version
= info
->patch_version
;
2291 mddev
->major_version
= MD_MAJOR_VERSION
;
2292 mddev
->minor_version
= MD_MINOR_VERSION
;
2293 mddev
->patch_version
= MD_PATCHLEVEL_VERSION
;
2294 mddev
->ctime
= get_seconds();
2296 mddev
->level
= info
->level
;
2297 mddev
->size
= info
->size
;
2298 mddev
->raid_disks
= info
->raid_disks
;
2299 /* don't set md_minor, it is determined by which /dev/md* was
2302 if (info
->state
& (1<<MD_SB_CLEAN
))
2303 mddev
->recovery_cp
= MaxSector
;
2305 mddev
->recovery_cp
= 0;
2306 mddev
->persistent
= ! info
->not_persistent
;
2308 mddev
->layout
= info
->layout
;
2309 mddev
->chunk_size
= info
->chunk_size
;
2311 mddev
->max_disks
= MD_SB_DISKS
;
2313 mddev
->sb_dirty
= 1;
2316 * Generate a 128 bit UUID
2318 get_random_bytes(mddev
->uuid
, 16);
2324 * update_array_info is used to change the configuration of an
2326 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
2327 * fields in the info are checked against the array.
2328 * Any differences that cannot be handled will cause an error.
2329 * Normally, only one change can be managed at a time.
2331 static int update_array_info(mddev_t
*mddev
, mdu_array_info_t
*info
)
2336 if (mddev
->major_version
!= info
->major_version
||
2337 mddev
->minor_version
!= info
->minor_version
||
2338 /* mddev->patch_version != info->patch_version || */
2339 mddev
->ctime
!= info
->ctime
||
2340 mddev
->level
!= info
->level
||
2341 /* mddev->layout != info->layout || */
2342 !mddev
->persistent
!= info
->not_persistent
||
2343 mddev
->chunk_size
!= info
->chunk_size
)
2345 /* Check there is only one change */
2346 if (mddev
->size
!= info
->size
) cnt
++;
2347 if (mddev
->raid_disks
!= info
->raid_disks
) cnt
++;
2348 if (mddev
->layout
!= info
->layout
) cnt
++;
2349 if (cnt
== 0) return 0;
2350 if (cnt
> 1) return -EINVAL
;
2352 if (mddev
->layout
!= info
->layout
) {
2354 * we don't need to do anything at the md level, the
2355 * personality will take care of it all.
2357 if (mddev
->pers
->reconfig
== NULL
)
2360 return mddev
->pers
->reconfig(mddev
, info
->layout
, -1);
2362 if (mddev
->size
!= info
->size
) {
2364 struct list_head
*tmp
;
2365 if (mddev
->pers
->resize
== NULL
)
2367 /* The "size" is the amount of each device that is used.
2368 * This can only make sense for arrays with redundancy.
2369 * linear and raid0 always use whatever space is available
2370 * We can only consider changing the size if no resync
2371 * or reconstruction is happening, and if the new size
2372 * is acceptable. It must fit before the sb_offset or,
2373 * if that is <data_offset, it must fit before the
2374 * size of each device.
2375 * If size is zero, we find the largest size that fits.
2377 if (mddev
->sync_thread
)
2379 ITERATE_RDEV(mddev
,rdev
,tmp
) {
2381 int fit
= (info
->size
== 0);
2382 if (rdev
->sb_offset
> rdev
->data_offset
)
2383 avail
= (rdev
->sb_offset
*2) - rdev
->data_offset
;
2385 avail
= get_capacity(rdev
->bdev
->bd_disk
)
2386 - rdev
->data_offset
;
2387 if (fit
&& (info
->size
== 0 || info
->size
> avail
/2))
2388 info
->size
= avail
/2;
2389 if (avail
< ((sector_t
)info
->size
<< 1))
2392 rv
= mddev
->pers
->resize(mddev
, (sector_t
)info
->size
*2);
2394 struct block_device
*bdev
;
2396 bdev
= bdget_disk(mddev
->gendisk
, 0);
2398 down(&bdev
->bd_inode
->i_sem
);
2399 i_size_write(bdev
->bd_inode
, mddev
->array_size
<< 10);
2400 up(&bdev
->bd_inode
->i_sem
);
2405 if (mddev
->raid_disks
!= info
->raid_disks
) {
2406 /* change the number of raid disks */
2407 if (mddev
->pers
->reshape
== NULL
)
2409 if (info
->raid_disks
<= 0 ||
2410 info
->raid_disks
>= mddev
->max_disks
)
2412 if (mddev
->sync_thread
)
2414 rv
= mddev
->pers
->reshape(mddev
, info
->raid_disks
);
2416 struct block_device
*bdev
;
2418 bdev
= bdget_disk(mddev
->gendisk
, 0);
2420 down(&bdev
->bd_inode
->i_sem
);
2421 i_size_write(bdev
->bd_inode
, mddev
->array_size
<< 10);
2422 up(&bdev
->bd_inode
->i_sem
);
2427 md_update_sb(mddev
);
2431 static int set_disk_faulty(mddev_t
*mddev
, dev_t dev
)
2435 if (mddev
->pers
== NULL
)
2438 rdev
= find_rdev(mddev
, dev
);
2442 md_error(mddev
, rdev
);
2446 static int md_ioctl(struct inode
*inode
, struct file
*file
,
2447 unsigned int cmd
, unsigned long arg
)
2450 void __user
*argp
= (void __user
*)arg
;
2451 struct hd_geometry __user
*loc
= argp
;
2452 mddev_t
*mddev
= NULL
;
2454 if (!capable(CAP_SYS_ADMIN
))
2458 * Commands dealing with the RAID driver but not any
2464 err
= get_version(argp
);
2467 case PRINT_RAID_DEBUG
:
2475 autostart_arrays(arg
);
2482 * Commands creating/starting a new array:
2485 mddev
= inode
->i_bdev
->bd_disk
->private_data
;
2493 if (cmd
== START_ARRAY
) {
2494 /* START_ARRAY doesn't need to lock the array as autostart_array
2495 * does the locking, and it could even be a different array
2500 "md: %s(pid %d) used deprecated START_ARRAY ioctl. "
2501 "This will not be supported beyond 2.6\n",
2502 current
->comm
, current
->pid
);
2505 err
= autostart_array(new_decode_dev(arg
));
2507 printk(KERN_WARNING
"md: autostart failed!\n");
2513 err
= mddev_lock(mddev
);
2516 "md: ioctl lock interrupted, reason %d, cmd %d\n",
2523 case SET_ARRAY_INFO
:
2525 mdu_array_info_t info
;
2527 memset(&info
, 0, sizeof(info
));
2528 else if (copy_from_user(&info
, argp
, sizeof(info
))) {
2533 err
= update_array_info(mddev
, &info
);
2535 printk(KERN_WARNING
"md: couldn't update"
2536 " array info. %d\n", err
);
2541 if (!list_empty(&mddev
->disks
)) {
2543 "md: array %s already has disks!\n",
2548 if (mddev
->raid_disks
) {
2550 "md: array %s already initialised!\n",
2555 err
= set_array_info(mddev
, &info
);
2557 printk(KERN_WARNING
"md: couldn't set"
2558 " array info. %d\n", err
);
2568 * Commands querying/configuring an existing array:
2570 /* if we are initialised yet, only ADD_NEW_DISK or STOP_ARRAY is allowed */
2571 if (!mddev
->raid_disks
&& cmd
!= ADD_NEW_DISK
&& cmd
!= STOP_ARRAY
&& cmd
!= RUN_ARRAY
) {
2577 * Commands even a read-only array can execute:
2581 case GET_ARRAY_INFO
:
2582 err
= get_array_info(mddev
, argp
);
2586 err
= get_disk_info(mddev
, argp
);
2589 case RESTART_ARRAY_RW
:
2590 err
= restart_array(mddev
);
2594 err
= do_md_stop (mddev
, 0);
2598 err
= do_md_stop (mddev
, 1);
2602 * We have a problem here : there is no easy way to give a CHS
2603 * virtual geometry. We currently pretend that we have a 2 heads
2604 * 4 sectors (with a BIG number of cylinders...). This drives
2605 * dosfs just mad... ;-)
2612 err
= put_user (2, (char __user
*) &loc
->heads
);
2615 err
= put_user (4, (char __user
*) &loc
->sectors
);
2618 err
= put_user(get_capacity(mddev
->gendisk
)/8,
2619 (short __user
*) &loc
->cylinders
);
2622 err
= put_user (get_start_sect(inode
->i_bdev
),
2623 (long __user
*) &loc
->start
);
2628 * The remaining ioctls are changing the state of the
2629 * superblock, so we do not allow read-only arrays
2641 mdu_disk_info_t info
;
2642 if (copy_from_user(&info
, argp
, sizeof(info
)))
2645 err
= add_new_disk(mddev
, &info
);
2649 case HOT_REMOVE_DISK
:
2650 err
= hot_remove_disk(mddev
, new_decode_dev(arg
));
2654 err
= hot_add_disk(mddev
, new_decode_dev(arg
));
2657 case SET_DISK_FAULTY
:
2658 err
= set_disk_faulty(mddev
, new_decode_dev(arg
));
2662 err
= do_md_run (mddev
);
2666 if (_IOC_TYPE(cmd
) == MD_MAJOR
)
2667 printk(KERN_WARNING
"md: %s(pid %d) used"
2668 " obsolete MD ioctl, upgrade your"
2669 " software to use new ictls.\n",
2670 current
->comm
, current
->pid
);
2677 mddev_unlock(mddev
);
2687 static int md_open(struct inode
*inode
, struct file
*file
)
2690 * Succeed if we can lock the mddev, which confirms that
2691 * it isn't being stopped right now.
2693 mddev_t
*mddev
= inode
->i_bdev
->bd_disk
->private_data
;
2696 if ((err
= mddev_lock(mddev
)))
2701 mddev_unlock(mddev
);
2703 check_disk_change(inode
->i_bdev
);
2708 static int md_release(struct inode
*inode
, struct file
* file
)
2710 mddev_t
*mddev
= inode
->i_bdev
->bd_disk
->private_data
;
2719 static int md_media_changed(struct gendisk
*disk
)
2721 mddev_t
*mddev
= disk
->private_data
;
2723 return mddev
->changed
;
2726 static int md_revalidate(struct gendisk
*disk
)
2728 mddev_t
*mddev
= disk
->private_data
;
2733 static struct block_device_operations md_fops
=
2735 .owner
= THIS_MODULE
,
2737 .release
= md_release
,
2739 .media_changed
= md_media_changed
,
2740 .revalidate_disk
= md_revalidate
,
2743 static int md_thread(void * arg
)
2745 mdk_thread_t
*thread
= arg
;
2753 daemonize(thread
->name
, mdname(thread
->mddev
));
2755 current
->exit_signal
= SIGCHLD
;
2756 allow_signal(SIGKILL
);
2757 thread
->tsk
= current
;
2760 * md_thread is a 'system-thread', it's priority should be very
2761 * high. We avoid resource deadlocks individually in each
2762 * raid personality. (RAID5 does preallocation) We also use RR and
2763 * the very same RT priority as kswapd, thus we will never get
2764 * into a priority inversion deadlock.
2766 * we definitely have to have equal or higher priority than
2767 * bdflush, otherwise bdflush will deadlock if there are too
2768 * many dirty RAID5 blocks.
2772 complete(thread
->event
);
2773 while (thread
->run
) {
2774 void (*run
)(mddev_t
*);
2776 wait_event_interruptible(thread
->wqueue
,
2777 test_bit(THREAD_WAKEUP
, &thread
->flags
));
2778 if (current
->flags
& PF_FREEZE
)
2779 refrigerator(PF_FREEZE
);
2781 clear_bit(THREAD_WAKEUP
, &thread
->flags
);
2787 if (signal_pending(current
))
2788 flush_signals(current
);
2790 complete(thread
->event
);
2794 void md_wakeup_thread(mdk_thread_t
*thread
)
2797 dprintk("md: waking up MD thread %s.\n", thread
->tsk
->comm
);
2798 set_bit(THREAD_WAKEUP
, &thread
->flags
);
2799 wake_up(&thread
->wqueue
);
2803 mdk_thread_t
*md_register_thread(void (*run
) (mddev_t
*), mddev_t
*mddev
,
2806 mdk_thread_t
*thread
;
2808 struct completion event
;
2810 thread
= (mdk_thread_t
*) kmalloc
2811 (sizeof(mdk_thread_t
), GFP_KERNEL
);
2815 memset(thread
, 0, sizeof(mdk_thread_t
));
2816 init_waitqueue_head(&thread
->wqueue
);
2818 init_completion(&event
);
2819 thread
->event
= &event
;
2821 thread
->mddev
= mddev
;
2822 thread
->name
= name
;
2823 ret
= kernel_thread(md_thread
, thread
, 0);
2828 wait_for_completion(&event
);
2832 void md_unregister_thread(mdk_thread_t
*thread
)
2834 struct completion event
;
2836 init_completion(&event
);
2838 thread
->event
= &event
;
2840 /* As soon as ->run is set to NULL, the task could disappear,
2841 * so we need to hold tasklist_lock until we have sent the signal
2843 dprintk("interrupting MD-thread pid %d\n", thread
->tsk
->pid
);
2844 read_lock(&tasklist_lock
);
2846 send_sig(SIGKILL
, thread
->tsk
, 1);
2847 read_unlock(&tasklist_lock
);
2848 wait_for_completion(&event
);
2852 void md_error(mddev_t
*mddev
, mdk_rdev_t
*rdev
)
2859 if (!rdev
|| rdev
->faulty
)
2862 dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
2864 MAJOR(rdev
->bdev
->bd_dev
), MINOR(rdev
->bdev
->bd_dev
),
2865 __builtin_return_address(0),__builtin_return_address(1),
2866 __builtin_return_address(2),__builtin_return_address(3));
2868 if (!mddev
->pers
->error_handler
)
2870 mddev
->pers
->error_handler(mddev
,rdev
);
2871 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
2872 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
2873 md_wakeup_thread(mddev
->thread
);
2876 /* seq_file implementation /proc/mdstat */
2878 static void status_unused(struct seq_file
*seq
)
2882 struct list_head
*tmp
;
2884 seq_printf(seq
, "unused devices: ");
2886 ITERATE_RDEV_PENDING(rdev
,tmp
) {
2887 char b
[BDEVNAME_SIZE
];
2889 seq_printf(seq
, "%s ",
2890 bdevname(rdev
->bdev
,b
));
2893 seq_printf(seq
, "<none>");
2895 seq_printf(seq
, "\n");
2899 static void status_resync(struct seq_file
*seq
, mddev_t
* mddev
)
2901 unsigned long max_blocks
, resync
, res
, dt
, db
, rt
;
2903 resync
= (mddev
->curr_resync
- atomic_read(&mddev
->recovery_active
))/2;
2905 if (test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
))
2906 max_blocks
= mddev
->resync_max_sectors
>> 1;
2908 max_blocks
= mddev
->size
;
2911 * Should not happen.
2917 res
= (resync
/1024)*1000/(max_blocks
/1024 + 1);
2919 int i
, x
= res
/50, y
= 20-x
;
2920 seq_printf(seq
, "[");
2921 for (i
= 0; i
< x
; i
++)
2922 seq_printf(seq
, "=");
2923 seq_printf(seq
, ">");
2924 for (i
= 0; i
< y
; i
++)
2925 seq_printf(seq
, ".");
2926 seq_printf(seq
, "] ");
2928 seq_printf(seq
, " %s =%3lu.%lu%% (%lu/%lu)",
2929 (test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
) ?
2930 "resync" : "recovery"),
2931 res
/10, res
% 10, resync
, max_blocks
);
2934 * We do not want to overflow, so the order of operands and
2935 * the * 100 / 100 trick are important. We do a +1 to be
2936 * safe against division by zero. We only estimate anyway.
2938 * dt: time from mark until now
2939 * db: blocks written from mark until now
2940 * rt: remaining time
2942 dt
= ((jiffies
- mddev
->resync_mark
) / HZ
);
2944 db
= resync
- (mddev
->resync_mark_cnt
/2);
2945 rt
= (dt
* ((max_blocks
-resync
) / (db
/100+1)))/100;
2947 seq_printf(seq
, " finish=%lu.%lumin", rt
/ 60, (rt
% 60)/6);
2949 seq_printf(seq
, " speed=%ldK/sec", db
/dt
);
2952 static void *md_seq_start(struct seq_file
*seq
, loff_t
*pos
)
2954 struct list_head
*tmp
;
2964 spin_lock(&all_mddevs_lock
);
2965 list_for_each(tmp
,&all_mddevs
)
2967 mddev
= list_entry(tmp
, mddev_t
, all_mddevs
);
2969 spin_unlock(&all_mddevs_lock
);
2972 spin_unlock(&all_mddevs_lock
);
2974 return (void*)2;/* tail */
2978 static void *md_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
2980 struct list_head
*tmp
;
2981 mddev_t
*next_mddev
, *mddev
= v
;
2987 spin_lock(&all_mddevs_lock
);
2989 tmp
= all_mddevs
.next
;
2991 tmp
= mddev
->all_mddevs
.next
;
2992 if (tmp
!= &all_mddevs
)
2993 next_mddev
= mddev_get(list_entry(tmp
,mddev_t
,all_mddevs
));
2995 next_mddev
= (void*)2;
2998 spin_unlock(&all_mddevs_lock
);
3006 static void md_seq_stop(struct seq_file
*seq
, void *v
)
3010 if (mddev
&& v
!= (void*)1 && v
!= (void*)2)
3014 static int md_seq_show(struct seq_file
*seq
, void *v
)
3018 struct list_head
*tmp2
;
3022 if (v
== (void*)1) {
3023 seq_printf(seq
, "Personalities : ");
3024 spin_lock(&pers_lock
);
3025 for (i
= 0; i
< MAX_PERSONALITY
; i
++)
3027 seq_printf(seq
, "[%s] ", pers
[i
]->name
);
3029 spin_unlock(&pers_lock
);
3030 seq_printf(seq
, "\n");
3033 if (v
== (void*)2) {
3038 if (mddev_lock(mddev
)!=0)
3040 if (mddev
->pers
|| mddev
->raid_disks
|| !list_empty(&mddev
->disks
)) {
3041 seq_printf(seq
, "%s : %sactive", mdname(mddev
),
3042 mddev
->pers
? "" : "in");
3045 seq_printf(seq
, " (read-only)");
3046 seq_printf(seq
, " %s", mddev
->pers
->name
);
3050 ITERATE_RDEV(mddev
,rdev
,tmp2
) {
3051 char b
[BDEVNAME_SIZE
];
3052 seq_printf(seq
, " %s[%d]",
3053 bdevname(rdev
->bdev
,b
), rdev
->desc_nr
);
3055 seq_printf(seq
, "(F)");
3061 if (!list_empty(&mddev
->disks
)) {
3063 seq_printf(seq
, "\n %llu blocks",
3064 (unsigned long long)mddev
->array_size
);
3066 seq_printf(seq
, "\n %llu blocks",
3067 (unsigned long long)size
);
3071 mddev
->pers
->status (seq
, mddev
);
3072 seq_printf(seq
, "\n ");
3073 if (mddev
->curr_resync
> 2)
3074 status_resync (seq
, mddev
);
3075 else if (mddev
->curr_resync
== 1 || mddev
->curr_resync
== 2)
3076 seq_printf(seq
, " resync=DELAYED");
3079 seq_printf(seq
, "\n");
3081 mddev_unlock(mddev
);
3086 static struct seq_operations md_seq_ops
= {
3087 .start
= md_seq_start
,
3088 .next
= md_seq_next
,
3089 .stop
= md_seq_stop
,
3090 .show
= md_seq_show
,
3093 static int md_seq_open(struct inode
*inode
, struct file
*file
)
3097 error
= seq_open(file
, &md_seq_ops
);
3101 static struct file_operations md_seq_fops
= {
3102 .open
= md_seq_open
,
3104 .llseek
= seq_lseek
,
3105 .release
= seq_release
,
3108 int register_md_personality(int pnum
, mdk_personality_t
*p
)
3110 if (pnum
>= MAX_PERSONALITY
) {
3112 "md: tried to install personality %s as nr %d, but max is %lu\n",
3113 p
->name
, pnum
, MAX_PERSONALITY
-1);
3117 spin_lock(&pers_lock
);
3119 spin_unlock(&pers_lock
);
3124 printk(KERN_INFO
"md: %s personality registered as nr %d\n", p
->name
, pnum
);
3125 spin_unlock(&pers_lock
);
3129 int unregister_md_personality(int pnum
)
3131 if (pnum
>= MAX_PERSONALITY
)
3134 printk(KERN_INFO
"md: %s personality unregistered\n", pers
[pnum
]->name
);
3135 spin_lock(&pers_lock
);
3137 spin_unlock(&pers_lock
);
3141 static int is_mddev_idle(mddev_t
*mddev
)
3144 struct list_head
*tmp
;
3146 unsigned long curr_events
;
3149 ITERATE_RDEV(mddev
,rdev
,tmp
) {
3150 struct gendisk
*disk
= rdev
->bdev
->bd_contains
->bd_disk
;
3151 curr_events
= disk_stat_read(disk
, read_sectors
) +
3152 disk_stat_read(disk
, write_sectors
) -
3153 atomic_read(&disk
->sync_io
);
3154 /* Allow some slack between valud of curr_events and last_events,
3155 * as there are some uninteresting races.
3156 * Note: the following is an unsigned comparison.
3158 if ((curr_events
- rdev
->last_events
+ 32) > 64) {
3159 rdev
->last_events
= curr_events
;
3166 void md_done_sync(mddev_t
*mddev
, int blocks
, int ok
)
3168 /* another "blocks" (512byte) blocks have been synced */
3169 atomic_sub(blocks
, &mddev
->recovery_active
);
3170 wake_up(&mddev
->recovery_wait
);
3172 set_bit(MD_RECOVERY_ERR
, &mddev
->recovery
);
3173 md_wakeup_thread(mddev
->thread
);
3174 // stop recovery, signal do_sync ....
3179 void md_write_start(mddev_t
*mddev
)
3181 if (!atomic_read(&mddev
->writes_pending
)) {
3182 mddev_lock_uninterruptible(mddev
);
3183 if (mddev
->in_sync
) {
3185 del_timer(&mddev
->safemode_timer
);
3186 md_update_sb(mddev
);
3188 atomic_inc(&mddev
->writes_pending
);
3189 mddev_unlock(mddev
);
3191 atomic_inc(&mddev
->writes_pending
);
3194 void md_write_end(mddev_t
*mddev
)
3196 if (atomic_dec_and_test(&mddev
->writes_pending
)) {
3197 if (mddev
->safemode
== 2)
3198 md_wakeup_thread(mddev
->thread
);
3200 mod_timer(&mddev
->safemode_timer
, jiffies
+ mddev
->safemode_delay
);
3204 static inline void md_enter_safemode(mddev_t
*mddev
)
3206 if (!mddev
->safemode
) return;
3207 if (mddev
->safemode
== 2 &&
3208 (atomic_read(&mddev
->writes_pending
) || mddev
->in_sync
||
3209 mddev
->recovery_cp
!= MaxSector
))
3210 return; /* avoid the lock */
3211 mddev_lock_uninterruptible(mddev
);
3212 if (mddev
->safemode
&& !atomic_read(&mddev
->writes_pending
) &&
3213 !mddev
->in_sync
&& mddev
->recovery_cp
== MaxSector
) {
3215 md_update_sb(mddev
);
3217 mddev_unlock(mddev
);
3219 if (mddev
->safemode
== 1)
3220 mddev
->safemode
= 0;
3223 void md_handle_safemode(mddev_t
*mddev
)
3225 if (signal_pending(current
)) {
3226 printk(KERN_INFO
"md: %s in immediate safe mode\n",
3228 mddev
->safemode
= 2;
3229 flush_signals(current
);
3231 md_enter_safemode(mddev
);
3235 static DECLARE_WAIT_QUEUE_HEAD(resync_wait
);
3237 #define SYNC_MARKS 10
3238 #define SYNC_MARK_STEP (3*HZ)
3239 static void md_do_sync(mddev_t
*mddev
)
3242 unsigned int currspeed
= 0,
3244 sector_t max_sectors
,j
;
3245 unsigned long mark
[SYNC_MARKS
];
3246 sector_t mark_cnt
[SYNC_MARKS
];
3248 struct list_head
*tmp
;
3249 sector_t last_check
;
3251 /* just incase thread restarts... */
3252 if (test_bit(MD_RECOVERY_DONE
, &mddev
->recovery
))
3255 /* we overload curr_resync somewhat here.
3256 * 0 == not engaged in resync at all
3257 * 2 == checking that there is no conflict with another sync
3258 * 1 == like 2, but have yielded to allow conflicting resync to
3260 * other == active in resync - this many blocks
3262 * Before starting a resync we must have set curr_resync to
3263 * 2, and then checked that every "conflicting" array has curr_resync
3264 * less than ours. When we find one that is the same or higher
3265 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
3266 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
3267 * This will mean we have to start checking from the beginning again.
3272 mddev
->curr_resync
= 2;
3275 if (signal_pending(current
)) {
3276 flush_signals(current
);
3279 ITERATE_MDDEV(mddev2
,tmp
) {
3281 if (mddev2
== mddev
)
3283 if (mddev2
->curr_resync
&&
3284 match_mddev_units(mddev
,mddev2
)) {
3286 if (mddev
< mddev2
&& mddev
->curr_resync
== 2) {
3287 /* arbitrarily yield */
3288 mddev
->curr_resync
= 1;
3289 wake_up(&resync_wait
);
3291 if (mddev
> mddev2
&& mddev
->curr_resync
== 1)
3292 /* no need to wait here, we can wait the next
3293 * time 'round when curr_resync == 2
3296 prepare_to_wait(&resync_wait
, &wq
, TASK_INTERRUPTIBLE
);
3297 if (!signal_pending(current
)
3298 && mddev2
->curr_resync
>= mddev
->curr_resync
) {
3299 printk(KERN_INFO
"md: delaying resync of %s"
3300 " until %s has finished resync (they"
3301 " share one or more physical units)\n",
3302 mdname(mddev
), mdname(mddev2
));
3305 finish_wait(&resync_wait
, &wq
);
3308 finish_wait(&resync_wait
, &wq
);
3311 } while (mddev
->curr_resync
< 2);
3313 if (test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
))
3314 /* resync follows the size requested by the personality,
3315 * which default to physical size, but can be virtual size
3317 max_sectors
= mddev
->resync_max_sectors
;
3319 /* recovery follows the physical size of devices */
3320 max_sectors
= mddev
->size
<< 1;
3322 printk(KERN_INFO
"md: syncing RAID array %s\n", mdname(mddev
));
3323 printk(KERN_INFO
"md: minimum _guaranteed_ reconstruction speed:"
3324 " %d KB/sec/disc.\n", sysctl_speed_limit_min
);
3325 printk(KERN_INFO
"md: using maximum available idle IO bandwith "
3326 "(but not more than %d KB/sec) for reconstruction.\n",
3327 sysctl_speed_limit_max
);
3329 is_mddev_idle(mddev
); /* this also initializes IO event counters */
3330 if (test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
))
3331 j
= mddev
->recovery_cp
;
3334 for (m
= 0; m
< SYNC_MARKS
; m
++) {
3339 mddev
->resync_mark
= mark
[last_mark
];
3340 mddev
->resync_mark_cnt
= mark_cnt
[last_mark
];
3343 * Tune reconstruction:
3345 window
= 32*(PAGE_SIZE
/512);
3346 printk(KERN_INFO
"md: using %dk window, over a total of %llu blocks.\n",
3347 window
/2,(unsigned long long) max_sectors
/2);
3349 atomic_set(&mddev
->recovery_active
, 0);
3350 init_waitqueue_head(&mddev
->recovery_wait
);
3355 "md: resuming recovery of %s from checkpoint.\n",
3357 mddev
->curr_resync
= j
;
3360 while (j
< max_sectors
) {
3363 sectors
= mddev
->pers
->sync_request(mddev
, j
, currspeed
< sysctl_speed_limit_min
);
3365 set_bit(MD_RECOVERY_ERR
, &mddev
->recovery
);
3368 atomic_add(sectors
, &mddev
->recovery_active
);
3370 if (j
>1) mddev
->curr_resync
= j
;
3372 if (last_check
+ window
> j
|| j
== max_sectors
)
3377 if (test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
) ||
3378 test_bit(MD_RECOVERY_ERR
, &mddev
->recovery
))
3382 if (time_after_eq(jiffies
, mark
[last_mark
] + SYNC_MARK_STEP
)) {
3384 int next
= (last_mark
+1) % SYNC_MARKS
;
3386 mddev
->resync_mark
= mark
[next
];
3387 mddev
->resync_mark_cnt
= mark_cnt
[next
];
3388 mark
[next
] = jiffies
;
3389 mark_cnt
[next
] = j
- atomic_read(&mddev
->recovery_active
);
3394 if (signal_pending(current
)) {
3396 * got a signal, exit.
3399 "md: md_do_sync() got signal ... exiting\n");
3400 flush_signals(current
);
3401 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
3406 * this loop exits only if either when we are slower than
3407 * the 'hard' speed limit, or the system was IO-idle for
3409 * the system might be non-idle CPU-wise, but we only care
3410 * about not overloading the IO subsystem. (things like an
3411 * e2fsck being done on the RAID array should execute fast)
3413 mddev
->queue
->unplug_fn(mddev
->queue
);
3416 currspeed
= ((unsigned long)(j
-mddev
->resync_mark_cnt
))/2/((jiffies
-mddev
->resync_mark
)/HZ
+1) +1;
3418 if (currspeed
> sysctl_speed_limit_min
) {
3419 if ((currspeed
> sysctl_speed_limit_max
) ||
3420 !is_mddev_idle(mddev
)) {
3421 msleep_interruptible(250);
3426 printk(KERN_INFO
"md: %s: sync done.\n",mdname(mddev
));
3428 * this also signals 'finished resyncing' to md_stop
3431 mddev
->queue
->unplug_fn(mddev
->queue
);
3433 wait_event(mddev
->recovery_wait
, !atomic_read(&mddev
->recovery_active
));
3435 /* tell personality that we are finished */
3436 mddev
->pers
->sync_request(mddev
, max_sectors
, 1);
3438 if (!test_bit(MD_RECOVERY_ERR
, &mddev
->recovery
) &&
3439 mddev
->curr_resync
> 2 &&
3440 mddev
->curr_resync
>= mddev
->recovery_cp
) {
3441 if (test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
)) {
3443 "md: checkpointing recovery of %s.\n",
3445 mddev
->recovery_cp
= mddev
->curr_resync
;
3447 mddev
->recovery_cp
= MaxSector
;
3450 md_enter_safemode(mddev
);
3452 mddev
->curr_resync
= 0;
3453 wake_up(&resync_wait
);
3454 set_bit(MD_RECOVERY_DONE
, &mddev
->recovery
);
3455 md_wakeup_thread(mddev
->thread
);
3460 * This routine is regularly called by all per-raid-array threads to
3461 * deal with generic issues like resync and super-block update.
3462 * Raid personalities that don't have a thread (linear/raid0) do not
3463 * need this as they never do any recovery or update the superblock.
3465 * It does not do any resync itself, but rather "forks" off other threads
3466 * to do that as needed.
3467 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
3468 * "->recovery" and create a thread at ->sync_thread.
3469 * When the thread finishes it sets MD_RECOVERY_DONE (and might set MD_RECOVERY_ERR)
3470 * and wakeups up this thread which will reap the thread and finish up.
3471 * This thread also removes any faulty devices (with nr_pending == 0).
3473 * The overall approach is:
3474 * 1/ if the superblock needs updating, update it.
3475 * 2/ If a recovery thread is running, don't do anything else.
3476 * 3/ If recovery has finished, clean up, possibly marking spares active.
3477 * 4/ If there are any faulty devices, remove them.
3478 * 5/ If array is degraded, try to add spares devices
3479 * 6/ If array has spares or is not in-sync, start a resync thread.
3481 void md_check_recovery(mddev_t
*mddev
)
3484 struct list_head
*rtmp
;
3487 dprintk(KERN_INFO
"md: recovery thread got woken up ...\n");
3493 test_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
) ||
3494 test_bit(MD_RECOVERY_DONE
, &mddev
->recovery
)
3497 if (mddev_trylock(mddev
)==0) {
3499 if (mddev
->sb_dirty
)
3500 md_update_sb(mddev
);
3501 if (test_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
) &&
3502 !test_bit(MD_RECOVERY_DONE
, &mddev
->recovery
)) {
3503 /* resync/recovery still happening */
3504 clear_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
3507 if (mddev
->sync_thread
) {
3508 /* resync has finished, collect result */
3509 md_unregister_thread(mddev
->sync_thread
);
3510 mddev
->sync_thread
= NULL
;
3511 if (!test_bit(MD_RECOVERY_ERR
, &mddev
->recovery
) &&
3512 !test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
)) {
3514 /* activate any spares */
3515 mddev
->pers
->spare_active(mddev
);
3517 md_update_sb(mddev
);
3518 mddev
->recovery
= 0;
3519 /* flag recovery needed just to double check */
3520 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
3523 if (mddev
->recovery
)
3524 /* probably just the RECOVERY_NEEDED flag */
3525 mddev
->recovery
= 0;
3527 /* no recovery is running.
3528 * remove any failed drives, then
3529 * add spares if possible.
3530 * Spare are also removed and re-added, to allow
3531 * the personality to fail the re-add.
3533 ITERATE_RDEV(mddev
,rdev
,rtmp
)
3534 if (rdev
->raid_disk
>= 0 &&
3535 (rdev
->faulty
|| ! rdev
->in_sync
) &&
3536 atomic_read(&rdev
->nr_pending
)==0) {
3537 if (mddev
->pers
->hot_remove_disk(mddev
, rdev
->raid_disk
)==0)
3538 rdev
->raid_disk
= -1;
3541 if (mddev
->degraded
) {
3542 ITERATE_RDEV(mddev
,rdev
,rtmp
)
3543 if (rdev
->raid_disk
< 0
3545 if (mddev
->pers
->hot_add_disk(mddev
,rdev
))
3552 if (!spares
&& (mddev
->recovery_cp
== MaxSector
)) {
3553 /* nothing we can do ... */
3556 if (mddev
->pers
->sync_request
) {
3557 set_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
);
3559 set_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
);
3560 mddev
->sync_thread
= md_register_thread(md_do_sync
,
3563 if (!mddev
->sync_thread
) {
3564 printk(KERN_ERR
"%s: could not start resync"
3567 /* leave the spares where they are, it shouldn't hurt */
3568 mddev
->recovery
= 0;
3570 md_wakeup_thread(mddev
->sync_thread
);
3574 mddev_unlock(mddev
);
3578 static int md_notify_reboot(struct notifier_block
*this,
3579 unsigned long code
, void *x
)
3581 struct list_head
*tmp
;
3584 if ((code
== SYS_DOWN
) || (code
== SYS_HALT
) || (code
== SYS_POWER_OFF
)) {
3586 printk(KERN_INFO
"md: stopping all md devices.\n");
3588 ITERATE_MDDEV(mddev
,tmp
)
3589 if (mddev_trylock(mddev
)==0)
3590 do_md_stop (mddev
, 1);
3592 * certain more exotic SCSI devices are known to be
3593 * volatile wrt too early system reboots. While the
3594 * right place to handle this issue is the given
3595 * driver, we do want to have a safe RAID driver ...
3602 static struct notifier_block md_notifier
= {
3603 .notifier_call
= md_notify_reboot
,
3605 .priority
= INT_MAX
, /* before any real devices */
3608 static void md_geninit(void)
3610 struct proc_dir_entry
*p
;
3612 dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t
));
3614 p
= create_proc_entry("mdstat", S_IRUGO
, NULL
);
3616 p
->proc_fops
= &md_seq_fops
;
3619 static int __init
md_init(void)
3623 printk(KERN_INFO
"md: md driver %d.%d.%d MAX_MD_DEVS=%d,"
3624 " MD_SB_DISKS=%d\n",
3625 MD_MAJOR_VERSION
, MD_MINOR_VERSION
,
3626 MD_PATCHLEVEL_VERSION
, MAX_MD_DEVS
, MD_SB_DISKS
);
3628 if (register_blkdev(MAJOR_NR
, "md"))
3630 if ((mdp_major
=register_blkdev(0, "mdp"))<=0) {
3631 unregister_blkdev(MAJOR_NR
, "md");
3635 blk_register_region(MKDEV(MAJOR_NR
, 0), MAX_MD_DEVS
, THIS_MODULE
,
3636 md_probe
, NULL
, NULL
);
3637 blk_register_region(MKDEV(mdp_major
, 0), MAX_MD_DEVS
<<MdpMinorShift
, THIS_MODULE
,
3638 md_probe
, NULL
, NULL
);
3640 for (minor
=0; minor
< MAX_MD_DEVS
; ++minor
)
3641 devfs_mk_bdev(MKDEV(MAJOR_NR
, minor
),
3642 S_IFBLK
|S_IRUSR
|S_IWUSR
,
3645 for (minor
=0; minor
< MAX_MD_DEVS
; ++minor
)
3646 devfs_mk_bdev(MKDEV(mdp_major
, minor
<<MdpMinorShift
),
3647 S_IFBLK
|S_IRUSR
|S_IWUSR
,
3651 register_reboot_notifier(&md_notifier
);
3652 raid_table_header
= register_sysctl_table(raid_root_table
, 1);
3662 * Searches all registered partitions for autorun RAID arrays
3665 static dev_t detected_devices
[128];
3668 void md_autodetect_dev(dev_t dev
)
3670 if (dev_cnt
>= 0 && dev_cnt
< 127)
3671 detected_devices
[dev_cnt
++] = dev
;
3675 static void autostart_arrays(int part
)
3680 printk(KERN_INFO
"md: Autodetecting RAID arrays.\n");
3682 for (i
= 0; i
< dev_cnt
; i
++) {
3683 dev_t dev
= detected_devices
[i
];
3685 rdev
= md_import_device(dev
,0, 0);
3693 list_add(&rdev
->same_set
, &pending_raid_disks
);
3697 autorun_devices(part
);
3702 static __exit
void md_exit(void)
3705 struct list_head
*tmp
;
3707 blk_unregister_region(MKDEV(MAJOR_NR
,0), MAX_MD_DEVS
);
3708 blk_unregister_region(MKDEV(mdp_major
,0), MAX_MD_DEVS
<< MdpMinorShift
);
3709 for (i
=0; i
< MAX_MD_DEVS
; i
++)
3710 devfs_remove("md/%d", i
);
3711 for (i
=0; i
< MAX_MD_DEVS
; i
++)
3712 devfs_remove("md/d%d", i
);
3716 unregister_blkdev(MAJOR_NR
,"md");
3717 unregister_blkdev(mdp_major
, "mdp");
3718 unregister_reboot_notifier(&md_notifier
);
3719 unregister_sysctl_table(raid_table_header
);
3720 remove_proc_entry("mdstat", NULL
);
3721 ITERATE_MDDEV(mddev
,tmp
) {
3722 struct gendisk
*disk
= mddev
->gendisk
;
3725 export_array(mddev
);
3728 mddev
->gendisk
= NULL
;
3733 module_init(md_init
)
3734 module_exit(md_exit
)
3736 EXPORT_SYMBOL(register_md_personality
);
3737 EXPORT_SYMBOL(unregister_md_personality
);
3738 EXPORT_SYMBOL(md_error
);
3739 EXPORT_SYMBOL(md_done_sync
);
3740 EXPORT_SYMBOL(md_write_start
);
3741 EXPORT_SYMBOL(md_write_end
);
3742 EXPORT_SYMBOL(md_handle_safemode
);
3743 EXPORT_SYMBOL(md_register_thread
);
3744 EXPORT_SYMBOL(md_unregister_thread
);
3745 EXPORT_SYMBOL(md_wakeup_thread
);
3746 EXPORT_SYMBOL(md_print_devices
);
3747 EXPORT_SYMBOL(md_check_recovery
);
3748 MODULE_LICENSE("GPL");