[TG3]: Set minimal hw interrupt mitigation.
[linux-2.6/verdex.git] / drivers / scsi / imm.c
blobbe7f2ca0183fdcaccb16ab7c8197a4084258e147
1 /* imm.c -- low level driver for the IOMEGA MatchMaker
2 * parallel port SCSI host adapter.
3 *
4 * (The IMM is the embedded controller in the ZIP Plus drive.)
5 *
6 * Current Maintainer: David Campbell (Perth, Western Australia)
7 * campbell@torque.net
9 * My unoffical company acronym list is 21 pages long:
10 * FLA: Four letter acronym with built in facility for
11 * future expansion to five letters.
14 #include <linux/config.h>
15 #include <linux/init.h>
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/blkdev.h>
19 #include <linux/parport.h>
20 #include <linux/workqueue.h>
21 #include <asm/io.h>
23 #include <scsi/scsi.h>
24 #include <scsi/scsi_cmnd.h>
25 #include <scsi/scsi_device.h>
26 #include <scsi/scsi_host.h>
28 /* The following #define is to avoid a clash with hosts.c */
29 #define IMM_PROBE_SPP 0x0001
30 #define IMM_PROBE_PS2 0x0002
31 #define IMM_PROBE_ECR 0x0010
32 #define IMM_PROBE_EPP17 0x0100
33 #define IMM_PROBE_EPP19 0x0200
36 typedef struct {
37 struct pardevice *dev; /* Parport device entry */
38 int base; /* Actual port address */
39 int base_hi; /* Hi Base address for ECP-ISA chipset */
40 int mode; /* Transfer mode */
41 struct scsi_cmnd *cur_cmd; /* Current queued command */
42 struct work_struct imm_tq; /* Polling interrupt stuff */
43 unsigned long jstart; /* Jiffies at start */
44 unsigned failed:1; /* Failure flag */
45 unsigned dp:1; /* Data phase present */
46 unsigned rd:1; /* Read data in data phase */
47 unsigned wanted:1; /* Parport sharing busy flag */
48 wait_queue_head_t *waiting;
49 struct Scsi_Host *host;
50 struct list_head list;
51 } imm_struct;
53 static void imm_reset_pulse(unsigned int base);
54 static int device_check(imm_struct *dev);
56 #include "imm.h"
58 static inline imm_struct *imm_dev(struct Scsi_Host *host)
60 return *(imm_struct **)&host->hostdata;
63 static DEFINE_SPINLOCK(arbitration_lock);
65 static void got_it(imm_struct *dev)
67 dev->base = dev->dev->port->base;
68 if (dev->cur_cmd)
69 dev->cur_cmd->SCp.phase = 1;
70 else
71 wake_up(dev->waiting);
74 static void imm_wakeup(void *ref)
76 imm_struct *dev = (imm_struct *) ref;
77 unsigned long flags;
79 spin_lock_irqsave(&arbitration_lock, flags);
80 if (dev->wanted) {
81 parport_claim(dev->dev);
82 got_it(dev);
83 dev->wanted = 0;
85 spin_unlock_irqrestore(&arbitration_lock, flags);
88 static int imm_pb_claim(imm_struct *dev)
90 unsigned long flags;
91 int res = 1;
92 spin_lock_irqsave(&arbitration_lock, flags);
93 if (parport_claim(dev->dev) == 0) {
94 got_it(dev);
95 res = 0;
97 dev->wanted = res;
98 spin_unlock_irqrestore(&arbitration_lock, flags);
99 return res;
102 static void imm_pb_dismiss(imm_struct *dev)
104 unsigned long flags;
105 int wanted;
106 spin_lock_irqsave(&arbitration_lock, flags);
107 wanted = dev->wanted;
108 dev->wanted = 0;
109 spin_unlock_irqrestore(&arbitration_lock, flags);
110 if (!wanted)
111 parport_release(dev->dev);
114 static inline void imm_pb_release(imm_struct *dev)
116 parport_release(dev->dev);
119 /* This is to give the imm driver a way to modify the timings (and other
120 * parameters) by writing to the /proc/scsi/imm/0 file.
121 * Very simple method really... (Too simple, no error checking :( )
122 * Reason: Kernel hackers HATE having to unload and reload modules for
123 * testing...
124 * Also gives a method to use a script to obtain optimum timings (TODO)
126 static inline int imm_proc_write(imm_struct *dev, char *buffer, int length)
128 unsigned long x;
130 if ((length > 5) && (strncmp(buffer, "mode=", 5) == 0)) {
131 x = simple_strtoul(buffer + 5, NULL, 0);
132 dev->mode = x;
133 return length;
135 printk("imm /proc: invalid variable\n");
136 return (-EINVAL);
139 static int imm_proc_info(struct Scsi_Host *host, char *buffer, char **start,
140 off_t offset, int length, int inout)
142 imm_struct *dev = imm_dev(host);
143 int len = 0;
145 if (inout)
146 return imm_proc_write(dev, buffer, length);
148 len += sprintf(buffer + len, "Version : %s\n", IMM_VERSION);
149 len +=
150 sprintf(buffer + len, "Parport : %s\n",
151 dev->dev->port->name);
152 len +=
153 sprintf(buffer + len, "Mode : %s\n",
154 IMM_MODE_STRING[dev->mode]);
156 /* Request for beyond end of buffer */
157 if (offset > len)
158 return 0;
160 *start = buffer + offset;
161 len -= offset;
162 if (len > length)
163 len = length;
164 return len;
167 #if IMM_DEBUG > 0
168 #define imm_fail(x,y) printk("imm: imm_fail(%i) from %s at line %d\n",\
169 y, __FUNCTION__, __LINE__); imm_fail_func(x,y);
170 static inline void
171 imm_fail_func(imm_struct *dev, int error_code)
172 #else
173 static inline void
174 imm_fail(imm_struct *dev, int error_code)
175 #endif
177 /* If we fail a device then we trash status / message bytes */
178 if (dev->cur_cmd) {
179 dev->cur_cmd->result = error_code << 16;
180 dev->failed = 1;
185 * Wait for the high bit to be set.
187 * In principle, this could be tied to an interrupt, but the adapter
188 * doesn't appear to be designed to support interrupts. We spin on
189 * the 0x80 ready bit.
191 static unsigned char imm_wait(imm_struct *dev)
193 int k;
194 unsigned short ppb = dev->base;
195 unsigned char r;
197 w_ctr(ppb, 0x0c);
199 k = IMM_SPIN_TMO;
200 do {
201 r = r_str(ppb);
202 k--;
203 udelay(1);
205 while (!(r & 0x80) && (k));
208 * STR register (LPT base+1) to SCSI mapping:
210 * STR imm imm
211 * ===================================
212 * 0x80 S_REQ S_REQ
213 * 0x40 !S_BSY (????)
214 * 0x20 !S_CD !S_CD
215 * 0x10 !S_IO !S_IO
216 * 0x08 (????) !S_BSY
218 * imm imm meaning
219 * ==================================
220 * 0xf0 0xb8 Bit mask
221 * 0xc0 0x88 ZIP wants more data
222 * 0xd0 0x98 ZIP wants to send more data
223 * 0xe0 0xa8 ZIP is expecting SCSI command data
224 * 0xf0 0xb8 end of transfer, ZIP is sending status
226 w_ctr(ppb, 0x04);
227 if (k)
228 return (r & 0xb8);
230 /* Counter expired - Time out occurred */
231 imm_fail(dev, DID_TIME_OUT);
232 printk("imm timeout in imm_wait\n");
233 return 0; /* command timed out */
236 static int imm_negotiate(imm_struct * tmp)
239 * The following is supposedly the IEEE 1284-1994 negotiate
240 * sequence. I have yet to obtain a copy of the above standard
241 * so this is a bit of a guess...
243 * A fair chunk of this is based on the Linux parport implementation
244 * of IEEE 1284.
246 * Return 0 if data available
247 * 1 if no data available
250 unsigned short base = tmp->base;
251 unsigned char a, mode;
253 switch (tmp->mode) {
254 case IMM_NIBBLE:
255 mode = 0x00;
256 break;
257 case IMM_PS2:
258 mode = 0x01;
259 break;
260 default:
261 return 0;
264 w_ctr(base, 0x04);
265 udelay(5);
266 w_dtr(base, mode);
267 udelay(100);
268 w_ctr(base, 0x06);
269 udelay(5);
270 a = (r_str(base) & 0x20) ? 0 : 1;
271 udelay(5);
272 w_ctr(base, 0x07);
273 udelay(5);
274 w_ctr(base, 0x06);
276 if (a) {
277 printk
278 ("IMM: IEEE1284 negotiate indicates no data available.\n");
279 imm_fail(tmp, DID_ERROR);
281 return a;
285 * Clear EPP timeout bit.
287 static inline void epp_reset(unsigned short ppb)
289 int i;
291 i = r_str(ppb);
292 w_str(ppb, i);
293 w_str(ppb, i & 0xfe);
297 * Wait for empty ECP fifo (if we are in ECP fifo mode only)
299 static inline void ecp_sync(imm_struct *dev)
301 int i, ppb_hi = dev->base_hi;
303 if (ppb_hi == 0)
304 return;
306 if ((r_ecr(ppb_hi) & 0xe0) == 0x60) { /* mode 011 == ECP fifo mode */
307 for (i = 0; i < 100; i++) {
308 if (r_ecr(ppb_hi) & 0x01)
309 return;
310 udelay(5);
312 printk("imm: ECP sync failed as data still present in FIFO.\n");
316 static int imm_byte_out(unsigned short base, const char *buffer, int len)
318 int i;
320 w_ctr(base, 0x4); /* apparently a sane mode */
321 for (i = len >> 1; i; i--) {
322 w_dtr(base, *buffer++);
323 w_ctr(base, 0x5); /* Drop STROBE low */
324 w_dtr(base, *buffer++);
325 w_ctr(base, 0x0); /* STROBE high + INIT low */
327 w_ctr(base, 0x4); /* apparently a sane mode */
328 return 1; /* All went well - we hope! */
331 static int imm_nibble_in(unsigned short base, char *buffer, int len)
333 unsigned char l;
334 int i;
337 * The following is based on documented timing signals
339 w_ctr(base, 0x4);
340 for (i = len; i; i--) {
341 w_ctr(base, 0x6);
342 l = (r_str(base) & 0xf0) >> 4;
343 w_ctr(base, 0x5);
344 *buffer++ = (r_str(base) & 0xf0) | l;
345 w_ctr(base, 0x4);
347 return 1; /* All went well - we hope! */
350 static int imm_byte_in(unsigned short base, char *buffer, int len)
352 int i;
355 * The following is based on documented timing signals
357 w_ctr(base, 0x4);
358 for (i = len; i; i--) {
359 w_ctr(base, 0x26);
360 *buffer++ = r_dtr(base);
361 w_ctr(base, 0x25);
363 return 1; /* All went well - we hope! */
366 static int imm_out(imm_struct *dev, char *buffer, int len)
368 unsigned short ppb = dev->base;
369 int r = imm_wait(dev);
372 * Make sure that:
373 * a) the SCSI bus is BUSY (device still listening)
374 * b) the device is listening
376 if ((r & 0x18) != 0x08) {
377 imm_fail(dev, DID_ERROR);
378 printk("IMM: returned SCSI status %2x\n", r);
379 return 0;
381 switch (dev->mode) {
382 case IMM_EPP_32:
383 case IMM_EPP_16:
384 case IMM_EPP_8:
385 epp_reset(ppb);
386 w_ctr(ppb, 0x4);
387 #ifdef CONFIG_SCSI_IZIP_EPP16
388 if (!(((long) buffer | len) & 0x01))
389 outsw(ppb + 4, buffer, len >> 1);
390 #else
391 if (!(((long) buffer | len) & 0x03))
392 outsl(ppb + 4, buffer, len >> 2);
393 #endif
394 else
395 outsb(ppb + 4, buffer, len);
396 w_ctr(ppb, 0xc);
397 r = !(r_str(ppb) & 0x01);
398 w_ctr(ppb, 0xc);
399 ecp_sync(dev);
400 break;
402 case IMM_NIBBLE:
403 case IMM_PS2:
404 /* 8 bit output, with a loop */
405 r = imm_byte_out(ppb, buffer, len);
406 break;
408 default:
409 printk("IMM: bug in imm_out()\n");
410 r = 0;
412 return r;
415 static int imm_in(imm_struct *dev, char *buffer, int len)
417 unsigned short ppb = dev->base;
418 int r = imm_wait(dev);
421 * Make sure that:
422 * a) the SCSI bus is BUSY (device still listening)
423 * b) the device is sending data
425 if ((r & 0x18) != 0x18) {
426 imm_fail(dev, DID_ERROR);
427 return 0;
429 switch (dev->mode) {
430 case IMM_NIBBLE:
431 /* 4 bit input, with a loop */
432 r = imm_nibble_in(ppb, buffer, len);
433 w_ctr(ppb, 0xc);
434 break;
436 case IMM_PS2:
437 /* 8 bit input, with a loop */
438 r = imm_byte_in(ppb, buffer, len);
439 w_ctr(ppb, 0xc);
440 break;
442 case IMM_EPP_32:
443 case IMM_EPP_16:
444 case IMM_EPP_8:
445 epp_reset(ppb);
446 w_ctr(ppb, 0x24);
447 #ifdef CONFIG_SCSI_IZIP_EPP16
448 if (!(((long) buffer | len) & 0x01))
449 insw(ppb + 4, buffer, len >> 1);
450 #else
451 if (!(((long) buffer | len) & 0x03))
452 insl(ppb + 4, buffer, len >> 2);
453 #endif
454 else
455 insb(ppb + 4, buffer, len);
456 w_ctr(ppb, 0x2c);
457 r = !(r_str(ppb) & 0x01);
458 w_ctr(ppb, 0x2c);
459 ecp_sync(dev);
460 break;
462 default:
463 printk("IMM: bug in imm_ins()\n");
464 r = 0;
465 break;
467 return r;
470 static int imm_cpp(unsigned short ppb, unsigned char b)
473 * Comments on udelay values refer to the
474 * Command Packet Protocol (CPP) timing diagram.
477 unsigned char s1, s2, s3;
478 w_ctr(ppb, 0x0c);
479 udelay(2); /* 1 usec - infinite */
480 w_dtr(ppb, 0xaa);
481 udelay(10); /* 7 usec - infinite */
482 w_dtr(ppb, 0x55);
483 udelay(10); /* 7 usec - infinite */
484 w_dtr(ppb, 0x00);
485 udelay(10); /* 7 usec - infinite */
486 w_dtr(ppb, 0xff);
487 udelay(10); /* 7 usec - infinite */
488 s1 = r_str(ppb) & 0xb8;
489 w_dtr(ppb, 0x87);
490 udelay(10); /* 7 usec - infinite */
491 s2 = r_str(ppb) & 0xb8;
492 w_dtr(ppb, 0x78);
493 udelay(10); /* 7 usec - infinite */
494 s3 = r_str(ppb) & 0x38;
496 * Values for b are:
497 * 0000 00aa Assign address aa to current device
498 * 0010 00aa Select device aa in EPP Winbond mode
499 * 0010 10aa Select device aa in EPP mode
500 * 0011 xxxx Deselect all devices
501 * 0110 00aa Test device aa
502 * 1101 00aa Select device aa in ECP mode
503 * 1110 00aa Select device aa in Compatible mode
505 w_dtr(ppb, b);
506 udelay(2); /* 1 usec - infinite */
507 w_ctr(ppb, 0x0c);
508 udelay(10); /* 7 usec - infinite */
509 w_ctr(ppb, 0x0d);
510 udelay(2); /* 1 usec - infinite */
511 w_ctr(ppb, 0x0c);
512 udelay(10); /* 7 usec - infinite */
513 w_dtr(ppb, 0xff);
514 udelay(10); /* 7 usec - infinite */
517 * The following table is electrical pin values.
518 * (BSY is inverted at the CTR register)
520 * BSY ACK POut SEL Fault
521 * S1 0 X 1 1 1
522 * S2 1 X 0 1 1
523 * S3 L X 1 1 S
525 * L => Last device in chain
526 * S => Selected
528 * Observered values for S1,S2,S3 are:
529 * Disconnect => f8/58/78
530 * Connect => f8/58/70
532 if ((s1 == 0xb8) && (s2 == 0x18) && (s3 == 0x30))
533 return 1; /* Connected */
534 if ((s1 == 0xb8) && (s2 == 0x18) && (s3 == 0x38))
535 return 0; /* Disconnected */
537 return -1; /* No device present */
540 static inline int imm_connect(imm_struct *dev, int flag)
542 unsigned short ppb = dev->base;
544 imm_cpp(ppb, 0xe0); /* Select device 0 in compatible mode */
545 imm_cpp(ppb, 0x30); /* Disconnect all devices */
547 if ((dev->mode == IMM_EPP_8) ||
548 (dev->mode == IMM_EPP_16) ||
549 (dev->mode == IMM_EPP_32))
550 return imm_cpp(ppb, 0x28); /* Select device 0 in EPP mode */
551 return imm_cpp(ppb, 0xe0); /* Select device 0 in compatible mode */
554 static void imm_disconnect(imm_struct *dev)
556 imm_cpp(dev->base, 0x30); /* Disconnect all devices */
559 static int imm_select(imm_struct *dev, int target)
561 int k;
562 unsigned short ppb = dev->base;
565 * Firstly we want to make sure there is nothing
566 * holding onto the SCSI bus.
568 w_ctr(ppb, 0xc);
570 k = IMM_SELECT_TMO;
571 do {
572 k--;
573 } while ((r_str(ppb) & 0x08) && (k));
575 if (!k)
576 return 0;
579 * Now assert the SCSI ID (HOST and TARGET) on the data bus
581 w_ctr(ppb, 0x4);
582 w_dtr(ppb, 0x80 | (1 << target));
583 udelay(1);
586 * Deassert SELIN first followed by STROBE
588 w_ctr(ppb, 0xc);
589 w_ctr(ppb, 0xd);
592 * ACK should drop low while SELIN is deasserted.
593 * FAULT should drop low when the SCSI device latches the bus.
595 k = IMM_SELECT_TMO;
596 do {
597 k--;
599 while (!(r_str(ppb) & 0x08) && (k));
602 * Place the interface back into a sane state (status mode)
604 w_ctr(ppb, 0xc);
605 return (k) ? 1 : 0;
608 static int imm_init(imm_struct *dev)
610 if (imm_connect(dev, 0) != 1)
611 return -EIO;
612 imm_reset_pulse(dev->base);
613 udelay(1000); /* Delay to allow devices to settle */
614 imm_disconnect(dev);
615 udelay(1000); /* Another delay to allow devices to settle */
616 return device_check(dev);
619 static inline int imm_send_command(struct scsi_cmnd *cmd)
621 imm_struct *dev = imm_dev(cmd->device->host);
622 int k;
624 /* NOTE: IMM uses byte pairs */
625 for (k = 0; k < cmd->cmd_len; k += 2)
626 if (!imm_out(dev, &cmd->cmnd[k], 2))
627 return 0;
628 return 1;
632 * The bulk flag enables some optimisations in the data transfer loops,
633 * it should be true for any command that transfers data in integral
634 * numbers of sectors.
636 * The driver appears to remain stable if we speed up the parallel port
637 * i/o in this function, but not elsewhere.
639 static int imm_completion(struct scsi_cmnd *cmd)
641 /* Return codes:
642 * -1 Error
643 * 0 Told to schedule
644 * 1 Finished data transfer
646 imm_struct *dev = imm_dev(cmd->device->host);
647 unsigned short ppb = dev->base;
648 unsigned long start_jiffies = jiffies;
650 unsigned char r, v;
651 int fast, bulk, status;
653 v = cmd->cmnd[0];
654 bulk = ((v == READ_6) ||
655 (v == READ_10) || (v == WRITE_6) || (v == WRITE_10));
658 * We only get here if the drive is ready to comunicate,
659 * hence no need for a full imm_wait.
661 w_ctr(ppb, 0x0c);
662 r = (r_str(ppb) & 0xb8);
665 * while (device is not ready to send status byte)
666 * loop;
668 while (r != (unsigned char) 0xb8) {
670 * If we have been running for more than a full timer tick
671 * then take a rest.
673 if (time_after(jiffies, start_jiffies + 1))
674 return 0;
677 * FAIL if:
678 * a) Drive status is screwy (!ready && !present)
679 * b) Drive is requesting/sending more data than expected
681 if (((r & 0x88) != 0x88) || (cmd->SCp.this_residual <= 0)) {
682 imm_fail(dev, DID_ERROR);
683 return -1; /* ERROR_RETURN */
685 /* determine if we should use burst I/O */
686 if (dev->rd == 0) {
687 fast = (bulk
688 && (cmd->SCp.this_residual >=
689 IMM_BURST_SIZE)) ? IMM_BURST_SIZE : 2;
690 status = imm_out(dev, cmd->SCp.ptr, fast);
691 } else {
692 fast = (bulk
693 && (cmd->SCp.this_residual >=
694 IMM_BURST_SIZE)) ? IMM_BURST_SIZE : 1;
695 status = imm_in(dev, cmd->SCp.ptr, fast);
698 cmd->SCp.ptr += fast;
699 cmd->SCp.this_residual -= fast;
701 if (!status) {
702 imm_fail(dev, DID_BUS_BUSY);
703 return -1; /* ERROR_RETURN */
705 if (cmd->SCp.buffer && !cmd->SCp.this_residual) {
706 /* if scatter/gather, advance to the next segment */
707 if (cmd->SCp.buffers_residual--) {
708 cmd->SCp.buffer++;
709 cmd->SCp.this_residual =
710 cmd->SCp.buffer->length;
711 cmd->SCp.ptr =
712 page_address(cmd->SCp.buffer->page) +
713 cmd->SCp.buffer->offset;
716 * Make sure that we transfer even number of bytes
717 * otherwise it makes imm_byte_out() messy.
719 if (cmd->SCp.this_residual & 0x01)
720 cmd->SCp.this_residual++;
723 /* Now check to see if the drive is ready to comunicate */
724 w_ctr(ppb, 0x0c);
725 r = (r_str(ppb) & 0xb8);
727 /* If not, drop back down to the scheduler and wait a timer tick */
728 if (!(r & 0x80))
729 return 0;
731 return 1; /* FINISH_RETURN */
735 * Since the IMM itself doesn't generate interrupts, we use
736 * the scheduler's task queue to generate a stream of call-backs and
737 * complete the request when the drive is ready.
739 static void imm_interrupt(void *data)
741 imm_struct *dev = (imm_struct *) data;
742 struct scsi_cmnd *cmd = dev->cur_cmd;
743 struct Scsi_Host *host = cmd->device->host;
744 unsigned long flags;
746 if (!cmd) {
747 printk("IMM: bug in imm_interrupt\n");
748 return;
750 if (imm_engine(dev, cmd)) {
751 INIT_WORK(&dev->imm_tq, imm_interrupt, (void *) dev);
752 schedule_delayed_work(&dev->imm_tq, 1);
753 return;
755 /* Command must of completed hence it is safe to let go... */
756 #if IMM_DEBUG > 0
757 switch ((cmd->result >> 16) & 0xff) {
758 case DID_OK:
759 break;
760 case DID_NO_CONNECT:
761 printk("imm: no device at SCSI ID %i\n", cmd->device->id);
762 break;
763 case DID_BUS_BUSY:
764 printk("imm: BUS BUSY - EPP timeout detected\n");
765 break;
766 case DID_TIME_OUT:
767 printk("imm: unknown timeout\n");
768 break;
769 case DID_ABORT:
770 printk("imm: told to abort\n");
771 break;
772 case DID_PARITY:
773 printk("imm: parity error (???)\n");
774 break;
775 case DID_ERROR:
776 printk("imm: internal driver error\n");
777 break;
778 case DID_RESET:
779 printk("imm: told to reset device\n");
780 break;
781 case DID_BAD_INTR:
782 printk("imm: bad interrupt (???)\n");
783 break;
784 default:
785 printk("imm: bad return code (%02x)\n",
786 (cmd->result >> 16) & 0xff);
788 #endif
790 if (cmd->SCp.phase > 1)
791 imm_disconnect(dev);
793 imm_pb_dismiss(dev);
795 spin_lock_irqsave(host->host_lock, flags);
796 dev->cur_cmd = NULL;
797 cmd->scsi_done(cmd);
798 spin_unlock_irqrestore(host->host_lock, flags);
799 return;
802 static int imm_engine(imm_struct *dev, struct scsi_cmnd *cmd)
804 unsigned short ppb = dev->base;
805 unsigned char l = 0, h = 0;
806 int retv, x;
808 /* First check for any errors that may have occurred
809 * Here we check for internal errors
811 if (dev->failed)
812 return 0;
814 switch (cmd->SCp.phase) {
815 case 0: /* Phase 0 - Waiting for parport */
816 if (time_after(jiffies, dev->jstart + HZ)) {
818 * We waited more than a second
819 * for parport to call us
821 imm_fail(dev, DID_BUS_BUSY);
822 return 0;
824 return 1; /* wait until imm_wakeup claims parport */
825 /* Phase 1 - Connected */
826 case 1:
827 imm_connect(dev, CONNECT_EPP_MAYBE);
828 cmd->SCp.phase++;
830 /* Phase 2 - We are now talking to the scsi bus */
831 case 2:
832 if (!imm_select(dev, cmd->device->id)) {
833 imm_fail(dev, DID_NO_CONNECT);
834 return 0;
836 cmd->SCp.phase++;
838 /* Phase 3 - Ready to accept a command */
839 case 3:
840 w_ctr(ppb, 0x0c);
841 if (!(r_str(ppb) & 0x80))
842 return 1;
844 if (!imm_send_command(cmd))
845 return 0;
846 cmd->SCp.phase++;
848 /* Phase 4 - Setup scatter/gather buffers */
849 case 4:
850 if (cmd->use_sg) {
851 /* if many buffers are available, start filling the first */
852 cmd->SCp.buffer =
853 (struct scatterlist *) cmd->request_buffer;
854 cmd->SCp.this_residual = cmd->SCp.buffer->length;
855 cmd->SCp.ptr =
856 page_address(cmd->SCp.buffer->page) +
857 cmd->SCp.buffer->offset;
858 } else {
859 /* else fill the only available buffer */
860 cmd->SCp.buffer = NULL;
861 cmd->SCp.this_residual = cmd->request_bufflen;
862 cmd->SCp.ptr = cmd->request_buffer;
864 cmd->SCp.buffers_residual = cmd->use_sg - 1;
865 cmd->SCp.phase++;
866 if (cmd->SCp.this_residual & 0x01)
867 cmd->SCp.this_residual++;
868 /* Phase 5 - Pre-Data transfer stage */
869 case 5:
870 /* Spin lock for BUSY */
871 w_ctr(ppb, 0x0c);
872 if (!(r_str(ppb) & 0x80))
873 return 1;
875 /* Require negotiation for read requests */
876 x = (r_str(ppb) & 0xb8);
877 dev->rd = (x & 0x10) ? 1 : 0;
878 dev->dp = (x & 0x20) ? 0 : 1;
880 if ((dev->dp) && (dev->rd))
881 if (imm_negotiate(dev))
882 return 0;
883 cmd->SCp.phase++;
885 /* Phase 6 - Data transfer stage */
886 case 6:
887 /* Spin lock for BUSY */
888 w_ctr(ppb, 0x0c);
889 if (!(r_str(ppb) & 0x80))
890 return 1;
892 if (dev->dp) {
893 retv = imm_completion(cmd);
894 if (retv == -1)
895 return 0;
896 if (retv == 0)
897 return 1;
899 cmd->SCp.phase++;
901 /* Phase 7 - Post data transfer stage */
902 case 7:
903 if ((dev->dp) && (dev->rd)) {
904 if ((dev->mode == IMM_NIBBLE) || (dev->mode == IMM_PS2)) {
905 w_ctr(ppb, 0x4);
906 w_ctr(ppb, 0xc);
907 w_ctr(ppb, 0xe);
908 w_ctr(ppb, 0x4);
911 cmd->SCp.phase++;
913 /* Phase 8 - Read status/message */
914 case 8:
915 /* Check for data overrun */
916 if (imm_wait(dev) != (unsigned char) 0xb8) {
917 imm_fail(dev, DID_ERROR);
918 return 0;
920 if (imm_negotiate(dev))
921 return 0;
922 if (imm_in(dev, &l, 1)) { /* read status byte */
923 /* Check for optional message byte */
924 if (imm_wait(dev) == (unsigned char) 0xb8)
925 imm_in(dev, &h, 1);
926 cmd->result = (DID_OK << 16) + (l & STATUS_MASK);
928 if ((dev->mode == IMM_NIBBLE) || (dev->mode == IMM_PS2)) {
929 w_ctr(ppb, 0x4);
930 w_ctr(ppb, 0xc);
931 w_ctr(ppb, 0xe);
932 w_ctr(ppb, 0x4);
934 return 0; /* Finished */
935 break;
937 default:
938 printk("imm: Invalid scsi phase\n");
940 return 0;
943 static int imm_queuecommand(struct scsi_cmnd *cmd,
944 void (*done)(struct scsi_cmnd *))
946 imm_struct *dev = imm_dev(cmd->device->host);
948 if (dev->cur_cmd) {
949 printk("IMM: bug in imm_queuecommand\n");
950 return 0;
952 dev->failed = 0;
953 dev->jstart = jiffies;
954 dev->cur_cmd = cmd;
955 cmd->scsi_done = done;
956 cmd->result = DID_ERROR << 16; /* default return code */
957 cmd->SCp.phase = 0; /* bus free */
959 INIT_WORK(&dev->imm_tq, imm_interrupt, dev);
960 schedule_work(&dev->imm_tq);
962 imm_pb_claim(dev);
964 return 0;
968 * Apparently the disk->capacity attribute is off by 1 sector
969 * for all disk drives. We add the one here, but it should really
970 * be done in sd.c. Even if it gets fixed there, this will still
971 * work.
973 static int imm_biosparam(struct scsi_device *sdev, struct block_device *dev,
974 sector_t capacity, int ip[])
976 ip[0] = 0x40;
977 ip[1] = 0x20;
978 ip[2] = ((unsigned long) capacity + 1) / (ip[0] * ip[1]);
979 if (ip[2] > 1024) {
980 ip[0] = 0xff;
981 ip[1] = 0x3f;
982 ip[2] = ((unsigned long) capacity + 1) / (ip[0] * ip[1]);
984 return 0;
987 static int imm_abort(struct scsi_cmnd *cmd)
989 imm_struct *dev = imm_dev(cmd->device->host);
991 * There is no method for aborting commands since Iomega
992 * have tied the SCSI_MESSAGE line high in the interface
995 switch (cmd->SCp.phase) {
996 case 0: /* Do not have access to parport */
997 case 1: /* Have not connected to interface */
998 dev->cur_cmd = NULL; /* Forget the problem */
999 return SUCCESS;
1000 break;
1001 default: /* SCSI command sent, can not abort */
1002 return FAILED;
1003 break;
1007 static void imm_reset_pulse(unsigned int base)
1009 w_ctr(base, 0x04);
1010 w_dtr(base, 0x40);
1011 udelay(1);
1012 w_ctr(base, 0x0c);
1013 w_ctr(base, 0x0d);
1014 udelay(50);
1015 w_ctr(base, 0x0c);
1016 w_ctr(base, 0x04);
1019 static int imm_reset(struct scsi_cmnd *cmd)
1021 imm_struct *dev = imm_dev(cmd->device->host);
1023 if (cmd->SCp.phase)
1024 imm_disconnect(dev);
1025 dev->cur_cmd = NULL; /* Forget the problem */
1027 imm_connect(dev, CONNECT_NORMAL);
1028 imm_reset_pulse(dev->base);
1029 udelay(1000); /* device settle delay */
1030 imm_disconnect(dev);
1031 udelay(1000); /* device settle delay */
1032 return SUCCESS;
1035 static int device_check(imm_struct *dev)
1037 /* This routine looks for a device and then attempts to use EPP
1038 to send a command. If all goes as planned then EPP is available. */
1040 static char cmd[6] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
1041 int loop, old_mode, status, k, ppb = dev->base;
1042 unsigned char l;
1044 old_mode = dev->mode;
1045 for (loop = 0; loop < 8; loop++) {
1046 /* Attempt to use EPP for Test Unit Ready */
1047 if ((ppb & 0x0007) == 0x0000)
1048 dev->mode = IMM_EPP_32;
1050 second_pass:
1051 imm_connect(dev, CONNECT_EPP_MAYBE);
1052 /* Select SCSI device */
1053 if (!imm_select(dev, loop)) {
1054 imm_disconnect(dev);
1055 continue;
1057 printk("imm: Found device at ID %i, Attempting to use %s\n",
1058 loop, IMM_MODE_STRING[dev->mode]);
1060 /* Send SCSI command */
1061 status = 1;
1062 w_ctr(ppb, 0x0c);
1063 for (l = 0; (l < 3) && (status); l++)
1064 status = imm_out(dev, &cmd[l << 1], 2);
1066 if (!status) {
1067 imm_disconnect(dev);
1068 imm_connect(dev, CONNECT_EPP_MAYBE);
1069 imm_reset_pulse(dev->base);
1070 udelay(1000);
1071 imm_disconnect(dev);
1072 udelay(1000);
1073 if (dev->mode == IMM_EPP_32) {
1074 dev->mode = old_mode;
1075 goto second_pass;
1077 printk("imm: Unable to establish communication\n");
1078 return -EIO;
1080 w_ctr(ppb, 0x0c);
1082 k = 1000000; /* 1 Second */
1083 do {
1084 l = r_str(ppb);
1085 k--;
1086 udelay(1);
1087 } while (!(l & 0x80) && (k));
1089 l &= 0xb8;
1091 if (l != 0xb8) {
1092 imm_disconnect(dev);
1093 imm_connect(dev, CONNECT_EPP_MAYBE);
1094 imm_reset_pulse(dev->base);
1095 udelay(1000);
1096 imm_disconnect(dev);
1097 udelay(1000);
1098 if (dev->mode == IMM_EPP_32) {
1099 dev->mode = old_mode;
1100 goto second_pass;
1102 printk
1103 ("imm: Unable to establish communication\n");
1104 return -EIO;
1106 imm_disconnect(dev);
1107 printk
1108 ("imm: Communication established at 0x%x with ID %i using %s\n",
1109 ppb, loop, IMM_MODE_STRING[dev->mode]);
1110 imm_connect(dev, CONNECT_EPP_MAYBE);
1111 imm_reset_pulse(dev->base);
1112 udelay(1000);
1113 imm_disconnect(dev);
1114 udelay(1000);
1115 return 0;
1117 printk("imm: No devices found\n");
1118 return -ENODEV;
1121 static int imm_adjust_queue(struct scsi_device *device)
1123 blk_queue_bounce_limit(device->request_queue, BLK_BOUNCE_HIGH);
1124 return 0;
1127 static struct scsi_host_template imm_template = {
1128 .module = THIS_MODULE,
1129 .proc_name = "imm",
1130 .proc_info = imm_proc_info,
1131 .name = "Iomega VPI2 (imm) interface",
1132 .queuecommand = imm_queuecommand,
1133 .eh_abort_handler = imm_abort,
1134 .eh_bus_reset_handler = imm_reset,
1135 .eh_host_reset_handler = imm_reset,
1136 .bios_param = imm_biosparam,
1137 .this_id = 7,
1138 .sg_tablesize = SG_ALL,
1139 .cmd_per_lun = 1,
1140 .use_clustering = ENABLE_CLUSTERING,
1141 .can_queue = 1,
1142 .slave_alloc = imm_adjust_queue,
1143 .unchecked_isa_dma = 1, /* imm cannot deal with highmem, so
1144 * this is an easy trick to ensure
1145 * all io pages for this host reside
1146 * in low memory */
1149 /***************************************************************************
1150 * Parallel port probing routines *
1151 ***************************************************************************/
1153 static LIST_HEAD(imm_hosts);
1155 static int __imm_attach(struct parport *pb)
1157 struct Scsi_Host *host;
1158 imm_struct *dev;
1159 DECLARE_WAIT_QUEUE_HEAD(waiting);
1160 DEFINE_WAIT(wait);
1161 int ports;
1162 int modes, ppb;
1163 int err = -ENOMEM;
1165 init_waitqueue_head(&waiting);
1167 dev = kmalloc(sizeof(imm_struct), GFP_KERNEL);
1168 if (!dev)
1169 return -ENOMEM;
1171 memset(dev, 0, sizeof(imm_struct));
1173 dev->base = -1;
1174 dev->mode = IMM_AUTODETECT;
1175 INIT_LIST_HEAD(&dev->list);
1177 dev->dev = parport_register_device(pb, "imm", NULL, imm_wakeup,
1178 NULL, 0, dev);
1180 if (!dev->dev)
1181 goto out;
1184 /* Claim the bus so it remembers what we do to the control
1185 * registers. [ CTR and ECP ]
1187 err = -EBUSY;
1188 dev->waiting = &waiting;
1189 prepare_to_wait(&waiting, &wait, TASK_UNINTERRUPTIBLE);
1190 if (imm_pb_claim(dev))
1191 schedule_timeout(3 * HZ);
1192 if (dev->wanted) {
1193 printk(KERN_ERR "imm%d: failed to claim parport because "
1194 "a pardevice is owning the port for too long "
1195 "time!\n", pb->number);
1196 imm_pb_dismiss(dev);
1197 dev->waiting = NULL;
1198 finish_wait(&waiting, &wait);
1199 goto out1;
1201 dev->waiting = NULL;
1202 finish_wait(&waiting, &wait);
1203 ppb = dev->base = dev->dev->port->base;
1204 dev->base_hi = dev->dev->port->base_hi;
1205 w_ctr(ppb, 0x0c);
1206 modes = dev->dev->port->modes;
1208 /* Mode detection works up the chain of speed
1209 * This avoids a nasty if-then-else-if-... tree
1211 dev->mode = IMM_NIBBLE;
1213 if (modes & PARPORT_MODE_TRISTATE)
1214 dev->mode = IMM_PS2;
1216 /* Done configuration */
1218 err = imm_init(dev);
1220 imm_pb_release(dev);
1222 if (err)
1223 goto out1;
1225 /* now the glue ... */
1226 if (dev->mode == IMM_NIBBLE || dev->mode == IMM_PS2)
1227 ports = 3;
1228 else
1229 ports = 8;
1231 INIT_WORK(&dev->imm_tq, imm_interrupt, dev);
1233 err = -ENOMEM;
1234 host = scsi_host_alloc(&imm_template, sizeof(imm_struct *));
1235 if (!host)
1236 goto out1;
1237 host->io_port = pb->base;
1238 host->n_io_port = ports;
1239 host->dma_channel = -1;
1240 host->unique_id = pb->number;
1241 *(imm_struct **)&host->hostdata = dev;
1242 dev->host = host;
1243 list_add_tail(&dev->list, &imm_hosts);
1244 err = scsi_add_host(host, NULL);
1245 if (err)
1246 goto out2;
1247 scsi_scan_host(host);
1248 return 0;
1250 out2:
1251 list_del_init(&dev->list);
1252 scsi_host_put(host);
1253 out1:
1254 parport_unregister_device(dev->dev);
1255 out:
1256 kfree(dev);
1257 return err;
1260 static void imm_attach(struct parport *pb)
1262 __imm_attach(pb);
1265 static void imm_detach(struct parport *pb)
1267 imm_struct *dev;
1268 list_for_each_entry(dev, &imm_hosts, list) {
1269 if (dev->dev->port == pb) {
1270 list_del_init(&dev->list);
1271 scsi_remove_host(dev->host);
1272 scsi_host_put(dev->host);
1273 parport_unregister_device(dev->dev);
1274 kfree(dev);
1275 break;
1280 static struct parport_driver imm_driver = {
1281 .name = "imm",
1282 .attach = imm_attach,
1283 .detach = imm_detach,
1286 static int __init imm_driver_init(void)
1288 printk("imm: Version %s\n", IMM_VERSION);
1289 return parport_register_driver(&imm_driver);
1292 static void __exit imm_driver_exit(void)
1294 parport_unregister_driver(&imm_driver);
1297 module_init(imm_driver_init);
1298 module_exit(imm_driver_exit);
1300 MODULE_LICENSE("GPL");