[TG3]: Set minimal hw interrupt mitigation.
[linux-2.6/verdex.git] / drivers / video / intelfb / intelfbhw.c
blobf5bed581dc45f3e3dd6406a8246a9647f5574ba6
1 /*
2 * intelfb
4 * Linux framebuffer driver for Intel(R) 865G integrated graphics chips.
6 * Copyright © 2002, 2003 David Dawes <dawes@xfree86.org>
7 * 2004 Sylvain Meyer
9 * This driver consists of two parts. The first part (intelfbdrv.c) provides
10 * the basic fbdev interfaces, is derived in part from the radeonfb and
11 * vesafb drivers, and is covered by the GPL. The second part (intelfbhw.c)
12 * provides the code to program the hardware. Most of it is derived from
13 * the i810/i830 XFree86 driver. The HW-specific code is covered here
14 * under a dual license (GPL and MIT/XFree86 license).
16 * Author: David Dawes
20 /* $DHD: intelfb/intelfbhw.c,v 1.9 2003/06/27 15:06:25 dawes Exp $ */
22 #include <linux/config.h>
23 #include <linux/module.h>
24 #include <linux/kernel.h>
25 #include <linux/errno.h>
26 #include <linux/string.h>
27 #include <linux/mm.h>
28 #include <linux/tty.h>
29 #include <linux/slab.h>
30 #include <linux/delay.h>
31 #include <linux/fb.h>
32 #include <linux/console.h>
33 #include <linux/selection.h>
34 #include <linux/ioport.h>
35 #include <linux/init.h>
36 #include <linux/pci.h>
37 #include <linux/vmalloc.h>
38 #include <linux/kd.h>
39 #include <linux/vt_kern.h>
40 #include <linux/pagemap.h>
41 #include <linux/version.h>
43 #include <asm/io.h>
45 #include "intelfb.h"
46 #include "intelfbhw.h"
48 int
49 intelfbhw_get_chipset(struct pci_dev *pdev, const char **name, int *chipset,
50 int *mobile)
52 u32 tmp;
54 if (!pdev || !name || !chipset || !mobile)
55 return 1;
57 switch (pdev->device) {
58 case PCI_DEVICE_ID_INTEL_830M:
59 *name = "Intel(R) 830M";
60 *chipset = INTEL_830M;
61 *mobile = 1;
62 return 0;
63 case PCI_DEVICE_ID_INTEL_845G:
64 *name = "Intel(R) 845G";
65 *chipset = INTEL_845G;
66 *mobile = 0;
67 return 0;
68 case PCI_DEVICE_ID_INTEL_85XGM:
69 tmp = 0;
70 *mobile = 1;
71 pci_read_config_dword(pdev, INTEL_85X_CAPID, &tmp);
72 switch ((tmp >> INTEL_85X_VARIANT_SHIFT) &
73 INTEL_85X_VARIANT_MASK) {
74 case INTEL_VAR_855GME:
75 *name = "Intel(R) 855GME";
76 *chipset = INTEL_855GME;
77 return 0;
78 case INTEL_VAR_855GM:
79 *name = "Intel(R) 855GM";
80 *chipset = INTEL_855GM;
81 return 0;
82 case INTEL_VAR_852GME:
83 *name = "Intel(R) 852GME";
84 *chipset = INTEL_852GME;
85 return 0;
86 case INTEL_VAR_852GM:
87 *name = "Intel(R) 852GM";
88 *chipset = INTEL_852GM;
89 return 0;
90 default:
91 *name = "Intel(R) 852GM/855GM";
92 *chipset = INTEL_85XGM;
93 return 0;
95 break;
96 case PCI_DEVICE_ID_INTEL_865G:
97 *name = "Intel(R) 865G";
98 *chipset = INTEL_865G;
99 *mobile = 0;
100 return 0;
101 case PCI_DEVICE_ID_INTEL_915G:
102 *name = "Intel(R) 915G";
103 *chipset = INTEL_915G;
104 *mobile = 0;
105 return 0;
106 default:
107 return 1;
112 intelfbhw_get_memory(struct pci_dev *pdev, int *aperture_size,
113 int *stolen_size)
115 struct pci_dev *bridge_dev;
116 u16 tmp;
118 if (!pdev || !aperture_size || !stolen_size)
119 return 1;
121 /* Find the bridge device. It is always 0:0.0 */
122 if (!(bridge_dev = pci_find_slot(0, PCI_DEVFN(0, 0)))) {
123 ERR_MSG("cannot find bridge device\n");
124 return 1;
127 /* Get the fb aperture size and "stolen" memory amount. */
128 tmp = 0;
129 pci_read_config_word(bridge_dev, INTEL_GMCH_CTRL, &tmp);
130 switch (pdev->device) {
131 case PCI_DEVICE_ID_INTEL_830M:
132 case PCI_DEVICE_ID_INTEL_845G:
133 if ((tmp & INTEL_GMCH_MEM_MASK) == INTEL_GMCH_MEM_64M)
134 *aperture_size = MB(64);
135 else
136 *aperture_size = MB(128);
137 switch (tmp & INTEL_830_GMCH_GMS_MASK) {
138 case INTEL_830_GMCH_GMS_STOLEN_512:
139 *stolen_size = KB(512) - KB(132);
140 return 0;
141 case INTEL_830_GMCH_GMS_STOLEN_1024:
142 *stolen_size = MB(1) - KB(132);
143 return 0;
144 case INTEL_830_GMCH_GMS_STOLEN_8192:
145 *stolen_size = MB(8) - KB(132);
146 return 0;
147 case INTEL_830_GMCH_GMS_LOCAL:
148 ERR_MSG("only local memory found\n");
149 return 1;
150 case INTEL_830_GMCH_GMS_DISABLED:
151 ERR_MSG("video memory is disabled\n");
152 return 1;
153 default:
154 ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n",
155 tmp & INTEL_830_GMCH_GMS_MASK);
156 return 1;
158 break;
159 default:
160 *aperture_size = MB(128);
161 switch (tmp & INTEL_855_GMCH_GMS_MASK) {
162 case INTEL_855_GMCH_GMS_STOLEN_1M:
163 *stolen_size = MB(1) - KB(132);
164 return 0;
165 case INTEL_855_GMCH_GMS_STOLEN_4M:
166 *stolen_size = MB(4) - KB(132);
167 return 0;
168 case INTEL_855_GMCH_GMS_STOLEN_8M:
169 *stolen_size = MB(8) - KB(132);
170 return 0;
171 case INTEL_855_GMCH_GMS_STOLEN_16M:
172 *stolen_size = MB(16) - KB(132);
173 return 0;
174 case INTEL_855_GMCH_GMS_STOLEN_32M:
175 *stolen_size = MB(32) - KB(132);
176 return 0;
177 case INTEL_915G_GMCH_GMS_STOLEN_48M:
178 *stolen_size = MB(48) - KB(132);
179 return 0;
180 case INTEL_915G_GMCH_GMS_STOLEN_64M:
181 *stolen_size = MB(64) - KB(132);
182 return 0;
183 case INTEL_855_GMCH_GMS_DISABLED:
184 ERR_MSG("video memory is disabled\n");
185 return 0;
186 default:
187 ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n",
188 tmp & INTEL_855_GMCH_GMS_MASK);
189 return 1;
195 intelfbhw_check_non_crt(struct intelfb_info *dinfo)
197 int dvo = 0;
199 if (INREG(LVDS) & PORT_ENABLE)
200 dvo |= LVDS_PORT;
201 if (INREG(DVOA) & PORT_ENABLE)
202 dvo |= DVOA_PORT;
203 if (INREG(DVOB) & PORT_ENABLE)
204 dvo |= DVOB_PORT;
205 if (INREG(DVOC) & PORT_ENABLE)
206 dvo |= DVOC_PORT;
208 return dvo;
211 const char *
212 intelfbhw_dvo_to_string(int dvo)
214 if (dvo & DVOA_PORT)
215 return "DVO port A";
216 else if (dvo & DVOB_PORT)
217 return "DVO port B";
218 else if (dvo & DVOC_PORT)
219 return "DVO port C";
220 else if (dvo & LVDS_PORT)
221 return "LVDS port";
222 else
223 return NULL;
228 intelfbhw_validate_mode(struct intelfb_info *dinfo,
229 struct fb_var_screeninfo *var)
231 int bytes_per_pixel;
232 int tmp;
234 #if VERBOSE > 0
235 DBG_MSG("intelfbhw_validate_mode\n");
236 #endif
238 bytes_per_pixel = var->bits_per_pixel / 8;
239 if (bytes_per_pixel == 3)
240 bytes_per_pixel = 4;
242 /* Check if enough video memory. */
243 tmp = var->yres_virtual * var->xres_virtual * bytes_per_pixel;
244 if (tmp > dinfo->fb.size) {
245 WRN_MSG("Not enough video ram for mode "
246 "(%d KByte vs %d KByte).\n",
247 BtoKB(tmp), BtoKB(dinfo->fb.size));
248 return 1;
251 /* Check if x/y limits are OK. */
252 if (var->xres - 1 > HACTIVE_MASK) {
253 WRN_MSG("X resolution too large (%d vs %d).\n",
254 var->xres, HACTIVE_MASK + 1);
255 return 1;
257 if (var->yres - 1 > VACTIVE_MASK) {
258 WRN_MSG("Y resolution too large (%d vs %d).\n",
259 var->yres, VACTIVE_MASK + 1);
260 return 1;
263 /* Check for interlaced/doublescan modes. */
264 if (var->vmode & FB_VMODE_INTERLACED) {
265 WRN_MSG("Mode is interlaced.\n");
266 return 1;
268 if (var->vmode & FB_VMODE_DOUBLE) {
269 WRN_MSG("Mode is double-scan.\n");
270 return 1;
273 /* Check if clock is OK. */
274 tmp = 1000000000 / var->pixclock;
275 if (tmp < MIN_CLOCK) {
276 WRN_MSG("Pixel clock is too low (%d MHz vs %d MHz).\n",
277 (tmp + 500) / 1000, MIN_CLOCK / 1000);
278 return 1;
280 if (tmp > MAX_CLOCK) {
281 WRN_MSG("Pixel clock is too high (%d MHz vs %d MHz).\n",
282 (tmp + 500) / 1000, MAX_CLOCK / 1000);
283 return 1;
286 return 0;
290 intelfbhw_pan_display(struct fb_var_screeninfo *var, struct fb_info *info)
292 struct intelfb_info *dinfo = GET_DINFO(info);
293 u32 offset, xoffset, yoffset;
295 #if VERBOSE > 0
296 DBG_MSG("intelfbhw_pan_display\n");
297 #endif
299 xoffset = ROUND_DOWN_TO(var->xoffset, 8);
300 yoffset = var->yoffset;
302 if ((xoffset + var->xres > var->xres_virtual) ||
303 (yoffset + var->yres > var->yres_virtual))
304 return -EINVAL;
306 offset = (yoffset * dinfo->pitch) +
307 (xoffset * var->bits_per_pixel) / 8;
309 offset += dinfo->fb.offset << 12;
311 OUTREG(DSPABASE, offset);
313 return 0;
316 /* Blank the screen. */
317 void
318 intelfbhw_do_blank(int blank, struct fb_info *info)
320 struct intelfb_info *dinfo = GET_DINFO(info);
321 u32 tmp;
323 #if VERBOSE > 0
324 DBG_MSG("intelfbhw_do_blank: blank is %d\n", blank);
325 #endif
327 /* Turn plane A on or off */
328 tmp = INREG(DSPACNTR);
329 if (blank)
330 tmp &= ~DISPPLANE_PLANE_ENABLE;
331 else
332 tmp |= DISPPLANE_PLANE_ENABLE;
333 OUTREG(DSPACNTR, tmp);
334 /* Flush */
335 tmp = INREG(DSPABASE);
336 OUTREG(DSPABASE, tmp);
338 /* Turn off/on the HW cursor */
339 #if VERBOSE > 0
340 DBG_MSG("cursor_on is %d\n", dinfo->cursor_on);
341 #endif
342 if (dinfo->cursor_on) {
343 if (blank) {
344 intelfbhw_cursor_hide(dinfo);
345 } else {
346 intelfbhw_cursor_show(dinfo);
348 dinfo->cursor_on = 1;
350 dinfo->cursor_blanked = blank;
352 /* Set DPMS level */
353 tmp = INREG(ADPA) & ~ADPA_DPMS_CONTROL_MASK;
354 switch (blank) {
355 case FB_BLANK_UNBLANK:
356 case FB_BLANK_NORMAL:
357 tmp |= ADPA_DPMS_D0;
358 break;
359 case FB_BLANK_VSYNC_SUSPEND:
360 tmp |= ADPA_DPMS_D1;
361 break;
362 case FB_BLANK_HSYNC_SUSPEND:
363 tmp |= ADPA_DPMS_D2;
364 break;
365 case FB_BLANK_POWERDOWN:
366 tmp |= ADPA_DPMS_D3;
367 break;
369 OUTREG(ADPA, tmp);
371 return;
375 void
376 intelfbhw_setcolreg(struct intelfb_info *dinfo, unsigned regno,
377 unsigned red, unsigned green, unsigned blue,
378 unsigned transp)
380 #if VERBOSE > 0
381 DBG_MSG("intelfbhw_setcolreg: %d: (%d, %d, %d)\n",
382 regno, red, green, blue);
383 #endif
385 u32 palette_reg = (dinfo->pipe == PIPE_A) ?
386 PALETTE_A : PALETTE_B;
388 OUTREG(palette_reg + (regno << 2),
389 (red << PALETTE_8_RED_SHIFT) |
390 (green << PALETTE_8_GREEN_SHIFT) |
391 (blue << PALETTE_8_BLUE_SHIFT));
396 intelfbhw_read_hw_state(struct intelfb_info *dinfo, struct intelfb_hwstate *hw,
397 int flag)
399 int i;
401 #if VERBOSE > 0
402 DBG_MSG("intelfbhw_read_hw_state\n");
403 #endif
405 if (!hw || !dinfo)
406 return -1;
408 /* Read in as much of the HW state as possible. */
409 hw->vga0_divisor = INREG(VGA0_DIVISOR);
410 hw->vga1_divisor = INREG(VGA1_DIVISOR);
411 hw->vga_pd = INREG(VGAPD);
412 hw->dpll_a = INREG(DPLL_A);
413 hw->dpll_b = INREG(DPLL_B);
414 hw->fpa0 = INREG(FPA0);
415 hw->fpa1 = INREG(FPA1);
416 hw->fpb0 = INREG(FPB0);
417 hw->fpb1 = INREG(FPB1);
419 if (flag == 1)
420 return flag;
422 #if 0
423 /* This seems to be a problem with the 852GM/855GM */
424 for (i = 0; i < PALETTE_8_ENTRIES; i++) {
425 hw->palette_a[i] = INREG(PALETTE_A + (i << 2));
426 hw->palette_b[i] = INREG(PALETTE_B + (i << 2));
428 #endif
430 if (flag == 2)
431 return flag;
433 hw->htotal_a = INREG(HTOTAL_A);
434 hw->hblank_a = INREG(HBLANK_A);
435 hw->hsync_a = INREG(HSYNC_A);
436 hw->vtotal_a = INREG(VTOTAL_A);
437 hw->vblank_a = INREG(VBLANK_A);
438 hw->vsync_a = INREG(VSYNC_A);
439 hw->src_size_a = INREG(SRC_SIZE_A);
440 hw->bclrpat_a = INREG(BCLRPAT_A);
441 hw->htotal_b = INREG(HTOTAL_B);
442 hw->hblank_b = INREG(HBLANK_B);
443 hw->hsync_b = INREG(HSYNC_B);
444 hw->vtotal_b = INREG(VTOTAL_B);
445 hw->vblank_b = INREG(VBLANK_B);
446 hw->vsync_b = INREG(VSYNC_B);
447 hw->src_size_b = INREG(SRC_SIZE_B);
448 hw->bclrpat_b = INREG(BCLRPAT_B);
450 if (flag == 3)
451 return flag;
453 hw->adpa = INREG(ADPA);
454 hw->dvoa = INREG(DVOA);
455 hw->dvob = INREG(DVOB);
456 hw->dvoc = INREG(DVOC);
457 hw->dvoa_srcdim = INREG(DVOA_SRCDIM);
458 hw->dvob_srcdim = INREG(DVOB_SRCDIM);
459 hw->dvoc_srcdim = INREG(DVOC_SRCDIM);
460 hw->lvds = INREG(LVDS);
462 if (flag == 4)
463 return flag;
465 hw->pipe_a_conf = INREG(PIPEACONF);
466 hw->pipe_b_conf = INREG(PIPEBCONF);
467 hw->disp_arb = INREG(DISPARB);
469 if (flag == 5)
470 return flag;
472 hw->cursor_a_control = INREG(CURSOR_A_CONTROL);
473 hw->cursor_b_control = INREG(CURSOR_B_CONTROL);
474 hw->cursor_a_base = INREG(CURSOR_A_BASEADDR);
475 hw->cursor_b_base = INREG(CURSOR_B_BASEADDR);
477 if (flag == 6)
478 return flag;
480 for (i = 0; i < 4; i++) {
481 hw->cursor_a_palette[i] = INREG(CURSOR_A_PALETTE0 + (i << 2));
482 hw->cursor_b_palette[i] = INREG(CURSOR_B_PALETTE0 + (i << 2));
485 if (flag == 7)
486 return flag;
488 hw->cursor_size = INREG(CURSOR_SIZE);
490 if (flag == 8)
491 return flag;
493 hw->disp_a_ctrl = INREG(DSPACNTR);
494 hw->disp_b_ctrl = INREG(DSPBCNTR);
495 hw->disp_a_base = INREG(DSPABASE);
496 hw->disp_b_base = INREG(DSPBBASE);
497 hw->disp_a_stride = INREG(DSPASTRIDE);
498 hw->disp_b_stride = INREG(DSPBSTRIDE);
500 if (flag == 9)
501 return flag;
503 hw->vgacntrl = INREG(VGACNTRL);
505 if (flag == 10)
506 return flag;
508 hw->add_id = INREG(ADD_ID);
510 if (flag == 11)
511 return flag;
513 for (i = 0; i < 7; i++) {
514 hw->swf0x[i] = INREG(SWF00 + (i << 2));
515 hw->swf1x[i] = INREG(SWF10 + (i << 2));
516 if (i < 3)
517 hw->swf3x[i] = INREG(SWF30 + (i << 2));
520 for (i = 0; i < 8; i++)
521 hw->fence[i] = INREG(FENCE + (i << 2));
523 hw->instpm = INREG(INSTPM);
524 hw->mem_mode = INREG(MEM_MODE);
525 hw->fw_blc_0 = INREG(FW_BLC_0);
526 hw->fw_blc_1 = INREG(FW_BLC_1);
528 return 0;
532 void
533 intelfbhw_print_hw_state(struct intelfb_info *dinfo, struct intelfb_hwstate *hw)
535 #if REGDUMP
536 int i, m1, m2, n, p1, p2;
538 DBG_MSG("intelfbhw_print_hw_state\n");
540 if (!hw || !dinfo)
541 return;
542 /* Read in as much of the HW state as possible. */
543 printk("hw state dump start\n");
544 printk(" VGA0_DIVISOR: 0x%08x\n", hw->vga0_divisor);
545 printk(" VGA1_DIVISOR: 0x%08x\n", hw->vga1_divisor);
546 printk(" VGAPD: 0x%08x\n", hw->vga_pd);
547 n = (hw->vga0_divisor >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
548 m1 = (hw->vga0_divisor >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
549 m2 = (hw->vga0_divisor >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
550 if (hw->vga_pd & VGAPD_0_P1_FORCE_DIV2)
551 p1 = 0;
552 else
553 p1 = (hw->vga_pd >> VGAPD_0_P1_SHIFT) & DPLL_P1_MASK;
554 p2 = (hw->vga_pd >> VGAPD_0_P2_SHIFT) & DPLL_P2_MASK;
555 printk(" VGA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
556 m1, m2, n, p1, p2);
557 printk(" VGA0: clock is %d\n", CALC_VCLOCK(m1, m2, n, p1, p2));
559 n = (hw->vga1_divisor >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
560 m1 = (hw->vga1_divisor >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
561 m2 = (hw->vga1_divisor >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
562 if (hw->vga_pd & VGAPD_1_P1_FORCE_DIV2)
563 p1 = 0;
564 else
565 p1 = (hw->vga_pd >> VGAPD_1_P1_SHIFT) & DPLL_P1_MASK;
566 p2 = (hw->vga_pd >> VGAPD_1_P2_SHIFT) & DPLL_P2_MASK;
567 printk(" VGA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
568 m1, m2, n, p1, p2);
569 printk(" VGA1: clock is %d\n", CALC_VCLOCK(m1, m2, n, p1, p2));
571 printk(" DPLL_A: 0x%08x\n", hw->dpll_a);
572 printk(" DPLL_B: 0x%08x\n", hw->dpll_b);
573 printk(" FPA0: 0x%08x\n", hw->fpa0);
574 printk(" FPA1: 0x%08x\n", hw->fpa1);
575 printk(" FPB0: 0x%08x\n", hw->fpb0);
576 printk(" FPB1: 0x%08x\n", hw->fpb1);
578 n = (hw->fpa0 >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
579 m1 = (hw->fpa0 >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
580 m2 = (hw->fpa0 >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
581 if (hw->dpll_a & DPLL_P1_FORCE_DIV2)
582 p1 = 0;
583 else
584 p1 = (hw->dpll_a >> DPLL_P1_SHIFT) & DPLL_P1_MASK;
585 p2 = (hw->dpll_a >> DPLL_P2_SHIFT) & DPLL_P2_MASK;
586 printk(" PLLA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
587 m1, m2, n, p1, p2);
588 printk(" PLLA0: clock is %d\n", CALC_VCLOCK(m1, m2, n, p1, p2));
590 n = (hw->fpa1 >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
591 m1 = (hw->fpa1 >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
592 m2 = (hw->fpa1 >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
593 if (hw->dpll_a & DPLL_P1_FORCE_DIV2)
594 p1 = 0;
595 else
596 p1 = (hw->dpll_a >> DPLL_P1_SHIFT) & DPLL_P1_MASK;
597 p2 = (hw->dpll_a >> DPLL_P2_SHIFT) & DPLL_P2_MASK;
598 printk(" PLLA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
599 m1, m2, n, p1, p2);
600 printk(" PLLA1: clock is %d\n", CALC_VCLOCK(m1, m2, n, p1, p2));
602 #if 0
603 printk(" PALETTE_A:\n");
604 for (i = 0; i < PALETTE_8_ENTRIES)
605 printk(" %3d: 0x%08x\n", i, hw->palette_a[i];
606 printk(" PALETTE_B:\n");
607 for (i = 0; i < PALETTE_8_ENTRIES)
608 printk(" %3d: 0x%08x\n", i, hw->palette_b[i];
609 #endif
611 printk(" HTOTAL_A: 0x%08x\n", hw->htotal_a);
612 printk(" HBLANK_A: 0x%08x\n", hw->hblank_a);
613 printk(" HSYNC_A: 0x%08x\n", hw->hsync_a);
614 printk(" VTOTAL_A: 0x%08x\n", hw->vtotal_a);
615 printk(" VBLANK_A: 0x%08x\n", hw->vblank_a);
616 printk(" VSYNC_A: 0x%08x\n", hw->vsync_a);
617 printk(" SRC_SIZE_A: 0x%08x\n", hw->src_size_a);
618 printk(" BCLRPAT_A: 0x%08x\n", hw->bclrpat_a);
619 printk(" HTOTAL_B: 0x%08x\n", hw->htotal_b);
620 printk(" HBLANK_B: 0x%08x\n", hw->hblank_b);
621 printk(" HSYNC_B: 0x%08x\n", hw->hsync_b);
622 printk(" VTOTAL_B: 0x%08x\n", hw->vtotal_b);
623 printk(" VBLANK_B: 0x%08x\n", hw->vblank_b);
624 printk(" VSYNC_B: 0x%08x\n", hw->vsync_b);
625 printk(" SRC_SIZE_B: 0x%08x\n", hw->src_size_b);
626 printk(" BCLRPAT_B: 0x%08x\n", hw->bclrpat_b);
628 printk(" ADPA: 0x%08x\n", hw->adpa);
629 printk(" DVOA: 0x%08x\n", hw->dvoa);
630 printk(" DVOB: 0x%08x\n", hw->dvob);
631 printk(" DVOC: 0x%08x\n", hw->dvoc);
632 printk(" DVOA_SRCDIM: 0x%08x\n", hw->dvoa_srcdim);
633 printk(" DVOB_SRCDIM: 0x%08x\n", hw->dvob_srcdim);
634 printk(" DVOC_SRCDIM: 0x%08x\n", hw->dvoc_srcdim);
635 printk(" LVDS: 0x%08x\n", hw->lvds);
637 printk(" PIPEACONF: 0x%08x\n", hw->pipe_a_conf);
638 printk(" PIPEBCONF: 0x%08x\n", hw->pipe_b_conf);
639 printk(" DISPARB: 0x%08x\n", hw->disp_arb);
641 printk(" CURSOR_A_CONTROL: 0x%08x\n", hw->cursor_a_control);
642 printk(" CURSOR_B_CONTROL: 0x%08x\n", hw->cursor_b_control);
643 printk(" CURSOR_A_BASEADDR: 0x%08x\n", hw->cursor_a_base);
644 printk(" CURSOR_B_BASEADDR: 0x%08x\n", hw->cursor_b_base);
646 printk(" CURSOR_A_PALETTE: ");
647 for (i = 0; i < 4; i++) {
648 printk("0x%08x", hw->cursor_a_palette[i]);
649 if (i < 3)
650 printk(", ");
652 printk("\n");
653 printk(" CURSOR_B_PALETTE: ");
654 for (i = 0; i < 4; i++) {
655 printk("0x%08x", hw->cursor_b_palette[i]);
656 if (i < 3)
657 printk(", ");
659 printk("\n");
661 printk(" CURSOR_SIZE: 0x%08x\n", hw->cursor_size);
663 printk(" DSPACNTR: 0x%08x\n", hw->disp_a_ctrl);
664 printk(" DSPBCNTR: 0x%08x\n", hw->disp_b_ctrl);
665 printk(" DSPABASE: 0x%08x\n", hw->disp_a_base);
666 printk(" DSPBBASE: 0x%08x\n", hw->disp_b_base);
667 printk(" DSPASTRIDE: 0x%08x\n", hw->disp_a_stride);
668 printk(" DSPBSTRIDE: 0x%08x\n", hw->disp_b_stride);
670 printk(" VGACNTRL: 0x%08x\n", hw->vgacntrl);
671 printk(" ADD_ID: 0x%08x\n", hw->add_id);
673 for (i = 0; i < 7; i++) {
674 printk(" SWF0%d 0x%08x\n", i,
675 hw->swf0x[i]);
677 for (i = 0; i < 7; i++) {
678 printk(" SWF1%d 0x%08x\n", i,
679 hw->swf1x[i]);
681 for (i = 0; i < 3; i++) {
682 printk(" SWF3%d 0x%08x\n", i,
683 hw->swf3x[i]);
685 for (i = 0; i < 8; i++)
686 printk(" FENCE%d 0x%08x\n", i,
687 hw->fence[i]);
689 printk(" INSTPM 0x%08x\n", hw->instpm);
690 printk(" MEM_MODE 0x%08x\n", hw->mem_mode);
691 printk(" FW_BLC_0 0x%08x\n", hw->fw_blc_0);
692 printk(" FW_BLC_1 0x%08x\n", hw->fw_blc_1);
694 printk("hw state dump end\n");
695 #endif
698 /* Split the M parameter into M1 and M2. */
699 static int
700 splitm(unsigned int m, unsigned int *retm1, unsigned int *retm2)
702 int m1, m2;
704 m1 = (m - 2 - (MIN_M2 + MAX_M2) / 2) / 5 - 2;
705 if (m1 < MIN_M1)
706 m1 = MIN_M1;
707 if (m1 > MAX_M1)
708 m1 = MAX_M1;
709 m2 = m - 5 * (m1 + 2) - 2;
710 if (m2 < MIN_M2 || m2 > MAX_M2 || m2 >= m1) {
711 return 1;
712 } else {
713 *retm1 = (unsigned int)m1;
714 *retm2 = (unsigned int)m2;
715 return 0;
719 /* Split the P parameter into P1 and P2. */
720 static int
721 splitp(unsigned int p, unsigned int *retp1, unsigned int *retp2)
723 int p1, p2;
725 if (p % 4 == 0)
726 p2 = 1;
727 else
728 p2 = 0;
729 p1 = (p / (1 << (p2 + 1))) - 2;
730 if (p % 4 == 0 && p1 < MIN_P1) {
731 p2 = 0;
732 p1 = (p / (1 << (p2 + 1))) - 2;
734 if (p1 < MIN_P1 || p1 > MAX_P1 || (p1 + 2) * (1 << (p2 + 1)) != p) {
735 return 1;
736 } else {
737 *retp1 = (unsigned int)p1;
738 *retp2 = (unsigned int)p2;
739 return 0;
743 static int
744 calc_pll_params(int clock, u32 *retm1, u32 *retm2, u32 *retn, u32 *retp1,
745 u32 *retp2, u32 *retclock)
747 u32 m1, m2, n, p1, p2, n1;
748 u32 f_vco, p, p_best = 0, m, f_out;
749 u32 err_max, err_target, err_best = 10000000;
750 u32 n_best = 0, m_best = 0, f_best, f_err;
751 u32 p_min, p_max, p_inc, div_min, div_max;
753 /* Accept 0.5% difference, but aim for 0.1% */
754 err_max = 5 * clock / 1000;
755 err_target = clock / 1000;
757 DBG_MSG("Clock is %d\n", clock);
759 div_max = MAX_VCO_FREQ / clock;
760 div_min = ROUND_UP_TO(MIN_VCO_FREQ, clock) / clock;
762 if (clock <= P_TRANSITION_CLOCK)
763 p_inc = 4;
764 else
765 p_inc = 2;
766 p_min = ROUND_UP_TO(div_min, p_inc);
767 p_max = ROUND_DOWN_TO(div_max, p_inc);
768 if (p_min < MIN_P)
769 p_min = 4;
770 if (p_max > MAX_P)
771 p_max = 128;
773 DBG_MSG("p range is %d-%d (%d)\n", p_min, p_max, p_inc);
775 p = p_min;
776 do {
777 if (splitp(p, &p1, &p2)) {
778 WRN_MSG("cannot split p = %d\n", p);
779 p += p_inc;
780 continue;
782 n = MIN_N;
783 f_vco = clock * p;
785 do {
786 m = ROUND_UP_TO(f_vco * n, PLL_REFCLK) / PLL_REFCLK;
787 if (m < MIN_M)
788 m = MIN_M;
789 if (m > MAX_M)
790 m = MAX_M;
791 f_out = CALC_VCLOCK3(m, n, p);
792 if (splitm(m, &m1, &m2)) {
793 WRN_MSG("cannot split m = %d\n", m);
794 n++;
795 continue;
797 if (clock > f_out)
798 f_err = clock - f_out;
799 else
800 f_err = f_out - clock;
802 if (f_err < err_best) {
803 m_best = m;
804 n_best = n;
805 p_best = p;
806 f_best = f_out;
807 err_best = f_err;
809 n++;
810 } while ((n <= MAX_N) && (f_out >= clock));
811 p += p_inc;
812 } while ((p <= p_max));
814 if (!m_best) {
815 WRN_MSG("cannot find parameters for clock %d\n", clock);
816 return 1;
818 m = m_best;
819 n = n_best;
820 p = p_best;
821 splitm(m, &m1, &m2);
822 splitp(p, &p1, &p2);
823 n1 = n - 2;
825 DBG_MSG("m, n, p: %d (%d,%d), %d (%d), %d (%d,%d), "
826 "f: %d (%d), VCO: %d\n",
827 m, m1, m2, n, n1, p, p1, p2,
828 CALC_VCLOCK3(m, n, p), CALC_VCLOCK(m1, m2, n1, p1, p2),
829 CALC_VCLOCK3(m, n, p) * p);
830 *retm1 = m1;
831 *retm2 = m2;
832 *retn = n1;
833 *retp1 = p1;
834 *retp2 = p2;
835 *retclock = CALC_VCLOCK(m1, m2, n1, p1, p2);
837 return 0;
840 static __inline__ int
841 check_overflow(u32 value, u32 limit, const char *description)
843 if (value > limit) {
844 WRN_MSG("%s value %d exceeds limit %d\n",
845 description, value, limit);
846 return 1;
848 return 0;
851 /* It is assumed that hw is filled in with the initial state information. */
853 intelfbhw_mode_to_hw(struct intelfb_info *dinfo, struct intelfb_hwstate *hw,
854 struct fb_var_screeninfo *var)
856 int pipe = PIPE_A;
857 u32 *dpll, *fp0, *fp1;
858 u32 m1, m2, n, p1, p2, clock_target, clock;
859 u32 hsync_start, hsync_end, hblank_start, hblank_end, htotal, hactive;
860 u32 vsync_start, vsync_end, vblank_start, vblank_end, vtotal, vactive;
861 u32 vsync_pol, hsync_pol;
862 u32 *vs, *vb, *vt, *hs, *hb, *ht, *ss, *pipe_conf;
864 DBG_MSG("intelfbhw_mode_to_hw\n");
866 /* Disable VGA */
867 hw->vgacntrl |= VGA_DISABLE;
869 /* Check whether pipe A or pipe B is enabled. */
870 if (hw->pipe_a_conf & PIPECONF_ENABLE)
871 pipe = PIPE_A;
872 else if (hw->pipe_b_conf & PIPECONF_ENABLE)
873 pipe = PIPE_B;
875 /* Set which pipe's registers will be set. */
876 if (pipe == PIPE_B) {
877 dpll = &hw->dpll_b;
878 fp0 = &hw->fpb0;
879 fp1 = &hw->fpb1;
880 hs = &hw->hsync_b;
881 hb = &hw->hblank_b;
882 ht = &hw->htotal_b;
883 vs = &hw->vsync_b;
884 vb = &hw->vblank_b;
885 vt = &hw->vtotal_b;
886 ss = &hw->src_size_b;
887 pipe_conf = &hw->pipe_b_conf;
888 } else {
889 dpll = &hw->dpll_a;
890 fp0 = &hw->fpa0;
891 fp1 = &hw->fpa1;
892 hs = &hw->hsync_a;
893 hb = &hw->hblank_a;
894 ht = &hw->htotal_a;
895 vs = &hw->vsync_a;
896 vb = &hw->vblank_a;
897 vt = &hw->vtotal_a;
898 ss = &hw->src_size_a;
899 pipe_conf = &hw->pipe_a_conf;
902 /* Use ADPA register for sync control. */
903 hw->adpa &= ~ADPA_USE_VGA_HVPOLARITY;
905 /* sync polarity */
906 hsync_pol = (var->sync & FB_SYNC_HOR_HIGH_ACT) ?
907 ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW;
908 vsync_pol = (var->sync & FB_SYNC_VERT_HIGH_ACT) ?
909 ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW;
910 hw->adpa &= ~((ADPA_SYNC_ACTIVE_MASK << ADPA_VSYNC_ACTIVE_SHIFT) |
911 (ADPA_SYNC_ACTIVE_MASK << ADPA_HSYNC_ACTIVE_SHIFT));
912 hw->adpa |= (hsync_pol << ADPA_HSYNC_ACTIVE_SHIFT) |
913 (vsync_pol << ADPA_VSYNC_ACTIVE_SHIFT);
915 /* Connect correct pipe to the analog port DAC */
916 hw->adpa &= ~(PIPE_MASK << ADPA_PIPE_SELECT_SHIFT);
917 hw->adpa |= (pipe << ADPA_PIPE_SELECT_SHIFT);
919 /* Set DPMS state to D0 (on) */
920 hw->adpa &= ~ADPA_DPMS_CONTROL_MASK;
921 hw->adpa |= ADPA_DPMS_D0;
923 hw->adpa |= ADPA_DAC_ENABLE;
925 *dpll |= (DPLL_VCO_ENABLE | DPLL_VGA_MODE_DISABLE);
926 *dpll &= ~(DPLL_RATE_SELECT_MASK | DPLL_REFERENCE_SELECT_MASK);
927 *dpll |= (DPLL_REFERENCE_DEFAULT | DPLL_RATE_SELECT_FP0);
929 /* Desired clock in kHz */
930 clock_target = 1000000000 / var->pixclock;
932 if (calc_pll_params(clock_target, &m1, &m2, &n, &p1, &p2, &clock)) {
933 WRN_MSG("calc_pll_params failed\n");
934 return 1;
937 /* Check for overflow. */
938 if (check_overflow(p1, DPLL_P1_MASK, "PLL P1 parameter"))
939 return 1;
940 if (check_overflow(p2, DPLL_P2_MASK, "PLL P2 parameter"))
941 return 1;
942 if (check_overflow(m1, FP_DIVISOR_MASK, "PLL M1 parameter"))
943 return 1;
944 if (check_overflow(m2, FP_DIVISOR_MASK, "PLL M2 parameter"))
945 return 1;
946 if (check_overflow(n, FP_DIVISOR_MASK, "PLL N parameter"))
947 return 1;
949 *dpll &= ~DPLL_P1_FORCE_DIV2;
950 *dpll &= ~((DPLL_P2_MASK << DPLL_P2_SHIFT) |
951 (DPLL_P1_MASK << DPLL_P1_SHIFT));
952 *dpll |= (p2 << DPLL_P2_SHIFT) | (p1 << DPLL_P1_SHIFT);
953 *fp0 = (n << FP_N_DIVISOR_SHIFT) |
954 (m1 << FP_M1_DIVISOR_SHIFT) |
955 (m2 << FP_M2_DIVISOR_SHIFT);
956 *fp1 = *fp0;
958 hw->dvob &= ~PORT_ENABLE;
959 hw->dvoc &= ~PORT_ENABLE;
961 /* Use display plane A. */
962 hw->disp_a_ctrl |= DISPPLANE_PLANE_ENABLE;
963 hw->disp_a_ctrl &= ~DISPPLANE_GAMMA_ENABLE;
964 hw->disp_a_ctrl &= ~DISPPLANE_PIXFORMAT_MASK;
965 switch (intelfb_var_to_depth(var)) {
966 case 8:
967 hw->disp_a_ctrl |= DISPPLANE_8BPP | DISPPLANE_GAMMA_ENABLE;
968 break;
969 case 15:
970 hw->disp_a_ctrl |= DISPPLANE_15_16BPP;
971 break;
972 case 16:
973 hw->disp_a_ctrl |= DISPPLANE_16BPP;
974 break;
975 case 24:
976 hw->disp_a_ctrl |= DISPPLANE_32BPP_NO_ALPHA;
977 break;
979 hw->disp_a_ctrl &= ~(PIPE_MASK << DISPPLANE_SEL_PIPE_SHIFT);
980 hw->disp_a_ctrl |= (pipe << DISPPLANE_SEL_PIPE_SHIFT);
982 /* Set CRTC registers. */
983 hactive = var->xres;
984 hsync_start = hactive + var->right_margin;
985 hsync_end = hsync_start + var->hsync_len;
986 htotal = hsync_end + var->left_margin;
987 hblank_start = hactive;
988 hblank_end = htotal;
990 DBG_MSG("H: act %d, ss %d, se %d, tot %d bs %d, be %d\n",
991 hactive, hsync_start, hsync_end, htotal, hblank_start,
992 hblank_end);
994 vactive = var->yres;
995 vsync_start = vactive + var->lower_margin;
996 vsync_end = vsync_start + var->vsync_len;
997 vtotal = vsync_end + var->upper_margin;
998 vblank_start = vactive;
999 vblank_end = vtotal;
1000 vblank_end = vsync_end + 1;
1002 DBG_MSG("V: act %d, ss %d, se %d, tot %d bs %d, be %d\n",
1003 vactive, vsync_start, vsync_end, vtotal, vblank_start,
1004 vblank_end);
1006 /* Adjust for register values, and check for overflow. */
1007 hactive--;
1008 if (check_overflow(hactive, HACTIVE_MASK, "CRTC hactive"))
1009 return 1;
1010 hsync_start--;
1011 if (check_overflow(hsync_start, HSYNCSTART_MASK, "CRTC hsync_start"))
1012 return 1;
1013 hsync_end--;
1014 if (check_overflow(hsync_end, HSYNCEND_MASK, "CRTC hsync_end"))
1015 return 1;
1016 htotal--;
1017 if (check_overflow(htotal, HTOTAL_MASK, "CRTC htotal"))
1018 return 1;
1019 hblank_start--;
1020 if (check_overflow(hblank_start, HBLANKSTART_MASK, "CRTC hblank_start"))
1021 return 1;
1022 hblank_end--;
1023 if (check_overflow(hblank_end, HBLANKEND_MASK, "CRTC hblank_end"))
1024 return 1;
1026 vactive--;
1027 if (check_overflow(vactive, VACTIVE_MASK, "CRTC vactive"))
1028 return 1;
1029 vsync_start--;
1030 if (check_overflow(vsync_start, VSYNCSTART_MASK, "CRTC vsync_start"))
1031 return 1;
1032 vsync_end--;
1033 if (check_overflow(vsync_end, VSYNCEND_MASK, "CRTC vsync_end"))
1034 return 1;
1035 vtotal--;
1036 if (check_overflow(vtotal, VTOTAL_MASK, "CRTC vtotal"))
1037 return 1;
1038 vblank_start--;
1039 if (check_overflow(vblank_start, VBLANKSTART_MASK, "CRTC vblank_start"))
1040 return 1;
1041 vblank_end--;
1042 if (check_overflow(vblank_end, VBLANKEND_MASK, "CRTC vblank_end"))
1043 return 1;
1045 *ht = (htotal << HTOTAL_SHIFT) | (hactive << HACTIVE_SHIFT);
1046 *hb = (hblank_start << HBLANKSTART_SHIFT) |
1047 (hblank_end << HSYNCEND_SHIFT);
1048 *hs = (hsync_start << HSYNCSTART_SHIFT) | (hsync_end << HSYNCEND_SHIFT);
1050 *vt = (vtotal << VTOTAL_SHIFT) | (vactive << VACTIVE_SHIFT);
1051 *vb = (vblank_start << VBLANKSTART_SHIFT) |
1052 (vblank_end << VSYNCEND_SHIFT);
1053 *vs = (vsync_start << VSYNCSTART_SHIFT) | (vsync_end << VSYNCEND_SHIFT);
1054 *ss = (hactive << SRC_SIZE_HORIZ_SHIFT) |
1055 (vactive << SRC_SIZE_VERT_SHIFT);
1057 hw->disp_a_stride = var->xres_virtual * var->bits_per_pixel / 8;
1058 DBG_MSG("pitch is %d\n", hw->disp_a_stride);
1060 hw->disp_a_base = hw->disp_a_stride * var->yoffset +
1061 var->xoffset * var->bits_per_pixel / 8;
1063 hw->disp_a_base += dinfo->fb.offset << 12;
1065 /* Check stride alignment. */
1066 if (hw->disp_a_stride % STRIDE_ALIGNMENT != 0) {
1067 WRN_MSG("display stride %d has bad alignment %d\n",
1068 hw->disp_a_stride, STRIDE_ALIGNMENT);
1069 return 1;
1072 /* Set the palette to 8-bit mode. */
1073 *pipe_conf &= ~PIPECONF_GAMMA;
1074 return 0;
1077 /* Program a (non-VGA) video mode. */
1079 intelfbhw_program_mode(struct intelfb_info *dinfo,
1080 const struct intelfb_hwstate *hw, int blank)
1082 int pipe = PIPE_A;
1083 u32 tmp;
1084 const u32 *dpll, *fp0, *fp1, *pipe_conf;
1085 const u32 *hs, *ht, *hb, *vs, *vt, *vb, *ss;
1086 u32 dpll_reg, fp0_reg, fp1_reg, pipe_conf_reg;
1087 u32 hsync_reg, htotal_reg, hblank_reg;
1088 u32 vsync_reg, vtotal_reg, vblank_reg;
1089 u32 src_size_reg;
1091 /* Assume single pipe, display plane A, analog CRT. */
1093 #if VERBOSE > 0
1094 DBG_MSG("intelfbhw_program_mode\n");
1095 #endif
1097 /* Disable VGA */
1098 tmp = INREG(VGACNTRL);
1099 tmp |= VGA_DISABLE;
1100 OUTREG(VGACNTRL, tmp);
1102 /* Check whether pipe A or pipe B is enabled. */
1103 if (hw->pipe_a_conf & PIPECONF_ENABLE)
1104 pipe = PIPE_A;
1105 else if (hw->pipe_b_conf & PIPECONF_ENABLE)
1106 pipe = PIPE_B;
1108 dinfo->pipe = pipe;
1110 if (pipe == PIPE_B) {
1111 dpll = &hw->dpll_b;
1112 fp0 = &hw->fpb0;
1113 fp1 = &hw->fpb1;
1114 pipe_conf = &hw->pipe_b_conf;
1115 hs = &hw->hsync_b;
1116 hb = &hw->hblank_b;
1117 ht = &hw->htotal_b;
1118 vs = &hw->vsync_b;
1119 vb = &hw->vblank_b;
1120 vt = &hw->vtotal_b;
1121 ss = &hw->src_size_b;
1122 dpll_reg = DPLL_B;
1123 fp0_reg = FPB0;
1124 fp1_reg = FPB1;
1125 pipe_conf_reg = PIPEBCONF;
1126 hsync_reg = HSYNC_B;
1127 htotal_reg = HTOTAL_B;
1128 hblank_reg = HBLANK_B;
1129 vsync_reg = VSYNC_B;
1130 vtotal_reg = VTOTAL_B;
1131 vblank_reg = VBLANK_B;
1132 src_size_reg = SRC_SIZE_B;
1133 } else {
1134 dpll = &hw->dpll_a;
1135 fp0 = &hw->fpa0;
1136 fp1 = &hw->fpa1;
1137 pipe_conf = &hw->pipe_a_conf;
1138 hs = &hw->hsync_a;
1139 hb = &hw->hblank_a;
1140 ht = &hw->htotal_a;
1141 vs = &hw->vsync_a;
1142 vb = &hw->vblank_a;
1143 vt = &hw->vtotal_a;
1144 ss = &hw->src_size_a;
1145 dpll_reg = DPLL_A;
1146 fp0_reg = FPA0;
1147 fp1_reg = FPA1;
1148 pipe_conf_reg = PIPEACONF;
1149 hsync_reg = HSYNC_A;
1150 htotal_reg = HTOTAL_A;
1151 hblank_reg = HBLANK_A;
1152 vsync_reg = VSYNC_A;
1153 vtotal_reg = VTOTAL_A;
1154 vblank_reg = VBLANK_A;
1155 src_size_reg = SRC_SIZE_A;
1158 /* Disable planes A and B. */
1159 tmp = INREG(DSPACNTR);
1160 tmp &= ~DISPPLANE_PLANE_ENABLE;
1161 OUTREG(DSPACNTR, tmp);
1162 tmp = INREG(DSPBCNTR);
1163 tmp &= ~DISPPLANE_PLANE_ENABLE;
1164 OUTREG(DSPBCNTR, tmp);
1166 /* Wait for vblank. For now, just wait for a 50Hz cycle (20ms)) */
1167 mdelay(20);
1169 /* Disable Sync */
1170 tmp = INREG(ADPA);
1171 tmp &= ~ADPA_DPMS_CONTROL_MASK;
1172 tmp |= ADPA_DPMS_D3;
1173 OUTREG(ADPA, tmp);
1175 /* turn off pipe */
1176 tmp = INREG(pipe_conf_reg);
1177 tmp &= ~PIPECONF_ENABLE;
1178 OUTREG(pipe_conf_reg, tmp);
1180 /* turn off PLL */
1181 tmp = INREG(dpll_reg);
1182 dpll_reg &= ~DPLL_VCO_ENABLE;
1183 OUTREG(dpll_reg, tmp);
1185 /* Set PLL parameters */
1186 OUTREG(dpll_reg, *dpll & ~DPLL_VCO_ENABLE);
1187 OUTREG(fp0_reg, *fp0);
1188 OUTREG(fp1_reg, *fp1);
1190 /* Set pipe parameters */
1191 OUTREG(hsync_reg, *hs);
1192 OUTREG(hblank_reg, *hb);
1193 OUTREG(htotal_reg, *ht);
1194 OUTREG(vsync_reg, *vs);
1195 OUTREG(vblank_reg, *vb);
1196 OUTREG(vtotal_reg, *vt);
1197 OUTREG(src_size_reg, *ss);
1199 /* Set DVOs B/C */
1200 OUTREG(DVOB, hw->dvob);
1201 OUTREG(DVOC, hw->dvoc);
1203 /* Set ADPA */
1204 OUTREG(ADPA, (hw->adpa & ~(ADPA_DPMS_CONTROL_MASK)) | ADPA_DPMS_D3);
1206 /* Enable PLL */
1207 tmp = INREG(dpll_reg);
1208 tmp |= DPLL_VCO_ENABLE;
1209 OUTREG(dpll_reg, tmp);
1211 /* Enable pipe */
1212 OUTREG(pipe_conf_reg, *pipe_conf | PIPECONF_ENABLE);
1214 /* Enable sync */
1215 tmp = INREG(ADPA);
1216 tmp &= ~ADPA_DPMS_CONTROL_MASK;
1217 tmp |= ADPA_DPMS_D0;
1218 OUTREG(ADPA, tmp);
1220 /* setup display plane */
1221 if (dinfo->pdev->device == PCI_DEVICE_ID_INTEL_830M) {
1223 * i830M errata: the display plane must be enabled
1224 * to allow writes to the other bits in the plane
1225 * control register.
1227 tmp = INREG(DSPACNTR);
1228 if ((tmp & DISPPLANE_PLANE_ENABLE) != DISPPLANE_PLANE_ENABLE) {
1229 tmp |= DISPPLANE_PLANE_ENABLE;
1230 OUTREG(DSPACNTR, tmp);
1231 OUTREG(DSPACNTR,
1232 hw->disp_a_ctrl|DISPPLANE_PLANE_ENABLE);
1233 mdelay(1);
1237 OUTREG(DSPACNTR, hw->disp_a_ctrl & ~DISPPLANE_PLANE_ENABLE);
1238 OUTREG(DSPASTRIDE, hw->disp_a_stride);
1239 OUTREG(DSPABASE, hw->disp_a_base);
1241 /* Enable plane */
1242 if (!blank) {
1243 tmp = INREG(DSPACNTR);
1244 tmp |= DISPPLANE_PLANE_ENABLE;
1245 OUTREG(DSPACNTR, tmp);
1246 OUTREG(DSPABASE, hw->disp_a_base);
1249 return 0;
1252 /* forward declarations */
1253 static void refresh_ring(struct intelfb_info *dinfo);
1254 static void reset_state(struct intelfb_info *dinfo);
1255 static void do_flush(struct intelfb_info *dinfo);
1257 static int
1258 wait_ring(struct intelfb_info *dinfo, int n)
1260 int i = 0;
1261 unsigned long end;
1262 u32 last_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
1264 #if VERBOSE > 0
1265 DBG_MSG("wait_ring: %d\n", n);
1266 #endif
1268 end = jiffies + (HZ * 3);
1269 while (dinfo->ring_space < n) {
1270 dinfo->ring_head = (u8 __iomem *)(INREG(PRI_RING_HEAD) &
1271 RING_HEAD_MASK);
1272 if (dinfo->ring_tail + RING_MIN_FREE <
1273 (u32 __iomem) dinfo->ring_head)
1274 dinfo->ring_space = (u32 __iomem) dinfo->ring_head
1275 - (dinfo->ring_tail + RING_MIN_FREE);
1276 else
1277 dinfo->ring_space = (dinfo->ring.size +
1278 (u32 __iomem) dinfo->ring_head)
1279 - (dinfo->ring_tail + RING_MIN_FREE);
1280 if ((u32 __iomem) dinfo->ring_head != last_head) {
1281 end = jiffies + (HZ * 3);
1282 last_head = (u32 __iomem) dinfo->ring_head;
1284 i++;
1285 if (time_before(end, jiffies)) {
1286 if (!i) {
1287 /* Try again */
1288 reset_state(dinfo);
1289 refresh_ring(dinfo);
1290 do_flush(dinfo);
1291 end = jiffies + (HZ * 3);
1292 i = 1;
1293 } else {
1294 WRN_MSG("ring buffer : space: %d wanted %d\n",
1295 dinfo->ring_space, n);
1296 WRN_MSG("lockup - turning off hardware "
1297 "acceleration\n");
1298 dinfo->ring_lockup = 1;
1299 break;
1302 udelay(1);
1304 return i;
1307 static void
1308 do_flush(struct intelfb_info *dinfo) {
1309 START_RING(2);
1310 OUT_RING(MI_FLUSH | MI_WRITE_DIRTY_STATE | MI_INVALIDATE_MAP_CACHE);
1311 OUT_RING(MI_NOOP);
1312 ADVANCE_RING();
1315 void
1316 intelfbhw_do_sync(struct intelfb_info *dinfo)
1318 #if VERBOSE > 0
1319 DBG_MSG("intelfbhw_do_sync\n");
1320 #endif
1322 if (!dinfo->accel)
1323 return;
1326 * Send a flush, then wait until the ring is empty. This is what
1327 * the XFree86 driver does, and actually it doesn't seem a lot worse
1328 * than the recommended method (both have problems).
1330 do_flush(dinfo);
1331 wait_ring(dinfo, dinfo->ring.size - RING_MIN_FREE);
1332 dinfo->ring_space = dinfo->ring.size - RING_MIN_FREE;
1335 static void
1336 refresh_ring(struct intelfb_info *dinfo)
1338 #if VERBOSE > 0
1339 DBG_MSG("refresh_ring\n");
1340 #endif
1342 dinfo->ring_head = (u8 __iomem *) (INREG(PRI_RING_HEAD) &
1343 RING_HEAD_MASK);
1344 dinfo->ring_tail = INREG(PRI_RING_TAIL) & RING_TAIL_MASK;
1345 if (dinfo->ring_tail + RING_MIN_FREE < (u32 __iomem)dinfo->ring_head)
1346 dinfo->ring_space = (u32 __iomem) dinfo->ring_head
1347 - (dinfo->ring_tail + RING_MIN_FREE);
1348 else
1349 dinfo->ring_space = (dinfo->ring.size +
1350 (u32 __iomem) dinfo->ring_head)
1351 - (dinfo->ring_tail + RING_MIN_FREE);
1354 static void
1355 reset_state(struct intelfb_info *dinfo)
1357 int i;
1358 u32 tmp;
1360 #if VERBOSE > 0
1361 DBG_MSG("reset_state\n");
1362 #endif
1364 for (i = 0; i < FENCE_NUM; i++)
1365 OUTREG(FENCE + (i << 2), 0);
1367 /* Flush the ring buffer if it's enabled. */
1368 tmp = INREG(PRI_RING_LENGTH);
1369 if (tmp & RING_ENABLE) {
1370 #if VERBOSE > 0
1371 DBG_MSG("reset_state: ring was enabled\n");
1372 #endif
1373 refresh_ring(dinfo);
1374 intelfbhw_do_sync(dinfo);
1375 DO_RING_IDLE();
1378 OUTREG(PRI_RING_LENGTH, 0);
1379 OUTREG(PRI_RING_HEAD, 0);
1380 OUTREG(PRI_RING_TAIL, 0);
1381 OUTREG(PRI_RING_START, 0);
1384 /* Stop the 2D engine, and turn off the ring buffer. */
1385 void
1386 intelfbhw_2d_stop(struct intelfb_info *dinfo)
1388 #if VERBOSE > 0
1389 DBG_MSG("intelfbhw_2d_stop: accel: %d, ring_active: %d\n", dinfo->accel,
1390 dinfo->ring_active);
1391 #endif
1393 if (!dinfo->accel)
1394 return;
1396 dinfo->ring_active = 0;
1397 reset_state(dinfo);
1401 * Enable the ring buffer, and initialise the 2D engine.
1402 * It is assumed that the graphics engine has been stopped by previously
1403 * calling intelfb_2d_stop().
1405 void
1406 intelfbhw_2d_start(struct intelfb_info *dinfo)
1408 #if VERBOSE > 0
1409 DBG_MSG("intelfbhw_2d_start: accel: %d, ring_active: %d\n",
1410 dinfo->accel, dinfo->ring_active);
1411 #endif
1413 if (!dinfo->accel)
1414 return;
1416 /* Initialise the primary ring buffer. */
1417 OUTREG(PRI_RING_LENGTH, 0);
1418 OUTREG(PRI_RING_TAIL, 0);
1419 OUTREG(PRI_RING_HEAD, 0);
1421 OUTREG(PRI_RING_START, dinfo->ring.physical & RING_START_MASK);
1422 OUTREG(PRI_RING_LENGTH,
1423 ((dinfo->ring.size - GTT_PAGE_SIZE) & RING_LENGTH_MASK) |
1424 RING_NO_REPORT | RING_ENABLE);
1425 refresh_ring(dinfo);
1426 dinfo->ring_active = 1;
1429 /* 2D fillrect (solid fill or invert) */
1430 void
1431 intelfbhw_do_fillrect(struct intelfb_info *dinfo, u32 x, u32 y, u32 w, u32 h,
1432 u32 color, u32 pitch, u32 bpp, u32 rop)
1434 u32 br00, br09, br13, br14, br16;
1436 #if VERBOSE > 0
1437 DBG_MSG("intelfbhw_do_fillrect: (%d,%d) %dx%d, c 0x%06x, p %d bpp %d, "
1438 "rop 0x%02x\n", x, y, w, h, color, pitch, bpp, rop);
1439 #endif
1441 br00 = COLOR_BLT_CMD;
1442 br09 = dinfo->fb_start + (y * pitch + x * (bpp / 8));
1443 br13 = (rop << ROP_SHIFT) | pitch;
1444 br14 = (h << HEIGHT_SHIFT) | ((w * (bpp / 8)) << WIDTH_SHIFT);
1445 br16 = color;
1447 switch (bpp) {
1448 case 8:
1449 br13 |= COLOR_DEPTH_8;
1450 break;
1451 case 16:
1452 br13 |= COLOR_DEPTH_16;
1453 break;
1454 case 32:
1455 br13 |= COLOR_DEPTH_32;
1456 br00 |= WRITE_ALPHA | WRITE_RGB;
1457 break;
1460 START_RING(6);
1461 OUT_RING(br00);
1462 OUT_RING(br13);
1463 OUT_RING(br14);
1464 OUT_RING(br09);
1465 OUT_RING(br16);
1466 OUT_RING(MI_NOOP);
1467 ADVANCE_RING();
1469 #if VERBOSE > 0
1470 DBG_MSG("ring = 0x%08x, 0x%08x (%d)\n", dinfo->ring_head,
1471 dinfo->ring_tail, dinfo->ring_space);
1472 #endif
1475 void
1476 intelfbhw_do_bitblt(struct intelfb_info *dinfo, u32 curx, u32 cury,
1477 u32 dstx, u32 dsty, u32 w, u32 h, u32 pitch, u32 bpp)
1479 u32 br00, br09, br11, br12, br13, br22, br23, br26;
1481 #if VERBOSE > 0
1482 DBG_MSG("intelfbhw_do_bitblt: (%d,%d)->(%d,%d) %dx%d, p %d bpp %d\n",
1483 curx, cury, dstx, dsty, w, h, pitch, bpp);
1484 #endif
1486 br00 = XY_SRC_COPY_BLT_CMD;
1487 br09 = dinfo->fb_start;
1488 br11 = (pitch << PITCH_SHIFT);
1489 br12 = dinfo->fb_start;
1490 br13 = (SRC_ROP_GXCOPY << ROP_SHIFT) | (pitch << PITCH_SHIFT);
1491 br22 = (dstx << WIDTH_SHIFT) | (dsty << HEIGHT_SHIFT);
1492 br23 = ((dstx + w) << WIDTH_SHIFT) |
1493 ((dsty + h) << HEIGHT_SHIFT);
1494 br26 = (curx << WIDTH_SHIFT) | (cury << HEIGHT_SHIFT);
1496 switch (bpp) {
1497 case 8:
1498 br13 |= COLOR_DEPTH_8;
1499 break;
1500 case 16:
1501 br13 |= COLOR_DEPTH_16;
1502 break;
1503 case 32:
1504 br13 |= COLOR_DEPTH_32;
1505 br00 |= WRITE_ALPHA | WRITE_RGB;
1506 break;
1509 START_RING(8);
1510 OUT_RING(br00);
1511 OUT_RING(br13);
1512 OUT_RING(br22);
1513 OUT_RING(br23);
1514 OUT_RING(br09);
1515 OUT_RING(br26);
1516 OUT_RING(br11);
1517 OUT_RING(br12);
1518 ADVANCE_RING();
1522 intelfbhw_do_drawglyph(struct intelfb_info *dinfo, u32 fg, u32 bg, u32 w,
1523 u32 h, const u8* cdat, u32 x, u32 y, u32 pitch, u32 bpp)
1525 int nbytes, ndwords, pad, tmp;
1526 u32 br00, br09, br13, br18, br19, br22, br23;
1527 int dat, ix, iy, iw;
1528 int i, j;
1530 #if VERBOSE > 0
1531 DBG_MSG("intelfbhw_do_drawglyph: (%d,%d) %dx%d\n", x, y, w, h);
1532 #endif
1534 /* size in bytes of a padded scanline */
1535 nbytes = ROUND_UP_TO(w, 16) / 8;
1537 /* Total bytes of padded scanline data to write out. */
1538 nbytes = nbytes * h;
1541 * Check if the glyph data exceeds the immediate mode limit.
1542 * It would take a large font (1K pixels) to hit this limit.
1544 if (nbytes > MAX_MONO_IMM_SIZE)
1545 return 0;
1547 /* Src data is packaged a dword (32-bit) at a time. */
1548 ndwords = ROUND_UP_TO(nbytes, 4) / 4;
1551 * Ring has to be padded to a quad word. But because the command starts
1552 with 7 bytes, pad only if there is an even number of ndwords
1554 pad = !(ndwords % 2);
1556 tmp = (XY_MONO_SRC_IMM_BLT_CMD & DW_LENGTH_MASK) + ndwords;
1557 br00 = (XY_MONO_SRC_IMM_BLT_CMD & ~DW_LENGTH_MASK) | tmp;
1558 br09 = dinfo->fb_start;
1559 br13 = (SRC_ROP_GXCOPY << ROP_SHIFT) | (pitch << PITCH_SHIFT);
1560 br18 = bg;
1561 br19 = fg;
1562 br22 = (x << WIDTH_SHIFT) | (y << HEIGHT_SHIFT);
1563 br23 = ((x + w) << WIDTH_SHIFT) | ((y + h) << HEIGHT_SHIFT);
1565 switch (bpp) {
1566 case 8:
1567 br13 |= COLOR_DEPTH_8;
1568 break;
1569 case 16:
1570 br13 |= COLOR_DEPTH_16;
1571 break;
1572 case 32:
1573 br13 |= COLOR_DEPTH_32;
1574 br00 |= WRITE_ALPHA | WRITE_RGB;
1575 break;
1578 START_RING(8 + ndwords);
1579 OUT_RING(br00);
1580 OUT_RING(br13);
1581 OUT_RING(br22);
1582 OUT_RING(br23);
1583 OUT_RING(br09);
1584 OUT_RING(br18);
1585 OUT_RING(br19);
1586 ix = iy = 0;
1587 iw = ROUND_UP_TO(w, 8) / 8;
1588 while (ndwords--) {
1589 dat = 0;
1590 for (j = 0; j < 2; ++j) {
1591 for (i = 0; i < 2; ++i) {
1592 if (ix != iw || i == 0)
1593 dat |= cdat[iy*iw + ix++] << (i+j*2)*8;
1595 if (ix == iw && iy != (h-1)) {
1596 ix = 0;
1597 ++iy;
1600 OUT_RING(dat);
1602 if (pad)
1603 OUT_RING(MI_NOOP);
1604 ADVANCE_RING();
1606 return 1;
1609 /* HW cursor functions. */
1610 void
1611 intelfbhw_cursor_init(struct intelfb_info *dinfo)
1613 u32 tmp;
1615 #if VERBOSE > 0
1616 DBG_MSG("intelfbhw_cursor_init\n");
1617 #endif
1619 if (dinfo->mobile) {
1620 if (!dinfo->cursor.physical)
1621 return;
1622 tmp = INREG(CURSOR_A_CONTROL);
1623 tmp &= ~(CURSOR_MODE_MASK | CURSOR_MOBILE_GAMMA_ENABLE |
1624 CURSOR_MEM_TYPE_LOCAL |
1625 (1 << CURSOR_PIPE_SELECT_SHIFT));
1626 tmp |= CURSOR_MODE_DISABLE;
1627 OUTREG(CURSOR_A_CONTROL, tmp);
1628 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1629 } else {
1630 tmp = INREG(CURSOR_CONTROL);
1631 tmp &= ~(CURSOR_FORMAT_MASK | CURSOR_GAMMA_ENABLE |
1632 CURSOR_ENABLE | CURSOR_STRIDE_MASK);
1633 tmp = CURSOR_FORMAT_3C;
1634 OUTREG(CURSOR_CONTROL, tmp);
1635 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.offset << 12);
1636 tmp = (64 << CURSOR_SIZE_H_SHIFT) |
1637 (64 << CURSOR_SIZE_V_SHIFT);
1638 OUTREG(CURSOR_SIZE, tmp);
1642 void
1643 intelfbhw_cursor_hide(struct intelfb_info *dinfo)
1645 u32 tmp;
1647 #if VERBOSE > 0
1648 DBG_MSG("intelfbhw_cursor_hide\n");
1649 #endif
1651 dinfo->cursor_on = 0;
1652 if (dinfo->mobile) {
1653 if (!dinfo->cursor.physical)
1654 return;
1655 tmp = INREG(CURSOR_A_CONTROL);
1656 tmp &= ~CURSOR_MODE_MASK;
1657 tmp |= CURSOR_MODE_DISABLE;
1658 OUTREG(CURSOR_A_CONTROL, tmp);
1659 /* Flush changes */
1660 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1661 } else {
1662 tmp = INREG(CURSOR_CONTROL);
1663 tmp &= ~CURSOR_ENABLE;
1664 OUTREG(CURSOR_CONTROL, tmp);
1668 void
1669 intelfbhw_cursor_show(struct intelfb_info *dinfo)
1671 u32 tmp;
1673 #if VERBOSE > 0
1674 DBG_MSG("intelfbhw_cursor_show\n");
1675 #endif
1677 dinfo->cursor_on = 1;
1679 if (dinfo->cursor_blanked)
1680 return;
1682 if (dinfo->mobile) {
1683 if (!dinfo->cursor.physical)
1684 return;
1685 tmp = INREG(CURSOR_A_CONTROL);
1686 tmp &= ~CURSOR_MODE_MASK;
1687 tmp |= CURSOR_MODE_64_4C_AX;
1688 OUTREG(CURSOR_A_CONTROL, tmp);
1689 /* Flush changes */
1690 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1691 } else {
1692 tmp = INREG(CURSOR_CONTROL);
1693 tmp |= CURSOR_ENABLE;
1694 OUTREG(CURSOR_CONTROL, tmp);
1698 void
1699 intelfbhw_cursor_setpos(struct intelfb_info *dinfo, int x, int y)
1701 u32 tmp;
1703 #if VERBOSE > 0
1704 DBG_MSG("intelfbhw_cursor_setpos: (%d, %d)\n", x, y);
1705 #endif
1708 * Sets the position. The coordinates are assumed to already
1709 * have any offset adjusted. Assume that the cursor is never
1710 * completely off-screen, and that x, y are always >= 0.
1713 tmp = ((x & CURSOR_POS_MASK) << CURSOR_X_SHIFT) |
1714 ((y & CURSOR_POS_MASK) << CURSOR_Y_SHIFT);
1715 OUTREG(CURSOR_A_POSITION, tmp);
1718 void
1719 intelfbhw_cursor_setcolor(struct intelfb_info *dinfo, u32 bg, u32 fg)
1721 #if VERBOSE > 0
1722 DBG_MSG("intelfbhw_cursor_setcolor\n");
1723 #endif
1725 OUTREG(CURSOR_A_PALETTE0, bg & CURSOR_PALETTE_MASK);
1726 OUTREG(CURSOR_A_PALETTE1, fg & CURSOR_PALETTE_MASK);
1727 OUTREG(CURSOR_A_PALETTE2, fg & CURSOR_PALETTE_MASK);
1728 OUTREG(CURSOR_A_PALETTE3, bg & CURSOR_PALETTE_MASK);
1731 void
1732 intelfbhw_cursor_load(struct intelfb_info *dinfo, int width, int height,
1733 u8 *data)
1735 u8 __iomem *addr = (u8 __iomem *)dinfo->cursor.virtual;
1736 int i, j, w = width / 8;
1737 int mod = width % 8, t_mask, d_mask;
1739 #if VERBOSE > 0
1740 DBG_MSG("intelfbhw_cursor_load\n");
1741 #endif
1743 if (!dinfo->cursor.virtual)
1744 return;
1746 t_mask = 0xff >> mod;
1747 d_mask = ~(0xff >> mod);
1748 for (i = height; i--; ) {
1749 for (j = 0; j < w; j++) {
1750 writeb(0x00, addr + j);
1751 writeb(*(data++), addr + j+8);
1753 if (mod) {
1754 writeb(t_mask, addr + j);
1755 writeb(*(data++) & d_mask, addr + j+8);
1757 addr += 16;
1761 void
1762 intelfbhw_cursor_reset(struct intelfb_info *dinfo) {
1763 u8 __iomem *addr = (u8 __iomem *)dinfo->cursor.virtual;
1764 int i, j;
1766 #if VERBOSE > 0
1767 DBG_MSG("intelfbhw_cursor_reset\n");
1768 #endif
1770 if (!dinfo->cursor.virtual)
1771 return;
1773 for (i = 64; i--; ) {
1774 for (j = 0; j < 8; j++) {
1775 writeb(0xff, addr + j+0);
1776 writeb(0x00, addr + j+8);
1778 addr += 16;