2 * linux/drivers/video/sa1100fb.c
4 * Copyright (C) 1999 Eric A. Thomas
5 * Based on acornfb.c Copyright (C) Russell King.
7 * This file is subject to the terms and conditions of the GNU General Public
8 * License. See the file COPYING in the main directory of this archive for
11 * StrongARM 1100 LCD Controller Frame Buffer Driver
13 * Please direct your questions and comments on this driver to the following
16 * linux-arm-kernel@lists.arm.linux.org.uk
18 * Clean patches should be sent to the ARM Linux Patch System. Please see the
19 * following web page for more information:
21 * http://www.arm.linux.org.uk/developer/patches/info.shtml
26 * - With the Neponset plugged into an Assabet, LCD powerdown
27 * doesn't work (LCD stays powered up). Therefore we shouldn't
29 * - We don't limit the CPU clock rate nor the mode selection
30 * according to the available SDRAM bandwidth.
33 * - Linear grayscale palettes and the kernel.
34 * Such code does not belong in the kernel. The kernel frame buffer
35 * drivers do not expect a linear colourmap, but a colourmap based on
36 * the VT100 standard mapping.
38 * If your _userspace_ requires a linear colourmap, then the setup of
39 * such a colourmap belongs _in userspace_, not in the kernel. Code
40 * to set the colourmap correctly from user space has been sent to
41 * David Neuer. It's around 8 lines of C code, plus another 4 to
42 * detect if we are using grayscale.
44 * - The following must never be specified in a panel definition:
45 * LCCR0_LtlEnd, LCCR3_PixClkDiv, LCCR3_VrtSnchL, LCCR3_HorSnchL
47 * - The following should be specified:
48 * either LCCR0_Color or LCCR0_Mono
49 * either LCCR0_Sngl or LCCR0_Dual
50 * either LCCR0_Act or LCCR0_Pas
51 * either LCCR3_OutEnH or LCCD3_OutEnL
52 * either LCCR3_PixRsEdg or LCCR3_PixFlEdg
53 * either LCCR3_ACBsDiv or LCCR3_ACBsCntOff
57 * - Driver appears to be working for Brutus 320x200x8bpp mode. Other
58 * resolutions are working, but only the 8bpp mode is supported.
59 * Changes need to be made to the palette encode and decode routines
60 * to support 4 and 16 bpp modes.
61 * Driver is not designed to be a module. The FrameBuffer is statically
62 * allocated since dynamic allocation of a 300k buffer cannot be
66 * - FrameBuffer memory is now allocated at run-time when the
67 * driver is initialized.
69 * 2000/04/10: Nicolas Pitre <nico@cam.org>
70 * - Big cleanup for dynamic selection of machine type at run time.
72 * 2000/07/19: Jamey Hicks <jamey@crl.dec.com>
73 * - Support for Bitsy aka Compaq iPAQ H3600 added.
75 * 2000/08/07: Tak-Shing Chan <tchan.rd@idthk.com>
76 * Jeff Sutherland <jsutherland@accelent.com>
77 * - Resolved an issue caused by a change made to the Assabet's PLD
78 * earlier this year which broke the framebuffer driver for newer
79 * Phase 4 Assabets. Some other parameters were changed to optimize
80 * for the Sharp display.
82 * 2000/08/09: Kunihiko IMAI <imai@vasara.co.jp>
83 * - XP860 support added
85 * 2000/08/19: Mark Huang <mhuang@livetoy.com>
86 * - Allows standard options to be passed on the kernel command line
87 * for most common passive displays.
90 * - s/save_flags_cli/local_irq_save/
91 * - remove unneeded extra save_flags_cli in sa1100fb_enable_lcd_controller
93 * 2000/10/10: Erik Mouw <J.A.K.Mouw@its.tudelft.nl>
94 * - Updated LART stuff. Fixed some minor bugs.
96 * 2000/10/30: Murphy Chen <murphy@mail.dialogue.com.tw>
97 * - Pangolin support added
99 * 2000/10/31: Roman Jordan <jor@hoeft-wessel.de>
100 * - Huw Webpanel support added
102 * 2000/11/23: Eric Peng <ericpeng@coventive.com>
105 * 2001/02/07: Jamey Hicks <jamey.hicks@compaq.com>
106 * Cliff Brake <cbrake@accelent.com>
107 * - Added PM callback
109 * 2001/05/26: <rmk@arm.linux.org.uk>
110 * - Fix 16bpp so that (a) we use the right colours rather than some
111 * totally random colour depending on what was in page 0, and (b)
112 * we don't de-reference a NULL pointer.
113 * - remove duplicated implementation of consistent_alloc()
114 * - convert dma address types to dma_addr_t
115 * - remove unused 'montype' stuff
116 * - remove redundant zero inits of init_var after the initial
118 * - remove allow_modeset (acornfb idea does not belong here)
120 * 2001/05/28: <rmk@arm.linux.org.uk>
121 * - massive cleanup - move machine dependent data into structures
122 * - I've left various #warnings in - if you see one, and know
123 * the hardware concerned, please get in contact with me.
125 * 2001/05/31: <rmk@arm.linux.org.uk>
126 * - Fix LCCR1 HSW value, fix all machine type specifications to
127 * keep values in line. (Please check your machine type specs)
129 * 2001/06/10: <rmk@arm.linux.org.uk>
130 * - Fiddle with the LCD controller from task context only; mainly
131 * so that we can run with interrupts on, and sleep.
132 * - Convert #warnings into #errors. No pain, no gain. ;)
134 * 2001/06/14: <rmk@arm.linux.org.uk>
135 * - Make the palette BPS value for 12bpp come out correctly.
136 * - Take notice of "greyscale" on any colour depth.
137 * - Make truecolor visuals use the RGB channel encoding information.
139 * 2001/07/02: <rmk@arm.linux.org.uk>
140 * - Fix colourmap problems.
142 * 2001/07/13: <abraham@2d3d.co.za>
143 * - Added support for the ICP LCD-Kit01 on LART. This LCD is
144 * manufactured by Prime View, model no V16C6448AB
146 * 2001/07/23: <rmk@arm.linux.org.uk>
147 * - Hand merge version from handhelds.org CVS tree. See patch
148 * notes for 595/1 for more information.
149 * - Drop 12bpp (it's 16bpp with different colour register mappings).
150 * - This hardware can not do direct colour. Therefore we don't
153 * 2001/07/27: <rmk@arm.linux.org.uk>
154 * - Halve YRES on dual scan LCDs.
156 * 2001/08/22: <rmk@arm.linux.org.uk>
157 * - Add b/w iPAQ pixclock value.
159 * 2001/10/12: <rmk@arm.linux.org.uk>
160 * - Add patch 681/1 and clean up stork definitions.
163 #include <linux/config.h>
164 #include <linux/module.h>
165 #include <linux/kernel.h>
166 #include <linux/sched.h>
167 #include <linux/errno.h>
168 #include <linux/string.h>
169 #include <linux/interrupt.h>
170 #include <linux/slab.h>
171 #include <linux/fb.h>
172 #include <linux/delay.h>
173 #include <linux/init.h>
174 #include <linux/ioport.h>
175 #include <linux/cpufreq.h>
176 #include <linux/device.h>
177 #include <linux/dma-mapping.h>
179 #include <asm/hardware.h>
182 #include <asm/mach-types.h>
183 #include <asm/uaccess.h>
184 #include <asm/arch/assabet.h>
185 #include <asm/arch/shannon.h>
192 * Complain if VAR is out of range.
196 #undef ASSABET_PAL_VIDEO
198 #include "sa1100fb.h"
200 extern void (*sa1100fb_backlight_power
)(int on
);
201 extern void (*sa1100fb_lcd_power
)(int on
);
204 * IMHO this looks wrong. In 8BPP, length should be 8.
206 static struct sa1100fb_rgb rgb_8
= {
207 .red
= { .offset
= 0, .length
= 4, },
208 .green
= { .offset
= 0, .length
= 4, },
209 .blue
= { .offset
= 0, .length
= 4, },
210 .transp
= { .offset
= 0, .length
= 0, },
213 static struct sa1100fb_rgb def_rgb_16
= {
214 .red
= { .offset
= 11, .length
= 5, },
215 .green
= { .offset
= 5, .length
= 6, },
216 .blue
= { .offset
= 0, .length
= 5, },
217 .transp
= { .offset
= 0, .length
= 0, },
220 #ifdef CONFIG_SA1100_ASSABET
221 #ifndef ASSABET_PAL_VIDEO
223 * The assabet uses a sharp LQ039Q2DS54 LCD module. It is actually
224 * takes an RGB666 signal, but we provide it with an RGB565 signal
225 * instead (def_rgb_16).
227 static struct sa1100fb_mach_info lq039q2ds54_info __initdata
= {
228 .pixclock
= 171521, .bpp
= 16,
229 .xres
= 320, .yres
= 240,
231 .hsync_len
= 5, .vsync_len
= 1,
232 .left_margin
= 61, .upper_margin
= 3,
233 .right_margin
= 9, .lower_margin
= 0,
235 .sync
= FB_SYNC_HOR_HIGH_ACT
| FB_SYNC_VERT_HIGH_ACT
,
237 .lccr0
= LCCR0_Color
| LCCR0_Sngl
| LCCR0_Act
,
238 .lccr3
= LCCR3_OutEnH
| LCCR3_PixRsEdg
| LCCR3_ACBsDiv(2),
241 static struct sa1100fb_mach_info pal_info __initdata
= {
242 .pixclock
= 67797, .bpp
= 16,
243 .xres
= 640, .yres
= 512,
245 .hsync_len
= 64, .vsync_len
= 6,
246 .left_margin
= 125, .upper_margin
= 70,
247 .right_margin
= 115, .lower_margin
= 36,
249 .lccr0
= LCCR0_Color
| LCCR0_Sngl
| LCCR0_Act
,
250 .lccr3
= LCCR3_OutEnH
| LCCR3_PixRsEdg
| LCCR3_ACBsDiv(512),
255 #ifdef CONFIG_SA1100_H3800
256 static struct sa1100fb_mach_info h3800_info __initdata
= {
257 .pixclock
= 174757, .bpp
= 16,
258 .xres
= 320, .yres
= 240,
260 .hsync_len
= 3, .vsync_len
= 3,
261 .left_margin
= 12, .upper_margin
= 10,
262 .right_margin
= 17, .lower_margin
= 1,
266 .lccr0
= LCCR0_Color
| LCCR0_Sngl
| LCCR0_Act
,
267 .lccr3
= LCCR3_OutEnH
| LCCR3_PixRsEdg
| LCCR3_ACBsDiv(2),
271 #ifdef CONFIG_SA1100_H3600
272 static struct sa1100fb_mach_info h3600_info __initdata
= {
273 .pixclock
= 174757, .bpp
= 16,
274 .xres
= 320, .yres
= 240,
276 .hsync_len
= 3, .vsync_len
= 3,
277 .left_margin
= 12, .upper_margin
= 10,
278 .right_margin
= 17, .lower_margin
= 1,
282 .lccr0
= LCCR0_Color
| LCCR0_Sngl
| LCCR0_Act
,
283 .lccr3
= LCCR3_OutEnH
| LCCR3_PixRsEdg
| LCCR3_ACBsDiv(2),
286 static struct sa1100fb_rgb h3600_rgb_16
= {
287 .red
= { .offset
= 12, .length
= 4, },
288 .green
= { .offset
= 7, .length
= 4, },
289 .blue
= { .offset
= 1, .length
= 4, },
290 .transp
= { .offset
= 0, .length
= 0, },
294 #ifdef CONFIG_SA1100_H3100
295 static struct sa1100fb_mach_info h3100_info __initdata
= {
296 .pixclock
= 406977, .bpp
= 4,
297 .xres
= 320, .yres
= 240,
299 .hsync_len
= 26, .vsync_len
= 41,
300 .left_margin
= 4, .upper_margin
= 0,
301 .right_margin
= 4, .lower_margin
= 0,
303 .sync
= FB_SYNC_HOR_HIGH_ACT
| FB_SYNC_VERT_HIGH_ACT
,
307 .lccr0
= LCCR0_Mono
| LCCR0_4PixMono
| LCCR0_Sngl
| LCCR0_Pas
,
308 .lccr3
= LCCR3_OutEnH
| LCCR3_PixRsEdg
| LCCR3_ACBsDiv(2),
312 #ifdef CONFIG_SA1100_COLLIE
313 static struct sa1100fb_mach_info collie_info __initdata
= {
314 .pixclock
= 171521, .bpp
= 16,
315 .xres
= 320, .yres
= 240,
317 .hsync_len
= 5, .vsync_len
= 1,
318 .left_margin
= 11, .upper_margin
= 2,
319 .right_margin
= 30, .lower_margin
= 0,
321 .sync
= FB_SYNC_HOR_HIGH_ACT
| FB_SYNC_VERT_HIGH_ACT
,
323 .lccr0
= LCCR0_Color
| LCCR0_Sngl
| LCCR0_Act
,
324 .lccr3
= LCCR3_OutEnH
| LCCR3_PixRsEdg
| LCCR3_ACBsDiv(2),
329 static struct sa1100fb_mach_info lart_grey_info __initdata
= {
330 .pixclock
= 150000, .bpp
= 4,
331 .xres
= 320, .yres
= 240,
333 .hsync_len
= 1, .vsync_len
= 1,
334 .left_margin
= 4, .upper_margin
= 0,
335 .right_margin
= 2, .lower_margin
= 0,
338 .sync
= FB_SYNC_HOR_HIGH_ACT
| FB_SYNC_VERT_HIGH_ACT
,
340 .lccr0
= LCCR0_Mono
| LCCR0_Sngl
| LCCR0_Pas
| LCCR0_4PixMono
,
341 .lccr3
= LCCR3_OutEnH
| LCCR3_PixRsEdg
| LCCR3_ACBsDiv(512),
344 #ifdef LART_COLOR_LCD
345 static struct sa1100fb_mach_info lart_color_info __initdata
= {
346 .pixclock
= 150000, .bpp
= 16,
347 .xres
= 320, .yres
= 240,
349 .hsync_len
= 2, .vsync_len
= 3,
350 .left_margin
= 69, .upper_margin
= 14,
351 .right_margin
= 8, .lower_margin
= 4,
353 .lccr0
= LCCR0_Color
| LCCR0_Sngl
| LCCR0_Act
,
354 .lccr3
= LCCR3_OutEnH
| LCCR3_PixFlEdg
| LCCR3_ACBsDiv(512),
357 #ifdef LART_VIDEO_OUT
358 static struct sa1100fb_mach_info lart_video_info __initdata
= {
359 .pixclock
= 39721, .bpp
= 16,
360 .xres
= 640, .yres
= 480,
362 .hsync_len
= 95, .vsync_len
= 2,
363 .left_margin
= 40, .upper_margin
= 32,
364 .right_margin
= 24, .lower_margin
= 11,
366 .sync
= FB_SYNC_HOR_HIGH_ACT
| FB_SYNC_VERT_HIGH_ACT
,
368 .lccr0
= LCCR0_Color
| LCCR0_Sngl
| LCCR0_Act
,
369 .lccr3
= LCCR3_OutEnL
| LCCR3_PixFlEdg
| LCCR3_ACBsDiv(512),
373 #ifdef LART_KIT01_LCD
374 static struct sa1100fb_mach_info lart_kit01_info __initdata
= {
375 .pixclock
= 63291, .bpp
= 16,
376 .xres
= 640, .yres
= 480,
378 .hsync_len
= 64, .vsync_len
= 3,
379 .left_margin
= 122, .upper_margin
= 45,
380 .right_margin
= 10, .lower_margin
= 10,
382 .lccr0
= LCCR0_Color
| LCCR0_Sngl
| LCCR0_Act
,
383 .lccr3
= LCCR3_OutEnH
| LCCR3_PixFlEdg
387 #ifdef CONFIG_SA1100_SHANNON
388 static struct sa1100fb_mach_info shannon_info __initdata
= {
389 .pixclock
= 152500, .bpp
= 8,
390 .xres
= 640, .yres
= 480,
392 .hsync_len
= 4, .vsync_len
= 3,
393 .left_margin
= 2, .upper_margin
= 0,
394 .right_margin
= 1, .lower_margin
= 0,
396 .sync
= FB_SYNC_HOR_HIGH_ACT
| FB_SYNC_VERT_HIGH_ACT
,
398 .lccr0
= LCCR0_Color
| LCCR0_Dual
| LCCR0_Pas
,
399 .lccr3
= LCCR3_ACBsDiv(512),
405 static struct sa1100fb_mach_info
* __init
406 sa1100fb_get_machine_info(struct sa1100fb_info
*fbi
)
408 struct sa1100fb_mach_info
*inf
= NULL
;
412 * default {11,5}, { 5,6}, { 0,5}, { 0,0}
413 * h3600 {12,4}, { 7,4}, { 1,4}, { 0,0}
414 * freebird { 8,4}, { 4,4}, { 0,4}, {12,4}
416 #ifdef CONFIG_SA1100_ASSABET
417 if (machine_is_assabet()) {
418 #ifndef ASSABET_PAL_VIDEO
419 inf
= &lq039q2ds54_info
;
425 #ifdef CONFIG_SA1100_H3100
426 if (machine_is_h3100()) {
430 #ifdef CONFIG_SA1100_H3600
431 if (machine_is_h3600()) {
433 fbi
->rgb
[RGB_16
] = &h3600_rgb_16
;
436 #ifdef CONFIG_SA1100_H3800
437 if (machine_is_h3800()) {
441 #ifdef CONFIG_SA1100_COLLIE
442 if (machine_is_collie()) {
446 #ifdef CONFIG_SA1100_LART
447 if (machine_is_lart()) {
449 inf
= &lart_grey_info
;
451 #ifdef LART_COLOR_LCD
452 inf
= &lart_color_info
;
454 #ifdef LART_VIDEO_OUT
455 inf
= &lart_video_info
;
457 #ifdef LART_KIT01_LCD
458 inf
= &lart_kit01_info
;
462 #ifdef CONFIG_SA1100_SHANNON
463 if (machine_is_shannon()) {
470 static int sa1100fb_activate_var(struct fb_var_screeninfo
*var
, struct sa1100fb_info
*);
471 static void set_ctrlr_state(struct sa1100fb_info
*fbi
, u_int state
);
473 static inline void sa1100fb_schedule_work(struct sa1100fb_info
*fbi
, u_int state
)
477 local_irq_save(flags
);
479 * We need to handle two requests being made at the same time.
480 * There are two important cases:
481 * 1. When we are changing VT (C_REENABLE) while unblanking (C_ENABLE)
482 * We must perform the unblanking, which will do our REENABLE for us.
483 * 2. When we are blanking, but immediately unblank before we have
484 * blanked. We do the "REENABLE" thing here as well, just to be sure.
486 if (fbi
->task_state
== C_ENABLE
&& state
== C_REENABLE
)
488 if (fbi
->task_state
== C_DISABLE
&& state
== C_ENABLE
)
491 if (state
!= (u_int
)-1) {
492 fbi
->task_state
= state
;
493 schedule_work(&fbi
->task
);
495 local_irq_restore(flags
);
498 static inline u_int
chan_to_field(u_int chan
, struct fb_bitfield
*bf
)
501 chan
>>= 16 - bf
->length
;
502 return chan
<< bf
->offset
;
506 * Convert bits-per-pixel to a hardware palette PBS value.
508 static inline u_int
palette_pbs(struct fb_var_screeninfo
*var
)
511 switch (var
->bits_per_pixel
) {
512 case 4: ret
= 0 << 12; break;
513 case 8: ret
= 1 << 12; break;
514 case 16: ret
= 2 << 12; break;
520 sa1100fb_setpalettereg(u_int regno
, u_int red
, u_int green
, u_int blue
,
521 u_int trans
, struct fb_info
*info
)
523 struct sa1100fb_info
*fbi
= (struct sa1100fb_info
*)info
;
526 if (regno
< fbi
->palette_size
) {
527 val
= ((red
>> 4) & 0xf00);
528 val
|= ((green
>> 8) & 0x0f0);
529 val
|= ((blue
>> 12) & 0x00f);
532 val
|= palette_pbs(&fbi
->fb
.var
);
534 fbi
->palette_cpu
[regno
] = val
;
541 sa1100fb_setcolreg(u_int regno
, u_int red
, u_int green
, u_int blue
,
542 u_int trans
, struct fb_info
*info
)
544 struct sa1100fb_info
*fbi
= (struct sa1100fb_info
*)info
;
549 * If inverse mode was selected, invert all the colours
550 * rather than the register number. The register number
551 * is what you poke into the framebuffer to produce the
552 * colour you requested.
554 if (fbi
->cmap_inverse
) {
556 green
= 0xffff - green
;
557 blue
= 0xffff - blue
;
561 * If greyscale is true, then we convert the RGB value
562 * to greyscale no mater what visual we are using.
564 if (fbi
->fb
.var
.grayscale
)
565 red
= green
= blue
= (19595 * red
+ 38470 * green
+
568 switch (fbi
->fb
.fix
.visual
) {
569 case FB_VISUAL_TRUECOLOR
:
571 * 12 or 16-bit True Colour. We encode the RGB value
572 * according to the RGB bitfield information.
575 u32
*pal
= fbi
->fb
.pseudo_palette
;
577 val
= chan_to_field(red
, &fbi
->fb
.var
.red
);
578 val
|= chan_to_field(green
, &fbi
->fb
.var
.green
);
579 val
|= chan_to_field(blue
, &fbi
->fb
.var
.blue
);
586 case FB_VISUAL_STATIC_PSEUDOCOLOR
:
587 case FB_VISUAL_PSEUDOCOLOR
:
588 ret
= sa1100fb_setpalettereg(regno
, red
, green
, blue
, trans
, info
);
596 * sa1100fb_display_dma_period()
597 * Calculate the minimum period (in picoseconds) between two DMA
598 * requests for the LCD controller. If we hit this, it means we're
599 * doing nothing but LCD DMA.
601 static unsigned int sa1100fb_display_dma_period(struct fb_var_screeninfo
*var
)
604 * Period = pixclock * bits_per_byte * bytes_per_transfer
605 * / memory_bits_per_pixel;
607 return var
->pixclock
* 8 * 16 / var
->bits_per_pixel
;
611 * sa1100fb_check_var():
612 * Round up in the following order: bits_per_pixel, xres,
613 * yres, xres_virtual, yres_virtual, xoffset, yoffset, grayscale,
614 * bitfields, horizontal timing, vertical timing.
617 sa1100fb_check_var(struct fb_var_screeninfo
*var
, struct fb_info
*info
)
619 struct sa1100fb_info
*fbi
= (struct sa1100fb_info
*)info
;
622 if (var
->xres
< MIN_XRES
)
623 var
->xres
= MIN_XRES
;
624 if (var
->yres
< MIN_YRES
)
625 var
->yres
= MIN_YRES
;
626 if (var
->xres
> fbi
->max_xres
)
627 var
->xres
= fbi
->max_xres
;
628 if (var
->yres
> fbi
->max_yres
)
629 var
->yres
= fbi
->max_yres
;
630 var
->xres_virtual
= max(var
->xres_virtual
, var
->xres
);
631 var
->yres_virtual
= max(var
->yres_virtual
, var
->yres
);
633 DPRINTK("var->bits_per_pixel=%d\n", var
->bits_per_pixel
);
634 switch (var
->bits_per_pixel
) {
649 * Copy the RGB parameters for this display
650 * from the machine specific parameters.
652 var
->red
= fbi
->rgb
[rgbidx
]->red
;
653 var
->green
= fbi
->rgb
[rgbidx
]->green
;
654 var
->blue
= fbi
->rgb
[rgbidx
]->blue
;
655 var
->transp
= fbi
->rgb
[rgbidx
]->transp
;
657 DPRINTK("RGBT length = %d:%d:%d:%d\n",
658 var
->red
.length
, var
->green
.length
, var
->blue
.length
,
661 DPRINTK("RGBT offset = %d:%d:%d:%d\n",
662 var
->red
.offset
, var
->green
.offset
, var
->blue
.offset
,
665 #ifdef CONFIG_CPU_FREQ
666 printk(KERN_DEBUG
"dma period = %d ps, clock = %d kHz\n",
667 sa1100fb_display_dma_period(var
),
668 cpufreq_get(smp_processor_id()));
674 static inline void sa1100fb_set_truecolor(u_int is_true_color
)
676 if (machine_is_assabet()) {
677 #if 1 // phase 4 or newer Assabet's
679 ASSABET_BCR_set(ASSABET_BCR_LCD_12RGB
);
681 ASSABET_BCR_clear(ASSABET_BCR_LCD_12RGB
);
685 ASSABET_BCR_clear(ASSABET_BCR_LCD_12RGB
);
687 ASSABET_BCR_set(ASSABET_BCR_LCD_12RGB
);
693 * sa1100fb_set_par():
694 * Set the user defined part of the display for the specified console
696 static int sa1100fb_set_par(struct fb_info
*info
)
698 struct sa1100fb_info
*fbi
= (struct sa1100fb_info
*)info
;
699 struct fb_var_screeninfo
*var
= &info
->var
;
700 unsigned long palette_mem_size
;
702 DPRINTK("set_par\n");
704 if (var
->bits_per_pixel
== 16)
705 fbi
->fb
.fix
.visual
= FB_VISUAL_TRUECOLOR
;
706 else if (!fbi
->cmap_static
)
707 fbi
->fb
.fix
.visual
= FB_VISUAL_PSEUDOCOLOR
;
710 * Some people have weird ideas about wanting static
711 * pseudocolor maps. I suspect their user space
712 * applications are broken.
714 fbi
->fb
.fix
.visual
= FB_VISUAL_STATIC_PSEUDOCOLOR
;
717 fbi
->fb
.fix
.line_length
= var
->xres_virtual
*
718 var
->bits_per_pixel
/ 8;
719 fbi
->palette_size
= var
->bits_per_pixel
== 8 ? 256 : 16;
721 palette_mem_size
= fbi
->palette_size
* sizeof(u16
);
723 DPRINTK("palette_mem_size = 0x%08lx\n", (u_long
) palette_mem_size
);
725 fbi
->palette_cpu
= (u16
*)(fbi
->map_cpu
+ PAGE_SIZE
- palette_mem_size
);
726 fbi
->palette_dma
= fbi
->map_dma
+ PAGE_SIZE
- palette_mem_size
;
729 * Set (any) board control register to handle new color depth
731 sa1100fb_set_truecolor(fbi
->fb
.fix
.visual
== FB_VISUAL_TRUECOLOR
);
732 sa1100fb_activate_var(var
, fbi
);
739 sa1100fb_set_cmap(struct fb_cmap
*cmap
, int kspc
, int con
,
740 struct fb_info
*info
)
742 struct sa1100fb_info
*fbi
= (struct sa1100fb_info
*)info
;
745 * Make sure the user isn't doing something stupid.
747 if (!kspc
&& (fbi
->fb
.var
.bits_per_pixel
== 16 || fbi
->cmap_static
))
750 return gen_set_cmap(cmap
, kspc
, con
, info
);
755 * Formal definition of the VESA spec:
757 * This refers to the state of the display when it is in full operation
759 * This defines an optional operating state of minimal power reduction with
760 * the shortest recovery time
762 * This refers to a level of power management in which substantial power
763 * reduction is achieved by the display. The display can have a longer
764 * recovery time from this state than from the Stand-by state
766 * This indicates that the display is consuming the lowest level of power
767 * and is non-operational. Recovery from this state may optionally require
768 * the user to manually power on the monitor
770 * Now, the fbdev driver adds an additional state, (blank), where they
771 * turn off the video (maybe by colormap tricks), but don't mess with the
772 * video itself: think of it semantically between on and Stand-By.
774 * So here's what we should do in our fbdev blank routine:
776 * VESA_NO_BLANKING (mode 0) Video on, front/back light on
777 * VESA_VSYNC_SUSPEND (mode 1) Video on, front/back light off
778 * VESA_HSYNC_SUSPEND (mode 2) Video on, front/back light off
779 * VESA_POWERDOWN (mode 3) Video off, front/back light off
781 * This will match the matrox implementation.
785 * Blank the display by setting all palette values to zero. Note, the
786 * 12 and 16 bpp modes don't really use the palette, so this will not
787 * blank the display in all modes.
789 static int sa1100fb_blank(int blank
, struct fb_info
*info
)
791 struct sa1100fb_info
*fbi
= (struct sa1100fb_info
*)info
;
794 DPRINTK("sa1100fb_blank: blank=%d\n", blank
);
797 case FB_BLANK_POWERDOWN
:
798 case FB_BLANK_VSYNC_SUSPEND
:
799 case FB_BLANK_HSYNC_SUSPEND
:
800 case FB_BLANK_NORMAL
:
801 if (fbi
->fb
.fix
.visual
== FB_VISUAL_PSEUDOCOLOR
||
802 fbi
->fb
.fix
.visual
== FB_VISUAL_STATIC_PSEUDOCOLOR
)
803 for (i
= 0; i
< fbi
->palette_size
; i
++)
804 sa1100fb_setpalettereg(i
, 0, 0, 0, 0, info
);
805 sa1100fb_schedule_work(fbi
, C_DISABLE
);
808 case FB_BLANK_UNBLANK
:
809 if (fbi
->fb
.fix
.visual
== FB_VISUAL_PSEUDOCOLOR
||
810 fbi
->fb
.fix
.visual
== FB_VISUAL_STATIC_PSEUDOCOLOR
)
811 fb_set_cmap(&fbi
->fb
.cmap
, info
);
812 sa1100fb_schedule_work(fbi
, C_ENABLE
);
817 static int sa1100fb_mmap(struct fb_info
*info
, struct file
*file
,
818 struct vm_area_struct
*vma
)
820 struct sa1100fb_info
*fbi
= (struct sa1100fb_info
*)info
;
821 unsigned long start
, len
, off
= vma
->vm_pgoff
<< PAGE_SHIFT
;
823 if (off
< info
->fix
.smem_len
) {
824 vma
->vm_pgoff
+= 1; /* skip over the palette */
825 return dma_mmap_writecombine(fbi
->dev
, vma
, fbi
->map_cpu
,
826 fbi
->map_dma
, fbi
->map_size
);
829 start
= info
->fix
.mmio_start
;
830 len
= PAGE_ALIGN((start
& ~PAGE_MASK
) + info
->fix
.mmio_len
);
832 if ((vma
->vm_end
- vma
->vm_start
+ off
) > len
)
835 off
+= start
& PAGE_MASK
;
836 vma
->vm_pgoff
= off
>> PAGE_SHIFT
;
837 vma
->vm_flags
|= VM_IO
;
838 vma
->vm_page_prot
= pgprot_noncached(vma
->vm_page_prot
);
839 return io_remap_pfn_range(vma
, vma
->vm_start
, off
>> PAGE_SHIFT
,
840 vma
->vm_end
- vma
->vm_start
,
844 static struct fb_ops sa1100fb_ops
= {
845 .owner
= THIS_MODULE
,
846 .fb_check_var
= sa1100fb_check_var
,
847 .fb_set_par
= sa1100fb_set_par
,
848 // .fb_set_cmap = sa1100fb_set_cmap,
849 .fb_setcolreg
= sa1100fb_setcolreg
,
850 .fb_fillrect
= cfb_fillrect
,
851 .fb_copyarea
= cfb_copyarea
,
852 .fb_imageblit
= cfb_imageblit
,
853 .fb_blank
= sa1100fb_blank
,
854 .fb_cursor
= soft_cursor
,
855 .fb_mmap
= sa1100fb_mmap
,
859 * Calculate the PCD value from the clock rate (in picoseconds).
860 * We take account of the PPCR clock setting.
862 static inline unsigned int get_pcd(unsigned int pixclock
, unsigned int cpuclock
)
864 unsigned int pcd
= cpuclock
/ 100;
869 return pcd
+ 1; /* make up for integer math truncations */
873 * sa1100fb_activate_var():
874 * Configures LCD Controller based on entries in var parameter. Settings are
875 * only written to the controller if changes were made.
877 static int sa1100fb_activate_var(struct fb_var_screeninfo
*var
, struct sa1100fb_info
*fbi
)
879 struct sa1100fb_lcd_reg new_regs
;
880 u_int half_screen_size
, yres
, pcd
;
883 DPRINTK("Configuring SA1100 LCD\n");
885 DPRINTK("var: xres=%d hslen=%d lm=%d rm=%d\n",
886 var
->xres
, var
->hsync_len
,
887 var
->left_margin
, var
->right_margin
);
888 DPRINTK("var: yres=%d vslen=%d um=%d bm=%d\n",
889 var
->yres
, var
->vsync_len
,
890 var
->upper_margin
, var
->lower_margin
);
893 if (var
->xres
< 16 || var
->xres
> 1024)
894 printk(KERN_ERR
"%s: invalid xres %d\n",
895 fbi
->fb
.fix
.id
, var
->xres
);
896 if (var
->hsync_len
< 1 || var
->hsync_len
> 64)
897 printk(KERN_ERR
"%s: invalid hsync_len %d\n",
898 fbi
->fb
.fix
.id
, var
->hsync_len
);
899 if (var
->left_margin
< 1 || var
->left_margin
> 255)
900 printk(KERN_ERR
"%s: invalid left_margin %d\n",
901 fbi
->fb
.fix
.id
, var
->left_margin
);
902 if (var
->right_margin
< 1 || var
->right_margin
> 255)
903 printk(KERN_ERR
"%s: invalid right_margin %d\n",
904 fbi
->fb
.fix
.id
, var
->right_margin
);
905 if (var
->yres
< 1 || var
->yres
> 1024)
906 printk(KERN_ERR
"%s: invalid yres %d\n",
907 fbi
->fb
.fix
.id
, var
->yres
);
908 if (var
->vsync_len
< 1 || var
->vsync_len
> 64)
909 printk(KERN_ERR
"%s: invalid vsync_len %d\n",
910 fbi
->fb
.fix
.id
, var
->vsync_len
);
911 if (var
->upper_margin
< 0 || var
->upper_margin
> 255)
912 printk(KERN_ERR
"%s: invalid upper_margin %d\n",
913 fbi
->fb
.fix
.id
, var
->upper_margin
);
914 if (var
->lower_margin
< 0 || var
->lower_margin
> 255)
915 printk(KERN_ERR
"%s: invalid lower_margin %d\n",
916 fbi
->fb
.fix
.id
, var
->lower_margin
);
919 new_regs
.lccr0
= fbi
->lccr0
|
920 LCCR0_LEN
| LCCR0_LDM
| LCCR0_BAM
|
921 LCCR0_ERM
| LCCR0_LtlEnd
| LCCR0_DMADel(0);
924 LCCR1_DisWdth(var
->xres
) +
925 LCCR1_HorSnchWdth(var
->hsync_len
) +
926 LCCR1_BegLnDel(var
->left_margin
) +
927 LCCR1_EndLnDel(var
->right_margin
);
930 * If we have a dual scan LCD, then we need to halve
931 * the YRES parameter.
934 if (fbi
->lccr0
& LCCR0_Dual
)
938 LCCR2_DisHght(yres
) +
939 LCCR2_VrtSnchWdth(var
->vsync_len
) +
940 LCCR2_BegFrmDel(var
->upper_margin
) +
941 LCCR2_EndFrmDel(var
->lower_margin
);
943 pcd
= get_pcd(var
->pixclock
, cpufreq_get(0));
944 new_regs
.lccr3
= LCCR3_PixClkDiv(pcd
) | fbi
->lccr3
|
945 (var
->sync
& FB_SYNC_HOR_HIGH_ACT
? LCCR3_HorSnchH
: LCCR3_HorSnchL
) |
946 (var
->sync
& FB_SYNC_VERT_HIGH_ACT
? LCCR3_VrtSnchH
: LCCR3_VrtSnchL
);
948 DPRINTK("nlccr0 = 0x%08lx\n", new_regs
.lccr0
);
949 DPRINTK("nlccr1 = 0x%08lx\n", new_regs
.lccr1
);
950 DPRINTK("nlccr2 = 0x%08lx\n", new_regs
.lccr2
);
951 DPRINTK("nlccr3 = 0x%08lx\n", new_regs
.lccr3
);
953 half_screen_size
= var
->bits_per_pixel
;
954 half_screen_size
= half_screen_size
* var
->xres
* var
->yres
/ 16;
956 /* Update shadow copy atomically */
957 local_irq_save(flags
);
958 fbi
->dbar1
= fbi
->palette_dma
;
959 fbi
->dbar2
= fbi
->screen_dma
+ half_screen_size
;
961 fbi
->reg_lccr0
= new_regs
.lccr0
;
962 fbi
->reg_lccr1
= new_regs
.lccr1
;
963 fbi
->reg_lccr2
= new_regs
.lccr2
;
964 fbi
->reg_lccr3
= new_regs
.lccr3
;
965 local_irq_restore(flags
);
968 * Only update the registers if the controller is enabled
969 * and something has changed.
971 if ((LCCR0
!= fbi
->reg_lccr0
) || (LCCR1
!= fbi
->reg_lccr1
) ||
972 (LCCR2
!= fbi
->reg_lccr2
) || (LCCR3
!= fbi
->reg_lccr3
) ||
973 (DBAR1
!= fbi
->dbar1
) || (DBAR2
!= fbi
->dbar2
))
974 sa1100fb_schedule_work(fbi
, C_REENABLE
);
980 * NOTE! The following functions are purely helpers for set_ctrlr_state.
981 * Do not call them directly; set_ctrlr_state does the correct serialisation
982 * to ensure that things happen in the right way 100% of time time.
985 static inline void __sa1100fb_backlight_power(struct sa1100fb_info
*fbi
, int on
)
987 DPRINTK("backlight o%s\n", on
? "n" : "ff");
989 if (sa1100fb_backlight_power
)
990 sa1100fb_backlight_power(on
);
993 static inline void __sa1100fb_lcd_power(struct sa1100fb_info
*fbi
, int on
)
995 DPRINTK("LCD power o%s\n", on
? "n" : "ff");
997 if (sa1100fb_lcd_power
)
998 sa1100fb_lcd_power(on
);
1001 static void sa1100fb_setup_gpio(struct sa1100fb_info
*fbi
)
1006 * Enable GPIO<9:2> for LCD use if:
1007 * 1. Active display, or
1008 * 2. Color Dual Passive display
1010 * see table 11.8 on page 11-27 in the SA1100 manual
1013 * SA1110 spec update nr. 25 says we can and should
1014 * clear LDD15 to 12 for 4 or 8bpp modes with active
1017 if ((fbi
->reg_lccr0
& LCCR0_CMS
) == LCCR0_Color
&&
1018 (fbi
->reg_lccr0
& (LCCR0_Dual
|LCCR0_Act
)) != 0) {
1019 mask
= GPIO_LDD11
| GPIO_LDD10
| GPIO_LDD9
| GPIO_LDD8
;
1021 if (fbi
->fb
.var
.bits_per_pixel
> 8 ||
1022 (fbi
->reg_lccr0
& (LCCR0_Dual
|LCCR0_Act
)) == LCCR0_Dual
)
1023 mask
|= GPIO_LDD15
| GPIO_LDD14
| GPIO_LDD13
| GPIO_LDD12
;
1033 static void sa1100fb_enable_controller(struct sa1100fb_info
*fbi
)
1035 DPRINTK("Enabling LCD controller\n");
1038 * Make sure the mode bits are present in the first palette entry
1040 fbi
->palette_cpu
[0] &= 0xcfff;
1041 fbi
->palette_cpu
[0] |= palette_pbs(&fbi
->fb
.var
);
1043 /* Sequence from 11.7.10 */
1044 LCCR3
= fbi
->reg_lccr3
;
1045 LCCR2
= fbi
->reg_lccr2
;
1046 LCCR1
= fbi
->reg_lccr1
;
1047 LCCR0
= fbi
->reg_lccr0
& ~LCCR0_LEN
;
1052 if (machine_is_shannon()) {
1053 GPDR
|= SHANNON_GPIO_DISP_EN
;
1054 GPSR
|= SHANNON_GPIO_DISP_EN
;
1057 DPRINTK("DBAR1 = 0x%08x\n", DBAR1
);
1058 DPRINTK("DBAR2 = 0x%08x\n", DBAR2
);
1059 DPRINTK("LCCR0 = 0x%08x\n", LCCR0
);
1060 DPRINTK("LCCR1 = 0x%08x\n", LCCR1
);
1061 DPRINTK("LCCR2 = 0x%08x\n", LCCR2
);
1062 DPRINTK("LCCR3 = 0x%08x\n", LCCR3
);
1065 static void sa1100fb_disable_controller(struct sa1100fb_info
*fbi
)
1067 DECLARE_WAITQUEUE(wait
, current
);
1069 DPRINTK("Disabling LCD controller\n");
1071 if (machine_is_shannon()) {
1072 GPCR
|= SHANNON_GPIO_DISP_EN
;
1075 set_current_state(TASK_UNINTERRUPTIBLE
);
1076 add_wait_queue(&fbi
->ctrlr_wait
, &wait
);
1078 LCSR
= 0xffffffff; /* Clear LCD Status Register */
1079 LCCR0
&= ~LCCR0_LDM
; /* Enable LCD Disable Done Interrupt */
1080 LCCR0
&= ~LCCR0_LEN
; /* Disable LCD Controller */
1082 schedule_timeout(20 * HZ
/ 1000);
1083 remove_wait_queue(&fbi
->ctrlr_wait
, &wait
);
1087 * sa1100fb_handle_irq: Handle 'LCD DONE' interrupts.
1089 static irqreturn_t
sa1100fb_handle_irq(int irq
, void *dev_id
, struct pt_regs
*regs
)
1091 struct sa1100fb_info
*fbi
= dev_id
;
1092 unsigned int lcsr
= LCSR
;
1094 if (lcsr
& LCSR_LDD
) {
1096 wake_up(&fbi
->ctrlr_wait
);
1104 * This function must be called from task context only, since it will
1105 * sleep when disabling the LCD controller, or if we get two contending
1106 * processes trying to alter state.
1108 static void set_ctrlr_state(struct sa1100fb_info
*fbi
, u_int state
)
1112 down(&fbi
->ctrlr_sem
);
1114 old_state
= fbi
->state
;
1117 * Hack around fbcon initialisation.
1119 if (old_state
== C_STARTUP
&& state
== C_REENABLE
)
1123 case C_DISABLE_CLKCHANGE
:
1125 * Disable controller for clock change. If the
1126 * controller is already disabled, then do nothing.
1128 if (old_state
!= C_DISABLE
&& old_state
!= C_DISABLE_PM
) {
1130 sa1100fb_disable_controller(fbi
);
1137 * Disable controller
1139 if (old_state
!= C_DISABLE
) {
1142 __sa1100fb_backlight_power(fbi
, 0);
1143 if (old_state
!= C_DISABLE_CLKCHANGE
)
1144 sa1100fb_disable_controller(fbi
);
1145 __sa1100fb_lcd_power(fbi
, 0);
1149 case C_ENABLE_CLKCHANGE
:
1151 * Enable the controller after clock change. Only
1152 * do this if we were disabled for the clock change.
1154 if (old_state
== C_DISABLE_CLKCHANGE
) {
1155 fbi
->state
= C_ENABLE
;
1156 sa1100fb_enable_controller(fbi
);
1162 * Re-enable the controller only if it was already
1163 * enabled. This is so we reprogram the control
1166 if (old_state
== C_ENABLE
) {
1167 sa1100fb_disable_controller(fbi
);
1168 sa1100fb_setup_gpio(fbi
);
1169 sa1100fb_enable_controller(fbi
);
1175 * Re-enable the controller after PM. This is not
1176 * perfect - think about the case where we were doing
1177 * a clock change, and we suspended half-way through.
1179 if (old_state
!= C_DISABLE_PM
)
1185 * Power up the LCD screen, enable controller, and
1186 * turn on the backlight.
1188 if (old_state
!= C_ENABLE
) {
1189 fbi
->state
= C_ENABLE
;
1190 sa1100fb_setup_gpio(fbi
);
1191 __sa1100fb_lcd_power(fbi
, 1);
1192 sa1100fb_enable_controller(fbi
);
1193 __sa1100fb_backlight_power(fbi
, 1);
1197 up(&fbi
->ctrlr_sem
);
1201 * Our LCD controller task (which is called when we blank or unblank)
1204 static void sa1100fb_task(void *dummy
)
1206 struct sa1100fb_info
*fbi
= dummy
;
1207 u_int state
= xchg(&fbi
->task_state
, -1);
1209 set_ctrlr_state(fbi
, state
);
1212 #ifdef CONFIG_CPU_FREQ
1214 * Calculate the minimum DMA period over all displays that we own.
1215 * This, together with the SDRAM bandwidth defines the slowest CPU
1216 * frequency that can be selected.
1218 static unsigned int sa1100fb_min_dma_period(struct sa1100fb_info
*fbi
)
1221 unsigned int min_period
= (unsigned int)-1;
1224 for (i
= 0; i
< MAX_NR_CONSOLES
; i
++) {
1225 struct display
*disp
= &fb_display
[i
];
1226 unsigned int period
;
1229 * Do we own this display?
1231 if (disp
->fb_info
!= &fbi
->fb
)
1235 * Ok, calculate its DMA period
1237 period
= sa1100fb_display_dma_period(&disp
->var
);
1238 if (period
< min_period
)
1239 min_period
= period
;
1245 * FIXME: we need to verify _all_ consoles.
1247 return sa1100fb_display_dma_period(&fbi
->fb
.var
);
1252 * CPU clock speed change handler. We need to adjust the LCD timing
1253 * parameters when the CPU clock is adjusted by the power management
1257 sa1100fb_freq_transition(struct notifier_block
*nb
, unsigned long val
,
1260 struct sa1100fb_info
*fbi
= TO_INF(nb
, freq_transition
);
1261 struct cpufreq_freqs
*f
= data
;
1265 case CPUFREQ_PRECHANGE
:
1266 set_ctrlr_state(fbi
, C_DISABLE_CLKCHANGE
);
1269 case CPUFREQ_POSTCHANGE
:
1270 pcd
= get_pcd(fbi
->fb
.var
.pixclock
, f
->new);
1271 fbi
->reg_lccr3
= (fbi
->reg_lccr3
& ~0xff) | LCCR3_PixClkDiv(pcd
);
1272 set_ctrlr_state(fbi
, C_ENABLE_CLKCHANGE
);
1279 sa1100fb_freq_policy(struct notifier_block
*nb
, unsigned long val
,
1282 struct sa1100fb_info
*fbi
= TO_INF(nb
, freq_policy
);
1283 struct cpufreq_policy
*policy
= data
;
1286 case CPUFREQ_ADJUST
:
1287 case CPUFREQ_INCOMPATIBLE
:
1288 printk(KERN_DEBUG
"min dma period: %d ps, "
1289 "new clock %d kHz\n", sa1100fb_min_dma_period(fbi
),
1291 /* todo: fill in min/max values */
1293 case CPUFREQ_NOTIFY
:
1295 /* todo: panic if min/max values aren't fulfilled
1296 * [can't really happen unless there's a bug in the
1297 * CPU policy verififcation process *
1307 * Power management hooks. Note that we won't be called from IRQ context,
1308 * unlike the blank functions above, so we may sleep.
1310 static int sa1100fb_suspend(struct device
*dev
, pm_message_t state
, u32 level
)
1312 struct sa1100fb_info
*fbi
= dev_get_drvdata(dev
);
1314 if (level
== SUSPEND_DISABLE
|| level
== SUSPEND_POWER_DOWN
)
1315 set_ctrlr_state(fbi
, C_DISABLE_PM
);
1319 static int sa1100fb_resume(struct device
*dev
, u32 level
)
1321 struct sa1100fb_info
*fbi
= dev_get_drvdata(dev
);
1323 if (level
== RESUME_ENABLE
)
1324 set_ctrlr_state(fbi
, C_ENABLE_PM
);
1328 #define sa1100fb_suspend NULL
1329 #define sa1100fb_resume NULL
1333 * sa1100fb_map_video_memory():
1334 * Allocates the DRAM memory for the frame buffer. This buffer is
1335 * remapped into a non-cached, non-buffered, memory region to
1336 * allow palette and pixel writes to occur without flushing the
1337 * cache. Once this area is remapped, all virtual memory
1338 * access to the video memory should occur at the new region.
1340 static int __init
sa1100fb_map_video_memory(struct sa1100fb_info
*fbi
)
1343 * We reserve one page for the palette, plus the size
1344 * of the framebuffer.
1346 fbi
->map_size
= PAGE_ALIGN(fbi
->fb
.fix
.smem_len
+ PAGE_SIZE
);
1347 fbi
->map_cpu
= dma_alloc_writecombine(fbi
->dev
, fbi
->map_size
,
1348 &fbi
->map_dma
, GFP_KERNEL
);
1351 fbi
->fb
.screen_base
= fbi
->map_cpu
+ PAGE_SIZE
;
1352 fbi
->screen_dma
= fbi
->map_dma
+ PAGE_SIZE
;
1354 * FIXME: this is actually the wrong thing to place in
1355 * smem_start. But fbdev suffers from the problem that
1356 * it needs an API which doesn't exist (in this case,
1357 * dma_writecombine_mmap)
1359 fbi
->fb
.fix
.smem_start
= fbi
->screen_dma
;
1362 return fbi
->map_cpu
? 0 : -ENOMEM
;
1365 /* Fake monspecs to fill in fbinfo structure */
1366 static struct fb_monspecs monspecs __initdata
= {
1374 static struct sa1100fb_info
* __init
sa1100fb_init_fbinfo(struct device
*dev
)
1376 struct sa1100fb_mach_info
*inf
;
1377 struct sa1100fb_info
*fbi
;
1379 fbi
= kmalloc(sizeof(struct sa1100fb_info
) + sizeof(u32
) * 16,
1384 memset(fbi
, 0, sizeof(struct sa1100fb_info
));
1387 strcpy(fbi
->fb
.fix
.id
, SA1100_NAME
);
1389 fbi
->fb
.fix
.type
= FB_TYPE_PACKED_PIXELS
;
1390 fbi
->fb
.fix
.type_aux
= 0;
1391 fbi
->fb
.fix
.xpanstep
= 0;
1392 fbi
->fb
.fix
.ypanstep
= 0;
1393 fbi
->fb
.fix
.ywrapstep
= 0;
1394 fbi
->fb
.fix
.accel
= FB_ACCEL_NONE
;
1396 fbi
->fb
.var
.nonstd
= 0;
1397 fbi
->fb
.var
.activate
= FB_ACTIVATE_NOW
;
1398 fbi
->fb
.var
.height
= -1;
1399 fbi
->fb
.var
.width
= -1;
1400 fbi
->fb
.var
.accel_flags
= 0;
1401 fbi
->fb
.var
.vmode
= FB_VMODE_NONINTERLACED
;
1403 fbi
->fb
.fbops
= &sa1100fb_ops
;
1404 fbi
->fb
.flags
= FBINFO_DEFAULT
;
1405 fbi
->fb
.monspecs
= monspecs
;
1406 fbi
->fb
.pseudo_palette
= (fbi
+ 1);
1408 fbi
->rgb
[RGB_8
] = &rgb_8
;
1409 fbi
->rgb
[RGB_16
] = &def_rgb_16
;
1411 inf
= sa1100fb_get_machine_info(fbi
);
1414 * People just don't seem to get this. We don't support
1415 * anything but correct entries now, so panic if someone
1416 * does something stupid.
1418 if (inf
->lccr3
& (LCCR3_VrtSnchL
|LCCR3_HorSnchL
|0xff) ||
1420 panic("sa1100fb error: invalid LCCR3 fields set or zero "
1423 fbi
->max_xres
= inf
->xres
;
1424 fbi
->fb
.var
.xres
= inf
->xres
;
1425 fbi
->fb
.var
.xres_virtual
= inf
->xres
;
1426 fbi
->max_yres
= inf
->yres
;
1427 fbi
->fb
.var
.yres
= inf
->yres
;
1428 fbi
->fb
.var
.yres_virtual
= inf
->yres
;
1429 fbi
->max_bpp
= inf
->bpp
;
1430 fbi
->fb
.var
.bits_per_pixel
= inf
->bpp
;
1431 fbi
->fb
.var
.pixclock
= inf
->pixclock
;
1432 fbi
->fb
.var
.hsync_len
= inf
->hsync_len
;
1433 fbi
->fb
.var
.left_margin
= inf
->left_margin
;
1434 fbi
->fb
.var
.right_margin
= inf
->right_margin
;
1435 fbi
->fb
.var
.vsync_len
= inf
->vsync_len
;
1436 fbi
->fb
.var
.upper_margin
= inf
->upper_margin
;
1437 fbi
->fb
.var
.lower_margin
= inf
->lower_margin
;
1438 fbi
->fb
.var
.sync
= inf
->sync
;
1439 fbi
->fb
.var
.grayscale
= inf
->cmap_greyscale
;
1440 fbi
->cmap_inverse
= inf
->cmap_inverse
;
1441 fbi
->cmap_static
= inf
->cmap_static
;
1442 fbi
->lccr0
= inf
->lccr0
;
1443 fbi
->lccr3
= inf
->lccr3
;
1444 fbi
->state
= C_STARTUP
;
1445 fbi
->task_state
= (u_char
)-1;
1446 fbi
->fb
.fix
.smem_len
= fbi
->max_xres
* fbi
->max_yres
*
1449 init_waitqueue_head(&fbi
->ctrlr_wait
);
1450 INIT_WORK(&fbi
->task
, sa1100fb_task
, fbi
);
1451 init_MUTEX(&fbi
->ctrlr_sem
);
1456 static int __init
sa1100fb_probe(struct device
*dev
)
1458 struct sa1100fb_info
*fbi
;
1461 if (!request_mem_region(0xb0100000, 0x10000, "LCD"))
1464 fbi
= sa1100fb_init_fbinfo(dev
);
1469 /* Initialize video memory */
1470 ret
= sa1100fb_map_video_memory(fbi
);
1474 ret
= request_irq(IRQ_LCD
, sa1100fb_handle_irq
, SA_INTERRUPT
,
1477 printk(KERN_ERR
"sa1100fb: request_irq failed: %d\n", ret
);
1481 #ifdef ASSABET_PAL_VIDEO
1482 if (machine_is_assabet())
1483 ASSABET_BCR_clear(ASSABET_BCR_LCD_ON
);
1487 * This makes sure that our colour bitfield
1488 * descriptors are correctly initialised.
1490 sa1100fb_check_var(&fbi
->fb
.var
, &fbi
->fb
);
1492 dev_set_drvdata(dev
, fbi
);
1494 ret
= register_framebuffer(&fbi
->fb
);
1498 #ifdef CONFIG_CPU_FREQ
1499 fbi
->freq_transition
.notifier_call
= sa1100fb_freq_transition
;
1500 fbi
->freq_policy
.notifier_call
= sa1100fb_freq_policy
;
1501 cpufreq_register_notifier(&fbi
->freq_transition
, CPUFREQ_TRANSITION_NOTIFIER
);
1502 cpufreq_register_notifier(&fbi
->freq_policy
, CPUFREQ_POLICY_NOTIFIER
);
1505 /* This driver cannot be unloaded at the moment */
1509 dev_set_drvdata(dev
, NULL
);
1511 release_mem_region(0xb0100000, 0x10000);
1515 static struct device_driver sa1100fb_driver
= {
1516 .name
= "sa11x0-fb",
1517 .bus
= &platform_bus_type
,
1518 .probe
= sa1100fb_probe
,
1519 .suspend
= sa1100fb_suspend
,
1520 .resume
= sa1100fb_resume
,
1523 int __init
sa1100fb_init(void)
1525 if (fb_get_options("sa1100fb", NULL
))
1528 return driver_register(&sa1100fb_driver
);
1531 int __init
sa1100fb_setup(char *options
)
1536 if (!options
|| !*options
)
1539 while ((this_opt
= strsep(&options
, ",")) != NULL
) {
1541 if (!strncmp(this_opt
, "bpp:", 4))
1542 current_par
.max_bpp
=
1543 simple_strtoul(this_opt
+ 4, NULL
, 0);
1545 if (!strncmp(this_opt
, "lccr0:", 6))
1547 simple_strtoul(this_opt
+ 6, NULL
, 0);
1548 if (!strncmp(this_opt
, "lccr1:", 6)) {
1550 simple_strtoul(this_opt
+ 6, NULL
, 0);
1551 current_par
.max_xres
=
1552 (lcd_shadow
.lccr1
& 0x3ff) + 16;
1554 if (!strncmp(this_opt
, "lccr2:", 6)) {
1556 simple_strtoul(this_opt
+ 6, NULL
, 0);
1557 current_par
.max_yres
=
1559 lccr0
& LCCR0_SDS
) ? ((lcd_shadow
.
1562 2 : ((lcd_shadow
.lccr2
& 0x3ff) + 1);
1564 if (!strncmp(this_opt
, "lccr3:", 6))
1566 simple_strtoul(this_opt
+ 6, NULL
, 0);
1572 module_init(sa1100fb_init
);
1573 MODULE_DESCRIPTION("StrongARM-1100/1110 framebuffer driver");
1574 MODULE_LICENSE("GPL");