2 * JFFS2 -- Journalling Flash File System, Version 2.
4 * Copyright (C) 2001-2003 Red Hat, Inc.
5 * Copyright (C) 2004 Thomas Gleixner <tglx@linutronix.de>
7 * Created by David Woodhouse <dwmw2@infradead.org>
8 * Modified debugged and enhanced by Thomas Gleixner <tglx@linutronix.de>
10 * For licensing information, see the file 'LICENCE' in this directory.
12 * $Id: wbuf.c,v 1.82 2004/11/20 22:08:31 dwmw2 Exp $
16 #include <linux/kernel.h>
17 #include <linux/slab.h>
18 #include <linux/mtd/mtd.h>
19 #include <linux/crc32.h>
20 #include <linux/mtd/nand.h>
23 /* For testing write failures */
28 static unsigned char *brokenbuf
;
31 /* max. erase failures before we mark a block bad */
32 #define MAX_ERASE_FAILURES 2
34 /* two seconds timeout for timed wbuf-flushing */
35 #define WBUF_FLUSH_TIMEOUT 2 * HZ
37 struct jffs2_inodirty
{
39 struct jffs2_inodirty
*next
;
42 static struct jffs2_inodirty inodirty_nomem
;
44 static int jffs2_wbuf_pending_for_ino(struct jffs2_sb_info
*c
, uint32_t ino
)
46 struct jffs2_inodirty
*this = c
->wbuf_inodes
;
48 /* If a malloc failed, consider _everything_ dirty */
49 if (this == &inodirty_nomem
)
52 /* If ino == 0, _any_ non-GC writes mean 'yes' */
56 /* Look to see if the inode in question is pending in the wbuf */
65 static void jffs2_clear_wbuf_ino_list(struct jffs2_sb_info
*c
)
67 struct jffs2_inodirty
*this;
69 this = c
->wbuf_inodes
;
71 if (this != &inodirty_nomem
) {
73 struct jffs2_inodirty
*next
= this->next
;
78 c
->wbuf_inodes
= NULL
;
81 static void jffs2_wbuf_dirties_inode(struct jffs2_sb_info
*c
, uint32_t ino
)
83 struct jffs2_inodirty
*new;
85 /* Mark the superblock dirty so that kupdated will flush... */
86 OFNI_BS_2SFFJ(c
)->s_dirt
= 1;
88 if (jffs2_wbuf_pending_for_ino(c
, ino
))
91 new = kmalloc(sizeof(*new), GFP_KERNEL
);
93 D1(printk(KERN_DEBUG
"No memory to allocate inodirty. Fallback to all considered dirty\n"));
94 jffs2_clear_wbuf_ino_list(c
);
95 c
->wbuf_inodes
= &inodirty_nomem
;
99 new->next
= c
->wbuf_inodes
;
100 c
->wbuf_inodes
= new;
104 static inline void jffs2_refile_wbuf_blocks(struct jffs2_sb_info
*c
)
106 struct list_head
*this, *next
;
109 if (list_empty(&c
->erasable_pending_wbuf_list
))
112 list_for_each_safe(this, next
, &c
->erasable_pending_wbuf_list
) {
113 struct jffs2_eraseblock
*jeb
= list_entry(this, struct jffs2_eraseblock
, list
);
115 D1(printk(KERN_DEBUG
"Removing eraseblock at 0x%08x from erasable_pending_wbuf_list...\n", jeb
->offset
));
117 if ((jiffies
+ (n
++)) & 127) {
118 /* Most of the time, we just erase it immediately. Otherwise we
119 spend ages scanning it on mount, etc. */
120 D1(printk(KERN_DEBUG
"...and adding to erase_pending_list\n"));
121 list_add_tail(&jeb
->list
, &c
->erase_pending_list
);
122 c
->nr_erasing_blocks
++;
123 jffs2_erase_pending_trigger(c
);
125 /* Sometimes, however, we leave it elsewhere so it doesn't get
126 immediately reused, and we spread the load a bit. */
127 D1(printk(KERN_DEBUG
"...and adding to erasable_list\n"));
128 list_add_tail(&jeb
->list
, &c
->erasable_list
);
133 static void jffs2_block_refile(struct jffs2_sb_info
*c
, struct jffs2_eraseblock
*jeb
)
135 D1(printk("About to refile bad block at %08x\n", jeb
->offset
));
137 D2(jffs2_dump_block_lists(c
));
138 /* File the existing block on the bad_used_list.... */
139 if (c
->nextblock
== jeb
)
141 else /* Not sure this should ever happen... need more coffee */
142 list_del(&jeb
->list
);
143 if (jeb
->first_node
) {
144 D1(printk("Refiling block at %08x to bad_used_list\n", jeb
->offset
));
145 list_add(&jeb
->list
, &c
->bad_used_list
);
148 /* It has to have had some nodes or we couldn't be here */
149 D1(printk("Refiling block at %08x to erase_pending_list\n", jeb
->offset
));
150 list_add(&jeb
->list
, &c
->erase_pending_list
);
151 c
->nr_erasing_blocks
++;
152 jffs2_erase_pending_trigger(c
);
154 D2(jffs2_dump_block_lists(c
));
156 /* Adjust its size counts accordingly */
157 c
->wasted_size
+= jeb
->free_size
;
158 c
->free_size
-= jeb
->free_size
;
159 jeb
->wasted_size
+= jeb
->free_size
;
162 ACCT_SANITY_CHECK(c
,jeb
);
163 D1(ACCT_PARANOIA_CHECK(jeb
));
166 /* Recover from failure to write wbuf. Recover the nodes up to the
167 * wbuf, not the one which we were starting to try to write. */
169 static void jffs2_wbuf_recover(struct jffs2_sb_info
*c
)
171 struct jffs2_eraseblock
*jeb
, *new_jeb
;
172 struct jffs2_raw_node_ref
**first_raw
, **raw
;
176 uint32_t start
, end
, ofs
, len
;
178 spin_lock(&c
->erase_completion_lock
);
180 jeb
= &c
->blocks
[c
->wbuf_ofs
/ c
->sector_size
];
182 jffs2_block_refile(c
, jeb
);
184 /* Find the first node to be recovered, by skipping over every
185 node which ends before the wbuf starts, or which is obsolete. */
186 first_raw
= &jeb
->first_node
;
188 (ref_obsolete(*first_raw
) ||
189 (ref_offset(*first_raw
)+ref_totlen(c
, jeb
, *first_raw
)) < c
->wbuf_ofs
)) {
190 D1(printk(KERN_DEBUG
"Skipping node at 0x%08x(%d)-0x%08x which is either before 0x%08x or obsolete\n",
191 ref_offset(*first_raw
), ref_flags(*first_raw
),
192 (ref_offset(*first_raw
) + ref_totlen(c
, jeb
, *first_raw
)),
194 first_raw
= &(*first_raw
)->next_phys
;
198 /* All nodes were obsolete. Nothing to recover. */
199 D1(printk(KERN_DEBUG
"No non-obsolete nodes to be recovered. Just filing block bad\n"));
200 spin_unlock(&c
->erase_completion_lock
);
204 start
= ref_offset(*first_raw
);
205 end
= ref_offset(*first_raw
) + ref_totlen(c
, jeb
, *first_raw
);
207 /* Find the last node to be recovered */
210 if (!ref_obsolete(*raw
))
211 end
= ref_offset(*raw
) + ref_totlen(c
, jeb
, *raw
);
213 raw
= &(*raw
)->next_phys
;
215 spin_unlock(&c
->erase_completion_lock
);
217 D1(printk(KERN_DEBUG
"wbuf recover %08x-%08x\n", start
, end
));
220 if (start
< c
->wbuf_ofs
) {
221 /* First affected node was already partially written.
222 * Attempt to reread the old data into our buffer. */
224 buf
= kmalloc(end
- start
, GFP_KERNEL
);
226 printk(KERN_CRIT
"Malloc failure in wbuf recovery. Data loss ensues.\n");
232 if (jffs2_cleanmarker_oob(c
))
233 ret
= c
->mtd
->read_ecc(c
->mtd
, start
, c
->wbuf_ofs
- start
, &retlen
, buf
, NULL
, c
->oobinfo
);
235 ret
= c
->mtd
->read(c
->mtd
, start
, c
->wbuf_ofs
- start
, &retlen
, buf
);
237 if (ret
== -EBADMSG
&& retlen
== c
->wbuf_ofs
- start
) {
241 if (ret
|| retlen
!= c
->wbuf_ofs
- start
) {
242 printk(KERN_CRIT
"Old data are already lost in wbuf recovery. Data loss ensues.\n");
247 first_raw
= &(*first_raw
)->next_phys
;
248 /* If this was the only node to be recovered, give up */
252 /* It wasn't. Go on and try to recover nodes complete in the wbuf */
253 start
= ref_offset(*first_raw
);
255 /* Read succeeded. Copy the remaining data from the wbuf */
256 memcpy(buf
+ (c
->wbuf_ofs
- start
), c
->wbuf
, end
- c
->wbuf_ofs
);
259 /* OK... we're to rewrite (end-start) bytes of data from first_raw onwards.
260 Either 'buf' contains the data, or we find it in the wbuf */
263 /* ... and get an allocation of space from a shiny new block instead */
264 ret
= jffs2_reserve_space_gc(c
, end
-start
, &ofs
, &len
);
266 printk(KERN_WARNING
"Failed to allocate space for wbuf recovery. Data loss ensues.\n");
271 if (end
-start
>= c
->wbuf_pagesize
) {
272 /* Need to do another write immediately. This, btw,
273 means that we'll be writing from 'buf' and not from
274 the wbuf. Since if we're writing from the wbuf there
275 won't be more than a wbuf full of data, now will
278 uint32_t towrite
= (end
-start
) - ((end
-start
)%c
->wbuf_pagesize
);
280 D1(printk(KERN_DEBUG
"Write 0x%x bytes at 0x%08x in wbuf recover\n",
285 if (breakme
++ == 20) {
286 printk(KERN_NOTICE
"Faking write error at 0x%08x\n", ofs
);
288 c
->mtd
->write_ecc(c
->mtd
, ofs
, towrite
, &retlen
,
289 brokenbuf
, NULL
, c
->oobinfo
);
293 if (jffs2_cleanmarker_oob(c
))
294 ret
= c
->mtd
->write_ecc(c
->mtd
, ofs
, towrite
, &retlen
,
295 buf
, NULL
, c
->oobinfo
);
297 ret
= c
->mtd
->write(c
->mtd
, ofs
, towrite
, &retlen
, buf
);
299 if (ret
|| retlen
!= towrite
) {
300 /* Argh. We tried. Really we did. */
301 printk(KERN_CRIT
"Recovery of wbuf failed due to a second write error\n");
305 struct jffs2_raw_node_ref
*raw2
;
307 raw2
= jffs2_alloc_raw_node_ref();
311 raw2
->flash_offset
= ofs
| REF_OBSOLETE
;
312 raw2
->__totlen
= ref_totlen(c
, jeb
, *first_raw
);
313 raw2
->next_phys
= NULL
;
314 raw2
->next_in_ino
= NULL
;
316 jffs2_add_physical_node_ref(c
, raw2
);
320 printk(KERN_NOTICE
"Recovery of wbuf succeeded to %08x\n", ofs
);
322 c
->wbuf_len
= (end
- start
) - towrite
;
323 c
->wbuf_ofs
= ofs
+ towrite
;
324 memcpy(c
->wbuf
, buf
+ towrite
, c
->wbuf_len
);
325 /* Don't muck about with c->wbuf_inodes. False positives are harmless. */
329 /* OK, now we're left with the dregs in whichever buffer we're using */
331 memcpy(c
->wbuf
, buf
, end
-start
);
334 memmove(c
->wbuf
, c
->wbuf
+ (start
- c
->wbuf_ofs
), end
- start
);
337 c
->wbuf_len
= end
- start
;
340 /* Now sort out the jffs2_raw_node_refs, moving them from the old to the next block */
341 new_jeb
= &c
->blocks
[ofs
/ c
->sector_size
];
343 spin_lock(&c
->erase_completion_lock
);
344 if (new_jeb
->first_node
) {
345 /* Odd, but possible with ST flash later maybe */
346 new_jeb
->last_node
->next_phys
= *first_raw
;
348 new_jeb
->first_node
= *first_raw
;
353 uint32_t rawlen
= ref_totlen(c
, jeb
, *raw
);
355 D1(printk(KERN_DEBUG
"Refiling block of %08x at %08x(%d) to %08x\n",
356 rawlen
, ref_offset(*raw
), ref_flags(*raw
), ofs
));
358 if (ref_obsolete(*raw
)) {
359 /* Shouldn't really happen much */
360 new_jeb
->dirty_size
+= rawlen
;
361 new_jeb
->free_size
-= rawlen
;
362 c
->dirty_size
+= rawlen
;
364 new_jeb
->used_size
+= rawlen
;
365 new_jeb
->free_size
-= rawlen
;
366 jeb
->dirty_size
+= rawlen
;
367 jeb
->used_size
-= rawlen
;
368 c
->dirty_size
+= rawlen
;
370 c
->free_size
-= rawlen
;
371 (*raw
)->flash_offset
= ofs
| ref_flags(*raw
);
373 new_jeb
->last_node
= *raw
;
375 raw
= &(*raw
)->next_phys
;
378 /* Fix up the original jeb now it's on the bad_list */
380 if (first_raw
== &jeb
->first_node
) {
381 jeb
->last_node
= NULL
;
382 D1(printk(KERN_DEBUG
"Failing block at %08x is now empty. Moving to erase_pending_list\n", jeb
->offset
));
383 list_del(&jeb
->list
);
384 list_add(&jeb
->list
, &c
->erase_pending_list
);
385 c
->nr_erasing_blocks
++;
386 jffs2_erase_pending_trigger(c
);
389 jeb
->last_node
= container_of(first_raw
, struct jffs2_raw_node_ref
, next_phys
);
391 ACCT_SANITY_CHECK(c
,jeb
);
392 D1(ACCT_PARANOIA_CHECK(jeb
));
394 ACCT_SANITY_CHECK(c
,new_jeb
);
395 D1(ACCT_PARANOIA_CHECK(new_jeb
));
397 spin_unlock(&c
->erase_completion_lock
);
399 D1(printk(KERN_DEBUG
"wbuf recovery completed OK\n"));
402 /* Meaning of pad argument:
403 0: Do not pad. Probably pointless - we only ever use this when we can't pad anyway.
404 1: Pad, do not adjust nextblock free_size
405 2: Pad, adjust nextblock free_size
408 #define PAD_NOACCOUNT 1
409 #define PAD_ACCOUNTING 2
411 static int __jffs2_flush_wbuf(struct jffs2_sb_info
*c
, int pad
)
416 /* Nothing to do if not NAND flash. In particular, we shouldn't
417 del_timer() the timer we never initialised. */
418 if (jffs2_can_mark_obsolete(c
))
421 if (!down_trylock(&c
->alloc_sem
)) {
423 printk(KERN_CRIT
"jffs2_flush_wbuf() called with alloc_sem not locked!\n");
427 if(!c
->wbuf
|| !c
->wbuf_len
)
430 /* claim remaining space on the page
431 this happens, if we have a change to a new block,
432 or if fsync forces us to flush the writebuffer.
433 if we have a switch to next page, we will not have
434 enough remaining space for this.
437 c
->wbuf_len
= PAD(c
->wbuf_len
);
439 /* Pad with JFFS2_DIRTY_BITMASK initially. this helps out ECC'd NOR
440 with 8 byte page size */
441 memset(c
->wbuf
+ c
->wbuf_len
, 0, c
->wbuf_pagesize
- c
->wbuf_len
);
443 if ( c
->wbuf_len
+ sizeof(struct jffs2_unknown_node
) < c
->wbuf_pagesize
) {
444 struct jffs2_unknown_node
*padnode
= (void *)(c
->wbuf
+ c
->wbuf_len
);
445 padnode
->magic
= cpu_to_je16(JFFS2_MAGIC_BITMASK
);
446 padnode
->nodetype
= cpu_to_je16(JFFS2_NODETYPE_PADDING
);
447 padnode
->totlen
= cpu_to_je32(c
->wbuf_pagesize
- c
->wbuf_len
);
448 padnode
->hdr_crc
= cpu_to_je32(crc32(0, padnode
, sizeof(*padnode
)-4));
451 /* else jffs2_flash_writev has actually filled in the rest of the
452 buffer for us, and will deal with the node refs etc. later. */
456 if (breakme
++ == 20) {
457 printk(KERN_NOTICE
"Faking write error at 0x%08x\n", c
->wbuf_ofs
);
459 c
->mtd
->write_ecc(c
->mtd
, c
->wbuf_ofs
, c
->wbuf_pagesize
,
460 &retlen
, brokenbuf
, NULL
, c
->oobinfo
);
465 if (jffs2_cleanmarker_oob(c
))
466 ret
= c
->mtd
->write_ecc(c
->mtd
, c
->wbuf_ofs
, c
->wbuf_pagesize
, &retlen
, c
->wbuf
, NULL
, c
->oobinfo
);
468 ret
= c
->mtd
->write(c
->mtd
, c
->wbuf_ofs
, c
->wbuf_pagesize
, &retlen
, c
->wbuf
);
470 if (ret
|| retlen
!= c
->wbuf_pagesize
) {
472 printk(KERN_WARNING
"jffs2_flush_wbuf(): Write failed with %d\n",ret
);
474 printk(KERN_WARNING
"jffs2_flush_wbuf(): Write was short: %zd instead of %d\n",
475 retlen
, c
->wbuf_pagesize
);
479 jffs2_wbuf_recover(c
);
484 spin_lock(&c
->erase_completion_lock
);
486 /* Adjust free size of the block if we padded. */
488 struct jffs2_eraseblock
*jeb
;
490 jeb
= &c
->blocks
[c
->wbuf_ofs
/ c
->sector_size
];
492 D1(printk(KERN_DEBUG
"jffs2_flush_wbuf() adjusting free_size of %sblock at %08x\n",
493 (jeb
==c
->nextblock
)?"next":"", jeb
->offset
));
495 /* wbuf_pagesize - wbuf_len is the amount of space that's to be
496 padded. If there is less free space in the block than that,
497 something screwed up */
498 if (jeb
->free_size
< (c
->wbuf_pagesize
- c
->wbuf_len
)) {
499 printk(KERN_CRIT
"jffs2_flush_wbuf(): Accounting error. wbuf at 0x%08x has 0x%03x bytes, 0x%03x left.\n",
500 c
->wbuf_ofs
, c
->wbuf_len
, c
->wbuf_pagesize
-c
->wbuf_len
);
501 printk(KERN_CRIT
"jffs2_flush_wbuf(): But free_size for block at 0x%08x is only 0x%08x\n",
502 jeb
->offset
, jeb
->free_size
);
505 jeb
->free_size
-= (c
->wbuf_pagesize
- c
->wbuf_len
);
506 c
->free_size
-= (c
->wbuf_pagesize
- c
->wbuf_len
);
507 jeb
->wasted_size
+= (c
->wbuf_pagesize
- c
->wbuf_len
);
508 c
->wasted_size
+= (c
->wbuf_pagesize
- c
->wbuf_len
);
511 /* Stick any now-obsoleted blocks on the erase_pending_list */
512 jffs2_refile_wbuf_blocks(c
);
513 jffs2_clear_wbuf_ino_list(c
);
514 spin_unlock(&c
->erase_completion_lock
);
516 memset(c
->wbuf
,0xff,c
->wbuf_pagesize
);
517 /* adjust write buffer offset, else we get a non contiguous write bug */
518 c
->wbuf_ofs
+= c
->wbuf_pagesize
;
523 /* Trigger garbage collection to flush the write-buffer.
524 If ino arg is zero, do it if _any_ real (i.e. not GC) writes are
525 outstanding. If ino arg non-zero, do it only if a write for the
526 given inode is outstanding. */
527 int jffs2_flush_wbuf_gc(struct jffs2_sb_info
*c
, uint32_t ino
)
529 uint32_t old_wbuf_ofs
;
530 uint32_t old_wbuf_len
;
533 D1(printk(KERN_DEBUG
"jffs2_flush_wbuf_gc() called for ino #%u...\n", ino
));
536 if (!jffs2_wbuf_pending_for_ino(c
, ino
)) {
537 D1(printk(KERN_DEBUG
"Ino #%d not pending in wbuf. Returning\n", ino
));
542 old_wbuf_ofs
= c
->wbuf_ofs
;
543 old_wbuf_len
= c
->wbuf_len
;
545 if (c
->unchecked_size
) {
546 /* GC won't make any progress for a while */
547 D1(printk(KERN_DEBUG
"jffs2_flush_wbuf_gc() padding. Not finished checking\n"));
548 down_write(&c
->wbuf_sem
);
549 ret
= __jffs2_flush_wbuf(c
, PAD_ACCOUNTING
);
550 up_write(&c
->wbuf_sem
);
551 } else while (old_wbuf_len
&&
552 old_wbuf_ofs
== c
->wbuf_ofs
) {
556 D1(printk(KERN_DEBUG
"jffs2_flush_wbuf_gc() calls gc pass\n"));
558 ret
= jffs2_garbage_collect_pass(c
);
560 /* GC failed. Flush it with padding instead */
562 down_write(&c
->wbuf_sem
);
563 ret
= __jffs2_flush_wbuf(c
, PAD_ACCOUNTING
);
564 up_write(&c
->wbuf_sem
);
570 D1(printk(KERN_DEBUG
"jffs2_flush_wbuf_gc() ends...\n"));
576 /* Pad write-buffer to end and write it, wasting space. */
577 int jffs2_flush_wbuf_pad(struct jffs2_sb_info
*c
)
581 down_write(&c
->wbuf_sem
);
582 ret
= __jffs2_flush_wbuf(c
, PAD_NOACCOUNT
);
583 up_write(&c
->wbuf_sem
);
588 #define PAGE_DIV(x) ( (x) & (~(c->wbuf_pagesize - 1)) )
589 #define PAGE_MOD(x) ( (x) & (c->wbuf_pagesize - 1) )
590 int jffs2_flash_writev(struct jffs2_sb_info
*c
, const struct kvec
*invecs
, unsigned long count
, loff_t to
, size_t *retlen
, uint32_t ino
)
592 struct kvec outvecs
[3];
594 uint32_t split_ofs
= 0;
596 int ret
, splitvec
= -1;
599 unsigned char *wbuf_ptr
;
601 uint32_t outvec_to
= to
;
603 /* If not NAND flash, don't bother */
605 return jffs2_flash_direct_writev(c
, invecs
, count
, to
, retlen
);
607 down_write(&c
->wbuf_sem
);
609 /* If wbuf_ofs is not initialized, set it to target address */
610 if (c
->wbuf_ofs
== 0xFFFFFFFF) {
611 c
->wbuf_ofs
= PAGE_DIV(to
);
612 c
->wbuf_len
= PAGE_MOD(to
);
613 memset(c
->wbuf
,0xff,c
->wbuf_pagesize
);
616 /* Fixup the wbuf if we are moving to a new eraseblock. The checks below
617 fail for ECC'd NOR because cleanmarker == 16, so a block starts at
619 if (jffs2_nor_ecc(c
)) {
620 if (((c
->wbuf_ofs
% c
->sector_size
) == 0) && !c
->wbuf_len
) {
621 c
->wbuf_ofs
= PAGE_DIV(to
);
622 c
->wbuf_len
= PAGE_MOD(to
);
623 memset(c
->wbuf
,0xff,c
->wbuf_pagesize
);
627 /* Sanity checks on target address.
628 It's permitted to write at PAD(c->wbuf_len+c->wbuf_ofs),
629 and it's permitted to write at the beginning of a new
630 erase block. Anything else, and you die.
631 New block starts at xxx000c (0-b = block header)
633 if ( (to
& ~(c
->sector_size
-1)) != (c
->wbuf_ofs
& ~(c
->sector_size
-1)) ) {
634 /* It's a write to a new block */
636 D1(printk(KERN_DEBUG
"jffs2_flash_writev() to 0x%lx causes flush of wbuf at 0x%08x\n", (unsigned long)to
, c
->wbuf_ofs
));
637 ret
= __jffs2_flush_wbuf(c
, PAD_NOACCOUNT
);
639 /* the underlying layer has to check wbuf_len to do the cleanup */
640 D1(printk(KERN_WARNING
"jffs2_flush_wbuf() called from jffs2_flash_writev() failed %d\n", ret
));
645 /* set pointer to new block */
646 c
->wbuf_ofs
= PAGE_DIV(to
);
647 c
->wbuf_len
= PAGE_MOD(to
);
650 if (to
!= PAD(c
->wbuf_ofs
+ c
->wbuf_len
)) {
651 /* We're not writing immediately after the writebuffer. Bad. */
652 printk(KERN_CRIT
"jffs2_flash_writev(): Non-contiguous write to %08lx\n", (unsigned long)to
);
654 printk(KERN_CRIT
"wbuf was previously %08x-%08x\n",
655 c
->wbuf_ofs
, c
->wbuf_ofs
+c
->wbuf_len
);
659 /* Note outvecs[3] above. We know count is never greater than 2 */
661 printk(KERN_CRIT
"jffs2_flash_writev(): count is %ld\n", count
);
668 /* Fill writebuffer first, if already in use */
670 uint32_t invec_ofs
= 0;
672 /* adjust alignment offset */
673 if (c
->wbuf_len
!= PAGE_MOD(to
)) {
674 c
->wbuf_len
= PAGE_MOD(to
);
675 /* take care of alignment to next page */
677 c
->wbuf_len
= c
->wbuf_pagesize
;
680 while(c
->wbuf_len
< c
->wbuf_pagesize
) {
686 thislen
= c
->wbuf_pagesize
- c
->wbuf_len
;
688 if (thislen
>= invecs
[invec
].iov_len
)
689 thislen
= invecs
[invec
].iov_len
;
693 memcpy(c
->wbuf
+ c
->wbuf_len
, invecs
[invec
].iov_base
, thislen
);
694 c
->wbuf_len
+= thislen
;
696 /* Get next invec, if actual did not fill the buffer */
697 if (c
->wbuf_len
< c
->wbuf_pagesize
)
701 /* write buffer is full, flush buffer */
702 ret
= __jffs2_flush_wbuf(c
, NOPAD
);
704 /* the underlying layer has to check wbuf_len to do the cleanup */
705 D1(printk(KERN_WARNING
"jffs2_flush_wbuf() called from jffs2_flash_writev() failed %d\n", ret
));
706 /* Retlen zero to make sure our caller doesn't mark the space dirty.
707 We've already done everything that's necessary */
711 outvec_to
+= donelen
;
712 c
->wbuf_ofs
= outvec_to
;
714 /* All invecs done ? */
718 /* Set up the first outvec, containing the remainder of the
719 invec we partially used */
720 if (invecs
[invec
].iov_len
> invec_ofs
) {
721 outvecs
[0].iov_base
= invecs
[invec
].iov_base
+invec_ofs
;
722 totlen
= outvecs
[0].iov_len
= invecs
[invec
].iov_len
-invec_ofs
;
723 if (totlen
> c
->wbuf_pagesize
) {
725 split_ofs
= outvecs
[0].iov_len
- PAGE_MOD(totlen
);
732 /* OK, now we've flushed the wbuf and the start of the bits
733 we have been asked to write, now to write the rest.... */
735 /* totlen holds the amount of data still to be written */
737 for ( ; invec
< count
; invec
++,outvec
++ ) {
738 outvecs
[outvec
].iov_base
= invecs
[invec
].iov_base
;
739 totlen
+= outvecs
[outvec
].iov_len
= invecs
[invec
].iov_len
;
740 if (PAGE_DIV(totlen
) != PAGE_DIV(old_totlen
)) {
742 split_ofs
= outvecs
[outvec
].iov_len
- PAGE_MOD(totlen
);
747 /* Now the outvecs array holds all the remaining data to write */
748 /* Up to splitvec,split_ofs is to be written immediately. The rest
749 goes into the (now-empty) wbuf */
751 if (splitvec
!= -1) {
754 remainder
= outvecs
[splitvec
].iov_len
- split_ofs
;
755 outvecs
[splitvec
].iov_len
= split_ofs
;
757 /* We did cross a page boundary, so we write some now */
758 if (jffs2_cleanmarker_oob(c
))
759 ret
= c
->mtd
->writev_ecc(c
->mtd
, outvecs
, splitvec
+1, outvec_to
, &wbuf_retlen
, NULL
, c
->oobinfo
);
761 ret
= jffs2_flash_direct_writev(c
, outvecs
, splitvec
+1, outvec_to
, &wbuf_retlen
);
763 if (ret
< 0 || wbuf_retlen
!= PAGE_DIV(totlen
)) {
764 /* At this point we have no problem,
771 donelen
+= wbuf_retlen
;
772 c
->wbuf_ofs
= PAGE_DIV(outvec_to
) + PAGE_DIV(totlen
);
775 outvecs
[splitvec
].iov_base
+= split_ofs
;
776 outvecs
[splitvec
].iov_len
= remainder
;
785 /* Now splitvec points to the start of the bits we have to copy
789 for ( ; splitvec
< outvec
; splitvec
++) {
790 /* Don't copy the wbuf into itself */
791 if (outvecs
[splitvec
].iov_base
== c
->wbuf
)
793 memcpy(wbuf_ptr
, outvecs
[splitvec
].iov_base
, outvecs
[splitvec
].iov_len
);
794 wbuf_ptr
+= outvecs
[splitvec
].iov_len
;
795 donelen
+= outvecs
[splitvec
].iov_len
;
797 c
->wbuf_len
= wbuf_ptr
- c
->wbuf
;
799 /* If there's a remainder in the wbuf and it's a non-GC write,
800 remember that the wbuf affects this ino */
804 if (c
->wbuf_len
&& ino
)
805 jffs2_wbuf_dirties_inode(c
, ino
);
810 up_write(&c
->wbuf_sem
);
815 * This is the entry for flash write.
816 * Check, if we work on NAND FLASH, if so build an kvec and write it via vritev
818 int jffs2_flash_write(struct jffs2_sb_info
*c
, loff_t ofs
, size_t len
, size_t *retlen
, const u_char
*buf
)
822 if (jffs2_can_mark_obsolete(c
))
823 return c
->mtd
->write(c
->mtd
, ofs
, len
, retlen
, buf
);
825 vecs
[0].iov_base
= (unsigned char *) buf
;
826 vecs
[0].iov_len
= len
;
827 return jffs2_flash_writev(c
, vecs
, 1, ofs
, retlen
, 0);
831 Handle readback from writebuffer and ECC failure return
833 int jffs2_flash_read(struct jffs2_sb_info
*c
, loff_t ofs
, size_t len
, size_t *retlen
, u_char
*buf
)
835 loff_t orbf
= 0, owbf
= 0, lwbf
= 0;
839 if (!jffs2_can_mark_obsolete(c
)) {
840 down_read(&c
->wbuf_sem
);
842 if (jffs2_cleanmarker_oob(c
))
843 ret
= c
->mtd
->read_ecc(c
->mtd
, ofs
, len
, retlen
, buf
, NULL
, c
->oobinfo
);
845 ret
= c
->mtd
->read(c
->mtd
, ofs
, len
, retlen
, buf
);
847 if ( (ret
== -EBADMSG
) && (*retlen
== len
) ) {
848 printk(KERN_WARNING
"mtd->read(0x%zx bytes from 0x%llx) returned ECC error\n",
851 * We have the raw data without ECC correction in the buffer, maybe
852 * we are lucky and all data or parts are correct. We check the node.
853 * If data are corrupted node check will sort it out.
854 * We keep this block, it will fail on write or erase and the we
855 * mark it bad. Or should we do that now? But we should give him a chance.
856 * Maybe we had a system crash or power loss before the ecc write or
857 * a erase was completed.
858 * So we return success. :)
863 return c
->mtd
->read(c
->mtd
, ofs
, len
, retlen
, buf
);
865 /* if no writebuffer available or write buffer empty, return */
866 if (!c
->wbuf_pagesize
|| !c
->wbuf_len
)
869 /* if we read in a different block, return */
870 if ( (ofs
& ~(c
->sector_size
-1)) != (c
->wbuf_ofs
& ~(c
->sector_size
-1)) )
873 if (ofs
>= c
->wbuf_ofs
) {
874 owbf
= (ofs
- c
->wbuf_ofs
); /* offset in write buffer */
875 if (owbf
> c
->wbuf_len
) /* is read beyond write buffer ? */
877 lwbf
= c
->wbuf_len
- owbf
; /* number of bytes to copy */
881 orbf
= (c
->wbuf_ofs
- ofs
); /* offset in read buffer */
882 if (orbf
> len
) /* is write beyond write buffer ? */
884 lwbf
= len
- orbf
; /* number of bytes to copy */
885 if (lwbf
> c
->wbuf_len
)
889 memcpy(buf
+orbf
,c
->wbuf
+owbf
,lwbf
);
892 up_read(&c
->wbuf_sem
);
897 * Check, if the out of band area is empty
899 int jffs2_check_oob_empty( struct jffs2_sb_info
*c
, struct jffs2_eraseblock
*jeb
, int mode
)
907 /* allocate a buffer for all oob data in this sector */
908 oob_size
= c
->mtd
->oobsize
;
910 buf
= kmalloc(len
, GFP_KERNEL
);
912 printk(KERN_NOTICE
"jffs2_check_oob_empty(): allocation of temporary data buffer for oob check failed\n");
916 * if mode = 0, we scan for a total empty oob area, else we have
917 * to take care of the cleanmarker in the first page of the block
919 ret
= jffs2_flash_read_oob(c
, jeb
->offset
, len
, &retlen
, buf
);
921 D1(printk(KERN_WARNING
"jffs2_check_oob_empty(): Read OOB failed %d for block at %08x\n", ret
, jeb
->offset
));
926 D1(printk(KERN_WARNING
"jffs2_check_oob_empty(): Read OOB return short read "
927 "(%zd bytes not %d) for block at %08x\n", retlen
, len
, jeb
->offset
));
932 /* Special check for first page */
933 for(i
= 0; i
< oob_size
; i
++) {
934 /* Yeah, we know about the cleanmarker. */
935 if (mode
&& i
>= c
->fsdata_pos
&&
936 i
< c
->fsdata_pos
+ c
->fsdata_len
)
939 if (buf
[i
] != 0xFF) {
940 D2(printk(KERN_DEBUG
"Found %02x at %x in OOB for %08x\n",
941 buf
[page
+i
], page
+i
, jeb
->offset
));
947 /* we know, we are aligned :) */
948 for (page
= oob_size
; page
< len
; page
+= sizeof(long)) {
949 unsigned long dat
= *(unsigned long *)(&buf
[page
]);
963 * Scan for a valid cleanmarker and for bad blocks
964 * For virtual blocks (concatenated physical blocks) check the cleanmarker
965 * only in the first page of the first physical block, but scan for bad blocks in all
968 int jffs2_check_nand_cleanmarker (struct jffs2_sb_info
*c
, struct jffs2_eraseblock
*jeb
)
970 struct jffs2_unknown_node n
;
971 unsigned char buf
[2 * NAND_MAX_OOBSIZE
];
973 int ret
, i
, cnt
, retval
= 0;
974 size_t retlen
, offset
;
977 offset
= jeb
->offset
;
978 oob_size
= c
->mtd
->oobsize
;
980 /* Loop through the physical blocks */
981 for (cnt
= 0; cnt
< (c
->sector_size
/ c
->mtd
->erasesize
); cnt
++) {
982 /* Check first if the block is bad. */
983 if (c
->mtd
->block_isbad (c
->mtd
, offset
)) {
984 D1 (printk (KERN_WARNING
"jffs2_check_nand_cleanmarker(): Bad block at %08x\n", jeb
->offset
));
988 * We read oob data from page 0 and 1 of the block.
989 * page 0 contains cleanmarker and badblock info
990 * page 1 contains failure count of this block
992 ret
= c
->mtd
->read_oob (c
->mtd
, offset
, oob_size
<< 1, &retlen
, buf
);
995 D1 (printk (KERN_WARNING
"jffs2_check_nand_cleanmarker(): Read OOB failed %d for block at %08x\n", ret
, jeb
->offset
));
998 if (retlen
< (oob_size
<< 1)) {
999 D1 (printk (KERN_WARNING
"jffs2_check_nand_cleanmarker(): Read OOB return short read (%zd bytes not %d) for block at %08x\n", retlen
, oob_size
<< 1, jeb
->offset
));
1003 /* Check cleanmarker only on the first physical block */
1005 n
.magic
= cpu_to_je16 (JFFS2_MAGIC_BITMASK
);
1006 n
.nodetype
= cpu_to_je16 (JFFS2_NODETYPE_CLEANMARKER
);
1007 n
.totlen
= cpu_to_je32 (8);
1008 p
= (unsigned char *) &n
;
1010 for (i
= 0; i
< c
->fsdata_len
; i
++) {
1011 if (buf
[c
->fsdata_pos
+ i
] != p
[i
]) {
1015 D1(if (retval
== 1) {
1016 printk(KERN_WARNING
"jffs2_check_nand_cleanmarker(): Cleanmarker node not detected in block at %08x\n", jeb
->offset
);
1017 printk(KERN_WARNING
"OOB at %08x was ", offset
);
1018 for (i
=0; i
< oob_size
; i
++) {
1019 printk("%02x ", buf
[i
]);
1024 offset
+= c
->mtd
->erasesize
;
1029 int jffs2_write_nand_cleanmarker(struct jffs2_sb_info
*c
, struct jffs2_eraseblock
*jeb
)
1031 struct jffs2_unknown_node n
;
1035 n
.magic
= cpu_to_je16(JFFS2_MAGIC_BITMASK
);
1036 n
.nodetype
= cpu_to_je16(JFFS2_NODETYPE_CLEANMARKER
);
1037 n
.totlen
= cpu_to_je32(8);
1039 ret
= jffs2_flash_write_oob(c
, jeb
->offset
+ c
->fsdata_pos
, c
->fsdata_len
, &retlen
, (unsigned char *)&n
);
1042 D1(printk(KERN_WARNING
"jffs2_write_nand_cleanmarker(): Write failed for block at %08x: error %d\n", jeb
->offset
, ret
));
1045 if (retlen
!= c
->fsdata_len
) {
1046 D1(printk(KERN_WARNING
"jffs2_write_nand_cleanmarker(): Short write for block at %08x: %zd not %d\n", jeb
->offset
, retlen
, c
->fsdata_len
));
1053 * On NAND we try to mark this block bad. If the block was erased more
1054 * than MAX_ERASE_FAILURES we mark it finaly bad.
1055 * Don't care about failures. This block remains on the erase-pending
1056 * or badblock list as long as nobody manipulates the flash with
1057 * a bootloader or something like that.
1060 int jffs2_write_nand_badblock(struct jffs2_sb_info
*c
, struct jffs2_eraseblock
*jeb
, uint32_t bad_offset
)
1064 /* if the count is < max, we try to write the counter to the 2nd page oob area */
1065 if( ++jeb
->bad_count
< MAX_ERASE_FAILURES
)
1068 if (!c
->mtd
->block_markbad
)
1069 return 1; // What else can we do?
1071 D1(printk(KERN_WARNING
"jffs2_write_nand_badblock(): Marking bad block at %08x\n", bad_offset
));
1072 ret
= c
->mtd
->block_markbad(c
->mtd
, bad_offset
);
1075 D1(printk(KERN_WARNING
"jffs2_write_nand_badblock(): Write failed for block at %08x: error %d\n", jeb
->offset
, ret
));
1081 #define NAND_JFFS2_OOB16_FSDALEN 8
1083 static struct nand_oobinfo jffs2_oobinfo_docecc
= {
1084 .useecc
= MTD_NANDECC_PLACE
,
1086 .eccpos
= {0,1,2,3,4,5}
1090 static int jffs2_nand_set_oobinfo(struct jffs2_sb_info
*c
)
1092 struct nand_oobinfo
*oinfo
= &c
->mtd
->oobinfo
;
1094 /* Do this only, if we have an oob buffer */
1095 if (!c
->mtd
->oobsize
)
1098 /* Cleanmarker is out-of-band, so inline size zero */
1099 c
->cleanmarker_size
= 0;
1101 /* Should we use autoplacement ? */
1102 if (oinfo
&& oinfo
->useecc
== MTD_NANDECC_AUTOPLACE
) {
1103 D1(printk(KERN_DEBUG
"JFFS2 using autoplace on NAND\n"));
1104 /* Get the position of the free bytes */
1105 if (!oinfo
->oobfree
[0][1]) {
1106 printk (KERN_WARNING
"jffs2_nand_set_oobinfo(): Eeep. Autoplacement selected and no empty space in oob\n");
1109 c
->fsdata_pos
= oinfo
->oobfree
[0][0];
1110 c
->fsdata_len
= oinfo
->oobfree
[0][1];
1111 if (c
->fsdata_len
> 8)
1114 /* This is just a legacy fallback and should go away soon */
1115 switch(c
->mtd
->ecctype
) {
1116 case MTD_ECC_RS_DiskOnChip
:
1117 printk(KERN_WARNING
"JFFS2 using DiskOnChip hardware ECC without autoplacement. Fix it!\n");
1118 c
->oobinfo
= &jffs2_oobinfo_docecc
;
1120 c
->fsdata_len
= NAND_JFFS2_OOB16_FSDALEN
;
1121 c
->badblock_pos
= 15;
1125 D1(printk(KERN_DEBUG
"JFFS2 on NAND. No autoplacment info found\n"));
1132 int jffs2_nand_flash_setup(struct jffs2_sb_info
*c
)
1136 /* Initialise write buffer */
1137 init_rwsem(&c
->wbuf_sem
);
1138 c
->wbuf_pagesize
= c
->mtd
->oobblock
;
1139 c
->wbuf_ofs
= 0xFFFFFFFF;
1141 c
->wbuf
= kmalloc(c
->wbuf_pagesize
, GFP_KERNEL
);
1145 res
= jffs2_nand_set_oobinfo(c
);
1149 brokenbuf
= kmalloc(c
->wbuf_pagesize
, GFP_KERNEL
);
1154 memset(brokenbuf
, 0xdb, c
->wbuf_pagesize
);
1159 void jffs2_nand_flash_cleanup(struct jffs2_sb_info
*c
)
1164 #ifdef CONFIG_JFFS2_FS_NOR_ECC
1165 int jffs2_nor_ecc_flash_setup(struct jffs2_sb_info
*c
) {
1166 /* Cleanmarker is actually larger on the flashes */
1167 c
->cleanmarker_size
= 16;
1169 /* Initialize write buffer */
1170 init_rwsem(&c
->wbuf_sem
);
1171 c
->wbuf_pagesize
= c
->mtd
->eccsize
;
1172 c
->wbuf_ofs
= 0xFFFFFFFF;
1174 c
->wbuf
= kmalloc(c
->wbuf_pagesize
, GFP_KERNEL
);
1181 void jffs2_nor_ecc_flash_cleanup(struct jffs2_sb_info
*c
) {