[TG3]: Set minimal hw interrupt mitigation.
[linux-2.6/verdex.git] / fs / jfs / jfs_logmgr.c
blobdfa1200daa61c22f6b96bdff1130d88090a25006
1 /*
2 * Copyright (C) International Business Machines Corp., 2000-2004
3 * Portions Copyright (C) Christoph Hellwig, 2001-2002
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
13 * the GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 * jfs_logmgr.c: log manager
23 * for related information, see transaction manager (jfs_txnmgr.c), and
24 * recovery manager (jfs_logredo.c).
26 * note: for detail, RTFS.
28 * log buffer manager:
29 * special purpose buffer manager supporting log i/o requirements.
30 * per log serial pageout of logpage
31 * queuing i/o requests and redrive i/o at iodone
32 * maintain current logpage buffer
33 * no caching since append only
34 * appropriate jfs buffer cache buffers as needed
36 * group commit:
37 * transactions which wrote COMMIT records in the same in-memory
38 * log page during the pageout of previous/current log page(s) are
39 * committed together by the pageout of the page.
41 * TBD lazy commit:
42 * transactions are committed asynchronously when the log page
43 * containing it COMMIT is paged out when it becomes full;
45 * serialization:
46 * . a per log lock serialize log write.
47 * . a per log lock serialize group commit.
48 * . a per log lock serialize log open/close;
50 * TBD log integrity:
51 * careful-write (ping-pong) of last logpage to recover from crash
52 * in overwrite.
53 * detection of split (out-of-order) write of physical sectors
54 * of last logpage via timestamp at end of each sector
55 * with its mirror data array at trailer).
57 * alternatives:
58 * lsn - 64-bit monotonically increasing integer vs
59 * 32-bit lspn and page eor.
62 #include <linux/fs.h>
63 #include <linux/blkdev.h>
64 #include <linux/interrupt.h>
65 #include <linux/smp_lock.h>
66 #include <linux/completion.h>
67 #include <linux/buffer_head.h> /* for sync_blockdev() */
68 #include <linux/bio.h>
69 #include <linux/suspend.h>
70 #include <linux/delay.h>
71 #include "jfs_incore.h"
72 #include "jfs_filsys.h"
73 #include "jfs_metapage.h"
74 #include "jfs_txnmgr.h"
75 #include "jfs_debug.h"
79 * lbuf's ready to be redriven. Protected by log_redrive_lock (jfsIO thread)
81 static struct lbuf *log_redrive_list;
82 static DEFINE_SPINLOCK(log_redrive_lock);
83 DECLARE_WAIT_QUEUE_HEAD(jfs_IO_thread_wait);
87 * log read/write serialization (per log)
89 #define LOG_LOCK_INIT(log) init_MUTEX(&(log)->loglock)
90 #define LOG_LOCK(log) down(&((log)->loglock))
91 #define LOG_UNLOCK(log) up(&((log)->loglock))
95 * log group commit serialization (per log)
98 #define LOGGC_LOCK_INIT(log) spin_lock_init(&(log)->gclock)
99 #define LOGGC_LOCK(log) spin_lock_irq(&(log)->gclock)
100 #define LOGGC_UNLOCK(log) spin_unlock_irq(&(log)->gclock)
101 #define LOGGC_WAKEUP(tblk) wake_up_all(&(tblk)->gcwait)
104 * log sync serialization (per log)
106 #define LOGSYNC_DELTA(logsize) min((logsize)/8, 128*LOGPSIZE)
107 #define LOGSYNC_BARRIER(logsize) ((logsize)/4)
109 #define LOGSYNC_DELTA(logsize) min((logsize)/4, 256*LOGPSIZE)
110 #define LOGSYNC_BARRIER(logsize) ((logsize)/2)
115 * log buffer cache synchronization
117 static DEFINE_SPINLOCK(jfsLCacheLock);
119 #define LCACHE_LOCK(flags) spin_lock_irqsave(&jfsLCacheLock, flags)
120 #define LCACHE_UNLOCK(flags) spin_unlock_irqrestore(&jfsLCacheLock, flags)
123 * See __SLEEP_COND in jfs_locks.h
125 #define LCACHE_SLEEP_COND(wq, cond, flags) \
126 do { \
127 if (cond) \
128 break; \
129 __SLEEP_COND(wq, cond, LCACHE_LOCK(flags), LCACHE_UNLOCK(flags)); \
130 } while (0)
132 #define LCACHE_WAKEUP(event) wake_up(event)
136 * lbuf buffer cache (lCache) control
138 /* log buffer manager pageout control (cumulative, inclusive) */
139 #define lbmREAD 0x0001
140 #define lbmWRITE 0x0002 /* enqueue at tail of write queue;
141 * init pageout if at head of queue;
143 #define lbmRELEASE 0x0004 /* remove from write queue
144 * at completion of pageout;
145 * do not free/recycle it yet:
146 * caller will free it;
148 #define lbmSYNC 0x0008 /* do not return to freelist
149 * when removed from write queue;
151 #define lbmFREE 0x0010 /* return to freelist
152 * at completion of pageout;
153 * the buffer may be recycled;
155 #define lbmDONE 0x0020
156 #define lbmERROR 0x0040
157 #define lbmGC 0x0080 /* lbmIODone to perform post-GC processing
158 * of log page
160 #define lbmDIRECT 0x0100
163 * Global list of active external journals
165 static LIST_HEAD(jfs_external_logs);
166 static struct jfs_log *dummy_log = NULL;
167 static DECLARE_MUTEX(jfs_log_sem);
170 * external references
172 extern void txLazyUnlock(struct tblock * tblk);
173 extern int jfs_stop_threads;
174 extern struct completion jfsIOwait;
175 extern int jfs_tlocks_low;
178 * forward references
180 static int lmWriteRecord(struct jfs_log * log, struct tblock * tblk,
181 struct lrd * lrd, struct tlock * tlck);
183 static int lmNextPage(struct jfs_log * log);
184 static int lmLogFileSystem(struct jfs_log * log, struct jfs_sb_info *sbi,
185 int activate);
187 static int open_inline_log(struct super_block *sb);
188 static int open_dummy_log(struct super_block *sb);
189 static int lbmLogInit(struct jfs_log * log);
190 static void lbmLogShutdown(struct jfs_log * log);
191 static struct lbuf *lbmAllocate(struct jfs_log * log, int);
192 static void lbmFree(struct lbuf * bp);
193 static void lbmfree(struct lbuf * bp);
194 static int lbmRead(struct jfs_log * log, int pn, struct lbuf ** bpp);
195 static void lbmWrite(struct jfs_log * log, struct lbuf * bp, int flag, int cant_block);
196 static void lbmDirectWrite(struct jfs_log * log, struct lbuf * bp, int flag);
197 static int lbmIOWait(struct lbuf * bp, int flag);
198 static bio_end_io_t lbmIODone;
199 static void lbmStartIO(struct lbuf * bp);
200 static void lmGCwrite(struct jfs_log * log, int cant_block);
201 static int lmLogSync(struct jfs_log * log, int nosyncwait);
206 * statistics
208 #ifdef CONFIG_JFS_STATISTICS
209 static struct lmStat {
210 uint commit; /* # of commit */
211 uint pagedone; /* # of page written */
212 uint submitted; /* # of pages submitted */
213 uint full_page; /* # of full pages submitted */
214 uint partial_page; /* # of partial pages submitted */
215 } lmStat;
216 #endif
220 * NAME: lmLog()
222 * FUNCTION: write a log record;
224 * PARAMETER:
226 * RETURN: lsn - offset to the next log record to write (end-of-log);
227 * -1 - error;
229 * note: todo: log error handler
231 int lmLog(struct jfs_log * log, struct tblock * tblk, struct lrd * lrd,
232 struct tlock * tlck)
234 int lsn;
235 int diffp, difft;
236 struct metapage *mp = NULL;
237 unsigned long flags;
239 jfs_info("lmLog: log:0x%p tblk:0x%p, lrd:0x%p tlck:0x%p",
240 log, tblk, lrd, tlck);
242 LOG_LOCK(log);
244 /* log by (out-of-transaction) JFS ? */
245 if (tblk == NULL)
246 goto writeRecord;
248 /* log from page ? */
249 if (tlck == NULL ||
250 tlck->type & tlckBTROOT || (mp = tlck->mp) == NULL)
251 goto writeRecord;
254 * initialize/update page/transaction recovery lsn
256 lsn = log->lsn;
258 LOGSYNC_LOCK(log, flags);
261 * initialize page lsn if first log write of the page
263 if (mp->lsn == 0) {
264 mp->log = log;
265 mp->lsn = lsn;
266 log->count++;
268 /* insert page at tail of logsynclist */
269 list_add_tail(&mp->synclist, &log->synclist);
273 * initialize/update lsn of tblock of the page
275 * transaction inherits oldest lsn of pages associated
276 * with allocation/deallocation of resources (their
277 * log records are used to reconstruct allocation map
278 * at recovery time: inode for inode allocation map,
279 * B+-tree index of extent descriptors for block
280 * allocation map);
281 * allocation map pages inherit transaction lsn at
282 * commit time to allow forwarding log syncpt past log
283 * records associated with allocation/deallocation of
284 * resources only after persistent map of these map pages
285 * have been updated and propagated to home.
288 * initialize transaction lsn:
290 if (tblk->lsn == 0) {
291 /* inherit lsn of its first page logged */
292 tblk->lsn = mp->lsn;
293 log->count++;
295 /* insert tblock after the page on logsynclist */
296 list_add(&tblk->synclist, &mp->synclist);
299 * update transaction lsn:
301 else {
302 /* inherit oldest/smallest lsn of page */
303 logdiff(diffp, mp->lsn, log);
304 logdiff(difft, tblk->lsn, log);
305 if (diffp < difft) {
306 /* update tblock lsn with page lsn */
307 tblk->lsn = mp->lsn;
309 /* move tblock after page on logsynclist */
310 list_move(&tblk->synclist, &mp->synclist);
314 LOGSYNC_UNLOCK(log, flags);
317 * write the log record
319 writeRecord:
320 lsn = lmWriteRecord(log, tblk, lrd, tlck);
323 * forward log syncpt if log reached next syncpt trigger
325 logdiff(diffp, lsn, log);
326 if (diffp >= log->nextsync)
327 lsn = lmLogSync(log, 0);
329 /* update end-of-log lsn */
330 log->lsn = lsn;
332 LOG_UNLOCK(log);
334 /* return end-of-log address */
335 return lsn;
339 * NAME: lmWriteRecord()
341 * FUNCTION: move the log record to current log page
343 * PARAMETER: cd - commit descriptor
345 * RETURN: end-of-log address
347 * serialization: LOG_LOCK() held on entry/exit
349 static int
350 lmWriteRecord(struct jfs_log * log, struct tblock * tblk, struct lrd * lrd,
351 struct tlock * tlck)
353 int lsn = 0; /* end-of-log address */
354 struct lbuf *bp; /* dst log page buffer */
355 struct logpage *lp; /* dst log page */
356 caddr_t dst; /* destination address in log page */
357 int dstoffset; /* end-of-log offset in log page */
358 int freespace; /* free space in log page */
359 caddr_t p; /* src meta-data page */
360 caddr_t src;
361 int srclen;
362 int nbytes; /* number of bytes to move */
363 int i;
364 int len;
365 struct linelock *linelock;
366 struct lv *lv;
367 struct lvd *lvd;
368 int l2linesize;
370 len = 0;
372 /* retrieve destination log page to write */
373 bp = (struct lbuf *) log->bp;
374 lp = (struct logpage *) bp->l_ldata;
375 dstoffset = log->eor;
377 /* any log data to write ? */
378 if (tlck == NULL)
379 goto moveLrd;
382 * move log record data
384 /* retrieve source meta-data page to log */
385 if (tlck->flag & tlckPAGELOCK) {
386 p = (caddr_t) (tlck->mp->data);
387 linelock = (struct linelock *) & tlck->lock;
389 /* retrieve source in-memory inode to log */
390 else if (tlck->flag & tlckINODELOCK) {
391 if (tlck->type & tlckDTREE)
392 p = (caddr_t) &JFS_IP(tlck->ip)->i_dtroot;
393 else
394 p = (caddr_t) &JFS_IP(tlck->ip)->i_xtroot;
395 linelock = (struct linelock *) & tlck->lock;
397 #ifdef _JFS_WIP
398 else if (tlck->flag & tlckINLINELOCK) {
400 inlinelock = (struct inlinelock *) & tlck;
401 p = (caddr_t) & inlinelock->pxd;
402 linelock = (struct linelock *) & tlck;
404 #endif /* _JFS_WIP */
405 else {
406 jfs_err("lmWriteRecord: UFO tlck:0x%p", tlck);
407 return 0; /* Probably should trap */
409 l2linesize = linelock->l2linesize;
411 moveData:
412 ASSERT(linelock->index <= linelock->maxcnt);
414 lv = linelock->lv;
415 for (i = 0; i < linelock->index; i++, lv++) {
416 if (lv->length == 0)
417 continue;
419 /* is page full ? */
420 if (dstoffset >= LOGPSIZE - LOGPTLRSIZE) {
421 /* page become full: move on to next page */
422 lmNextPage(log);
424 bp = log->bp;
425 lp = (struct logpage *) bp->l_ldata;
426 dstoffset = LOGPHDRSIZE;
430 * move log vector data
432 src = (u8 *) p + (lv->offset << l2linesize);
433 srclen = lv->length << l2linesize;
434 len += srclen;
435 while (srclen > 0) {
436 freespace = (LOGPSIZE - LOGPTLRSIZE) - dstoffset;
437 nbytes = min(freespace, srclen);
438 dst = (caddr_t) lp + dstoffset;
439 memcpy(dst, src, nbytes);
440 dstoffset += nbytes;
442 /* is page not full ? */
443 if (dstoffset < LOGPSIZE - LOGPTLRSIZE)
444 break;
446 /* page become full: move on to next page */
447 lmNextPage(log);
449 bp = (struct lbuf *) log->bp;
450 lp = (struct logpage *) bp->l_ldata;
451 dstoffset = LOGPHDRSIZE;
453 srclen -= nbytes;
454 src += nbytes;
458 * move log vector descriptor
460 len += 4;
461 lvd = (struct lvd *) ((caddr_t) lp + dstoffset);
462 lvd->offset = cpu_to_le16(lv->offset);
463 lvd->length = cpu_to_le16(lv->length);
464 dstoffset += 4;
465 jfs_info("lmWriteRecord: lv offset:%d length:%d",
466 lv->offset, lv->length);
469 if ((i = linelock->next)) {
470 linelock = (struct linelock *) lid_to_tlock(i);
471 goto moveData;
475 * move log record descriptor
477 moveLrd:
478 lrd->length = cpu_to_le16(len);
480 src = (caddr_t) lrd;
481 srclen = LOGRDSIZE;
483 while (srclen > 0) {
484 freespace = (LOGPSIZE - LOGPTLRSIZE) - dstoffset;
485 nbytes = min(freespace, srclen);
486 dst = (caddr_t) lp + dstoffset;
487 memcpy(dst, src, nbytes);
489 dstoffset += nbytes;
490 srclen -= nbytes;
492 /* are there more to move than freespace of page ? */
493 if (srclen)
494 goto pageFull;
497 * end of log record descriptor
500 /* update last log record eor */
501 log->eor = dstoffset;
502 bp->l_eor = dstoffset;
503 lsn = (log->page << L2LOGPSIZE) + dstoffset;
505 if (lrd->type & cpu_to_le16(LOG_COMMIT)) {
506 tblk->clsn = lsn;
507 jfs_info("wr: tclsn:0x%x, beor:0x%x", tblk->clsn,
508 bp->l_eor);
510 INCREMENT(lmStat.commit); /* # of commit */
513 * enqueue tblock for group commit:
515 * enqueue tblock of non-trivial/synchronous COMMIT
516 * at tail of group commit queue
517 * (trivial/asynchronous COMMITs are ignored by
518 * group commit.)
520 LOGGC_LOCK(log);
522 /* init tblock gc state */
523 tblk->flag = tblkGC_QUEUE;
524 tblk->bp = log->bp;
525 tblk->pn = log->page;
526 tblk->eor = log->eor;
528 /* enqueue transaction to commit queue */
529 list_add_tail(&tblk->cqueue, &log->cqueue);
531 LOGGC_UNLOCK(log);
534 jfs_info("lmWriteRecord: lrd:0x%04x bp:0x%p pn:%d eor:0x%x",
535 le16_to_cpu(lrd->type), log->bp, log->page, dstoffset);
537 /* page not full ? */
538 if (dstoffset < LOGPSIZE - LOGPTLRSIZE)
539 return lsn;
541 pageFull:
542 /* page become full: move on to next page */
543 lmNextPage(log);
545 bp = (struct lbuf *) log->bp;
546 lp = (struct logpage *) bp->l_ldata;
547 dstoffset = LOGPHDRSIZE;
548 src += nbytes;
551 return lsn;
556 * NAME: lmNextPage()
558 * FUNCTION: write current page and allocate next page.
560 * PARAMETER: log
562 * RETURN: 0
564 * serialization: LOG_LOCK() held on entry/exit
566 static int lmNextPage(struct jfs_log * log)
568 struct logpage *lp;
569 int lspn; /* log sequence page number */
570 int pn; /* current page number */
571 struct lbuf *bp;
572 struct lbuf *nextbp;
573 struct tblock *tblk;
575 /* get current log page number and log sequence page number */
576 pn = log->page;
577 bp = log->bp;
578 lp = (struct logpage *) bp->l_ldata;
579 lspn = le32_to_cpu(lp->h.page);
581 LOGGC_LOCK(log);
584 * write or queue the full page at the tail of write queue
586 /* get the tail tblk on commit queue */
587 if (list_empty(&log->cqueue))
588 tblk = NULL;
589 else
590 tblk = list_entry(log->cqueue.prev, struct tblock, cqueue);
592 /* every tblk who has COMMIT record on the current page,
593 * and has not been committed, must be on commit queue
594 * since tblk is queued at commit queueu at the time
595 * of writing its COMMIT record on the page before
596 * page becomes full (even though the tblk thread
597 * who wrote COMMIT record may have been suspended
598 * currently);
601 /* is page bound with outstanding tail tblk ? */
602 if (tblk && tblk->pn == pn) {
603 /* mark tblk for end-of-page */
604 tblk->flag |= tblkGC_EOP;
606 if (log->cflag & logGC_PAGEOUT) {
607 /* if page is not already on write queue,
608 * just enqueue (no lbmWRITE to prevent redrive)
609 * buffer to wqueue to ensure correct serial order
610 * of the pages since log pages will be added
611 * continuously
613 if (bp->l_wqnext == NULL)
614 lbmWrite(log, bp, 0, 0);
615 } else {
617 * No current GC leader, initiate group commit
619 log->cflag |= logGC_PAGEOUT;
620 lmGCwrite(log, 0);
623 /* page is not bound with outstanding tblk:
624 * init write or mark it to be redriven (lbmWRITE)
626 else {
627 /* finalize the page */
628 bp->l_ceor = bp->l_eor;
629 lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_ceor);
630 lbmWrite(log, bp, lbmWRITE | lbmRELEASE | lbmFREE, 0);
632 LOGGC_UNLOCK(log);
635 * allocate/initialize next page
637 /* if log wraps, the first data page of log is 2
638 * (0 never used, 1 is superblock).
640 log->page = (pn == log->size - 1) ? 2 : pn + 1;
641 log->eor = LOGPHDRSIZE; /* ? valid page empty/full at logRedo() */
643 /* allocate/initialize next log page buffer */
644 nextbp = lbmAllocate(log, log->page);
645 nextbp->l_eor = log->eor;
646 log->bp = nextbp;
648 /* initialize next log page */
649 lp = (struct logpage *) nextbp->l_ldata;
650 lp->h.page = lp->t.page = cpu_to_le32(lspn + 1);
651 lp->h.eor = lp->t.eor = cpu_to_le16(LOGPHDRSIZE);
653 return 0;
658 * NAME: lmGroupCommit()
660 * FUNCTION: group commit
661 * initiate pageout of the pages with COMMIT in the order of
662 * page number - redrive pageout of the page at the head of
663 * pageout queue until full page has been written.
665 * RETURN:
667 * NOTE:
668 * LOGGC_LOCK serializes log group commit queue, and
669 * transaction blocks on the commit queue.
670 * N.B. LOG_LOCK is NOT held during lmGroupCommit().
672 int lmGroupCommit(struct jfs_log * log, struct tblock * tblk)
674 int rc = 0;
676 LOGGC_LOCK(log);
678 /* group committed already ? */
679 if (tblk->flag & tblkGC_COMMITTED) {
680 if (tblk->flag & tblkGC_ERROR)
681 rc = -EIO;
683 LOGGC_UNLOCK(log);
684 return rc;
686 jfs_info("lmGroup Commit: tblk = 0x%p, gcrtc = %d", tblk, log->gcrtc);
688 if (tblk->xflag & COMMIT_LAZY)
689 tblk->flag |= tblkGC_LAZY;
691 if ((!(log->cflag & logGC_PAGEOUT)) && (!list_empty(&log->cqueue)) &&
692 (!(tblk->xflag & COMMIT_LAZY) || test_bit(log_FLUSH, &log->flag)
693 || jfs_tlocks_low)) {
695 * No pageout in progress
697 * start group commit as its group leader.
699 log->cflag |= logGC_PAGEOUT;
701 lmGCwrite(log, 0);
704 if (tblk->xflag & COMMIT_LAZY) {
706 * Lazy transactions can leave now
708 LOGGC_UNLOCK(log);
709 return 0;
712 /* lmGCwrite gives up LOGGC_LOCK, check again */
714 if (tblk->flag & tblkGC_COMMITTED) {
715 if (tblk->flag & tblkGC_ERROR)
716 rc = -EIO;
718 LOGGC_UNLOCK(log);
719 return rc;
722 /* upcount transaction waiting for completion
724 log->gcrtc++;
725 tblk->flag |= tblkGC_READY;
727 __SLEEP_COND(tblk->gcwait, (tblk->flag & tblkGC_COMMITTED),
728 LOGGC_LOCK(log), LOGGC_UNLOCK(log));
730 /* removed from commit queue */
731 if (tblk->flag & tblkGC_ERROR)
732 rc = -EIO;
734 LOGGC_UNLOCK(log);
735 return rc;
739 * NAME: lmGCwrite()
741 * FUNCTION: group commit write
742 * initiate write of log page, building a group of all transactions
743 * with commit records on that page.
745 * RETURN: None
747 * NOTE:
748 * LOGGC_LOCK must be held by caller.
749 * N.B. LOG_LOCK is NOT held during lmGroupCommit().
751 static void lmGCwrite(struct jfs_log * log, int cant_write)
753 struct lbuf *bp;
754 struct logpage *lp;
755 int gcpn; /* group commit page number */
756 struct tblock *tblk;
757 struct tblock *xtblk = NULL;
760 * build the commit group of a log page
762 * scan commit queue and make a commit group of all
763 * transactions with COMMIT records on the same log page.
765 /* get the head tblk on the commit queue */
766 gcpn = list_entry(log->cqueue.next, struct tblock, cqueue)->pn;
768 list_for_each_entry(tblk, &log->cqueue, cqueue) {
769 if (tblk->pn != gcpn)
770 break;
772 xtblk = tblk;
774 /* state transition: (QUEUE, READY) -> COMMIT */
775 tblk->flag |= tblkGC_COMMIT;
777 tblk = xtblk; /* last tblk of the page */
780 * pageout to commit transactions on the log page.
782 bp = (struct lbuf *) tblk->bp;
783 lp = (struct logpage *) bp->l_ldata;
784 /* is page already full ? */
785 if (tblk->flag & tblkGC_EOP) {
786 /* mark page to free at end of group commit of the page */
787 tblk->flag &= ~tblkGC_EOP;
788 tblk->flag |= tblkGC_FREE;
789 bp->l_ceor = bp->l_eor;
790 lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_ceor);
791 lbmWrite(log, bp, lbmWRITE | lbmRELEASE | lbmGC,
792 cant_write);
793 INCREMENT(lmStat.full_page);
795 /* page is not yet full */
796 else {
797 bp->l_ceor = tblk->eor; /* ? bp->l_ceor = bp->l_eor; */
798 lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_ceor);
799 lbmWrite(log, bp, lbmWRITE | lbmGC, cant_write);
800 INCREMENT(lmStat.partial_page);
805 * NAME: lmPostGC()
807 * FUNCTION: group commit post-processing
808 * Processes transactions after their commit records have been written
809 * to disk, redriving log I/O if necessary.
811 * RETURN: None
813 * NOTE:
814 * This routine is called a interrupt time by lbmIODone
816 static void lmPostGC(struct lbuf * bp)
818 unsigned long flags;
819 struct jfs_log *log = bp->l_log;
820 struct logpage *lp;
821 struct tblock *tblk, *temp;
823 //LOGGC_LOCK(log);
824 spin_lock_irqsave(&log->gclock, flags);
826 * current pageout of group commit completed.
828 * remove/wakeup transactions from commit queue who were
829 * group committed with the current log page
831 list_for_each_entry_safe(tblk, temp, &log->cqueue, cqueue) {
832 if (!(tblk->flag & tblkGC_COMMIT))
833 break;
834 /* if transaction was marked GC_COMMIT then
835 * it has been shipped in the current pageout
836 * and made it to disk - it is committed.
839 if (bp->l_flag & lbmERROR)
840 tblk->flag |= tblkGC_ERROR;
842 /* remove it from the commit queue */
843 list_del(&tblk->cqueue);
844 tblk->flag &= ~tblkGC_QUEUE;
846 if (tblk == log->flush_tblk) {
847 /* we can stop flushing the log now */
848 clear_bit(log_FLUSH, &log->flag);
849 log->flush_tblk = NULL;
852 jfs_info("lmPostGC: tblk = 0x%p, flag = 0x%x", tblk,
853 tblk->flag);
855 if (!(tblk->xflag & COMMIT_FORCE))
857 * Hand tblk over to lazy commit thread
859 txLazyUnlock(tblk);
860 else {
861 /* state transition: COMMIT -> COMMITTED */
862 tblk->flag |= tblkGC_COMMITTED;
864 if (tblk->flag & tblkGC_READY)
865 log->gcrtc--;
867 LOGGC_WAKEUP(tblk);
870 /* was page full before pageout ?
871 * (and this is the last tblk bound with the page)
873 if (tblk->flag & tblkGC_FREE)
874 lbmFree(bp);
875 /* did page become full after pageout ?
876 * (and this is the last tblk bound with the page)
878 else if (tblk->flag & tblkGC_EOP) {
879 /* finalize the page */
880 lp = (struct logpage *) bp->l_ldata;
881 bp->l_ceor = bp->l_eor;
882 lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_eor);
883 jfs_info("lmPostGC: calling lbmWrite");
884 lbmWrite(log, bp, lbmWRITE | lbmRELEASE | lbmFREE,
890 /* are there any transactions who have entered lnGroupCommit()
891 * (whose COMMITs are after that of the last log page written.
892 * They are waiting for new group commit (above at (SLEEP 1))
893 * or lazy transactions are on a full (queued) log page,
894 * select the latest ready transaction as new group leader and
895 * wake her up to lead her group.
897 if ((!list_empty(&log->cqueue)) &&
898 ((log->gcrtc > 0) || (tblk->bp->l_wqnext != NULL) ||
899 test_bit(log_FLUSH, &log->flag) || jfs_tlocks_low))
901 * Call lmGCwrite with new group leader
903 lmGCwrite(log, 1);
905 /* no transaction are ready yet (transactions are only just
906 * queued (GC_QUEUE) and not entered for group commit yet).
907 * the first transaction entering group commit
908 * will elect herself as new group leader.
910 else
911 log->cflag &= ~logGC_PAGEOUT;
913 //LOGGC_UNLOCK(log);
914 spin_unlock_irqrestore(&log->gclock, flags);
915 return;
919 * NAME: lmLogSync()
921 * FUNCTION: write log SYNCPT record for specified log
922 * if new sync address is available
923 * (normally the case if sync() is executed by back-ground
924 * process).
925 * if not, explicitly run jfs_blogsync() to initiate
926 * getting of new sync address.
927 * calculate new value of i_nextsync which determines when
928 * this code is called again.
930 * PARAMETERS: log - log structure
931 * nosyncwait - 1 if called asynchronously
933 * RETURN: 0
935 * serialization: LOG_LOCK() held on entry/exit
937 static int lmLogSync(struct jfs_log * log, int nosyncwait)
939 int logsize;
940 int written; /* written since last syncpt */
941 int free; /* free space left available */
942 int delta; /* additional delta to write normally */
943 int more; /* additional write granted */
944 struct lrd lrd;
945 int lsn;
946 struct logsyncblk *lp;
947 struct jfs_sb_info *sbi;
948 unsigned long flags;
950 /* push dirty metapages out to disk */
951 list_for_each_entry(sbi, &log->sb_list, log_list) {
952 filemap_flush(sbi->ipbmap->i_mapping);
953 filemap_flush(sbi->ipimap->i_mapping);
954 filemap_flush(sbi->direct_inode->i_mapping);
958 * forward syncpt
960 /* if last sync is same as last syncpt,
961 * invoke sync point forward processing to update sync.
964 if (log->sync == log->syncpt) {
965 LOGSYNC_LOCK(log, flags);
966 if (list_empty(&log->synclist))
967 log->sync = log->lsn;
968 else {
969 lp = list_entry(log->synclist.next,
970 struct logsyncblk, synclist);
971 log->sync = lp->lsn;
973 LOGSYNC_UNLOCK(log, flags);
977 /* if sync is different from last syncpt,
978 * write a SYNCPT record with syncpt = sync.
979 * reset syncpt = sync
981 if (log->sync != log->syncpt) {
982 lrd.logtid = 0;
983 lrd.backchain = 0;
984 lrd.type = cpu_to_le16(LOG_SYNCPT);
985 lrd.length = 0;
986 lrd.log.syncpt.sync = cpu_to_le32(log->sync);
987 lsn = lmWriteRecord(log, NULL, &lrd, NULL);
989 log->syncpt = log->sync;
990 } else
991 lsn = log->lsn;
994 * setup next syncpt trigger (SWAG)
996 logsize = log->logsize;
998 logdiff(written, lsn, log);
999 free = logsize - written;
1000 delta = LOGSYNC_DELTA(logsize);
1001 more = min(free / 2, delta);
1002 if (more < 2 * LOGPSIZE) {
1003 jfs_warn("\n ... Log Wrap ... Log Wrap ... Log Wrap ...\n");
1005 * log wrapping
1007 * option 1 - panic ? No.!
1008 * option 2 - shutdown file systems
1009 * associated with log ?
1010 * option 3 - extend log ?
1013 * option 4 - second chance
1015 * mark log wrapped, and continue.
1016 * when all active transactions are completed,
1017 * mark log vaild for recovery.
1018 * if crashed during invalid state, log state
1019 * implies invald log, forcing fsck().
1021 /* mark log state log wrap in log superblock */
1022 /* log->state = LOGWRAP; */
1024 /* reset sync point computation */
1025 log->syncpt = log->sync = lsn;
1026 log->nextsync = delta;
1027 } else
1028 /* next syncpt trigger = written + more */
1029 log->nextsync = written + more;
1031 /* return if lmLogSync() from outside of transaction, e.g., sync() */
1032 if (nosyncwait)
1033 return lsn;
1035 /* if number of bytes written from last sync point is more
1036 * than 1/4 of the log size, stop new transactions from
1037 * starting until all current transactions are completed
1038 * by setting syncbarrier flag.
1040 if (written > LOGSYNC_BARRIER(logsize) && logsize > 32 * LOGPSIZE) {
1041 set_bit(log_SYNCBARRIER, &log->flag);
1042 jfs_info("log barrier on: lsn=0x%x syncpt=0x%x", lsn,
1043 log->syncpt);
1045 * We may have to initiate group commit
1047 jfs_flush_journal(log, 0);
1050 return lsn;
1054 * NAME: jfs_syncpt
1056 * FUNCTION: write log SYNCPT record for specified log
1058 * PARAMETERS: log - log structure
1060 void jfs_syncpt(struct jfs_log *log)
1061 { LOG_LOCK(log);
1062 lmLogSync(log, 1);
1063 LOG_UNLOCK(log);
1067 * NAME: lmLogOpen()
1069 * FUNCTION: open the log on first open;
1070 * insert filesystem in the active list of the log.
1072 * PARAMETER: ipmnt - file system mount inode
1073 * iplog - log inode (out)
1075 * RETURN:
1077 * serialization:
1079 int lmLogOpen(struct super_block *sb)
1081 int rc;
1082 struct block_device *bdev;
1083 struct jfs_log *log;
1084 struct jfs_sb_info *sbi = JFS_SBI(sb);
1086 if (sbi->flag & JFS_NOINTEGRITY)
1087 return open_dummy_log(sb);
1089 if (sbi->mntflag & JFS_INLINELOG)
1090 return open_inline_log(sb);
1092 down(&jfs_log_sem);
1093 list_for_each_entry(log, &jfs_external_logs, journal_list) {
1094 if (log->bdev->bd_dev == sbi->logdev) {
1095 if (memcmp(log->uuid, sbi->loguuid,
1096 sizeof(log->uuid))) {
1097 jfs_warn("wrong uuid on JFS journal\n");
1098 up(&jfs_log_sem);
1099 return -EINVAL;
1102 * add file system to log active file system list
1104 if ((rc = lmLogFileSystem(log, sbi, 1))) {
1105 up(&jfs_log_sem);
1106 return rc;
1108 goto journal_found;
1112 if (!(log = kmalloc(sizeof(struct jfs_log), GFP_KERNEL))) {
1113 up(&jfs_log_sem);
1114 return -ENOMEM;
1116 memset(log, 0, sizeof(struct jfs_log));
1117 INIT_LIST_HEAD(&log->sb_list);
1118 init_waitqueue_head(&log->syncwait);
1121 * external log as separate logical volume
1123 * file systems to log may have n-to-1 relationship;
1126 bdev = open_by_devnum(sbi->logdev, FMODE_READ|FMODE_WRITE);
1127 if (IS_ERR(bdev)) {
1128 rc = -PTR_ERR(bdev);
1129 goto free;
1132 if ((rc = bd_claim(bdev, log))) {
1133 goto close;
1136 log->bdev = bdev;
1137 memcpy(log->uuid, sbi->loguuid, sizeof(log->uuid));
1140 * initialize log:
1142 if ((rc = lmLogInit(log)))
1143 goto unclaim;
1145 list_add(&log->journal_list, &jfs_external_logs);
1148 * add file system to log active file system list
1150 if ((rc = lmLogFileSystem(log, sbi, 1)))
1151 goto shutdown;
1153 journal_found:
1154 LOG_LOCK(log);
1155 list_add(&sbi->log_list, &log->sb_list);
1156 sbi->log = log;
1157 LOG_UNLOCK(log);
1159 up(&jfs_log_sem);
1160 return 0;
1163 * unwind on error
1165 shutdown: /* unwind lbmLogInit() */
1166 list_del(&log->journal_list);
1167 lbmLogShutdown(log);
1169 unclaim:
1170 bd_release(bdev);
1172 close: /* close external log device */
1173 blkdev_put(bdev);
1175 free: /* free log descriptor */
1176 up(&jfs_log_sem);
1177 kfree(log);
1179 jfs_warn("lmLogOpen: exit(%d)", rc);
1180 return rc;
1183 static int open_inline_log(struct super_block *sb)
1185 struct jfs_log *log;
1186 int rc;
1188 if (!(log = kmalloc(sizeof(struct jfs_log), GFP_KERNEL)))
1189 return -ENOMEM;
1190 memset(log, 0, sizeof(struct jfs_log));
1191 INIT_LIST_HEAD(&log->sb_list);
1192 init_waitqueue_head(&log->syncwait);
1194 set_bit(log_INLINELOG, &log->flag);
1195 log->bdev = sb->s_bdev;
1196 log->base = addressPXD(&JFS_SBI(sb)->logpxd);
1197 log->size = lengthPXD(&JFS_SBI(sb)->logpxd) >>
1198 (L2LOGPSIZE - sb->s_blocksize_bits);
1199 log->l2bsize = sb->s_blocksize_bits;
1200 ASSERT(L2LOGPSIZE >= sb->s_blocksize_bits);
1203 * initialize log.
1205 if ((rc = lmLogInit(log))) {
1206 kfree(log);
1207 jfs_warn("lmLogOpen: exit(%d)", rc);
1208 return rc;
1211 list_add(&JFS_SBI(sb)->log_list, &log->sb_list);
1212 JFS_SBI(sb)->log = log;
1214 return rc;
1217 static int open_dummy_log(struct super_block *sb)
1219 int rc;
1221 down(&jfs_log_sem);
1222 if (!dummy_log) {
1223 dummy_log = kmalloc(sizeof(struct jfs_log), GFP_KERNEL);
1224 if (!dummy_log) {
1225 up(&jfs_log_sem);
1226 return -ENOMEM;
1228 memset(dummy_log, 0, sizeof(struct jfs_log));
1229 INIT_LIST_HEAD(&dummy_log->sb_list);
1230 init_waitqueue_head(&dummy_log->syncwait);
1231 dummy_log->no_integrity = 1;
1232 /* Make up some stuff */
1233 dummy_log->base = 0;
1234 dummy_log->size = 1024;
1235 rc = lmLogInit(dummy_log);
1236 if (rc) {
1237 kfree(dummy_log);
1238 dummy_log = NULL;
1239 up(&jfs_log_sem);
1240 return rc;
1244 LOG_LOCK(dummy_log);
1245 list_add(&JFS_SBI(sb)->log_list, &dummy_log->sb_list);
1246 JFS_SBI(sb)->log = dummy_log;
1247 LOG_UNLOCK(dummy_log);
1248 up(&jfs_log_sem);
1250 return 0;
1254 * NAME: lmLogInit()
1256 * FUNCTION: log initialization at first log open.
1258 * logredo() (or logformat()) should have been run previously.
1259 * initialize the log from log superblock.
1260 * set the log state in the superblock to LOGMOUNT and
1261 * write SYNCPT log record.
1263 * PARAMETER: log - log structure
1265 * RETURN: 0 - if ok
1266 * -EINVAL - bad log magic number or superblock dirty
1267 * error returned from logwait()
1269 * serialization: single first open thread
1271 int lmLogInit(struct jfs_log * log)
1273 int rc = 0;
1274 struct lrd lrd;
1275 struct logsuper *logsuper;
1276 struct lbuf *bpsuper;
1277 struct lbuf *bp;
1278 struct logpage *lp;
1279 int lsn = 0;
1281 jfs_info("lmLogInit: log:0x%p", log);
1283 /* initialize the group commit serialization lock */
1284 LOGGC_LOCK_INIT(log);
1286 /* allocate/initialize the log write serialization lock */
1287 LOG_LOCK_INIT(log);
1289 LOGSYNC_LOCK_INIT(log);
1291 INIT_LIST_HEAD(&log->synclist);
1293 INIT_LIST_HEAD(&log->cqueue);
1294 log->flush_tblk = NULL;
1296 log->count = 0;
1299 * initialize log i/o
1301 if ((rc = lbmLogInit(log)))
1302 return rc;
1304 if (!test_bit(log_INLINELOG, &log->flag))
1305 log->l2bsize = L2LOGPSIZE;
1307 /* check for disabled journaling to disk */
1308 if (log->no_integrity) {
1310 * Journal pages will still be filled. When the time comes
1311 * to actually do the I/O, the write is not done, and the
1312 * endio routine is called directly.
1314 bp = lbmAllocate(log , 0);
1315 log->bp = bp;
1316 bp->l_pn = bp->l_eor = 0;
1317 } else {
1319 * validate log superblock
1321 if ((rc = lbmRead(log, 1, &bpsuper)))
1322 goto errout10;
1324 logsuper = (struct logsuper *) bpsuper->l_ldata;
1326 if (logsuper->magic != cpu_to_le32(LOGMAGIC)) {
1327 jfs_warn("*** Log Format Error ! ***");
1328 rc = -EINVAL;
1329 goto errout20;
1332 /* logredo() should have been run successfully. */
1333 if (logsuper->state != cpu_to_le32(LOGREDONE)) {
1334 jfs_warn("*** Log Is Dirty ! ***");
1335 rc = -EINVAL;
1336 goto errout20;
1339 /* initialize log from log superblock */
1340 if (test_bit(log_INLINELOG,&log->flag)) {
1341 if (log->size != le32_to_cpu(logsuper->size)) {
1342 rc = -EINVAL;
1343 goto errout20;
1345 jfs_info("lmLogInit: inline log:0x%p base:0x%Lx "
1346 "size:0x%x", log,
1347 (unsigned long long) log->base, log->size);
1348 } else {
1349 if (memcmp(logsuper->uuid, log->uuid, 16)) {
1350 jfs_warn("wrong uuid on JFS log device");
1351 goto errout20;
1353 log->size = le32_to_cpu(logsuper->size);
1354 log->l2bsize = le32_to_cpu(logsuper->l2bsize);
1355 jfs_info("lmLogInit: external log:0x%p base:0x%Lx "
1356 "size:0x%x", log,
1357 (unsigned long long) log->base, log->size);
1360 log->page = le32_to_cpu(logsuper->end) / LOGPSIZE;
1361 log->eor = le32_to_cpu(logsuper->end) - (LOGPSIZE * log->page);
1364 * initialize for log append write mode
1366 /* establish current/end-of-log page/buffer */
1367 if ((rc = lbmRead(log, log->page, &bp)))
1368 goto errout20;
1370 lp = (struct logpage *) bp->l_ldata;
1372 jfs_info("lmLogInit: lsn:0x%x page:%d eor:%d:%d",
1373 le32_to_cpu(logsuper->end), log->page, log->eor,
1374 le16_to_cpu(lp->h.eor));
1376 log->bp = bp;
1377 bp->l_pn = log->page;
1378 bp->l_eor = log->eor;
1380 /* if current page is full, move on to next page */
1381 if (log->eor >= LOGPSIZE - LOGPTLRSIZE)
1382 lmNextPage(log);
1385 * initialize log syncpoint
1388 * write the first SYNCPT record with syncpoint = 0
1389 * (i.e., log redo up to HERE !);
1390 * remove current page from lbm write queue at end of pageout
1391 * (to write log superblock update), but do not release to
1392 * freelist;
1394 lrd.logtid = 0;
1395 lrd.backchain = 0;
1396 lrd.type = cpu_to_le16(LOG_SYNCPT);
1397 lrd.length = 0;
1398 lrd.log.syncpt.sync = 0;
1399 lsn = lmWriteRecord(log, NULL, &lrd, NULL);
1400 bp = log->bp;
1401 bp->l_ceor = bp->l_eor;
1402 lp = (struct logpage *) bp->l_ldata;
1403 lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_eor);
1404 lbmWrite(log, bp, lbmWRITE | lbmSYNC, 0);
1405 if ((rc = lbmIOWait(bp, 0)))
1406 goto errout30;
1409 * update/write superblock
1411 logsuper->state = cpu_to_le32(LOGMOUNT);
1412 log->serial = le32_to_cpu(logsuper->serial) + 1;
1413 logsuper->serial = cpu_to_le32(log->serial);
1414 lbmDirectWrite(log, bpsuper, lbmWRITE | lbmRELEASE | lbmSYNC);
1415 if ((rc = lbmIOWait(bpsuper, lbmFREE)))
1416 goto errout30;
1419 /* initialize logsync parameters */
1420 log->logsize = (log->size - 2) << L2LOGPSIZE;
1421 log->lsn = lsn;
1422 log->syncpt = lsn;
1423 log->sync = log->syncpt;
1424 log->nextsync = LOGSYNC_DELTA(log->logsize);
1426 jfs_info("lmLogInit: lsn:0x%x syncpt:0x%x sync:0x%x",
1427 log->lsn, log->syncpt, log->sync);
1430 * initialize for lazy/group commit
1432 log->clsn = lsn;
1434 return 0;
1437 * unwind on error
1439 errout30: /* release log page */
1440 log->wqueue = NULL;
1441 bp->l_wqnext = NULL;
1442 lbmFree(bp);
1444 errout20: /* release log superblock */
1445 lbmFree(bpsuper);
1447 errout10: /* unwind lbmLogInit() */
1448 lbmLogShutdown(log);
1450 jfs_warn("lmLogInit: exit(%d)", rc);
1451 return rc;
1456 * NAME: lmLogClose()
1458 * FUNCTION: remove file system <ipmnt> from active list of log <iplog>
1459 * and close it on last close.
1461 * PARAMETER: sb - superblock
1463 * RETURN: errors from subroutines
1465 * serialization:
1467 int lmLogClose(struct super_block *sb)
1469 struct jfs_sb_info *sbi = JFS_SBI(sb);
1470 struct jfs_log *log = sbi->log;
1471 struct block_device *bdev;
1472 int rc = 0;
1474 jfs_info("lmLogClose: log:0x%p", log);
1476 down(&jfs_log_sem);
1477 LOG_LOCK(log);
1478 list_del(&sbi->log_list);
1479 LOG_UNLOCK(log);
1480 sbi->log = NULL;
1483 * We need to make sure all of the "written" metapages
1484 * actually make it to disk
1486 sync_blockdev(sb->s_bdev);
1488 if (test_bit(log_INLINELOG, &log->flag)) {
1490 * in-line log in host file system
1492 rc = lmLogShutdown(log);
1493 kfree(log);
1494 goto out;
1497 if (!log->no_integrity)
1498 lmLogFileSystem(log, sbi, 0);
1500 if (!list_empty(&log->sb_list))
1501 goto out;
1504 * TODO: ensure that the dummy_log is in a state to allow
1505 * lbmLogShutdown to deallocate all the buffers and call
1506 * kfree against dummy_log. For now, leave dummy_log & its
1507 * buffers in memory, and resuse if another no-integrity mount
1508 * is requested.
1510 if (log->no_integrity)
1511 goto out;
1514 * external log as separate logical volume
1516 list_del(&log->journal_list);
1517 bdev = log->bdev;
1518 rc = lmLogShutdown(log);
1520 bd_release(bdev);
1521 blkdev_put(bdev);
1523 kfree(log);
1525 out:
1526 up(&jfs_log_sem);
1527 jfs_info("lmLogClose: exit(%d)", rc);
1528 return rc;
1533 * NAME: jfs_flush_journal()
1535 * FUNCTION: initiate write of any outstanding transactions to the journal
1536 * and optionally wait until they are all written to disk
1538 * wait == 0 flush until latest txn is committed, don't wait
1539 * wait == 1 flush until latest txn is committed, wait
1540 * wait > 1 flush until all txn's are complete, wait
1542 void jfs_flush_journal(struct jfs_log *log, int wait)
1544 int i;
1545 struct tblock *target = NULL;
1546 struct jfs_sb_info *sbi;
1548 /* jfs_write_inode may call us during read-only mount */
1549 if (!log)
1550 return;
1552 jfs_info("jfs_flush_journal: log:0x%p wait=%d", log, wait);
1554 LOGGC_LOCK(log);
1556 if (!list_empty(&log->cqueue)) {
1558 * This ensures that we will keep writing to the journal as long
1559 * as there are unwritten commit records
1561 target = list_entry(log->cqueue.prev, struct tblock, cqueue);
1563 if (test_bit(log_FLUSH, &log->flag)) {
1565 * We're already flushing.
1566 * if flush_tblk is NULL, we are flushing everything,
1567 * so leave it that way. Otherwise, update it to the
1568 * latest transaction
1570 if (log->flush_tblk)
1571 log->flush_tblk = target;
1572 } else {
1573 /* Only flush until latest transaction is committed */
1574 log->flush_tblk = target;
1575 set_bit(log_FLUSH, &log->flag);
1578 * Initiate I/O on outstanding transactions
1580 if (!(log->cflag & logGC_PAGEOUT)) {
1581 log->cflag |= logGC_PAGEOUT;
1582 lmGCwrite(log, 0);
1586 if ((wait > 1) || test_bit(log_SYNCBARRIER, &log->flag)) {
1587 /* Flush until all activity complete */
1588 set_bit(log_FLUSH, &log->flag);
1589 log->flush_tblk = NULL;
1592 if (wait && target && !(target->flag & tblkGC_COMMITTED)) {
1593 DECLARE_WAITQUEUE(__wait, current);
1595 add_wait_queue(&target->gcwait, &__wait);
1596 set_current_state(TASK_UNINTERRUPTIBLE);
1597 LOGGC_UNLOCK(log);
1598 schedule();
1599 current->state = TASK_RUNNING;
1600 LOGGC_LOCK(log);
1601 remove_wait_queue(&target->gcwait, &__wait);
1603 LOGGC_UNLOCK(log);
1605 if (wait < 2)
1606 return;
1608 list_for_each_entry(sbi, &log->sb_list, log_list) {
1609 filemap_fdatawrite(sbi->ipbmap->i_mapping);
1610 filemap_fdatawrite(sbi->ipimap->i_mapping);
1611 filemap_fdatawrite(sbi->direct_inode->i_mapping);
1615 * If there was recent activity, we may need to wait
1616 * for the lazycommit thread to catch up
1618 if ((!list_empty(&log->cqueue)) || !list_empty(&log->synclist)) {
1619 for (i = 0; i < 200; i++) { /* Too much? */
1620 msleep(250);
1621 if (list_empty(&log->cqueue) &&
1622 list_empty(&log->synclist))
1623 break;
1626 assert(list_empty(&log->cqueue));
1627 if (!list_empty(&log->synclist)) {
1628 struct logsyncblk *lp;
1630 list_for_each_entry(lp, &log->synclist, synclist) {
1631 if (lp->xflag & COMMIT_PAGE) {
1632 struct metapage *mp = (struct metapage *)lp;
1633 dump_mem("orphan metapage", lp,
1634 sizeof(struct metapage));
1635 dump_mem("page", mp->page, sizeof(struct page));
1637 else
1638 dump_mem("orphan tblock", lp,
1639 sizeof(struct tblock));
1641 // current->state = TASK_INTERRUPTIBLE;
1642 // schedule();
1644 //assert(list_empty(&log->synclist));
1645 clear_bit(log_FLUSH, &log->flag);
1649 * NAME: lmLogShutdown()
1651 * FUNCTION: log shutdown at last LogClose().
1653 * write log syncpt record.
1654 * update super block to set redone flag to 0.
1656 * PARAMETER: log - log inode
1658 * RETURN: 0 - success
1660 * serialization: single last close thread
1662 int lmLogShutdown(struct jfs_log * log)
1664 int rc;
1665 struct lrd lrd;
1666 int lsn;
1667 struct logsuper *logsuper;
1668 struct lbuf *bpsuper;
1669 struct lbuf *bp;
1670 struct logpage *lp;
1672 jfs_info("lmLogShutdown: log:0x%p", log);
1674 jfs_flush_journal(log, 2);
1677 * write the last SYNCPT record with syncpoint = 0
1678 * (i.e., log redo up to HERE !)
1680 lrd.logtid = 0;
1681 lrd.backchain = 0;
1682 lrd.type = cpu_to_le16(LOG_SYNCPT);
1683 lrd.length = 0;
1684 lrd.log.syncpt.sync = 0;
1686 lsn = lmWriteRecord(log, NULL, &lrd, NULL);
1687 bp = log->bp;
1688 lp = (struct logpage *) bp->l_ldata;
1689 lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_eor);
1690 lbmWrite(log, log->bp, lbmWRITE | lbmRELEASE | lbmSYNC, 0);
1691 lbmIOWait(log->bp, lbmFREE);
1692 log->bp = NULL;
1695 * synchronous update log superblock
1696 * mark log state as shutdown cleanly
1697 * (i.e., Log does not need to be replayed).
1699 if ((rc = lbmRead(log, 1, &bpsuper)))
1700 goto out;
1702 logsuper = (struct logsuper *) bpsuper->l_ldata;
1703 logsuper->state = cpu_to_le32(LOGREDONE);
1704 logsuper->end = cpu_to_le32(lsn);
1705 lbmDirectWrite(log, bpsuper, lbmWRITE | lbmRELEASE | lbmSYNC);
1706 rc = lbmIOWait(bpsuper, lbmFREE);
1708 jfs_info("lmLogShutdown: lsn:0x%x page:%d eor:%d",
1709 lsn, log->page, log->eor);
1711 out:
1713 * shutdown per log i/o
1715 lbmLogShutdown(log);
1717 if (rc) {
1718 jfs_warn("lmLogShutdown: exit(%d)", rc);
1720 return rc;
1725 * NAME: lmLogFileSystem()
1727 * FUNCTION: insert (<activate> = true)/remove (<activate> = false)
1728 * file system into/from log active file system list.
1730 * PARAMETE: log - pointer to logs inode.
1731 * fsdev - kdev_t of filesystem.
1732 * serial - pointer to returned log serial number
1733 * activate - insert/remove device from active list.
1735 * RETURN: 0 - success
1736 * errors returned by vms_iowait().
1738 static int lmLogFileSystem(struct jfs_log * log, struct jfs_sb_info *sbi,
1739 int activate)
1741 int rc = 0;
1742 int i;
1743 struct logsuper *logsuper;
1744 struct lbuf *bpsuper;
1745 char *uuid = sbi->uuid;
1748 * insert/remove file system device to log active file system list.
1750 if ((rc = lbmRead(log, 1, &bpsuper)))
1751 return rc;
1753 logsuper = (struct logsuper *) bpsuper->l_ldata;
1754 if (activate) {
1755 for (i = 0; i < MAX_ACTIVE; i++)
1756 if (!memcmp(logsuper->active[i].uuid, NULL_UUID, 16)) {
1757 memcpy(logsuper->active[i].uuid, uuid, 16);
1758 sbi->aggregate = i;
1759 break;
1761 if (i == MAX_ACTIVE) {
1762 jfs_warn("Too many file systems sharing journal!");
1763 lbmFree(bpsuper);
1764 return -EMFILE; /* Is there a better rc? */
1766 } else {
1767 for (i = 0; i < MAX_ACTIVE; i++)
1768 if (!memcmp(logsuper->active[i].uuid, uuid, 16)) {
1769 memcpy(logsuper->active[i].uuid, NULL_UUID, 16);
1770 break;
1772 if (i == MAX_ACTIVE) {
1773 jfs_warn("Somebody stomped on the journal!");
1774 lbmFree(bpsuper);
1775 return -EIO;
1781 * synchronous write log superblock:
1783 * write sidestream bypassing write queue:
1784 * at file system mount, log super block is updated for
1785 * activation of the file system before any log record
1786 * (MOUNT record) of the file system, and at file system
1787 * unmount, all meta data for the file system has been
1788 * flushed before log super block is updated for deactivation
1789 * of the file system.
1791 lbmDirectWrite(log, bpsuper, lbmWRITE | lbmRELEASE | lbmSYNC);
1792 rc = lbmIOWait(bpsuper, lbmFREE);
1794 return rc;
1798 * log buffer manager (lbm)
1799 * ------------------------
1801 * special purpose buffer manager supporting log i/o requirements.
1803 * per log write queue:
1804 * log pageout occurs in serial order by fifo write queue and
1805 * restricting to a single i/o in pregress at any one time.
1806 * a circular singly-linked list
1807 * (log->wrqueue points to the tail, and buffers are linked via
1808 * bp->wrqueue field), and
1809 * maintains log page in pageout ot waiting for pageout in serial pageout.
1813 * lbmLogInit()
1815 * initialize per log I/O setup at lmLogInit()
1817 static int lbmLogInit(struct jfs_log * log)
1818 { /* log inode */
1819 int i;
1820 struct lbuf *lbuf;
1822 jfs_info("lbmLogInit: log:0x%p", log);
1824 /* initialize current buffer cursor */
1825 log->bp = NULL;
1827 /* initialize log device write queue */
1828 log->wqueue = NULL;
1831 * Each log has its own buffer pages allocated to it. These are
1832 * not managed by the page cache. This ensures that a transaction
1833 * writing to the log does not block trying to allocate a page from
1834 * the page cache (for the log). This would be bad, since page
1835 * allocation waits on the kswapd thread that may be committing inodes
1836 * which would cause log activity. Was that clear? I'm trying to
1837 * avoid deadlock here.
1839 init_waitqueue_head(&log->free_wait);
1841 log->lbuf_free = NULL;
1843 for (i = 0; i < LOGPAGES;) {
1844 char *buffer;
1845 uint offset;
1846 struct page *page;
1848 buffer = (char *) get_zeroed_page(GFP_KERNEL);
1849 if (buffer == NULL)
1850 goto error;
1851 page = virt_to_page(buffer);
1852 for (offset = 0; offset < PAGE_SIZE; offset += LOGPSIZE) {
1853 lbuf = kmalloc(sizeof(struct lbuf), GFP_KERNEL);
1854 if (lbuf == NULL) {
1855 if (offset == 0)
1856 free_page((unsigned long) buffer);
1857 goto error;
1859 if (offset) /* we already have one reference */
1860 get_page(page);
1861 lbuf->l_offset = offset;
1862 lbuf->l_ldata = buffer + offset;
1863 lbuf->l_page = page;
1864 lbuf->l_log = log;
1865 init_waitqueue_head(&lbuf->l_ioevent);
1867 lbuf->l_freelist = log->lbuf_free;
1868 log->lbuf_free = lbuf;
1869 i++;
1873 return (0);
1875 error:
1876 lbmLogShutdown(log);
1877 return -ENOMEM;
1882 * lbmLogShutdown()
1884 * finalize per log I/O setup at lmLogShutdown()
1886 static void lbmLogShutdown(struct jfs_log * log)
1888 struct lbuf *lbuf;
1890 jfs_info("lbmLogShutdown: log:0x%p", log);
1892 lbuf = log->lbuf_free;
1893 while (lbuf) {
1894 struct lbuf *next = lbuf->l_freelist;
1895 __free_page(lbuf->l_page);
1896 kfree(lbuf);
1897 lbuf = next;
1903 * lbmAllocate()
1905 * allocate an empty log buffer
1907 static struct lbuf *lbmAllocate(struct jfs_log * log, int pn)
1909 struct lbuf *bp;
1910 unsigned long flags;
1913 * recycle from log buffer freelist if any
1915 LCACHE_LOCK(flags);
1916 LCACHE_SLEEP_COND(log->free_wait, (bp = log->lbuf_free), flags);
1917 log->lbuf_free = bp->l_freelist;
1918 LCACHE_UNLOCK(flags);
1920 bp->l_flag = 0;
1922 bp->l_wqnext = NULL;
1923 bp->l_freelist = NULL;
1925 bp->l_pn = pn;
1926 bp->l_blkno = log->base + (pn << (L2LOGPSIZE - log->l2bsize));
1927 bp->l_ceor = 0;
1929 return bp;
1934 * lbmFree()
1936 * release a log buffer to freelist
1938 static void lbmFree(struct lbuf * bp)
1940 unsigned long flags;
1942 LCACHE_LOCK(flags);
1944 lbmfree(bp);
1946 LCACHE_UNLOCK(flags);
1949 static void lbmfree(struct lbuf * bp)
1951 struct jfs_log *log = bp->l_log;
1953 assert(bp->l_wqnext == NULL);
1956 * return the buffer to head of freelist
1958 bp->l_freelist = log->lbuf_free;
1959 log->lbuf_free = bp;
1961 wake_up(&log->free_wait);
1962 return;
1967 * NAME: lbmRedrive
1969 * FUNCTION: add a log buffer to the the log redrive list
1971 * PARAMETER:
1972 * bp - log buffer
1974 * NOTES:
1975 * Takes log_redrive_lock.
1977 static inline void lbmRedrive(struct lbuf *bp)
1979 unsigned long flags;
1981 spin_lock_irqsave(&log_redrive_lock, flags);
1982 bp->l_redrive_next = log_redrive_list;
1983 log_redrive_list = bp;
1984 spin_unlock_irqrestore(&log_redrive_lock, flags);
1986 wake_up(&jfs_IO_thread_wait);
1991 * lbmRead()
1993 static int lbmRead(struct jfs_log * log, int pn, struct lbuf ** bpp)
1995 struct bio *bio;
1996 struct lbuf *bp;
1999 * allocate a log buffer
2001 *bpp = bp = lbmAllocate(log, pn);
2002 jfs_info("lbmRead: bp:0x%p pn:0x%x", bp, pn);
2004 bp->l_flag |= lbmREAD;
2006 bio = bio_alloc(GFP_NOFS, 1);
2008 bio->bi_sector = bp->l_blkno << (log->l2bsize - 9);
2009 bio->bi_bdev = log->bdev;
2010 bio->bi_io_vec[0].bv_page = bp->l_page;
2011 bio->bi_io_vec[0].bv_len = LOGPSIZE;
2012 bio->bi_io_vec[0].bv_offset = bp->l_offset;
2014 bio->bi_vcnt = 1;
2015 bio->bi_idx = 0;
2016 bio->bi_size = LOGPSIZE;
2018 bio->bi_end_io = lbmIODone;
2019 bio->bi_private = bp;
2020 submit_bio(READ_SYNC, bio);
2022 wait_event(bp->l_ioevent, (bp->l_flag != lbmREAD));
2024 return 0;
2029 * lbmWrite()
2031 * buffer at head of pageout queue stays after completion of
2032 * partial-page pageout and redriven by explicit initiation of
2033 * pageout by caller until full-page pageout is completed and
2034 * released.
2036 * device driver i/o done redrives pageout of new buffer at
2037 * head of pageout queue when current buffer at head of pageout
2038 * queue is released at the completion of its full-page pageout.
2040 * LOGGC_LOCK() serializes lbmWrite() by lmNextPage() and lmGroupCommit().
2041 * LCACHE_LOCK() serializes xflag between lbmWrite() and lbmIODone()
2043 static void lbmWrite(struct jfs_log * log, struct lbuf * bp, int flag,
2044 int cant_block)
2046 struct lbuf *tail;
2047 unsigned long flags;
2049 jfs_info("lbmWrite: bp:0x%p flag:0x%x pn:0x%x", bp, flag, bp->l_pn);
2051 /* map the logical block address to physical block address */
2052 bp->l_blkno =
2053 log->base + (bp->l_pn << (L2LOGPSIZE - log->l2bsize));
2055 LCACHE_LOCK(flags); /* disable+lock */
2058 * initialize buffer for device driver
2060 bp->l_flag = flag;
2063 * insert bp at tail of write queue associated with log
2065 * (request is either for bp already/currently at head of queue
2066 * or new bp to be inserted at tail)
2068 tail = log->wqueue;
2070 /* is buffer not already on write queue ? */
2071 if (bp->l_wqnext == NULL) {
2072 /* insert at tail of wqueue */
2073 if (tail == NULL) {
2074 log->wqueue = bp;
2075 bp->l_wqnext = bp;
2076 } else {
2077 log->wqueue = bp;
2078 bp->l_wqnext = tail->l_wqnext;
2079 tail->l_wqnext = bp;
2082 tail = bp;
2085 /* is buffer at head of wqueue and for write ? */
2086 if ((bp != tail->l_wqnext) || !(flag & lbmWRITE)) {
2087 LCACHE_UNLOCK(flags); /* unlock+enable */
2088 return;
2091 LCACHE_UNLOCK(flags); /* unlock+enable */
2093 if (cant_block)
2094 lbmRedrive(bp);
2095 else if (flag & lbmSYNC)
2096 lbmStartIO(bp);
2097 else {
2098 LOGGC_UNLOCK(log);
2099 lbmStartIO(bp);
2100 LOGGC_LOCK(log);
2106 * lbmDirectWrite()
2108 * initiate pageout bypassing write queue for sidestream
2109 * (e.g., log superblock) write;
2111 static void lbmDirectWrite(struct jfs_log * log, struct lbuf * bp, int flag)
2113 jfs_info("lbmDirectWrite: bp:0x%p flag:0x%x pn:0x%x",
2114 bp, flag, bp->l_pn);
2117 * initialize buffer for device driver
2119 bp->l_flag = flag | lbmDIRECT;
2121 /* map the logical block address to physical block address */
2122 bp->l_blkno =
2123 log->base + (bp->l_pn << (L2LOGPSIZE - log->l2bsize));
2126 * initiate pageout of the page
2128 lbmStartIO(bp);
2133 * NAME: lbmStartIO()
2135 * FUNCTION: Interface to DD strategy routine
2137 * RETURN: none
2139 * serialization: LCACHE_LOCK() is NOT held during log i/o;
2141 static void lbmStartIO(struct lbuf * bp)
2143 struct bio *bio;
2144 struct jfs_log *log = bp->l_log;
2146 jfs_info("lbmStartIO\n");
2148 bio = bio_alloc(GFP_NOFS, 1);
2149 bio->bi_sector = bp->l_blkno << (log->l2bsize - 9);
2150 bio->bi_bdev = log->bdev;
2151 bio->bi_io_vec[0].bv_page = bp->l_page;
2152 bio->bi_io_vec[0].bv_len = LOGPSIZE;
2153 bio->bi_io_vec[0].bv_offset = bp->l_offset;
2155 bio->bi_vcnt = 1;
2156 bio->bi_idx = 0;
2157 bio->bi_size = LOGPSIZE;
2159 bio->bi_end_io = lbmIODone;
2160 bio->bi_private = bp;
2162 /* check if journaling to disk has been disabled */
2163 if (log->no_integrity) {
2164 bio->bi_size = 0;
2165 lbmIODone(bio, 0, 0);
2166 } else {
2167 submit_bio(WRITE_SYNC, bio);
2168 INCREMENT(lmStat.submitted);
2174 * lbmIOWait()
2176 static int lbmIOWait(struct lbuf * bp, int flag)
2178 unsigned long flags;
2179 int rc = 0;
2181 jfs_info("lbmIOWait1: bp:0x%p flag:0x%x:0x%x", bp, bp->l_flag, flag);
2183 LCACHE_LOCK(flags); /* disable+lock */
2185 LCACHE_SLEEP_COND(bp->l_ioevent, (bp->l_flag & lbmDONE), flags);
2187 rc = (bp->l_flag & lbmERROR) ? -EIO : 0;
2189 if (flag & lbmFREE)
2190 lbmfree(bp);
2192 LCACHE_UNLOCK(flags); /* unlock+enable */
2194 jfs_info("lbmIOWait2: bp:0x%p flag:0x%x:0x%x", bp, bp->l_flag, flag);
2195 return rc;
2199 * lbmIODone()
2201 * executed at INTIODONE level
2203 static int lbmIODone(struct bio *bio, unsigned int bytes_done, int error)
2205 struct lbuf *bp = bio->bi_private;
2206 struct lbuf *nextbp, *tail;
2207 struct jfs_log *log;
2208 unsigned long flags;
2210 if (bio->bi_size)
2211 return 1;
2214 * get back jfs buffer bound to the i/o buffer
2216 jfs_info("lbmIODone: bp:0x%p flag:0x%x", bp, bp->l_flag);
2218 LCACHE_LOCK(flags); /* disable+lock */
2220 bp->l_flag |= lbmDONE;
2222 if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2223 bp->l_flag |= lbmERROR;
2225 jfs_err("lbmIODone: I/O error in JFS log");
2228 bio_put(bio);
2231 * pagein completion
2233 if (bp->l_flag & lbmREAD) {
2234 bp->l_flag &= ~lbmREAD;
2236 LCACHE_UNLOCK(flags); /* unlock+enable */
2238 /* wakeup I/O initiator */
2239 LCACHE_WAKEUP(&bp->l_ioevent);
2241 return 0;
2245 * pageout completion
2247 * the bp at the head of write queue has completed pageout.
2249 * if single-commit/full-page pageout, remove the current buffer
2250 * from head of pageout queue, and redrive pageout with
2251 * the new buffer at head of pageout queue;
2252 * otherwise, the partial-page pageout buffer stays at
2253 * the head of pageout queue to be redriven for pageout
2254 * by lmGroupCommit() until full-page pageout is completed.
2256 bp->l_flag &= ~lbmWRITE;
2257 INCREMENT(lmStat.pagedone);
2259 /* update committed lsn */
2260 log = bp->l_log;
2261 log->clsn = (bp->l_pn << L2LOGPSIZE) + bp->l_ceor;
2263 if (bp->l_flag & lbmDIRECT) {
2264 LCACHE_WAKEUP(&bp->l_ioevent);
2265 LCACHE_UNLOCK(flags);
2266 return 0;
2269 tail = log->wqueue;
2271 /* single element queue */
2272 if (bp == tail) {
2273 /* remove head buffer of full-page pageout
2274 * from log device write queue
2276 if (bp->l_flag & lbmRELEASE) {
2277 log->wqueue = NULL;
2278 bp->l_wqnext = NULL;
2281 /* multi element queue */
2282 else {
2283 /* remove head buffer of full-page pageout
2284 * from log device write queue
2286 if (bp->l_flag & lbmRELEASE) {
2287 nextbp = tail->l_wqnext = bp->l_wqnext;
2288 bp->l_wqnext = NULL;
2291 * redrive pageout of next page at head of write queue:
2292 * redrive next page without any bound tblk
2293 * (i.e., page w/o any COMMIT records), or
2294 * first page of new group commit which has been
2295 * queued after current page (subsequent pageout
2296 * is performed synchronously, except page without
2297 * any COMMITs) by lmGroupCommit() as indicated
2298 * by lbmWRITE flag;
2300 if (nextbp->l_flag & lbmWRITE) {
2302 * We can't do the I/O at interrupt time.
2303 * The jfsIO thread can do it
2305 lbmRedrive(nextbp);
2311 * synchronous pageout:
2313 * buffer has not necessarily been removed from write queue
2314 * (e.g., synchronous write of partial-page with COMMIT):
2315 * leave buffer for i/o initiator to dispose
2317 if (bp->l_flag & lbmSYNC) {
2318 LCACHE_UNLOCK(flags); /* unlock+enable */
2320 /* wakeup I/O initiator */
2321 LCACHE_WAKEUP(&bp->l_ioevent);
2325 * Group Commit pageout:
2327 else if (bp->l_flag & lbmGC) {
2328 LCACHE_UNLOCK(flags);
2329 lmPostGC(bp);
2333 * asynchronous pageout:
2335 * buffer must have been removed from write queue:
2336 * insert buffer at head of freelist where it can be recycled
2338 else {
2339 assert(bp->l_flag & lbmRELEASE);
2340 assert(bp->l_flag & lbmFREE);
2341 lbmfree(bp);
2343 LCACHE_UNLOCK(flags); /* unlock+enable */
2346 return 0;
2349 int jfsIOWait(void *arg)
2351 struct lbuf *bp;
2353 daemonize("jfsIO");
2355 complete(&jfsIOwait);
2357 do {
2358 DECLARE_WAITQUEUE(wq, current);
2360 spin_lock_irq(&log_redrive_lock);
2361 while ((bp = log_redrive_list) != 0) {
2362 log_redrive_list = bp->l_redrive_next;
2363 bp->l_redrive_next = NULL;
2364 spin_unlock_irq(&log_redrive_lock);
2365 lbmStartIO(bp);
2366 spin_lock_irq(&log_redrive_lock);
2368 if (current->flags & PF_FREEZE) {
2369 spin_unlock_irq(&log_redrive_lock);
2370 refrigerator(PF_FREEZE);
2371 } else {
2372 add_wait_queue(&jfs_IO_thread_wait, &wq);
2373 set_current_state(TASK_INTERRUPTIBLE);
2374 spin_unlock_irq(&log_redrive_lock);
2375 schedule();
2376 current->state = TASK_RUNNING;
2377 remove_wait_queue(&jfs_IO_thread_wait, &wq);
2379 } while (!jfs_stop_threads);
2381 jfs_info("jfsIOWait being killed!");
2382 complete_and_exit(&jfsIOwait, 0);
2386 * NAME: lmLogFormat()/jfs_logform()
2388 * FUNCTION: format file system log
2390 * PARAMETERS:
2391 * log - volume log
2392 * logAddress - start address of log space in FS block
2393 * logSize - length of log space in FS block;
2395 * RETURN: 0 - success
2396 * -EIO - i/o error
2398 * XXX: We're synchronously writing one page at a time. This needs to
2399 * be improved by writing multiple pages at once.
2401 int lmLogFormat(struct jfs_log *log, s64 logAddress, int logSize)
2403 int rc = -EIO;
2404 struct jfs_sb_info *sbi;
2405 struct logsuper *logsuper;
2406 struct logpage *lp;
2407 int lspn; /* log sequence page number */
2408 struct lrd *lrd_ptr;
2409 int npages = 0;
2410 struct lbuf *bp;
2412 jfs_info("lmLogFormat: logAddress:%Ld logSize:%d",
2413 (long long)logAddress, logSize);
2415 sbi = list_entry(log->sb_list.next, struct jfs_sb_info, log_list);
2417 /* allocate a log buffer */
2418 bp = lbmAllocate(log, 1);
2420 npages = logSize >> sbi->l2nbperpage;
2423 * log space:
2425 * page 0 - reserved;
2426 * page 1 - log superblock;
2427 * page 2 - log data page: A SYNC log record is written
2428 * into this page at logform time;
2429 * pages 3-N - log data page: set to empty log data pages;
2432 * init log superblock: log page 1
2434 logsuper = (struct logsuper *) bp->l_ldata;
2436 logsuper->magic = cpu_to_le32(LOGMAGIC);
2437 logsuper->version = cpu_to_le32(LOGVERSION);
2438 logsuper->state = cpu_to_le32(LOGREDONE);
2439 logsuper->flag = cpu_to_le32(sbi->mntflag); /* ? */
2440 logsuper->size = cpu_to_le32(npages);
2441 logsuper->bsize = cpu_to_le32(sbi->bsize);
2442 logsuper->l2bsize = cpu_to_le32(sbi->l2bsize);
2443 logsuper->end = cpu_to_le32(2 * LOGPSIZE + LOGPHDRSIZE + LOGRDSIZE);
2445 bp->l_flag = lbmWRITE | lbmSYNC | lbmDIRECT;
2446 bp->l_blkno = logAddress + sbi->nbperpage;
2447 lbmStartIO(bp);
2448 if ((rc = lbmIOWait(bp, 0)))
2449 goto exit;
2452 * init pages 2 to npages-1 as log data pages:
2454 * log page sequence number (lpsn) initialization:
2456 * pn: 0 1 2 3 n-1
2457 * +-----+-----+=====+=====+===.....===+=====+
2458 * lspn: N-1 0 1 N-2
2459 * <--- N page circular file ---->
2461 * the N (= npages-2) data pages of the log is maintained as
2462 * a circular file for the log records;
2463 * lpsn grows by 1 monotonically as each log page is written
2464 * to the circular file of the log;
2465 * and setLogpage() will not reset the page number even if
2466 * the eor is equal to LOGPHDRSIZE. In order for binary search
2467 * still work in find log end process, we have to simulate the
2468 * log wrap situation at the log format time.
2469 * The 1st log page written will have the highest lpsn. Then
2470 * the succeeding log pages will have ascending order of
2471 * the lspn starting from 0, ... (N-2)
2473 lp = (struct logpage *) bp->l_ldata;
2475 * initialize 1st log page to be written: lpsn = N - 1,
2476 * write a SYNCPT log record is written to this page
2478 lp->h.page = lp->t.page = cpu_to_le32(npages - 3);
2479 lp->h.eor = lp->t.eor = cpu_to_le16(LOGPHDRSIZE + LOGRDSIZE);
2481 lrd_ptr = (struct lrd *) &lp->data;
2482 lrd_ptr->logtid = 0;
2483 lrd_ptr->backchain = 0;
2484 lrd_ptr->type = cpu_to_le16(LOG_SYNCPT);
2485 lrd_ptr->length = 0;
2486 lrd_ptr->log.syncpt.sync = 0;
2488 bp->l_blkno += sbi->nbperpage;
2489 bp->l_flag = lbmWRITE | lbmSYNC | lbmDIRECT;
2490 lbmStartIO(bp);
2491 if ((rc = lbmIOWait(bp, 0)))
2492 goto exit;
2495 * initialize succeeding log pages: lpsn = 0, 1, ..., (N-2)
2497 for (lspn = 0; lspn < npages - 3; lspn++) {
2498 lp->h.page = lp->t.page = cpu_to_le32(lspn);
2499 lp->h.eor = lp->t.eor = cpu_to_le16(LOGPHDRSIZE);
2501 bp->l_blkno += sbi->nbperpage;
2502 bp->l_flag = lbmWRITE | lbmSYNC | lbmDIRECT;
2503 lbmStartIO(bp);
2504 if ((rc = lbmIOWait(bp, 0)))
2505 goto exit;
2508 rc = 0;
2509 exit:
2511 * finalize log
2513 /* release the buffer */
2514 lbmFree(bp);
2516 return rc;
2519 #ifdef CONFIG_JFS_STATISTICS
2520 int jfs_lmstats_read(char *buffer, char **start, off_t offset, int length,
2521 int *eof, void *data)
2523 int len = 0;
2524 off_t begin;
2526 len += sprintf(buffer,
2527 "JFS Logmgr stats\n"
2528 "================\n"
2529 "commits = %d\n"
2530 "writes submitted = %d\n"
2531 "writes completed = %d\n"
2532 "full pages submitted = %d\n"
2533 "partial pages submitted = %d\n",
2534 lmStat.commit,
2535 lmStat.submitted,
2536 lmStat.pagedone,
2537 lmStat.full_page,
2538 lmStat.partial_page);
2540 begin = offset;
2541 *start = buffer + begin;
2542 len -= begin;
2544 if (len > length)
2545 len = length;
2546 else
2547 *eof = 1;
2549 if (len < 0)
2550 len = 0;
2552 return len;
2554 #endif /* CONFIG_JFS_STATISTICS */