2 * aops.c - NTFS kernel address space operations and page cache handling.
3 * Part of the Linux-NTFS project.
5 * Copyright (c) 2001-2004 Anton Altaparmakov
6 * Copyright (c) 2002 Richard Russon
8 * This program/include file is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License as published
10 * by the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
13 * This program/include file is distributed in the hope that it will be
14 * useful, but WITHOUT ANY WARRANTY; without even the implied warranty
15 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program (in the main directory of the Linux-NTFS
20 * distribution in the file COPYING); if not, write to the Free Software
21 * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
24 #include <linux/errno.h>
26 #include <linux/pagemap.h>
27 #include <linux/swap.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
41 * ntfs_end_buffer_async_read - async io completion for reading attributes
42 * @bh: buffer head on which io is completed
43 * @uptodate: whether @bh is now uptodate or not
45 * Asynchronous I/O completion handler for reading pages belonging to the
46 * attribute address space of an inode. The inodes can either be files or
47 * directories or they can be fake inodes describing some attribute.
49 * If NInoMstProtected(), perform the post read mst fixups when all IO on the
50 * page has been completed and mark the page uptodate or set the error bit on
51 * the page. To determine the size of the records that need fixing up, we
52 * cheat a little bit by setting the index_block_size in ntfs_inode to the ntfs
53 * record size, and index_block_size_bits, to the log(base 2) of the ntfs
56 static void ntfs_end_buffer_async_read(struct buffer_head
*bh
, int uptodate
)
58 static DEFINE_SPINLOCK(page_uptodate_lock
);
60 struct buffer_head
*tmp
;
63 int page_uptodate
= 1;
66 ni
= NTFS_I(page
->mapping
->host
);
68 if (likely(uptodate
)) {
71 set_buffer_uptodate(bh
);
73 file_ofs
= ((s64
)page
->index
<< PAGE_CACHE_SHIFT
) +
75 /* Check for the current buffer head overflowing. */
76 if (file_ofs
+ bh
->b_size
> ni
->initialized_size
) {
80 if (file_ofs
< ni
->initialized_size
)
81 ofs
= ni
->initialized_size
- file_ofs
;
82 addr
= kmap_atomic(page
, KM_BIO_SRC_IRQ
);
83 memset(addr
+ bh_offset(bh
) + ofs
, 0, bh
->b_size
- ofs
);
84 flush_dcache_page(page
);
85 kunmap_atomic(addr
, KM_BIO_SRC_IRQ
);
88 clear_buffer_uptodate(bh
);
89 ntfs_error(ni
->vol
->sb
, "Buffer I/O error, logical block %llu.",
90 (unsigned long long)bh
->b_blocknr
);
93 spin_lock_irqsave(&page_uptodate_lock
, flags
);
94 clear_buffer_async_read(bh
);
98 if (!buffer_uptodate(tmp
))
100 if (buffer_async_read(tmp
)) {
101 if (likely(buffer_locked(tmp
)))
103 /* Async buffers must be locked. */
106 tmp
= tmp
->b_this_page
;
108 spin_unlock_irqrestore(&page_uptodate_lock
, flags
);
110 * If none of the buffers had errors then we can set the page uptodate,
111 * but we first have to perform the post read mst fixups, if the
112 * attribute is mst protected, i.e. if NInoMstProteced(ni) is true.
113 * Note we ignore fixup errors as those are detected when
114 * map_mft_record() is called which gives us per record granularity
115 * rather than per page granularity.
117 if (!NInoMstProtected(ni
)) {
118 if (likely(page_uptodate
&& !PageError(page
)))
119 SetPageUptodate(page
);
122 unsigned int i
, recs
;
125 rec_size
= ni
->itype
.index
.block_size
;
126 recs
= PAGE_CACHE_SIZE
/ rec_size
;
127 /* Should have been verified before we got here... */
129 addr
= kmap_atomic(page
, KM_BIO_SRC_IRQ
);
130 for (i
= 0; i
< recs
; i
++)
131 post_read_mst_fixup((NTFS_RECORD
*)(addr
+
132 i
* rec_size
), rec_size
);
133 flush_dcache_page(page
);
134 kunmap_atomic(addr
, KM_BIO_SRC_IRQ
);
135 if (likely(!PageError(page
) && page_uptodate
))
136 SetPageUptodate(page
);
141 spin_unlock_irqrestore(&page_uptodate_lock
, flags
);
146 * ntfs_read_block - fill a @page of an address space with data
147 * @page: page cache page to fill with data
149 * Fill the page @page of the address space belonging to the @page->host inode.
150 * We read each buffer asynchronously and when all buffers are read in, our io
151 * completion handler ntfs_end_buffer_read_async(), if required, automatically
152 * applies the mst fixups to the page before finally marking it uptodate and
155 * We only enforce allocated_size limit because i_size is checked for in
156 * generic_file_read().
158 * Return 0 on success and -errno on error.
160 * Contains an adapted version of fs/buffer.c::block_read_full_page().
162 static int ntfs_read_block(struct page
*page
)
169 struct buffer_head
*bh
, *head
, *arr
[MAX_BUF_PER_PAGE
];
170 sector_t iblock
, lblock
, zblock
;
171 unsigned int blocksize
, vcn_ofs
;
173 unsigned char blocksize_bits
;
175 ni
= NTFS_I(page
->mapping
->host
);
178 /* $MFT/$DATA must have its complete runlist in memory at all times. */
179 BUG_ON(!ni
->runlist
.rl
&& !ni
->mft_no
&& !NInoAttr(ni
));
181 blocksize_bits
= VFS_I(ni
)->i_blkbits
;
182 blocksize
= 1 << blocksize_bits
;
184 if (!page_has_buffers(page
))
185 create_empty_buffers(page
, blocksize
, 0);
186 bh
= head
= page_buffers(page
);
192 iblock
= (s64
)page
->index
<< (PAGE_CACHE_SHIFT
- blocksize_bits
);
193 lblock
= (ni
->allocated_size
+ blocksize
- 1) >> blocksize_bits
;
194 zblock
= (ni
->initialized_size
+ blocksize
- 1) >> blocksize_bits
;
196 /* Loop through all the buffers in the page. */
202 if (unlikely(buffer_uptodate(bh
)))
204 if (unlikely(buffer_mapped(bh
))) {
208 bh
->b_bdev
= vol
->sb
->s_bdev
;
209 /* Is the block within the allowed limits? */
210 if (iblock
< lblock
) {
211 BOOL is_retry
= FALSE
;
213 /* Convert iblock into corresponding vcn and offset. */
214 vcn
= (VCN
)iblock
<< blocksize_bits
>>
215 vol
->cluster_size_bits
;
216 vcn_ofs
= ((VCN
)iblock
<< blocksize_bits
) &
217 vol
->cluster_size_mask
;
220 down_read(&ni
->runlist
.lock
);
223 if (likely(rl
!= NULL
)) {
224 /* Seek to element containing target vcn. */
225 while (rl
->length
&& rl
[1].vcn
<= vcn
)
227 lcn
= ntfs_rl_vcn_to_lcn(rl
, vcn
);
229 lcn
= LCN_RL_NOT_MAPPED
;
230 /* Successful remap. */
232 /* Setup buffer head to correct block. */
233 bh
->b_blocknr
= ((lcn
<< vol
->cluster_size_bits
)
234 + vcn_ofs
) >> blocksize_bits
;
235 set_buffer_mapped(bh
);
236 /* Only read initialized data blocks. */
237 if (iblock
< zblock
) {
241 /* Fully non-initialized data block, zero it. */
244 /* It is a hole, need to zero it. */
247 /* If first try and runlist unmapped, map and retry. */
248 if (!is_retry
&& lcn
== LCN_RL_NOT_MAPPED
) {
252 * Attempt to map runlist, dropping lock for
255 up_read(&ni
->runlist
.lock
);
256 err
= ntfs_map_runlist(ni
, vcn
);
258 goto lock_retry_remap
;
262 /* Hard error, zero out region. */
265 ntfs_error(vol
->sb
, "Failed to read from inode 0x%lx, "
266 "attribute type 0x%x, vcn 0x%llx, "
267 "offset 0x%x because its location on "
268 "disk could not be determined%s "
269 "(error code %lli).", ni
->mft_no
,
270 ni
->type
, (unsigned long long)vcn
,
271 vcn_ofs
, is_retry
? " even after "
272 "retrying" : "", (long long)lcn
);
275 * Either iblock was outside lblock limits or
276 * ntfs_rl_vcn_to_lcn() returned error. Just zero that portion
277 * of the page and set the buffer uptodate.
280 bh
->b_blocknr
= -1UL;
281 clear_buffer_mapped(bh
);
283 kaddr
= kmap_atomic(page
, KM_USER0
);
284 memset(kaddr
+ i
* blocksize
, 0, blocksize
);
285 flush_dcache_page(page
);
286 kunmap_atomic(kaddr
, KM_USER0
);
287 set_buffer_uptodate(bh
);
288 } while (i
++, iblock
++, (bh
= bh
->b_this_page
) != head
);
290 /* Release the lock if we took it. */
292 up_read(&ni
->runlist
.lock
);
294 /* Check we have at least one buffer ready for i/o. */
296 struct buffer_head
*tbh
;
298 /* Lock the buffers. */
299 for (i
= 0; i
< nr
; i
++) {
302 tbh
->b_end_io
= ntfs_end_buffer_async_read
;
303 set_buffer_async_read(tbh
);
305 /* Finally, start i/o on the buffers. */
306 for (i
= 0; i
< nr
; i
++) {
308 if (likely(!buffer_uptodate(tbh
)))
309 submit_bh(READ
, tbh
);
311 ntfs_end_buffer_async_read(tbh
, 1);
315 /* No i/o was scheduled on any of the buffers. */
316 if (likely(!PageError(page
)))
317 SetPageUptodate(page
);
318 else /* Signal synchronous i/o error. */
325 * ntfs_readpage - fill a @page of a @file with data from the device
326 * @file: open file to which the page @page belongs or NULL
327 * @page: page cache page to fill with data
329 * For non-resident attributes, ntfs_readpage() fills the @page of the open
330 * file @file by calling the ntfs version of the generic block_read_full_page()
331 * function, ntfs_read_block(), which in turn creates and reads in the buffers
332 * associated with the page asynchronously.
334 * For resident attributes, OTOH, ntfs_readpage() fills @page by copying the
335 * data from the mft record (which at this stage is most likely in memory) and
336 * fills the remainder with zeroes. Thus, in this case, I/O is synchronous, as
337 * even if the mft record is not cached at this point in time, we need to wait
338 * for it to be read in before we can do the copy.
340 * Return 0 on success and -errno on error.
342 static int ntfs_readpage(struct file
*file
, struct page
*page
)
345 ntfs_inode
*ni
, *base_ni
;
347 ntfs_attr_search_ctx
*ctx
;
352 BUG_ON(!PageLocked(page
));
354 * This can potentially happen because we clear PageUptodate() during
355 * ntfs_writepage() of MstProtected() attributes.
357 if (PageUptodate(page
)) {
361 ni
= NTFS_I(page
->mapping
->host
);
363 /* NInoNonResident() == NInoIndexAllocPresent() */
364 if (NInoNonResident(ni
)) {
366 * Only unnamed $DATA attributes can be compressed or
369 if (ni
->type
== AT_DATA
&& !ni
->name_len
) {
370 /* If file is encrypted, deny access, just like NT4. */
371 if (NInoEncrypted(ni
)) {
375 /* Compressed data streams are handled in compress.c. */
376 if (NInoCompressed(ni
))
377 return ntfs_read_compressed_block(page
);
379 /* Normal data stream. */
380 return ntfs_read_block(page
);
383 * Attribute is resident, implying it is not compressed or encrypted.
384 * This also means the attribute is smaller than an mft record and
385 * hence smaller than a page, so can simply zero out any pages with
386 * index above 0. We can also do this if the file size is 0.
388 if (unlikely(page
->index
> 0 || !i_size_read(VFS_I(ni
)))) {
389 kaddr
= kmap_atomic(page
, KM_USER0
);
390 memset(kaddr
, 0, PAGE_CACHE_SIZE
);
391 flush_dcache_page(page
);
392 kunmap_atomic(kaddr
, KM_USER0
);
398 base_ni
= ni
->ext
.base_ntfs_ino
;
399 /* Map, pin, and lock the mft record. */
400 mrec
= map_mft_record(base_ni
);
405 ctx
= ntfs_attr_get_search_ctx(base_ni
, mrec
);
406 if (unlikely(!ctx
)) {
410 err
= ntfs_attr_lookup(ni
->type
, ni
->name
, ni
->name_len
,
411 CASE_SENSITIVE
, 0, NULL
, 0, ctx
);
413 goto put_unm_err_out
;
414 attr_len
= le32_to_cpu(ctx
->attr
->data
.resident
.value_length
);
415 i_size
= i_size_read(VFS_I(ni
));
416 if (unlikely(attr_len
> i_size
))
418 kaddr
= kmap_atomic(page
, KM_USER0
);
419 /* Copy the data to the page. */
420 memcpy(kaddr
, (u8
*)ctx
->attr
+
421 le16_to_cpu(ctx
->attr
->data
.resident
.value_offset
),
423 /* Zero the remainder of the page. */
424 memset(kaddr
+ attr_len
, 0, PAGE_CACHE_SIZE
- attr_len
);
425 flush_dcache_page(page
);
426 kunmap_atomic(kaddr
, KM_USER0
);
428 ntfs_attr_put_search_ctx(ctx
);
430 unmap_mft_record(base_ni
);
432 SetPageUptodate(page
);
441 * ntfs_write_block - write a @page to the backing store
442 * @page: page cache page to write out
443 * @wbc: writeback control structure
445 * This function is for writing pages belonging to non-resident, non-mst
446 * protected attributes to their backing store.
448 * For a page with buffers, map and write the dirty buffers asynchronously
449 * under page writeback. For a page without buffers, create buffers for the
450 * page, then proceed as above.
452 * If a page doesn't have buffers the page dirty state is definitive. If a page
453 * does have buffers, the page dirty state is just a hint, and the buffer dirty
454 * state is definitive. (A hint which has rules: dirty buffers against a clean
455 * page is illegal. Other combinations are legal and need to be handled. In
456 * particular a dirty page containing clean buffers for example.)
458 * Return 0 on success and -errno on error.
460 * Based on ntfs_read_block() and __block_write_full_page().
462 static int ntfs_write_block(struct page
*page
, struct writeback_control
*wbc
)
466 sector_t block
, dblock
, iblock
;
471 struct buffer_head
*bh
, *head
;
472 unsigned int blocksize
, vcn_ofs
;
474 BOOL need_end_writeback
;
475 unsigned char blocksize_bits
;
477 vi
= page
->mapping
->host
;
481 ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, page index "
482 "0x%lx.", ni
->mft_no
, ni
->type
, page
->index
);
484 BUG_ON(!NInoNonResident(ni
));
485 BUG_ON(NInoMstProtected(ni
));
487 blocksize_bits
= vi
->i_blkbits
;
488 blocksize
= 1 << blocksize_bits
;
490 if (!page_has_buffers(page
)) {
491 BUG_ON(!PageUptodate(page
));
492 create_empty_buffers(page
, blocksize
,
493 (1 << BH_Uptodate
) | (1 << BH_Dirty
));
495 bh
= head
= page_buffers(page
);
497 ntfs_warning(vol
->sb
, "Error allocating page buffers. "
498 "Redirtying page so we try again later.");
500 * Put the page back on mapping->dirty_pages, but leave its
501 * buffer's dirty state as-is.
503 redirty_page_for_writepage(wbc
, page
);
508 /* NOTE: Different naming scheme to ntfs_read_block()! */
510 /* The first block in the page. */
511 block
= (s64
)page
->index
<< (PAGE_CACHE_SHIFT
- blocksize_bits
);
513 /* The first out of bounds block for the data size. */
514 dblock
= (vi
->i_size
+ blocksize
- 1) >> blocksize_bits
;
516 /* The last (fully or partially) initialized block. */
517 iblock
= ni
->initialized_size
>> blocksize_bits
;
520 * Be very careful. We have no exclusion from __set_page_dirty_buffers
521 * here, and the (potentially unmapped) buffers may become dirty at
522 * any time. If a buffer becomes dirty here after we've inspected it
523 * then we just miss that fact, and the page stays dirty.
525 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
526 * handle that here by just cleaning them.
530 * Loop through all the buffers in the page, mapping all the dirty
531 * buffers to disk addresses and handling any aliases from the
532 * underlying block device's mapping.
537 BOOL is_retry
= FALSE
;
539 if (unlikely(block
>= dblock
)) {
541 * Mapped buffers outside i_size will occur, because
542 * this page can be outside i_size when there is a
543 * truncate in progress. The contents of such buffers
544 * were zeroed by ntfs_writepage().
546 * FIXME: What about the small race window where
547 * ntfs_writepage() has not done any clearing because
548 * the page was within i_size but before we get here,
549 * vmtruncate() modifies i_size?
551 clear_buffer_dirty(bh
);
552 set_buffer_uptodate(bh
);
556 /* Clean buffers are not written out, so no need to map them. */
557 if (!buffer_dirty(bh
))
560 /* Make sure we have enough initialized size. */
561 if (unlikely((block
>= iblock
) &&
562 (ni
->initialized_size
< vi
->i_size
))) {
564 * If this page is fully outside initialized size, zero
565 * out all pages between the current initialized size
566 * and the current page. Just use ntfs_readpage() to do
567 * the zeroing transparently.
569 if (block
> iblock
) {
572 // - read_cache_page()
573 // Again for each page do:
574 // - wait_on_page_locked()
575 // - Check (PageUptodate(page) &&
577 // Update initialized size in the attribute and
579 // Again, for each page do:
580 // __set_page_dirty_buffers();
581 // page_cache_release()
582 // We don't need to wait on the writes.
586 * The current page straddles initialized size. Zero
587 * all non-uptodate buffers and set them uptodate (and
588 * dirty?). Note, there aren't any non-uptodate buffers
589 * if the page is uptodate.
590 * FIXME: For an uptodate page, the buffers may need to
591 * be written out because they were not initialized on
594 if (!PageUptodate(page
)) {
596 // Zero any non-uptodate buffers up to i_size.
597 // Set them uptodate and dirty.
600 // Update initialized size in the attribute and in the
601 // inode (up to i_size).
603 // FIXME: This is inefficient. Try to batch the two
604 // size changes to happen in one go.
605 ntfs_error(vol
->sb
, "Writing beyond initialized size "
606 "is not supported yet. Sorry.");
609 // Do NOT set_buffer_new() BUT DO clear buffer range
610 // outside write request range.
611 // set_buffer_uptodate() on complete buffers as well as
612 // set_buffer_dirty().
615 /* No need to map buffers that are already mapped. */
616 if (buffer_mapped(bh
))
619 /* Unmapped, dirty buffer. Need to map it. */
620 bh
->b_bdev
= vol
->sb
->s_bdev
;
622 /* Convert block into corresponding vcn and offset. */
623 vcn
= (VCN
)block
<< blocksize_bits
;
624 vcn_ofs
= vcn
& vol
->cluster_size_mask
;
625 vcn
>>= vol
->cluster_size_bits
;
628 down_read(&ni
->runlist
.lock
);
631 if (likely(rl
!= NULL
)) {
632 /* Seek to element containing target vcn. */
633 while (rl
->length
&& rl
[1].vcn
<= vcn
)
635 lcn
= ntfs_rl_vcn_to_lcn(rl
, vcn
);
637 lcn
= LCN_RL_NOT_MAPPED
;
638 /* Successful remap. */
640 /* Setup buffer head to point to correct block. */
641 bh
->b_blocknr
= ((lcn
<< vol
->cluster_size_bits
) +
642 vcn_ofs
) >> blocksize_bits
;
643 set_buffer_mapped(bh
);
646 /* It is a hole, need to instantiate it. */
647 if (lcn
== LCN_HOLE
) {
648 // TODO: Instantiate the hole.
649 // clear_buffer_new(bh);
650 // unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
651 ntfs_error(vol
->sb
, "Writing into sparse regions is "
652 "not supported yet. Sorry.");
656 /* If first try and runlist unmapped, map and retry. */
657 if (!is_retry
&& lcn
== LCN_RL_NOT_MAPPED
) {
660 * Attempt to map runlist, dropping lock for
663 up_read(&ni
->runlist
.lock
);
664 err
= ntfs_map_runlist(ni
, vcn
);
666 goto lock_retry_remap
;
670 /* Failed to map the buffer, even after retrying. */
672 ntfs_error(vol
->sb
, "Failed to write to inode 0x%lx, "
673 "attribute type 0x%x, vcn 0x%llx, offset 0x%x "
674 "because its location on disk could not be "
675 "determined%s (error code %lli).", ni
->mft_no
,
676 ni
->type
, (unsigned long long)vcn
,
677 vcn_ofs
, is_retry
? " even after "
678 "retrying" : "", (long long)lcn
);
682 } while (block
++, (bh
= bh
->b_this_page
) != head
);
684 /* Release the lock if we took it. */
686 up_read(&ni
->runlist
.lock
);
688 /* For the error case, need to reset bh to the beginning. */
691 /* Just an optimization, so ->readpage() isn't called later. */
692 if (unlikely(!PageUptodate(page
))) {
695 if (!buffer_uptodate(bh
)) {
700 } while ((bh
= bh
->b_this_page
) != head
);
702 SetPageUptodate(page
);
705 /* Setup all mapped, dirty buffers for async write i/o. */
708 if (buffer_mapped(bh
) && buffer_dirty(bh
)) {
710 if (test_clear_buffer_dirty(bh
)) {
711 BUG_ON(!buffer_uptodate(bh
));
712 mark_buffer_async_write(bh
);
715 } else if (unlikely(err
)) {
717 * For the error case. The buffer may have been set
718 * dirty during attachment to a dirty page.
721 clear_buffer_dirty(bh
);
723 } while ((bh
= bh
->b_this_page
) != head
);
726 // TODO: Remove the -EOPNOTSUPP check later on...
727 if (unlikely(err
== -EOPNOTSUPP
))
729 else if (err
== -ENOMEM
) {
730 ntfs_warning(vol
->sb
, "Error allocating memory. "
731 "Redirtying page so we try again "
734 * Put the page back on mapping->dirty_pages, but
735 * leave its buffer's dirty state as-is.
737 redirty_page_for_writepage(wbc
, page
);
743 BUG_ON(PageWriteback(page
));
744 set_page_writeback(page
); /* Keeps try_to_free_buffers() away. */
748 * Submit the prepared buffers for i/o. Note the page is unlocked,
749 * and the async write i/o completion handler can end_page_writeback()
750 * at any time after the *first* submit_bh(). So the buffers can then
753 need_end_writeback
= TRUE
;
755 struct buffer_head
*next
= bh
->b_this_page
;
756 if (buffer_async_write(bh
)) {
757 submit_bh(WRITE
, bh
);
758 need_end_writeback
= FALSE
;
762 } while (bh
!= head
);
764 /* If no i/o was started, need to end_page_writeback(). */
765 if (unlikely(need_end_writeback
))
766 end_page_writeback(page
);
773 * ntfs_write_mst_block - write a @page to the backing store
774 * @page: page cache page to write out
775 * @wbc: writeback control structure
777 * This function is for writing pages belonging to non-resident, mst protected
778 * attributes to their backing store. The only supported attributes are index
779 * allocation and $MFT/$DATA. Both directory inodes and index inodes are
780 * supported for the index allocation case.
782 * The page must remain locked for the duration of the write because we apply
783 * the mst fixups, write, and then undo the fixups, so if we were to unlock the
784 * page before undoing the fixups, any other user of the page will see the
785 * page contents as corrupt.
787 * We clear the page uptodate flag for the duration of the function to ensure
788 * exclusion for the $MFT/$DATA case against someone mapping an mft record we
789 * are about to apply the mst fixups to.
791 * Return 0 on success and -errno on error.
793 * Based on ntfs_write_block(), ntfs_mft_writepage(), and
794 * write_mft_record_nolock().
796 static int ntfs_write_mst_block(struct page
*page
,
797 struct writeback_control
*wbc
)
799 sector_t block
, dblock
, rec_block
;
800 struct inode
*vi
= page
->mapping
->host
;
801 ntfs_inode
*ni
= NTFS_I(vi
);
802 ntfs_volume
*vol
= ni
->vol
;
804 unsigned char bh_size_bits
= vi
->i_blkbits
;
805 unsigned int bh_size
= 1 << bh_size_bits
;
806 unsigned int rec_size
= ni
->itype
.index
.block_size
;
807 ntfs_inode
*locked_nis
[PAGE_CACHE_SIZE
/ rec_size
];
808 struct buffer_head
*bh
, *head
, *tbh
, *rec_start_bh
;
809 int max_bhs
= PAGE_CACHE_SIZE
/ bh_size
;
810 struct buffer_head
*bhs
[max_bhs
];
812 int i
, nr_locked_nis
, nr_recs
, nr_bhs
, bhs_per_rec
, err
, err2
;
813 unsigned rec_size_bits
;
814 BOOL sync
, is_mft
, page_is_dirty
, rec_is_dirty
;
816 ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, page index "
817 "0x%lx.", vi
->i_ino
, ni
->type
, page
->index
);
818 BUG_ON(!NInoNonResident(ni
));
819 BUG_ON(!NInoMstProtected(ni
));
820 is_mft
= (S_ISREG(vi
->i_mode
) && !vi
->i_ino
);
822 * NOTE: ntfs_write_mst_block() would be called for $MFTMirr if a page
823 * in its page cache were to be marked dirty. However this should
824 * never happen with the current driver and considering we do not
825 * handle this case here we do want to BUG(), at least for now.
827 BUG_ON(!(is_mft
|| S_ISDIR(vi
->i_mode
) ||
828 (NInoAttr(ni
) && ni
->type
== AT_INDEX_ALLOCATION
)));
831 /* Were we called for sync purposes? */
832 sync
= (wbc
->sync_mode
== WB_SYNC_ALL
);
834 /* Make sure we have mapped buffers. */
835 BUG_ON(!page_has_buffers(page
));
836 bh
= head
= page_buffers(page
);
839 rec_size_bits
= ni
->itype
.index
.block_size_bits
;
840 BUG_ON(!(PAGE_CACHE_SIZE
>> rec_size_bits
));
841 bhs_per_rec
= rec_size
>> bh_size_bits
;
842 BUG_ON(!bhs_per_rec
);
844 /* The first block in the page. */
845 rec_block
= block
= (sector_t
)page
->index
<<
846 (PAGE_CACHE_SHIFT
- bh_size_bits
);
848 /* The first out of bounds block for the data size. */
849 dblock
= (vi
->i_size
+ bh_size
- 1) >> bh_size_bits
;
852 err
= err2
= nr_bhs
= nr_recs
= nr_locked_nis
= 0;
853 page_is_dirty
= rec_is_dirty
= FALSE
;
856 BOOL is_retry
= FALSE
;
858 if (likely(block
< rec_block
)) {
859 if (unlikely(block
>= dblock
)) {
860 clear_buffer_dirty(bh
);
864 * This block is not the first one in the record. We
865 * ignore the buffer's dirty state because we could
866 * have raced with a parallel mark_ntfs_record_dirty().
870 if (unlikely(err2
)) {
872 clear_buffer_dirty(bh
);
875 } else /* if (block == rec_block) */ {
876 BUG_ON(block
> rec_block
);
877 /* This block is the first one in the record. */
878 rec_block
+= bhs_per_rec
;
880 if (unlikely(block
>= dblock
)) {
881 clear_buffer_dirty(bh
);
884 if (!buffer_dirty(bh
)) {
885 /* Clean records are not written out. */
886 rec_is_dirty
= FALSE
;
892 /* Need to map the buffer if it is not mapped already. */
893 if (unlikely(!buffer_mapped(bh
))) {
896 unsigned int vcn_ofs
;
898 /* Obtain the vcn and offset of the current block. */
899 vcn
= (VCN
)block
<< bh_size_bits
;
900 vcn_ofs
= vcn
& vol
->cluster_size_mask
;
901 vcn
>>= vol
->cluster_size_bits
;
904 down_read(&ni
->runlist
.lock
);
907 if (likely(rl
!= NULL
)) {
908 /* Seek to element containing target vcn. */
909 while (rl
->length
&& rl
[1].vcn
<= vcn
)
911 lcn
= ntfs_rl_vcn_to_lcn(rl
, vcn
);
913 lcn
= LCN_RL_NOT_MAPPED
;
914 /* Successful remap. */
915 if (likely(lcn
>= 0)) {
916 /* Setup buffer head to correct block. */
917 bh
->b_blocknr
= ((lcn
<<
918 vol
->cluster_size_bits
) +
919 vcn_ofs
) >> bh_size_bits
;
920 set_buffer_mapped(bh
);
923 * Remap failed. Retry to map the runlist once
924 * unless we are working on $MFT which always
925 * has the whole of its runlist in memory.
927 if (!is_mft
&& !is_retry
&&
928 lcn
== LCN_RL_NOT_MAPPED
) {
931 * Attempt to map runlist, dropping
932 * lock for the duration.
934 up_read(&ni
->runlist
.lock
);
935 err2
= ntfs_map_runlist(ni
, vcn
);
937 goto lock_retry_remap
;
939 page_is_dirty
= TRUE
;
943 /* Hard error. Abort writing this record. */
944 if (!err
|| err
== -ENOMEM
)
947 ntfs_error(vol
->sb
, "Cannot write ntfs record "
948 "0x%llx (inode 0x%lx, "
949 "attribute type 0x%x) because "
950 "its location on disk could "
951 "not be determined (error "
952 "code %lli).", (s64
)block
<<
954 vol
->mft_record_size_bits
,
955 ni
->mft_no
, ni
->type
,
958 * If this is not the first buffer, remove the
959 * buffers in this record from the list of
960 * buffers to write and clear their dirty bit
961 * if not error -ENOMEM.
963 if (rec_start_bh
!= bh
) {
964 while (bhs
[--nr_bhs
] != rec_start_bh
)
966 if (err2
!= -ENOMEM
) {
970 } while ((rec_start_bh
=
979 BUG_ON(!buffer_uptodate(bh
));
980 BUG_ON(nr_bhs
>= max_bhs
);
982 } while (block
++, (bh
= bh
->b_this_page
) != head
);
984 up_read(&ni
->runlist
.lock
);
985 /* If there were no dirty buffers, we are done. */
988 /* Map the page so we can access its contents. */
990 /* Clear the page uptodate flag whilst the mst fixups are applied. */
991 BUG_ON(!PageUptodate(page
));
992 ClearPageUptodate(page
);
993 for (i
= 0; i
< nr_bhs
; i
++) {
996 /* Skip buffers which are not at the beginning of records. */
1000 ofs
= bh_offset(tbh
);
1003 unsigned long mft_no
;
1005 /* Get the mft record number. */
1006 mft_no
= (((s64
)page
->index
<< PAGE_CACHE_SHIFT
) + ofs
)
1008 /* Check whether to write this mft record. */
1010 if (!ntfs_may_write_mft_record(vol
, mft_no
,
1011 (MFT_RECORD
*)(kaddr
+ ofs
), &tni
)) {
1013 * The record should not be written. This
1014 * means we need to redirty the page before
1017 page_is_dirty
= TRUE
;
1019 * Remove the buffers in this mft record from
1020 * the list of buffers to write.
1024 } while (++i
% bhs_per_rec
);
1028 * The record should be written. If a locked ntfs
1029 * inode was returned, add it to the array of locked
1033 locked_nis
[nr_locked_nis
++] = tni
;
1035 /* Apply the mst protection fixups. */
1036 err2
= pre_write_mst_fixup((NTFS_RECORD
*)(kaddr
+ ofs
),
1038 if (unlikely(err2
)) {
1039 if (!err
|| err
== -ENOMEM
)
1041 ntfs_error(vol
->sb
, "Failed to apply mst fixups "
1042 "(inode 0x%lx, attribute type 0x%x, "
1043 "page index 0x%lx, page offset 0x%x)!"
1044 " Unmount and run chkdsk.", vi
->i_ino
,
1045 ni
->type
, page
->index
, ofs
);
1047 * Mark all the buffers in this record clean as we do
1048 * not want to write corrupt data to disk.
1051 clear_buffer_dirty(bhs
[i
]);
1053 } while (++i
% bhs_per_rec
);
1058 /* If no records are to be written out, we are done. */
1061 flush_dcache_page(page
);
1062 /* Lock buffers and start synchronous write i/o on them. */
1063 for (i
= 0; i
< nr_bhs
; i
++) {
1067 if (unlikely(test_set_buffer_locked(tbh
)))
1069 /* The buffer dirty state is now irrelevant, just clean it. */
1070 clear_buffer_dirty(tbh
);
1071 BUG_ON(!buffer_uptodate(tbh
));
1072 BUG_ON(!buffer_mapped(tbh
));
1074 tbh
->b_end_io
= end_buffer_write_sync
;
1075 submit_bh(WRITE
, tbh
);
1077 /* Synchronize the mft mirror now if not @sync. */
1078 if (is_mft
&& !sync
)
1081 /* Wait on i/o completion of buffers. */
1082 for (i
= 0; i
< nr_bhs
; i
++) {
1086 wait_on_buffer(tbh
);
1087 if (unlikely(!buffer_uptodate(tbh
))) {
1088 ntfs_error(vol
->sb
, "I/O error while writing ntfs "
1089 "record buffer (inode 0x%lx, "
1090 "attribute type 0x%x, page index "
1091 "0x%lx, page offset 0x%lx)! Unmount "
1092 "and run chkdsk.", vi
->i_ino
, ni
->type
,
1093 page
->index
, bh_offset(tbh
));
1094 if (!err
|| err
== -ENOMEM
)
1097 * Set the buffer uptodate so the page and buffer
1098 * states do not become out of sync.
1100 set_buffer_uptodate(tbh
);
1103 /* If @sync, now synchronize the mft mirror. */
1104 if (is_mft
&& sync
) {
1106 for (i
= 0; i
< nr_bhs
; i
++) {
1107 unsigned long mft_no
;
1111 * Skip buffers which are not at the beginning of
1114 if (i
% bhs_per_rec
)
1117 /* Skip removed buffers (and hence records). */
1120 ofs
= bh_offset(tbh
);
1121 /* Get the mft record number. */
1122 mft_no
= (((s64
)page
->index
<< PAGE_CACHE_SHIFT
) + ofs
)
1124 if (mft_no
< vol
->mftmirr_size
)
1125 ntfs_sync_mft_mirror(vol
, mft_no
,
1126 (MFT_RECORD
*)(kaddr
+ ofs
),
1132 /* Remove the mst protection fixups again. */
1133 for (i
= 0; i
< nr_bhs
; i
++) {
1134 if (!(i
% bhs_per_rec
)) {
1138 post_write_mst_fixup((NTFS_RECORD
*)(kaddr
+
1142 flush_dcache_page(page
);
1144 /* Unlock any locked inodes. */
1145 while (nr_locked_nis
-- > 0) {
1146 ntfs_inode
*tni
, *base_tni
;
1148 tni
= locked_nis
[nr_locked_nis
];
1149 /* Get the base inode. */
1150 down(&tni
->extent_lock
);
1151 if (tni
->nr_extents
>= 0)
1154 base_tni
= tni
->ext
.base_ntfs_ino
;
1157 up(&tni
->extent_lock
);
1158 ntfs_debug("Unlocking %s inode 0x%lx.",
1159 tni
== base_tni
? "base" : "extent",
1161 up(&tni
->mrec_lock
);
1162 atomic_dec(&tni
->count
);
1163 iput(VFS_I(base_tni
));
1165 SetPageUptodate(page
);
1168 if (unlikely(err
&& err
!= -ENOMEM
)) {
1170 * Set page error if there is only one ntfs record in the page.
1171 * Otherwise we would loose per-record granularity.
1173 if (ni
->itype
.index
.block_size
== PAGE_CACHE_SIZE
)
1177 if (page_is_dirty
) {
1178 ntfs_debug("Page still contains one or more dirty ntfs "
1179 "records. Redirtying the page starting at "
1180 "record 0x%lx.", page
->index
<<
1181 (PAGE_CACHE_SHIFT
- rec_size_bits
));
1182 redirty_page_for_writepage(wbc
, page
);
1186 * Keep the VM happy. This must be done otherwise the
1187 * radix-tree tag PAGECACHE_TAG_DIRTY remains set even though
1188 * the page is clean.
1190 BUG_ON(PageWriteback(page
));
1191 set_page_writeback(page
);
1193 end_page_writeback(page
);
1196 ntfs_debug("Done.");
1201 * ntfs_writepage - write a @page to the backing store
1202 * @page: page cache page to write out
1203 * @wbc: writeback control structure
1205 * This is called from the VM when it wants to have a dirty ntfs page cache
1206 * page cleaned. The VM has already locked the page and marked it clean.
1208 * For non-resident attributes, ntfs_writepage() writes the @page by calling
1209 * the ntfs version of the generic block_write_full_page() function,
1210 * ntfs_write_block(), which in turn if necessary creates and writes the
1211 * buffers associated with the page asynchronously.
1213 * For resident attributes, OTOH, ntfs_writepage() writes the @page by copying
1214 * the data to the mft record (which at this stage is most likely in memory).
1215 * The mft record is then marked dirty and written out asynchronously via the
1216 * vfs inode dirty code path for the inode the mft record belongs to or via the
1217 * vm page dirty code path for the page the mft record is in.
1219 * Based on ntfs_readpage() and fs/buffer.c::block_write_full_page().
1221 * Return 0 on success and -errno on error.
1223 static int ntfs_writepage(struct page
*page
, struct writeback_control
*wbc
)
1227 ntfs_inode
*ni
, *base_ni
;
1229 ntfs_attr_search_ctx
*ctx
;
1234 BUG_ON(!PageLocked(page
));
1236 vi
= page
->mapping
->host
;
1237 i_size
= i_size_read(vi
);
1239 /* Is the page fully outside i_size? (truncate in progress) */
1240 if (unlikely(page
->index
>= (i_size
+ PAGE_CACHE_SIZE
- 1) >>
1241 PAGE_CACHE_SHIFT
)) {
1243 * The page may have dirty, unmapped buffers. Make them
1244 * freeable here, so the page does not leak.
1246 block_invalidatepage(page
, 0);
1248 ntfs_debug("Write outside i_size - truncated?");
1253 /* NInoNonResident() == NInoIndexAllocPresent() */
1254 if (NInoNonResident(ni
)) {
1256 * Only unnamed $DATA attributes can be compressed, encrypted,
1259 if (ni
->type
== AT_DATA
&& !ni
->name_len
) {
1260 /* If file is encrypted, deny access, just like NT4. */
1261 if (NInoEncrypted(ni
)) {
1263 ntfs_debug("Denying write access to encrypted "
1267 /* Compressed data streams are handled in compress.c. */
1268 if (NInoCompressed(ni
)) {
1269 // TODO: Implement and replace this check with
1270 // return ntfs_write_compressed_block(page);
1272 ntfs_error(vi
->i_sb
, "Writing to compressed "
1273 "files is not supported yet. "
1277 // TODO: Implement and remove this check.
1278 if (NInoSparse(ni
)) {
1280 ntfs_error(vi
->i_sb
, "Writing to sparse files "
1281 "is not supported yet. Sorry.");
1285 /* We have to zero every time due to mmap-at-end-of-file. */
1286 if (page
->index
>= (i_size
>> PAGE_CACHE_SHIFT
)) {
1287 /* The page straddles i_size. */
1288 unsigned int ofs
= i_size
& ~PAGE_CACHE_MASK
;
1289 kaddr
= kmap_atomic(page
, KM_USER0
);
1290 memset(kaddr
+ ofs
, 0, PAGE_CACHE_SIZE
- ofs
);
1291 flush_dcache_page(page
);
1292 kunmap_atomic(kaddr
, KM_USER0
);
1294 /* Handle mst protected attributes. */
1295 if (NInoMstProtected(ni
))
1296 return ntfs_write_mst_block(page
, wbc
);
1297 /* Normal data stream. */
1298 return ntfs_write_block(page
, wbc
);
1301 * Attribute is resident, implying it is not compressed, encrypted,
1302 * sparse, or mst protected. This also means the attribute is smaller
1303 * than an mft record and hence smaller than a page, so can simply
1304 * return error on any pages with index above 0.
1306 BUG_ON(page_has_buffers(page
));
1307 BUG_ON(!PageUptodate(page
));
1308 if (unlikely(page
->index
> 0)) {
1309 ntfs_error(vi
->i_sb
, "BUG()! page->index (0x%lx) > 0. "
1310 "Aborting write.", page
->index
);
1311 BUG_ON(PageWriteback(page
));
1312 set_page_writeback(page
);
1314 end_page_writeback(page
);
1320 base_ni
= ni
->ext
.base_ntfs_ino
;
1321 /* Map, pin, and lock the mft record. */
1322 m
= map_mft_record(base_ni
);
1329 ctx
= ntfs_attr_get_search_ctx(base_ni
, m
);
1330 if (unlikely(!ctx
)) {
1334 err
= ntfs_attr_lookup(ni
->type
, ni
->name
, ni
->name_len
,
1335 CASE_SENSITIVE
, 0, NULL
, 0, ctx
);
1339 * Keep the VM happy. This must be done otherwise the radix-tree tag
1340 * PAGECACHE_TAG_DIRTY remains set even though the page is clean.
1342 BUG_ON(PageWriteback(page
));
1343 set_page_writeback(page
);
1347 * Here, we don't need to zero the out of bounds area everytime because
1348 * the below memcpy() already takes care of the mmap-at-end-of-file
1349 * requirements. If the file is converted to a non-resident one, then
1350 * the code path use is switched to the non-resident one where the
1351 * zeroing happens on each ntfs_writepage() invocation.
1353 * The above also applies nicely when i_size is decreased.
1355 * When i_size is increased, the memory between the old and new i_size
1356 * _must_ be zeroed (or overwritten with new data). Otherwise we will
1357 * expose data to userspace/disk which should never have been exposed.
1359 * FIXME: Ensure that i_size increases do the zeroing/overwriting and
1360 * if we cannot guarantee that, then enable the zeroing below. If the
1361 * zeroing below is enabled, we MUST move the unlock_page() from above
1362 * to after the kunmap_atomic(), i.e. just before the
1363 * end_page_writeback().
1364 * UPDATE: ntfs_prepare/commit_write() do the zeroing on i_size
1365 * increases for resident attributes so those are ok.
1366 * TODO: ntfs_truncate(), others?
1369 attr_len
= le32_to_cpu(ctx
->attr
->data
.resident
.value_length
);
1370 i_size
= i_size_read(VFS_I(ni
));
1371 kaddr
= kmap_atomic(page
, KM_USER0
);
1372 if (unlikely(attr_len
> i_size
)) {
1373 /* Zero out of bounds area in the mft record. */
1374 memset((u8
*)ctx
->attr
+ le16_to_cpu(
1375 ctx
->attr
->data
.resident
.value_offset
) +
1376 i_size
, 0, attr_len
- i_size
);
1379 /* Copy the data from the page to the mft record. */
1380 memcpy((u8
*)ctx
->attr
+
1381 le16_to_cpu(ctx
->attr
->data
.resident
.value_offset
),
1383 flush_dcache_mft_record_page(ctx
->ntfs_ino
);
1384 /* Zero out of bounds area in the page cache page. */
1385 memset(kaddr
+ attr_len
, 0, PAGE_CACHE_SIZE
- attr_len
);
1386 flush_dcache_page(page
);
1387 kunmap_atomic(kaddr
, KM_USER0
);
1389 end_page_writeback(page
);
1391 /* Mark the mft record dirty, so it gets written back. */
1392 mark_mft_record_dirty(ctx
->ntfs_ino
);
1393 ntfs_attr_put_search_ctx(ctx
);
1394 unmap_mft_record(base_ni
);
1397 if (err
== -ENOMEM
) {
1398 ntfs_warning(vi
->i_sb
, "Error allocating memory. Redirtying "
1399 "page so we try again later.");
1401 * Put the page back on mapping->dirty_pages, but leave its
1402 * buffers' dirty state as-is.
1404 redirty_page_for_writepage(wbc
, page
);
1407 ntfs_error(vi
->i_sb
, "Resident attribute write failed with "
1408 "error %i. Setting page error flag.", err
);
1413 ntfs_attr_put_search_ctx(ctx
);
1415 unmap_mft_record(base_ni
);
1420 * ntfs_prepare_nonresident_write -
1423 static int ntfs_prepare_nonresident_write(struct page
*page
,
1424 unsigned from
, unsigned to
)
1428 sector_t block
, ablock
, iblock
;
1432 runlist_element
*rl
;
1433 struct buffer_head
*bh
, *head
, *wait
[2], **wait_bh
= wait
;
1434 unsigned int vcn_ofs
, block_start
, block_end
, blocksize
;
1437 unsigned char blocksize_bits
;
1439 vi
= page
->mapping
->host
;
1443 ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, page index "
1444 "0x%lx, from = %u, to = %u.", ni
->mft_no
, ni
->type
,
1445 page
->index
, from
, to
);
1447 BUG_ON(!NInoNonResident(ni
));
1449 blocksize_bits
= vi
->i_blkbits
;
1450 blocksize
= 1 << blocksize_bits
;
1453 * create_empty_buffers() will create uptodate/dirty buffers if the
1454 * page is uptodate/dirty.
1456 if (!page_has_buffers(page
))
1457 create_empty_buffers(page
, blocksize
, 0);
1458 bh
= head
= page_buffers(page
);
1462 /* The first block in the page. */
1463 block
= (s64
)page
->index
<< (PAGE_CACHE_SHIFT
- blocksize_bits
);
1466 * The first out of bounds block for the allocated size. No need to
1467 * round up as allocated_size is in multiples of cluster size and the
1468 * minimum cluster size is 512 bytes, which is equal to the smallest
1471 ablock
= ni
->allocated_size
>> blocksize_bits
;
1473 /* The last (fully or partially) initialized block. */
1474 iblock
= ni
->initialized_size
>> blocksize_bits
;
1476 /* Loop through all the buffers in the page. */
1481 block_end
= block_start
+ blocksize
;
1483 * If buffer @bh is outside the write, just mark it uptodate
1484 * if the page is uptodate and continue with the next buffer.
1486 if (block_end
<= from
|| block_start
>= to
) {
1487 if (PageUptodate(page
)) {
1488 if (!buffer_uptodate(bh
))
1489 set_buffer_uptodate(bh
);
1494 * @bh is at least partially being written to.
1495 * Make sure it is not marked as new.
1497 //if (buffer_new(bh))
1498 // clear_buffer_new(bh);
1500 if (block
>= ablock
) {
1501 // TODO: block is above allocated_size, need to
1502 // allocate it. Best done in one go to accommodate not
1503 // only block but all above blocks up to and including:
1504 // ((page->index << PAGE_CACHE_SHIFT) + to + blocksize
1505 // - 1) >> blobksize_bits. Obviously will need to round
1506 // up to next cluster boundary, too. This should be
1507 // done with a helper function, so it can be reused.
1508 ntfs_error(vol
->sb
, "Writing beyond allocated size "
1509 "is not supported yet. Sorry.");
1512 // Need to update ablock.
1513 // Need to set_buffer_new() on all block bhs that are
1517 * Now we have enough allocated size to fulfill the whole
1518 * request, i.e. block < ablock is true.
1520 if (unlikely((block
>= iblock
) &&
1521 (ni
->initialized_size
< vi
->i_size
))) {
1523 * If this page is fully outside initialized size, zero
1524 * out all pages between the current initialized size
1525 * and the current page. Just use ntfs_readpage() to do
1526 * the zeroing transparently.
1528 if (block
> iblock
) {
1530 // For each page do:
1531 // - read_cache_page()
1532 // Again for each page do:
1533 // - wait_on_page_locked()
1534 // - Check (PageUptodate(page) &&
1535 // !PageError(page))
1536 // Update initialized size in the attribute and
1538 // Again, for each page do:
1539 // __set_page_dirty_buffers();
1540 // page_cache_release()
1541 // We don't need to wait on the writes.
1545 * The current page straddles initialized size. Zero
1546 * all non-uptodate buffers and set them uptodate (and
1547 * dirty?). Note, there aren't any non-uptodate buffers
1548 * if the page is uptodate.
1549 * FIXME: For an uptodate page, the buffers may need to
1550 * be written out because they were not initialized on
1553 if (!PageUptodate(page
)) {
1555 // Zero any non-uptodate buffers up to i_size.
1556 // Set them uptodate and dirty.
1559 // Update initialized size in the attribute and in the
1560 // inode (up to i_size).
1562 // FIXME: This is inefficient. Try to batch the two
1563 // size changes to happen in one go.
1564 ntfs_error(vol
->sb
, "Writing beyond initialized size "
1565 "is not supported yet. Sorry.");
1568 // Do NOT set_buffer_new() BUT DO clear buffer range
1569 // outside write request range.
1570 // set_buffer_uptodate() on complete buffers as well as
1571 // set_buffer_dirty().
1574 /* Need to map unmapped buffers. */
1575 if (!buffer_mapped(bh
)) {
1576 /* Unmapped buffer. Need to map it. */
1577 bh
->b_bdev
= vol
->sb
->s_bdev
;
1579 /* Convert block into corresponding vcn and offset. */
1580 vcn
= (VCN
)block
<< blocksize_bits
>>
1581 vol
->cluster_size_bits
;
1582 vcn_ofs
= ((VCN
)block
<< blocksize_bits
) &
1583 vol
->cluster_size_mask
;
1588 down_read(&ni
->runlist
.lock
);
1589 rl
= ni
->runlist
.rl
;
1591 if (likely(rl
!= NULL
)) {
1592 /* Seek to element containing target vcn. */
1593 while (rl
->length
&& rl
[1].vcn
<= vcn
)
1595 lcn
= ntfs_rl_vcn_to_lcn(rl
, vcn
);
1597 lcn
= LCN_RL_NOT_MAPPED
;
1598 if (unlikely(lcn
< 0)) {
1600 * We extended the attribute allocation above.
1601 * If we hit an ENOENT here it means that the
1602 * allocation was insufficient which is a bug.
1604 BUG_ON(lcn
== LCN_ENOENT
);
1606 /* It is a hole, need to instantiate it. */
1607 if (lcn
== LCN_HOLE
) {
1608 // TODO: Instantiate the hole.
1609 // clear_buffer_new(bh);
1610 // unmap_underlying_metadata(bh->b_bdev,
1612 // For non-uptodate buffers, need to
1613 // zero out the region outside the
1614 // request in this bh or all bhs,
1615 // depending on what we implemented
1617 // Need to flush_dcache_page().
1618 // Or could use set_buffer_new()
1620 ntfs_error(vol
->sb
, "Writing into "
1621 "sparse regions is "
1622 "not supported yet. "
1626 } else if (!is_retry
&&
1627 lcn
== LCN_RL_NOT_MAPPED
) {
1630 * Attempt to map runlist, dropping
1631 * lock for the duration.
1633 up_read(&ni
->runlist
.lock
);
1634 err
= ntfs_map_runlist(ni
, vcn
);
1636 goto lock_retry_remap
;
1641 * Failed to map the buffer, even after
1645 ntfs_error(vol
->sb
, "Failed to write to inode "
1646 "0x%lx, attribute type 0x%x, "
1647 "vcn 0x%llx, offset 0x%x "
1648 "because its location on disk "
1649 "could not be determined%s "
1650 "(error code %lli).",
1651 ni
->mft_no
, ni
->type
,
1652 (unsigned long long)vcn
,
1653 vcn_ofs
, is_retry
? " even "
1654 "after retrying" : "",
1660 /* We now have a successful remap, i.e. lcn >= 0. */
1662 /* Setup buffer head to correct block. */
1663 bh
->b_blocknr
= ((lcn
<< vol
->cluster_size_bits
)
1664 + vcn_ofs
) >> blocksize_bits
;
1665 set_buffer_mapped(bh
);
1667 // FIXME: Something analogous to this is needed for
1668 // each newly allocated block, i.e. BH_New.
1669 // FIXME: Might need to take this out of the
1670 // if (!buffer_mapped(bh)) {}, depending on how we
1671 // implement things during the allocated_size and
1672 // initialized_size extension code above.
1673 if (buffer_new(bh
)) {
1674 clear_buffer_new(bh
);
1675 unmap_underlying_metadata(bh
->b_bdev
,
1677 if (PageUptodate(page
)) {
1678 set_buffer_uptodate(bh
);
1682 * Page is _not_ uptodate, zero surrounding
1683 * region. NOTE: This is how we decide if to
1686 if (block_end
> to
|| block_start
< from
) {
1689 kaddr
= kmap_atomic(page
, KM_USER0
);
1691 memset(kaddr
+ to
, 0,
1693 if (block_start
< from
)
1694 memset(kaddr
+ block_start
, 0,
1697 flush_dcache_page(page
);
1698 kunmap_atomic(kaddr
, KM_USER0
);
1703 /* @bh is mapped, set it uptodate if the page is uptodate. */
1704 if (PageUptodate(page
)) {
1705 if (!buffer_uptodate(bh
))
1706 set_buffer_uptodate(bh
);
1710 * The page is not uptodate. The buffer is mapped. If it is not
1711 * uptodate, and it is only partially being written to, we need
1712 * to read the buffer in before the write, i.e. right now.
1714 if (!buffer_uptodate(bh
) &&
1715 (block_start
< from
|| block_end
> to
)) {
1716 ll_rw_block(READ
, 1, &bh
);
1719 } while (block
++, block_start
= block_end
,
1720 (bh
= bh
->b_this_page
) != head
);
1722 /* Release the lock if we took it. */
1724 up_read(&ni
->runlist
.lock
);
1728 /* If we issued read requests, let them complete. */
1729 while (wait_bh
> wait
) {
1730 wait_on_buffer(*--wait_bh
);
1731 if (!buffer_uptodate(*wait_bh
))
1735 ntfs_debug("Done.");
1739 * Zero out any newly allocated blocks to avoid exposing stale data.
1740 * If BH_New is set, we know that the block was newly allocated in the
1742 * FIXME: What about initialized_size increments? Have we done all the
1743 * required zeroing above? If not this error handling is broken, and
1744 * in particular the if (block_end <= from) check is completely bogus.
1750 block_end
= block_start
+ blocksize
;
1751 if (block_end
<= from
)
1753 if (block_start
>= to
)
1755 if (buffer_new(bh
)) {
1758 clear_buffer_new(bh
);
1759 kaddr
= kmap_atomic(page
, KM_USER0
);
1760 memset(kaddr
+ block_start
, 0, bh
->b_size
);
1761 kunmap_atomic(kaddr
, KM_USER0
);
1762 set_buffer_uptodate(bh
);
1763 mark_buffer_dirty(bh
);
1766 } while (block_start
= block_end
, (bh
= bh
->b_this_page
) != head
);
1768 flush_dcache_page(page
);
1770 up_read(&ni
->runlist
.lock
);
1775 * ntfs_prepare_write - prepare a page for receiving data
1777 * This is called from generic_file_write() with i_sem held on the inode
1778 * (@page->mapping->host). The @page is locked but not kmap()ped. The source
1779 * data has not yet been copied into the @page.
1781 * Need to extend the attribute/fill in holes if necessary, create blocks and
1782 * make partially overwritten blocks uptodate,
1784 * i_size is not to be modified yet.
1786 * Return 0 on success or -errno on error.
1788 * Should be using block_prepare_write() [support for sparse files] or
1789 * cont_prepare_write() [no support for sparse files]. Cannot do that due to
1790 * ntfs specifics but can look at them for implementation guidance.
1792 * Note: In the range, @from is inclusive and @to is exclusive, i.e. @from is
1793 * the first byte in the page that will be written to and @to is the first byte
1794 * after the last byte that will be written to.
1796 static int ntfs_prepare_write(struct file
*file
, struct page
*page
,
1797 unsigned from
, unsigned to
)
1800 struct inode
*vi
= page
->mapping
->host
;
1801 ntfs_inode
*base_ni
= NULL
, *ni
= NTFS_I(vi
);
1802 ntfs_volume
*vol
= ni
->vol
;
1803 ntfs_attr_search_ctx
*ctx
= NULL
;
1804 MFT_RECORD
*m
= NULL
;
1810 ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, page index "
1811 "0x%lx, from = %u, to = %u.", vi
->i_ino
, ni
->type
,
1812 page
->index
, from
, to
);
1813 BUG_ON(!PageLocked(page
));
1814 BUG_ON(from
> PAGE_CACHE_SIZE
);
1815 BUG_ON(to
> PAGE_CACHE_SIZE
);
1817 BUG_ON(NInoMstProtected(ni
));
1819 * If a previous ntfs_truncate() failed, repeat it and abort if it
1822 if (unlikely(NInoTruncateFailed(ni
))) {
1823 down_write(&vi
->i_alloc_sem
);
1824 err
= ntfs_truncate(vi
);
1825 up_write(&vi
->i_alloc_sem
);
1826 if (err
|| NInoTruncateFailed(ni
)) {
1832 /* If the attribute is not resident, deal with it elsewhere. */
1833 if (NInoNonResident(ni
)) {
1835 * Only unnamed $DATA attributes can be compressed, encrypted,
1838 if (ni
->type
== AT_DATA
&& !ni
->name_len
) {
1839 /* If file is encrypted, deny access, just like NT4. */
1840 if (NInoEncrypted(ni
)) {
1841 ntfs_debug("Denying write access to encrypted "
1845 /* Compressed data streams are handled in compress.c. */
1846 if (NInoCompressed(ni
)) {
1847 // TODO: Implement and replace this check with
1848 // return ntfs_write_compressed_block(page);
1849 ntfs_error(vi
->i_sb
, "Writing to compressed "
1850 "files is not supported yet. "
1854 // TODO: Implement and remove this check.
1855 if (NInoSparse(ni
)) {
1856 ntfs_error(vi
->i_sb
, "Writing to sparse files "
1857 "is not supported yet. Sorry.");
1861 /* Normal data stream. */
1862 return ntfs_prepare_nonresident_write(page
, from
, to
);
1865 * Attribute is resident, implying it is not compressed, encrypted, or
1868 BUG_ON(page_has_buffers(page
));
1869 new_size
= ((s64
)page
->index
<< PAGE_CACHE_SHIFT
) + to
;
1870 /* If we do not need to resize the attribute allocation we are done. */
1871 if (new_size
<= vi
->i_size
)
1874 // FIXME: We abort for now as this code is not safe.
1875 ntfs_error(vi
->i_sb
, "Changing the file size is not supported yet. "
1879 /* Map, pin, and lock the (base) mft record. */
1883 base_ni
= ni
->ext
.base_ntfs_ino
;
1884 m
= map_mft_record(base_ni
);
1891 ctx
= ntfs_attr_get_search_ctx(base_ni
, m
);
1892 if (unlikely(!ctx
)) {
1896 err
= ntfs_attr_lookup(ni
->type
, ni
->name
, ni
->name_len
,
1897 CASE_SENSITIVE
, 0, NULL
, 0, ctx
);
1898 if (unlikely(err
)) {
1905 /* The total length of the attribute value. */
1906 attr_len
= le32_to_cpu(a
->data
.resident
.value_length
);
1907 BUG_ON(vi
->i_size
!= attr_len
);
1908 /* Check if new size is allowed in $AttrDef. */
1909 err
= ntfs_attr_size_bounds_check(vol
, ni
->type
, new_size
);
1910 if (unlikely(err
)) {
1911 if (err
== -ERANGE
) {
1912 ntfs_error(vol
->sb
, "Write would cause the inode "
1913 "0x%lx to exceed the maximum size for "
1914 "its attribute type (0x%x). Aborting "
1915 "write.", vi
->i_ino
,
1916 le32_to_cpu(ni
->type
));
1918 ntfs_error(vol
->sb
, "Inode 0x%lx has unknown "
1919 "attribute type 0x%x. Aborting "
1920 "write.", vi
->i_ino
,
1921 le32_to_cpu(ni
->type
));
1927 * Extend the attribute record to be able to store the new attribute
1930 if (new_size
>= vol
->mft_record_size
|| ntfs_attr_record_resize(m
, a
,
1931 le16_to_cpu(a
->data
.resident
.value_offset
) +
1933 /* Not enough space in the mft record. */
1934 ntfs_error(vol
->sb
, "Not enough space in the mft record for "
1935 "the resized attribute value. This is not "
1936 "supported yet. Aborting write.");
1941 * We have enough space in the mft record to fit the write. This
1942 * implies the attribute is smaller than the mft record and hence the
1943 * attribute must be in a single page and hence page->index must be 0.
1945 BUG_ON(page
->index
);
1947 * If the beginning of the write is past the old size, enlarge the
1948 * attribute value up to the beginning of the write and fill it with
1951 if (from
> attr_len
) {
1952 memset((u8
*)a
+ le16_to_cpu(a
->data
.resident
.value_offset
) +
1953 attr_len
, 0, from
- attr_len
);
1954 a
->data
.resident
.value_length
= cpu_to_le32(from
);
1955 /* Zero the corresponding area in the page as well. */
1956 if (PageUptodate(page
)) {
1957 kaddr
= kmap_atomic(page
, KM_USER0
);
1958 memset(kaddr
+ attr_len
, 0, from
- attr_len
);
1959 kunmap_atomic(kaddr
, KM_USER0
);
1960 flush_dcache_page(page
);
1963 flush_dcache_mft_record_page(ctx
->ntfs_ino
);
1964 mark_mft_record_dirty(ctx
->ntfs_ino
);
1965 ntfs_attr_put_search_ctx(ctx
);
1966 unmap_mft_record(base_ni
);
1968 * Because resident attributes are handled by memcpy() to/from the
1969 * corresponding MFT record, and because this form of i/o is byte
1970 * aligned rather than block aligned, there is no need to bring the
1971 * page uptodate here as in the non-resident case where we need to
1972 * bring the buffers straddled by the write uptodate before
1973 * generic_file_write() does the copying from userspace.
1975 * We thus defer the uptodate bringing of the page region outside the
1976 * region written to to ntfs_commit_write(), which makes the code
1977 * simpler and saves one atomic kmap which is good.
1980 ntfs_debug("Done.");
1984 ntfs_warning(vi
->i_sb
, "Error allocating memory required to "
1985 "prepare the write.");
1987 ntfs_error(vi
->i_sb
, "Resident attribute prepare write failed "
1988 "with error %i.", err
);
1994 ntfs_attr_put_search_ctx(ctx
);
1996 unmap_mft_record(base_ni
);
2001 * ntfs_commit_nonresident_write -
2004 static int ntfs_commit_nonresident_write(struct page
*page
,
2005 unsigned from
, unsigned to
)
2007 s64 pos
= ((s64
)page
->index
<< PAGE_CACHE_SHIFT
) + to
;
2008 struct inode
*vi
= page
->mapping
->host
;
2009 struct buffer_head
*bh
, *head
;
2010 unsigned int block_start
, block_end
, blocksize
;
2013 ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, page index "
2014 "0x%lx, from = %u, to = %u.", vi
->i_ino
,
2015 NTFS_I(vi
)->type
, page
->index
, from
, to
);
2016 blocksize
= 1 << vi
->i_blkbits
;
2018 // FIXME: We need a whole slew of special cases in here for compressed
2019 // files for example...
2020 // For now, we know ntfs_prepare_write() would have failed so we can't
2021 // get here in any of the cases which we have to special case, so we
2022 // are just a ripped off, unrolled generic_commit_write().
2024 bh
= head
= page_buffers(page
);
2028 block_end
= block_start
+ blocksize
;
2029 if (block_end
<= from
|| block_start
>= to
) {
2030 if (!buffer_uptodate(bh
))
2033 set_buffer_uptodate(bh
);
2034 mark_buffer_dirty(bh
);
2036 } while (block_start
= block_end
, (bh
= bh
->b_this_page
) != head
);
2038 * If this is a partial write which happened to make all buffers
2039 * uptodate then we can optimize away a bogus ->readpage() for the next
2040 * read(). Here we 'discover' whether the page went uptodate as a
2041 * result of this (potentially partial) write.
2044 SetPageUptodate(page
);
2046 * Not convinced about this at all. See disparity comment above. For
2047 * now we know ntfs_prepare_write() would have failed in the write
2048 * exceeds i_size case, so this will never trigger which is fine.
2050 if (pos
> vi
->i_size
) {
2051 ntfs_error(vi
->i_sb
, "Writing beyond the existing file size is "
2052 "not supported yet. Sorry.");
2054 // vi->i_size = pos;
2055 // mark_inode_dirty(vi);
2057 ntfs_debug("Done.");
2062 * ntfs_commit_write - commit the received data
2064 * This is called from generic_file_write() with i_sem held on the inode
2065 * (@page->mapping->host). The @page is locked but not kmap()ped. The source
2066 * data has already been copied into the @page. ntfs_prepare_write() has been
2067 * called before the data copied and it returned success so we can take the
2068 * results of various BUG checks and some error handling for granted.
2070 * Need to mark modified blocks dirty so they get written out later when
2071 * ntfs_writepage() is invoked by the VM.
2073 * Return 0 on success or -errno on error.
2075 * Should be using generic_commit_write(). This marks buffers uptodate and
2076 * dirty, sets the page uptodate if all buffers in the page are uptodate, and
2077 * updates i_size if the end of io is beyond i_size. In that case, it also
2078 * marks the inode dirty.
2080 * Cannot use generic_commit_write() due to ntfs specialities but can look at
2081 * it for implementation guidance.
2083 * If things have gone as outlined in ntfs_prepare_write(), then we do not
2084 * need to do any page content modifications here at all, except in the write
2085 * to resident attribute case, where we need to do the uptodate bringing here
2086 * which we combine with the copying into the mft record which means we save
2089 static int ntfs_commit_write(struct file
*file
, struct page
*page
,
2090 unsigned from
, unsigned to
)
2092 struct inode
*vi
= page
->mapping
->host
;
2093 ntfs_inode
*base_ni
, *ni
= NTFS_I(vi
);
2094 char *kaddr
, *kattr
;
2095 ntfs_attr_search_ctx
*ctx
;
2101 ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, page index "
2102 "0x%lx, from = %u, to = %u.", vi
->i_ino
, ni
->type
,
2103 page
->index
, from
, to
);
2104 /* If the attribute is not resident, deal with it elsewhere. */
2105 if (NInoNonResident(ni
)) {
2106 /* Only unnamed $DATA attributes can be compressed/encrypted. */
2107 if (ni
->type
== AT_DATA
&& !ni
->name_len
) {
2108 /* Encrypted files need separate handling. */
2109 if (NInoEncrypted(ni
)) {
2110 // We never get here at present!
2113 /* Compressed data streams are handled in compress.c. */
2114 if (NInoCompressed(ni
)) {
2115 // TODO: Implement this!
2116 // return ntfs_write_compressed_block(page);
2117 // We never get here at present!
2121 /* Normal data stream. */
2122 return ntfs_commit_nonresident_write(page
, from
, to
);
2125 * Attribute is resident, implying it is not compressed, encrypted, or
2131 base_ni
= ni
->ext
.base_ntfs_ino
;
2132 /* Map, pin, and lock the mft record. */
2133 m
= map_mft_record(base_ni
);
2140 ctx
= ntfs_attr_get_search_ctx(base_ni
, m
);
2141 if (unlikely(!ctx
)) {
2145 err
= ntfs_attr_lookup(ni
->type
, ni
->name
, ni
->name_len
,
2146 CASE_SENSITIVE
, 0, NULL
, 0, ctx
);
2147 if (unlikely(err
)) {
2153 /* The total length of the attribute value. */
2154 attr_len
= le32_to_cpu(a
->data
.resident
.value_length
);
2155 BUG_ON(from
> attr_len
);
2156 kattr
= (u8
*)a
+ le16_to_cpu(a
->data
.resident
.value_offset
);
2157 kaddr
= kmap_atomic(page
, KM_USER0
);
2158 /* Copy the received data from the page to the mft record. */
2159 memcpy(kattr
+ from
, kaddr
+ from
, to
- from
);
2160 /* Update the attribute length if necessary. */
2161 if (to
> attr_len
) {
2163 a
->data
.resident
.value_length
= cpu_to_le32(attr_len
);
2166 * If the page is not uptodate, bring the out of bounds area(s)
2167 * uptodate by copying data from the mft record to the page.
2169 if (!PageUptodate(page
)) {
2171 memcpy(kaddr
, kattr
, from
);
2173 memcpy(kaddr
+ to
, kattr
+ to
, attr_len
- to
);
2174 /* Zero the region outside the end of the attribute value. */
2175 if (attr_len
< PAGE_CACHE_SIZE
)
2176 memset(kaddr
+ attr_len
, 0, PAGE_CACHE_SIZE
- attr_len
);
2178 * The probability of not having done any of the above is
2179 * extremely small, so we just flush unconditionally.
2181 flush_dcache_page(page
);
2182 SetPageUptodate(page
);
2184 kunmap_atomic(kaddr
, KM_USER0
);
2185 /* Update i_size if necessary. */
2186 if (vi
->i_size
< attr_len
) {
2187 ni
->allocated_size
= ni
->initialized_size
= attr_len
;
2188 i_size_write(vi
, attr_len
);
2190 /* Mark the mft record dirty, so it gets written back. */
2191 flush_dcache_mft_record_page(ctx
->ntfs_ino
);
2192 mark_mft_record_dirty(ctx
->ntfs_ino
);
2193 ntfs_attr_put_search_ctx(ctx
);
2194 unmap_mft_record(base_ni
);
2195 ntfs_debug("Done.");
2198 if (err
== -ENOMEM
) {
2199 ntfs_warning(vi
->i_sb
, "Error allocating memory required to "
2200 "commit the write.");
2201 if (PageUptodate(page
)) {
2202 ntfs_warning(vi
->i_sb
, "Page is uptodate, setting "
2203 "dirty so the write will be retried "
2204 "later on by the VM.");
2206 * Put the page on mapping->dirty_pages, but leave its
2207 * buffers' dirty state as-is.
2209 __set_page_dirty_nobuffers(page
);
2212 ntfs_error(vi
->i_sb
, "Page is not uptodate. Written "
2213 "data has been lost.");
2215 ntfs_error(vi
->i_sb
, "Resident attribute commit write failed "
2216 "with error %i.", err
);
2217 NVolSetErrors(ni
->vol
);
2221 ntfs_attr_put_search_ctx(ctx
);
2223 unmap_mft_record(base_ni
);
2227 #endif /* NTFS_RW */
2230 * ntfs_aops - general address space operations for inodes and attributes
2232 struct address_space_operations ntfs_aops
= {
2233 .readpage
= ntfs_readpage
, /* Fill page with data. */
2234 .sync_page
= block_sync_page
, /* Currently, just unplugs the
2235 disk request queue. */
2237 .writepage
= ntfs_writepage
, /* Write dirty page to disk. */
2238 .prepare_write
= ntfs_prepare_write
, /* Prepare page and buffers
2239 ready to receive data. */
2240 .commit_write
= ntfs_commit_write
, /* Commit received data. */
2241 #endif /* NTFS_RW */
2245 * ntfs_mst_aops - general address space operations for mst protecteed inodes
2248 struct address_space_operations ntfs_mst_aops
= {
2249 .readpage
= ntfs_readpage
, /* Fill page with data. */
2250 .sync_page
= block_sync_page
, /* Currently, just unplugs the
2251 disk request queue. */
2253 .writepage
= ntfs_writepage
, /* Write dirty page to disk. */
2254 .set_page_dirty
= __set_page_dirty_nobuffers
, /* Set the page dirty
2255 without touching the buffers
2256 belonging to the page. */
2257 #endif /* NTFS_RW */
2263 * mark_ntfs_record_dirty - mark an ntfs record dirty
2264 * @page: page containing the ntfs record to mark dirty
2265 * @ofs: byte offset within @page at which the ntfs record begins
2267 * Set the buffers and the page in which the ntfs record is located dirty.
2269 * The latter also marks the vfs inode the ntfs record belongs to dirty
2270 * (I_DIRTY_PAGES only).
2272 * If the page does not have buffers, we create them and set them uptodate.
2273 * The page may not be locked which is why we need to handle the buffers under
2274 * the mapping->private_lock. Once the buffers are marked dirty we no longer
2275 * need the lock since try_to_free_buffers() does not free dirty buffers.
2277 void mark_ntfs_record_dirty(struct page
*page
, const unsigned int ofs
) {
2278 struct address_space
*mapping
= page
->mapping
;
2279 ntfs_inode
*ni
= NTFS_I(mapping
->host
);
2280 struct buffer_head
*bh
, *head
, *buffers_to_free
= NULL
;
2281 unsigned int end
, bh_size
, bh_ofs
;
2283 BUG_ON(!PageUptodate(page
));
2284 end
= ofs
+ ni
->itype
.index
.block_size
;
2285 bh_size
= 1 << VFS_I(ni
)->i_blkbits
;
2286 spin_lock(&mapping
->private_lock
);
2287 if (unlikely(!page_has_buffers(page
))) {
2288 spin_unlock(&mapping
->private_lock
);
2289 bh
= head
= alloc_page_buffers(page
, bh_size
, 1);
2290 spin_lock(&mapping
->private_lock
);
2291 if (likely(!page_has_buffers(page
))) {
2292 struct buffer_head
*tail
;
2295 set_buffer_uptodate(bh
);
2297 bh
= bh
->b_this_page
;
2299 tail
->b_this_page
= head
;
2300 attach_page_buffers(page
, head
);
2302 buffers_to_free
= bh
;
2304 bh
= head
= page_buffers(page
);
2306 bh_ofs
= bh_offset(bh
);
2307 if (bh_ofs
+ bh_size
<= ofs
)
2309 if (unlikely(bh_ofs
>= end
))
2311 set_buffer_dirty(bh
);
2312 } while ((bh
= bh
->b_this_page
) != head
);
2313 spin_unlock(&mapping
->private_lock
);
2314 __set_page_dirty_nobuffers(page
);
2315 if (unlikely(buffers_to_free
)) {
2317 bh
= buffers_to_free
->b_this_page
;
2318 free_buffer_head(buffers_to_free
);
2319 buffers_to_free
= bh
;
2320 } while (buffers_to_free
);
2324 #endif /* NTFS_RW */