2 * mm/rmap.c - physical to virtual reverse mappings
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins <hugh@veritas.com> 2003, 2004
21 * Lock ordering in mm:
23 * inode->i_sem (while writing or truncating, not reading or faulting)
26 * When a page fault occurs in writing from user to file, down_read
27 * of mmap_sem nests within i_sem; in sys_msync, i_sem nests within
28 * down_read of mmap_sem; i_sem and down_write of mmap_sem are never
29 * taken together; in truncation, i_sem is taken outermost.
32 * page->flags PG_locked (lock_page)
33 * mapping->i_mmap_lock
36 * zone->lru_lock (in mark_page_accessed)
37 * swap_list_lock (in swap_free etc's swap_info_get)
38 * mmlist_lock (in mmput, drain_mmlist and others)
39 * swap_device_lock (in swap_duplicate, swap_info_get)
40 * mapping->private_lock (in __set_page_dirty_buffers)
41 * inode_lock (in set_page_dirty's __mark_inode_dirty)
42 * sb_lock (within inode_lock in fs/fs-writeback.c)
43 * mapping->tree_lock (widely used, in set_page_dirty,
44 * in arch-dependent flush_dcache_mmap_lock,
45 * within inode_lock in __sync_single_inode)
49 #include <linux/pagemap.h>
50 #include <linux/swap.h>
51 #include <linux/swapops.h>
52 #include <linux/slab.h>
53 #include <linux/init.h>
54 #include <linux/rmap.h>
55 #include <linux/rcupdate.h>
57 #include <asm/tlbflush.h>
59 //#define RMAP_DEBUG /* can be enabled only for debugging */
61 kmem_cache_t
*anon_vma_cachep
;
63 static inline void validate_anon_vma(struct vm_area_struct
*find_vma
)
66 struct anon_vma
*anon_vma
= find_vma
->anon_vma
;
67 struct vm_area_struct
*vma
;
68 unsigned int mapcount
= 0;
71 list_for_each_entry(vma
, &anon_vma
->head
, anon_vma_node
) {
73 BUG_ON(mapcount
> 100000);
81 /* This must be called under the mmap_sem. */
82 int anon_vma_prepare(struct vm_area_struct
*vma
)
84 struct anon_vma
*anon_vma
= vma
->anon_vma
;
87 if (unlikely(!anon_vma
)) {
88 struct mm_struct
*mm
= vma
->vm_mm
;
89 struct anon_vma
*allocated
, *locked
;
91 anon_vma
= find_mergeable_anon_vma(vma
);
95 spin_lock(&locked
->lock
);
97 anon_vma
= anon_vma_alloc();
98 if (unlikely(!anon_vma
))
100 allocated
= anon_vma
;
104 /* page_table_lock to protect against threads */
105 spin_lock(&mm
->page_table_lock
);
106 if (likely(!vma
->anon_vma
)) {
107 vma
->anon_vma
= anon_vma
;
108 list_add(&vma
->anon_vma_node
, &anon_vma
->head
);
111 spin_unlock(&mm
->page_table_lock
);
114 spin_unlock(&locked
->lock
);
115 if (unlikely(allocated
))
116 anon_vma_free(allocated
);
121 void __anon_vma_merge(struct vm_area_struct
*vma
, struct vm_area_struct
*next
)
123 BUG_ON(vma
->anon_vma
!= next
->anon_vma
);
124 list_del(&next
->anon_vma_node
);
127 void __anon_vma_link(struct vm_area_struct
*vma
)
129 struct anon_vma
*anon_vma
= vma
->anon_vma
;
132 list_add(&vma
->anon_vma_node
, &anon_vma
->head
);
133 validate_anon_vma(vma
);
137 void anon_vma_link(struct vm_area_struct
*vma
)
139 struct anon_vma
*anon_vma
= vma
->anon_vma
;
142 spin_lock(&anon_vma
->lock
);
143 list_add(&vma
->anon_vma_node
, &anon_vma
->head
);
144 validate_anon_vma(vma
);
145 spin_unlock(&anon_vma
->lock
);
149 void anon_vma_unlink(struct vm_area_struct
*vma
)
151 struct anon_vma
*anon_vma
= vma
->anon_vma
;
157 spin_lock(&anon_vma
->lock
);
158 validate_anon_vma(vma
);
159 list_del(&vma
->anon_vma_node
);
161 /* We must garbage collect the anon_vma if it's empty */
162 empty
= list_empty(&anon_vma
->head
);
163 spin_unlock(&anon_vma
->lock
);
166 anon_vma_free(anon_vma
);
169 static void anon_vma_ctor(void *data
, kmem_cache_t
*cachep
, unsigned long flags
)
171 if ((flags
& (SLAB_CTOR_VERIFY
|SLAB_CTOR_CONSTRUCTOR
)) ==
172 SLAB_CTOR_CONSTRUCTOR
) {
173 struct anon_vma
*anon_vma
= data
;
175 spin_lock_init(&anon_vma
->lock
);
176 INIT_LIST_HEAD(&anon_vma
->head
);
180 void __init
anon_vma_init(void)
182 anon_vma_cachep
= kmem_cache_create("anon_vma", sizeof(struct anon_vma
),
183 0, SLAB_DESTROY_BY_RCU
|SLAB_PANIC
, anon_vma_ctor
, NULL
);
187 * Getting a lock on a stable anon_vma from a page off the LRU is
188 * tricky: page_lock_anon_vma rely on RCU to guard against the races.
190 static struct anon_vma
*page_lock_anon_vma(struct page
*page
)
192 struct anon_vma
*anon_vma
= NULL
;
193 unsigned long anon_mapping
;
196 anon_mapping
= (unsigned long) page
->mapping
;
197 if (!(anon_mapping
& PAGE_MAPPING_ANON
))
199 if (!page_mapped(page
))
202 anon_vma
= (struct anon_vma
*) (anon_mapping
- PAGE_MAPPING_ANON
);
203 spin_lock(&anon_vma
->lock
);
210 * At what user virtual address is page expected in vma?
212 static inline unsigned long
213 vma_address(struct page
*page
, struct vm_area_struct
*vma
)
215 pgoff_t pgoff
= page
->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
216 unsigned long address
;
218 address
= vma
->vm_start
+ ((pgoff
- vma
->vm_pgoff
) << PAGE_SHIFT
);
219 if (unlikely(address
< vma
->vm_start
|| address
>= vma
->vm_end
)) {
220 /* page should be within any vma from prio_tree_next */
221 BUG_ON(!PageAnon(page
));
228 * At what user virtual address is page expected in vma? checking that the
229 * page matches the vma: currently only used by unuse_process, on anon pages.
231 unsigned long page_address_in_vma(struct page
*page
, struct vm_area_struct
*vma
)
233 if (PageAnon(page
)) {
234 if ((void *)vma
->anon_vma
!=
235 (void *)page
->mapping
- PAGE_MAPPING_ANON
)
237 } else if (page
->mapping
&& !(vma
->vm_flags
& VM_NONLINEAR
)) {
238 if (vma
->vm_file
->f_mapping
!= page
->mapping
)
242 return vma_address(page
, vma
);
246 * Check that @page is mapped at @address into @mm.
248 * On success returns with mapped pte and locked mm->page_table_lock.
250 static pte_t
*page_check_address(struct page
*page
, struct mm_struct
*mm
,
251 unsigned long address
)
259 * We need the page_table_lock to protect us from page faults,
260 * munmap, fork, etc...
262 spin_lock(&mm
->page_table_lock
);
263 pgd
= pgd_offset(mm
, address
);
264 if (likely(pgd_present(*pgd
))) {
265 pud
= pud_offset(pgd
, address
);
266 if (likely(pud_present(*pud
))) {
267 pmd
= pmd_offset(pud
, address
);
268 if (likely(pmd_present(*pmd
))) {
269 pte
= pte_offset_map(pmd
, address
);
270 if (likely(pte_present(*pte
) &&
271 page_to_pfn(page
) == pte_pfn(*pte
)))
277 spin_unlock(&mm
->page_table_lock
);
278 return ERR_PTR(-ENOENT
);
282 * Subfunctions of page_referenced: page_referenced_one called
283 * repeatedly from either page_referenced_anon or page_referenced_file.
285 static int page_referenced_one(struct page
*page
,
286 struct vm_area_struct
*vma
, unsigned int *mapcount
, int ignore_token
)
288 struct mm_struct
*mm
= vma
->vm_mm
;
289 unsigned long address
;
293 if (!get_mm_counter(mm
, rss
))
295 address
= vma_address(page
, vma
);
296 if (address
== -EFAULT
)
299 pte
= page_check_address(page
, mm
, address
);
301 if (ptep_clear_flush_young(vma
, address
, pte
))
304 if (mm
!= current
->mm
&& !ignore_token
&& has_swap_token(mm
))
309 spin_unlock(&mm
->page_table_lock
);
315 static int page_referenced_anon(struct page
*page
, int ignore_token
)
317 unsigned int mapcount
;
318 struct anon_vma
*anon_vma
;
319 struct vm_area_struct
*vma
;
322 anon_vma
= page_lock_anon_vma(page
);
326 mapcount
= page_mapcount(page
);
327 list_for_each_entry(vma
, &anon_vma
->head
, anon_vma_node
) {
328 referenced
+= page_referenced_one(page
, vma
, &mapcount
,
333 spin_unlock(&anon_vma
->lock
);
338 * page_referenced_file - referenced check for object-based rmap
339 * @page: the page we're checking references on.
341 * For an object-based mapped page, find all the places it is mapped and
342 * check/clear the referenced flag. This is done by following the page->mapping
343 * pointer, then walking the chain of vmas it holds. It returns the number
344 * of references it found.
346 * This function is only called from page_referenced for object-based pages.
348 static int page_referenced_file(struct page
*page
, int ignore_token
)
350 unsigned int mapcount
;
351 struct address_space
*mapping
= page
->mapping
;
352 pgoff_t pgoff
= page
->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
353 struct vm_area_struct
*vma
;
354 struct prio_tree_iter iter
;
358 * The caller's checks on page->mapping and !PageAnon have made
359 * sure that this is a file page: the check for page->mapping
360 * excludes the case just before it gets set on an anon page.
362 BUG_ON(PageAnon(page
));
365 * The page lock not only makes sure that page->mapping cannot
366 * suddenly be NULLified by truncation, it makes sure that the
367 * structure at mapping cannot be freed and reused yet,
368 * so we can safely take mapping->i_mmap_lock.
370 BUG_ON(!PageLocked(page
));
372 spin_lock(&mapping
->i_mmap_lock
);
375 * i_mmap_lock does not stabilize mapcount at all, but mapcount
376 * is more likely to be accurate if we note it after spinning.
378 mapcount
= page_mapcount(page
);
380 vma_prio_tree_foreach(vma
, &iter
, &mapping
->i_mmap
, pgoff
, pgoff
) {
381 if ((vma
->vm_flags
& (VM_LOCKED
|VM_MAYSHARE
))
382 == (VM_LOCKED
|VM_MAYSHARE
)) {
386 referenced
+= page_referenced_one(page
, vma
, &mapcount
,
392 spin_unlock(&mapping
->i_mmap_lock
);
397 * page_referenced - test if the page was referenced
398 * @page: the page to test
399 * @is_locked: caller holds lock on the page
401 * Quick test_and_clear_referenced for all mappings to a page,
402 * returns the number of ptes which referenced the page.
404 int page_referenced(struct page
*page
, int is_locked
, int ignore_token
)
408 if (!swap_token_default_timeout
)
411 if (page_test_and_clear_young(page
))
414 if (TestClearPageReferenced(page
))
417 if (page_mapped(page
) && page
->mapping
) {
419 referenced
+= page_referenced_anon(page
, ignore_token
);
421 referenced
+= page_referenced_file(page
, ignore_token
);
422 else if (TestSetPageLocked(page
))
426 referenced
+= page_referenced_file(page
,
435 * page_add_anon_rmap - add pte mapping to an anonymous page
436 * @page: the page to add the mapping to
437 * @vma: the vm area in which the mapping is added
438 * @address: the user virtual address mapped
440 * The caller needs to hold the mm->page_table_lock.
442 void page_add_anon_rmap(struct page
*page
,
443 struct vm_area_struct
*vma
, unsigned long address
)
445 struct anon_vma
*anon_vma
= vma
->anon_vma
;
448 BUG_ON(PageReserved(page
));
451 inc_mm_counter(vma
->vm_mm
, anon_rss
);
453 anon_vma
= (void *) anon_vma
+ PAGE_MAPPING_ANON
;
454 index
= (address
- vma
->vm_start
) >> PAGE_SHIFT
;
455 index
+= vma
->vm_pgoff
;
456 index
>>= PAGE_CACHE_SHIFT
- PAGE_SHIFT
;
458 if (atomic_inc_and_test(&page
->_mapcount
)) {
460 page
->mapping
= (struct address_space
*) anon_vma
;
461 inc_page_state(nr_mapped
);
463 /* else checking page index and mapping is racy */
467 * page_add_file_rmap - add pte mapping to a file page
468 * @page: the page to add the mapping to
470 * The caller needs to hold the mm->page_table_lock.
472 void page_add_file_rmap(struct page
*page
)
474 BUG_ON(PageAnon(page
));
475 if (!pfn_valid(page_to_pfn(page
)) || PageReserved(page
))
478 if (atomic_inc_and_test(&page
->_mapcount
))
479 inc_page_state(nr_mapped
);
483 * page_remove_rmap - take down pte mapping from a page
484 * @page: page to remove mapping from
486 * Caller needs to hold the mm->page_table_lock.
488 void page_remove_rmap(struct page
*page
)
490 BUG_ON(PageReserved(page
));
492 if (atomic_add_negative(-1, &page
->_mapcount
)) {
493 BUG_ON(page_mapcount(page
) < 0);
495 * It would be tidy to reset the PageAnon mapping here,
496 * but that might overwrite a racing page_add_anon_rmap
497 * which increments mapcount after us but sets mapping
498 * before us: so leave the reset to free_hot_cold_page,
499 * and remember that it's only reliable while mapped.
500 * Leaving it set also helps swapoff to reinstate ptes
501 * faster for those pages still in swapcache.
503 if (page_test_and_clear_dirty(page
))
504 set_page_dirty(page
);
505 dec_page_state(nr_mapped
);
510 * Subfunctions of try_to_unmap: try_to_unmap_one called
511 * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
513 static int try_to_unmap_one(struct page
*page
, struct vm_area_struct
*vma
)
515 struct mm_struct
*mm
= vma
->vm_mm
;
516 unsigned long address
;
519 int ret
= SWAP_AGAIN
;
521 if (!get_mm_counter(mm
, rss
))
523 address
= vma_address(page
, vma
);
524 if (address
== -EFAULT
)
527 pte
= page_check_address(page
, mm
, address
);
532 * If the page is mlock()d, we cannot swap it out.
533 * If it's recently referenced (perhaps page_referenced
534 * skipped over this mm) then we should reactivate it.
536 if ((vma
->vm_flags
& (VM_LOCKED
|VM_RESERVED
)) ||
537 ptep_clear_flush_young(vma
, address
, pte
)) {
543 * Don't pull an anonymous page out from under get_user_pages.
544 * GUP carefully breaks COW and raises page count (while holding
545 * page_table_lock, as we have here) to make sure that the page
546 * cannot be freed. If we unmap that page here, a user write
547 * access to the virtual address will bring back the page, but
548 * its raised count will (ironically) be taken to mean it's not
549 * an exclusive swap page, do_wp_page will replace it by a copy
550 * page, and the user never get to see the data GUP was holding
551 * the original page for.
553 * This test is also useful for when swapoff (unuse_process) has
554 * to drop page lock: its reference to the page stops existing
555 * ptes from being unmapped, so swapoff can make progress.
557 if (PageSwapCache(page
) &&
558 page_count(page
) != page_mapcount(page
) + 2) {
563 /* Nuke the page table entry. */
564 flush_cache_page(vma
, address
, page_to_pfn(page
));
565 pteval
= ptep_clear_flush(vma
, address
, pte
);
567 /* Move the dirty bit to the physical page now the pte is gone. */
568 if (pte_dirty(pteval
))
569 set_page_dirty(page
);
571 if (PageAnon(page
)) {
572 swp_entry_t entry
= { .val
= page
->private };
574 * Store the swap location in the pte.
575 * See handle_pte_fault() ...
577 BUG_ON(!PageSwapCache(page
));
578 swap_duplicate(entry
);
579 if (list_empty(&mm
->mmlist
)) {
580 spin_lock(&mmlist_lock
);
581 list_add(&mm
->mmlist
, &init_mm
.mmlist
);
582 spin_unlock(&mmlist_lock
);
584 set_pte_at(mm
, address
, pte
, swp_entry_to_pte(entry
));
585 BUG_ON(pte_file(*pte
));
586 dec_mm_counter(mm
, anon_rss
);
589 dec_mm_counter(mm
, rss
);
590 page_remove_rmap(page
);
591 page_cache_release(page
);
595 spin_unlock(&mm
->page_table_lock
);
601 * objrmap doesn't work for nonlinear VMAs because the assumption that
602 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
603 * Consequently, given a particular page and its ->index, we cannot locate the
604 * ptes which are mapping that page without an exhaustive linear search.
606 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
607 * maps the file to which the target page belongs. The ->vm_private_data field
608 * holds the current cursor into that scan. Successive searches will circulate
609 * around the vma's virtual address space.
611 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
612 * more scanning pressure is placed against them as well. Eventually pages
613 * will become fully unmapped and are eligible for eviction.
615 * For very sparsely populated VMAs this is a little inefficient - chances are
616 * there there won't be many ptes located within the scan cluster. In this case
617 * maybe we could scan further - to the end of the pte page, perhaps.
619 #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
620 #define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
622 static void try_to_unmap_cluster(unsigned long cursor
,
623 unsigned int *mapcount
, struct vm_area_struct
*vma
)
625 struct mm_struct
*mm
= vma
->vm_mm
;
632 unsigned long address
;
637 * We need the page_table_lock to protect us from page faults,
638 * munmap, fork, etc...
640 spin_lock(&mm
->page_table_lock
);
642 address
= (vma
->vm_start
+ cursor
) & CLUSTER_MASK
;
643 end
= address
+ CLUSTER_SIZE
;
644 if (address
< vma
->vm_start
)
645 address
= vma
->vm_start
;
646 if (end
> vma
->vm_end
)
649 pgd
= pgd_offset(mm
, address
);
650 if (!pgd_present(*pgd
))
653 pud
= pud_offset(pgd
, address
);
654 if (!pud_present(*pud
))
657 pmd
= pmd_offset(pud
, address
);
658 if (!pmd_present(*pmd
))
661 for (pte
= pte_offset_map(pmd
, address
);
662 address
< end
; pte
++, address
+= PAGE_SIZE
) {
664 if (!pte_present(*pte
))
671 page
= pfn_to_page(pfn
);
672 BUG_ON(PageAnon(page
));
673 if (PageReserved(page
))
676 if (ptep_clear_flush_young(vma
, address
, pte
))
679 /* Nuke the page table entry. */
680 flush_cache_page(vma
, address
, pfn
);
681 pteval
= ptep_clear_flush(vma
, address
, pte
);
683 /* If nonlinear, store the file page offset in the pte. */
684 if (page
->index
!= linear_page_index(vma
, address
))
685 set_pte_at(mm
, address
, pte
, pgoff_to_pte(page
->index
));
687 /* Move the dirty bit to the physical page now the pte is gone. */
688 if (pte_dirty(pteval
))
689 set_page_dirty(page
);
691 page_remove_rmap(page
);
692 page_cache_release(page
);
693 dec_mm_counter(mm
, rss
);
699 spin_unlock(&mm
->page_table_lock
);
702 static int try_to_unmap_anon(struct page
*page
)
704 struct anon_vma
*anon_vma
;
705 struct vm_area_struct
*vma
;
706 int ret
= SWAP_AGAIN
;
708 anon_vma
= page_lock_anon_vma(page
);
712 list_for_each_entry(vma
, &anon_vma
->head
, anon_vma_node
) {
713 ret
= try_to_unmap_one(page
, vma
);
714 if (ret
== SWAP_FAIL
|| !page_mapped(page
))
717 spin_unlock(&anon_vma
->lock
);
722 * try_to_unmap_file - unmap file page using the object-based rmap method
723 * @page: the page to unmap
725 * Find all the mappings of a page using the mapping pointer and the vma chains
726 * contained in the address_space struct it points to.
728 * This function is only called from try_to_unmap for object-based pages.
730 static int try_to_unmap_file(struct page
*page
)
732 struct address_space
*mapping
= page
->mapping
;
733 pgoff_t pgoff
= page
->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
734 struct vm_area_struct
*vma
;
735 struct prio_tree_iter iter
;
736 int ret
= SWAP_AGAIN
;
737 unsigned long cursor
;
738 unsigned long max_nl_cursor
= 0;
739 unsigned long max_nl_size
= 0;
740 unsigned int mapcount
;
742 spin_lock(&mapping
->i_mmap_lock
);
743 vma_prio_tree_foreach(vma
, &iter
, &mapping
->i_mmap
, pgoff
, pgoff
) {
744 ret
= try_to_unmap_one(page
, vma
);
745 if (ret
== SWAP_FAIL
|| !page_mapped(page
))
749 if (list_empty(&mapping
->i_mmap_nonlinear
))
752 list_for_each_entry(vma
, &mapping
->i_mmap_nonlinear
,
753 shared
.vm_set
.list
) {
754 if (vma
->vm_flags
& (VM_LOCKED
|VM_RESERVED
))
756 cursor
= (unsigned long) vma
->vm_private_data
;
757 if (cursor
> max_nl_cursor
)
758 max_nl_cursor
= cursor
;
759 cursor
= vma
->vm_end
- vma
->vm_start
;
760 if (cursor
> max_nl_size
)
761 max_nl_size
= cursor
;
764 if (max_nl_size
== 0) { /* any nonlinears locked or reserved */
770 * We don't try to search for this page in the nonlinear vmas,
771 * and page_referenced wouldn't have found it anyway. Instead
772 * just walk the nonlinear vmas trying to age and unmap some.
773 * The mapcount of the page we came in with is irrelevant,
774 * but even so use it as a guide to how hard we should try?
776 mapcount
= page_mapcount(page
);
779 cond_resched_lock(&mapping
->i_mmap_lock
);
781 max_nl_size
= (max_nl_size
+ CLUSTER_SIZE
- 1) & CLUSTER_MASK
;
782 if (max_nl_cursor
== 0)
783 max_nl_cursor
= CLUSTER_SIZE
;
786 list_for_each_entry(vma
, &mapping
->i_mmap_nonlinear
,
787 shared
.vm_set
.list
) {
788 if (vma
->vm_flags
& (VM_LOCKED
|VM_RESERVED
))
790 cursor
= (unsigned long) vma
->vm_private_data
;
791 while (get_mm_counter(vma
->vm_mm
, rss
) &&
792 cursor
< max_nl_cursor
&&
793 cursor
< vma
->vm_end
- vma
->vm_start
) {
794 try_to_unmap_cluster(cursor
, &mapcount
, vma
);
795 cursor
+= CLUSTER_SIZE
;
796 vma
->vm_private_data
= (void *) cursor
;
797 if ((int)mapcount
<= 0)
800 vma
->vm_private_data
= (void *) max_nl_cursor
;
802 cond_resched_lock(&mapping
->i_mmap_lock
);
803 max_nl_cursor
+= CLUSTER_SIZE
;
804 } while (max_nl_cursor
<= max_nl_size
);
807 * Don't loop forever (perhaps all the remaining pages are
808 * in locked vmas). Reset cursor on all unreserved nonlinear
809 * vmas, now forgetting on which ones it had fallen behind.
811 list_for_each_entry(vma
, &mapping
->i_mmap_nonlinear
,
812 shared
.vm_set
.list
) {
813 if (!(vma
->vm_flags
& VM_RESERVED
))
814 vma
->vm_private_data
= NULL
;
817 spin_unlock(&mapping
->i_mmap_lock
);
822 * try_to_unmap - try to remove all page table mappings to a page
823 * @page: the page to get unmapped
825 * Tries to remove all the page table entries which are mapping this
826 * page, used in the pageout path. Caller must hold the page lock.
829 * SWAP_SUCCESS - we succeeded in removing all mappings
830 * SWAP_AGAIN - we missed a mapping, try again later
831 * SWAP_FAIL - the page is unswappable
833 int try_to_unmap(struct page
*page
)
837 BUG_ON(PageReserved(page
));
838 BUG_ON(!PageLocked(page
));
841 ret
= try_to_unmap_anon(page
);
843 ret
= try_to_unmap_file(page
);
845 if (!page_mapped(page
))