[TG3]: Set minimal hw interrupt mitigation.
[linux-2.6/verdex.git] / mm / rmap.c
bloba6203b4e12786f4bdbf9ad8aefbb0ae287c8a91a
1 /*
2 * mm/rmap.c - physical to virtual reverse mappings
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins <hugh@veritas.com> 2003, 2004
21 * Lock ordering in mm:
23 * inode->i_sem (while writing or truncating, not reading or faulting)
24 * inode->i_alloc_sem
26 * When a page fault occurs in writing from user to file, down_read
27 * of mmap_sem nests within i_sem; in sys_msync, i_sem nests within
28 * down_read of mmap_sem; i_sem and down_write of mmap_sem are never
29 * taken together; in truncation, i_sem is taken outermost.
31 * mm->mmap_sem
32 * page->flags PG_locked (lock_page)
33 * mapping->i_mmap_lock
34 * anon_vma->lock
35 * mm->page_table_lock
36 * zone->lru_lock (in mark_page_accessed)
37 * swap_list_lock (in swap_free etc's swap_info_get)
38 * mmlist_lock (in mmput, drain_mmlist and others)
39 * swap_device_lock (in swap_duplicate, swap_info_get)
40 * mapping->private_lock (in __set_page_dirty_buffers)
41 * inode_lock (in set_page_dirty's __mark_inode_dirty)
42 * sb_lock (within inode_lock in fs/fs-writeback.c)
43 * mapping->tree_lock (widely used, in set_page_dirty,
44 * in arch-dependent flush_dcache_mmap_lock,
45 * within inode_lock in __sync_single_inode)
48 #include <linux/mm.h>
49 #include <linux/pagemap.h>
50 #include <linux/swap.h>
51 #include <linux/swapops.h>
52 #include <linux/slab.h>
53 #include <linux/init.h>
54 #include <linux/rmap.h>
55 #include <linux/rcupdate.h>
57 #include <asm/tlbflush.h>
59 //#define RMAP_DEBUG /* can be enabled only for debugging */
61 kmem_cache_t *anon_vma_cachep;
63 static inline void validate_anon_vma(struct vm_area_struct *find_vma)
65 #ifdef RMAP_DEBUG
66 struct anon_vma *anon_vma = find_vma->anon_vma;
67 struct vm_area_struct *vma;
68 unsigned int mapcount = 0;
69 int found = 0;
71 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
72 mapcount++;
73 BUG_ON(mapcount > 100000);
74 if (vma == find_vma)
75 found = 1;
77 BUG_ON(!found);
78 #endif
81 /* This must be called under the mmap_sem. */
82 int anon_vma_prepare(struct vm_area_struct *vma)
84 struct anon_vma *anon_vma = vma->anon_vma;
86 might_sleep();
87 if (unlikely(!anon_vma)) {
88 struct mm_struct *mm = vma->vm_mm;
89 struct anon_vma *allocated, *locked;
91 anon_vma = find_mergeable_anon_vma(vma);
92 if (anon_vma) {
93 allocated = NULL;
94 locked = anon_vma;
95 spin_lock(&locked->lock);
96 } else {
97 anon_vma = anon_vma_alloc();
98 if (unlikely(!anon_vma))
99 return -ENOMEM;
100 allocated = anon_vma;
101 locked = NULL;
104 /* page_table_lock to protect against threads */
105 spin_lock(&mm->page_table_lock);
106 if (likely(!vma->anon_vma)) {
107 vma->anon_vma = anon_vma;
108 list_add(&vma->anon_vma_node, &anon_vma->head);
109 allocated = NULL;
111 spin_unlock(&mm->page_table_lock);
113 if (locked)
114 spin_unlock(&locked->lock);
115 if (unlikely(allocated))
116 anon_vma_free(allocated);
118 return 0;
121 void __anon_vma_merge(struct vm_area_struct *vma, struct vm_area_struct *next)
123 BUG_ON(vma->anon_vma != next->anon_vma);
124 list_del(&next->anon_vma_node);
127 void __anon_vma_link(struct vm_area_struct *vma)
129 struct anon_vma *anon_vma = vma->anon_vma;
131 if (anon_vma) {
132 list_add(&vma->anon_vma_node, &anon_vma->head);
133 validate_anon_vma(vma);
137 void anon_vma_link(struct vm_area_struct *vma)
139 struct anon_vma *anon_vma = vma->anon_vma;
141 if (anon_vma) {
142 spin_lock(&anon_vma->lock);
143 list_add(&vma->anon_vma_node, &anon_vma->head);
144 validate_anon_vma(vma);
145 spin_unlock(&anon_vma->lock);
149 void anon_vma_unlink(struct vm_area_struct *vma)
151 struct anon_vma *anon_vma = vma->anon_vma;
152 int empty;
154 if (!anon_vma)
155 return;
157 spin_lock(&anon_vma->lock);
158 validate_anon_vma(vma);
159 list_del(&vma->anon_vma_node);
161 /* We must garbage collect the anon_vma if it's empty */
162 empty = list_empty(&anon_vma->head);
163 spin_unlock(&anon_vma->lock);
165 if (empty)
166 anon_vma_free(anon_vma);
169 static void anon_vma_ctor(void *data, kmem_cache_t *cachep, unsigned long flags)
171 if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
172 SLAB_CTOR_CONSTRUCTOR) {
173 struct anon_vma *anon_vma = data;
175 spin_lock_init(&anon_vma->lock);
176 INIT_LIST_HEAD(&anon_vma->head);
180 void __init anon_vma_init(void)
182 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
183 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor, NULL);
187 * Getting a lock on a stable anon_vma from a page off the LRU is
188 * tricky: page_lock_anon_vma rely on RCU to guard against the races.
190 static struct anon_vma *page_lock_anon_vma(struct page *page)
192 struct anon_vma *anon_vma = NULL;
193 unsigned long anon_mapping;
195 rcu_read_lock();
196 anon_mapping = (unsigned long) page->mapping;
197 if (!(anon_mapping & PAGE_MAPPING_ANON))
198 goto out;
199 if (!page_mapped(page))
200 goto out;
202 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
203 spin_lock(&anon_vma->lock);
204 out:
205 rcu_read_unlock();
206 return anon_vma;
210 * At what user virtual address is page expected in vma?
212 static inline unsigned long
213 vma_address(struct page *page, struct vm_area_struct *vma)
215 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
216 unsigned long address;
218 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
219 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
220 /* page should be within any vma from prio_tree_next */
221 BUG_ON(!PageAnon(page));
222 return -EFAULT;
224 return address;
228 * At what user virtual address is page expected in vma? checking that the
229 * page matches the vma: currently only used by unuse_process, on anon pages.
231 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
233 if (PageAnon(page)) {
234 if ((void *)vma->anon_vma !=
235 (void *)page->mapping - PAGE_MAPPING_ANON)
236 return -EFAULT;
237 } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
238 if (vma->vm_file->f_mapping != page->mapping)
239 return -EFAULT;
240 } else
241 return -EFAULT;
242 return vma_address(page, vma);
246 * Check that @page is mapped at @address into @mm.
248 * On success returns with mapped pte and locked mm->page_table_lock.
250 static pte_t *page_check_address(struct page *page, struct mm_struct *mm,
251 unsigned long address)
253 pgd_t *pgd;
254 pud_t *pud;
255 pmd_t *pmd;
256 pte_t *pte;
259 * We need the page_table_lock to protect us from page faults,
260 * munmap, fork, etc...
262 spin_lock(&mm->page_table_lock);
263 pgd = pgd_offset(mm, address);
264 if (likely(pgd_present(*pgd))) {
265 pud = pud_offset(pgd, address);
266 if (likely(pud_present(*pud))) {
267 pmd = pmd_offset(pud, address);
268 if (likely(pmd_present(*pmd))) {
269 pte = pte_offset_map(pmd, address);
270 if (likely(pte_present(*pte) &&
271 page_to_pfn(page) == pte_pfn(*pte)))
272 return pte;
273 pte_unmap(pte);
277 spin_unlock(&mm->page_table_lock);
278 return ERR_PTR(-ENOENT);
282 * Subfunctions of page_referenced: page_referenced_one called
283 * repeatedly from either page_referenced_anon or page_referenced_file.
285 static int page_referenced_one(struct page *page,
286 struct vm_area_struct *vma, unsigned int *mapcount, int ignore_token)
288 struct mm_struct *mm = vma->vm_mm;
289 unsigned long address;
290 pte_t *pte;
291 int referenced = 0;
293 if (!get_mm_counter(mm, rss))
294 goto out;
295 address = vma_address(page, vma);
296 if (address == -EFAULT)
297 goto out;
299 pte = page_check_address(page, mm, address);
300 if (!IS_ERR(pte)) {
301 if (ptep_clear_flush_young(vma, address, pte))
302 referenced++;
304 if (mm != current->mm && !ignore_token && has_swap_token(mm))
305 referenced++;
307 (*mapcount)--;
308 pte_unmap(pte);
309 spin_unlock(&mm->page_table_lock);
311 out:
312 return referenced;
315 static int page_referenced_anon(struct page *page, int ignore_token)
317 unsigned int mapcount;
318 struct anon_vma *anon_vma;
319 struct vm_area_struct *vma;
320 int referenced = 0;
322 anon_vma = page_lock_anon_vma(page);
323 if (!anon_vma)
324 return referenced;
326 mapcount = page_mapcount(page);
327 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
328 referenced += page_referenced_one(page, vma, &mapcount,
329 ignore_token);
330 if (!mapcount)
331 break;
333 spin_unlock(&anon_vma->lock);
334 return referenced;
338 * page_referenced_file - referenced check for object-based rmap
339 * @page: the page we're checking references on.
341 * For an object-based mapped page, find all the places it is mapped and
342 * check/clear the referenced flag. This is done by following the page->mapping
343 * pointer, then walking the chain of vmas it holds. It returns the number
344 * of references it found.
346 * This function is only called from page_referenced for object-based pages.
348 static int page_referenced_file(struct page *page, int ignore_token)
350 unsigned int mapcount;
351 struct address_space *mapping = page->mapping;
352 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
353 struct vm_area_struct *vma;
354 struct prio_tree_iter iter;
355 int referenced = 0;
358 * The caller's checks on page->mapping and !PageAnon have made
359 * sure that this is a file page: the check for page->mapping
360 * excludes the case just before it gets set on an anon page.
362 BUG_ON(PageAnon(page));
365 * The page lock not only makes sure that page->mapping cannot
366 * suddenly be NULLified by truncation, it makes sure that the
367 * structure at mapping cannot be freed and reused yet,
368 * so we can safely take mapping->i_mmap_lock.
370 BUG_ON(!PageLocked(page));
372 spin_lock(&mapping->i_mmap_lock);
375 * i_mmap_lock does not stabilize mapcount at all, but mapcount
376 * is more likely to be accurate if we note it after spinning.
378 mapcount = page_mapcount(page);
380 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
381 if ((vma->vm_flags & (VM_LOCKED|VM_MAYSHARE))
382 == (VM_LOCKED|VM_MAYSHARE)) {
383 referenced++;
384 break;
386 referenced += page_referenced_one(page, vma, &mapcount,
387 ignore_token);
388 if (!mapcount)
389 break;
392 spin_unlock(&mapping->i_mmap_lock);
393 return referenced;
397 * page_referenced - test if the page was referenced
398 * @page: the page to test
399 * @is_locked: caller holds lock on the page
401 * Quick test_and_clear_referenced for all mappings to a page,
402 * returns the number of ptes which referenced the page.
404 int page_referenced(struct page *page, int is_locked, int ignore_token)
406 int referenced = 0;
408 if (!swap_token_default_timeout)
409 ignore_token = 1;
411 if (page_test_and_clear_young(page))
412 referenced++;
414 if (TestClearPageReferenced(page))
415 referenced++;
417 if (page_mapped(page) && page->mapping) {
418 if (PageAnon(page))
419 referenced += page_referenced_anon(page, ignore_token);
420 else if (is_locked)
421 referenced += page_referenced_file(page, ignore_token);
422 else if (TestSetPageLocked(page))
423 referenced++;
424 else {
425 if (page->mapping)
426 referenced += page_referenced_file(page,
427 ignore_token);
428 unlock_page(page);
431 return referenced;
435 * page_add_anon_rmap - add pte mapping to an anonymous page
436 * @page: the page to add the mapping to
437 * @vma: the vm area in which the mapping is added
438 * @address: the user virtual address mapped
440 * The caller needs to hold the mm->page_table_lock.
442 void page_add_anon_rmap(struct page *page,
443 struct vm_area_struct *vma, unsigned long address)
445 struct anon_vma *anon_vma = vma->anon_vma;
446 pgoff_t index;
448 BUG_ON(PageReserved(page));
449 BUG_ON(!anon_vma);
451 inc_mm_counter(vma->vm_mm, anon_rss);
453 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
454 index = (address - vma->vm_start) >> PAGE_SHIFT;
455 index += vma->vm_pgoff;
456 index >>= PAGE_CACHE_SHIFT - PAGE_SHIFT;
458 if (atomic_inc_and_test(&page->_mapcount)) {
459 page->index = index;
460 page->mapping = (struct address_space *) anon_vma;
461 inc_page_state(nr_mapped);
463 /* else checking page index and mapping is racy */
467 * page_add_file_rmap - add pte mapping to a file page
468 * @page: the page to add the mapping to
470 * The caller needs to hold the mm->page_table_lock.
472 void page_add_file_rmap(struct page *page)
474 BUG_ON(PageAnon(page));
475 if (!pfn_valid(page_to_pfn(page)) || PageReserved(page))
476 return;
478 if (atomic_inc_and_test(&page->_mapcount))
479 inc_page_state(nr_mapped);
483 * page_remove_rmap - take down pte mapping from a page
484 * @page: page to remove mapping from
486 * Caller needs to hold the mm->page_table_lock.
488 void page_remove_rmap(struct page *page)
490 BUG_ON(PageReserved(page));
492 if (atomic_add_negative(-1, &page->_mapcount)) {
493 BUG_ON(page_mapcount(page) < 0);
495 * It would be tidy to reset the PageAnon mapping here,
496 * but that might overwrite a racing page_add_anon_rmap
497 * which increments mapcount after us but sets mapping
498 * before us: so leave the reset to free_hot_cold_page,
499 * and remember that it's only reliable while mapped.
500 * Leaving it set also helps swapoff to reinstate ptes
501 * faster for those pages still in swapcache.
503 if (page_test_and_clear_dirty(page))
504 set_page_dirty(page);
505 dec_page_state(nr_mapped);
510 * Subfunctions of try_to_unmap: try_to_unmap_one called
511 * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
513 static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma)
515 struct mm_struct *mm = vma->vm_mm;
516 unsigned long address;
517 pte_t *pte;
518 pte_t pteval;
519 int ret = SWAP_AGAIN;
521 if (!get_mm_counter(mm, rss))
522 goto out;
523 address = vma_address(page, vma);
524 if (address == -EFAULT)
525 goto out;
527 pte = page_check_address(page, mm, address);
528 if (IS_ERR(pte))
529 goto out;
532 * If the page is mlock()d, we cannot swap it out.
533 * If it's recently referenced (perhaps page_referenced
534 * skipped over this mm) then we should reactivate it.
536 if ((vma->vm_flags & (VM_LOCKED|VM_RESERVED)) ||
537 ptep_clear_flush_young(vma, address, pte)) {
538 ret = SWAP_FAIL;
539 goto out_unmap;
543 * Don't pull an anonymous page out from under get_user_pages.
544 * GUP carefully breaks COW and raises page count (while holding
545 * page_table_lock, as we have here) to make sure that the page
546 * cannot be freed. If we unmap that page here, a user write
547 * access to the virtual address will bring back the page, but
548 * its raised count will (ironically) be taken to mean it's not
549 * an exclusive swap page, do_wp_page will replace it by a copy
550 * page, and the user never get to see the data GUP was holding
551 * the original page for.
553 * This test is also useful for when swapoff (unuse_process) has
554 * to drop page lock: its reference to the page stops existing
555 * ptes from being unmapped, so swapoff can make progress.
557 if (PageSwapCache(page) &&
558 page_count(page) != page_mapcount(page) + 2) {
559 ret = SWAP_FAIL;
560 goto out_unmap;
563 /* Nuke the page table entry. */
564 flush_cache_page(vma, address, page_to_pfn(page));
565 pteval = ptep_clear_flush(vma, address, pte);
567 /* Move the dirty bit to the physical page now the pte is gone. */
568 if (pte_dirty(pteval))
569 set_page_dirty(page);
571 if (PageAnon(page)) {
572 swp_entry_t entry = { .val = page->private };
574 * Store the swap location in the pte.
575 * See handle_pte_fault() ...
577 BUG_ON(!PageSwapCache(page));
578 swap_duplicate(entry);
579 if (list_empty(&mm->mmlist)) {
580 spin_lock(&mmlist_lock);
581 list_add(&mm->mmlist, &init_mm.mmlist);
582 spin_unlock(&mmlist_lock);
584 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
585 BUG_ON(pte_file(*pte));
586 dec_mm_counter(mm, anon_rss);
589 dec_mm_counter(mm, rss);
590 page_remove_rmap(page);
591 page_cache_release(page);
593 out_unmap:
594 pte_unmap(pte);
595 spin_unlock(&mm->page_table_lock);
596 out:
597 return ret;
601 * objrmap doesn't work for nonlinear VMAs because the assumption that
602 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
603 * Consequently, given a particular page and its ->index, we cannot locate the
604 * ptes which are mapping that page without an exhaustive linear search.
606 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
607 * maps the file to which the target page belongs. The ->vm_private_data field
608 * holds the current cursor into that scan. Successive searches will circulate
609 * around the vma's virtual address space.
611 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
612 * more scanning pressure is placed against them as well. Eventually pages
613 * will become fully unmapped and are eligible for eviction.
615 * For very sparsely populated VMAs this is a little inefficient - chances are
616 * there there won't be many ptes located within the scan cluster. In this case
617 * maybe we could scan further - to the end of the pte page, perhaps.
619 #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
620 #define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
622 static void try_to_unmap_cluster(unsigned long cursor,
623 unsigned int *mapcount, struct vm_area_struct *vma)
625 struct mm_struct *mm = vma->vm_mm;
626 pgd_t *pgd;
627 pud_t *pud;
628 pmd_t *pmd;
629 pte_t *pte;
630 pte_t pteval;
631 struct page *page;
632 unsigned long address;
633 unsigned long end;
634 unsigned long pfn;
637 * We need the page_table_lock to protect us from page faults,
638 * munmap, fork, etc...
640 spin_lock(&mm->page_table_lock);
642 address = (vma->vm_start + cursor) & CLUSTER_MASK;
643 end = address + CLUSTER_SIZE;
644 if (address < vma->vm_start)
645 address = vma->vm_start;
646 if (end > vma->vm_end)
647 end = vma->vm_end;
649 pgd = pgd_offset(mm, address);
650 if (!pgd_present(*pgd))
651 goto out_unlock;
653 pud = pud_offset(pgd, address);
654 if (!pud_present(*pud))
655 goto out_unlock;
657 pmd = pmd_offset(pud, address);
658 if (!pmd_present(*pmd))
659 goto out_unlock;
661 for (pte = pte_offset_map(pmd, address);
662 address < end; pte++, address += PAGE_SIZE) {
664 if (!pte_present(*pte))
665 continue;
667 pfn = pte_pfn(*pte);
668 if (!pfn_valid(pfn))
669 continue;
671 page = pfn_to_page(pfn);
672 BUG_ON(PageAnon(page));
673 if (PageReserved(page))
674 continue;
676 if (ptep_clear_flush_young(vma, address, pte))
677 continue;
679 /* Nuke the page table entry. */
680 flush_cache_page(vma, address, pfn);
681 pteval = ptep_clear_flush(vma, address, pte);
683 /* If nonlinear, store the file page offset in the pte. */
684 if (page->index != linear_page_index(vma, address))
685 set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
687 /* Move the dirty bit to the physical page now the pte is gone. */
688 if (pte_dirty(pteval))
689 set_page_dirty(page);
691 page_remove_rmap(page);
692 page_cache_release(page);
693 dec_mm_counter(mm, rss);
694 (*mapcount)--;
697 pte_unmap(pte);
698 out_unlock:
699 spin_unlock(&mm->page_table_lock);
702 static int try_to_unmap_anon(struct page *page)
704 struct anon_vma *anon_vma;
705 struct vm_area_struct *vma;
706 int ret = SWAP_AGAIN;
708 anon_vma = page_lock_anon_vma(page);
709 if (!anon_vma)
710 return ret;
712 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
713 ret = try_to_unmap_one(page, vma);
714 if (ret == SWAP_FAIL || !page_mapped(page))
715 break;
717 spin_unlock(&anon_vma->lock);
718 return ret;
722 * try_to_unmap_file - unmap file page using the object-based rmap method
723 * @page: the page to unmap
725 * Find all the mappings of a page using the mapping pointer and the vma chains
726 * contained in the address_space struct it points to.
728 * This function is only called from try_to_unmap for object-based pages.
730 static int try_to_unmap_file(struct page *page)
732 struct address_space *mapping = page->mapping;
733 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
734 struct vm_area_struct *vma;
735 struct prio_tree_iter iter;
736 int ret = SWAP_AGAIN;
737 unsigned long cursor;
738 unsigned long max_nl_cursor = 0;
739 unsigned long max_nl_size = 0;
740 unsigned int mapcount;
742 spin_lock(&mapping->i_mmap_lock);
743 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
744 ret = try_to_unmap_one(page, vma);
745 if (ret == SWAP_FAIL || !page_mapped(page))
746 goto out;
749 if (list_empty(&mapping->i_mmap_nonlinear))
750 goto out;
752 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
753 shared.vm_set.list) {
754 if (vma->vm_flags & (VM_LOCKED|VM_RESERVED))
755 continue;
756 cursor = (unsigned long) vma->vm_private_data;
757 if (cursor > max_nl_cursor)
758 max_nl_cursor = cursor;
759 cursor = vma->vm_end - vma->vm_start;
760 if (cursor > max_nl_size)
761 max_nl_size = cursor;
764 if (max_nl_size == 0) { /* any nonlinears locked or reserved */
765 ret = SWAP_FAIL;
766 goto out;
770 * We don't try to search for this page in the nonlinear vmas,
771 * and page_referenced wouldn't have found it anyway. Instead
772 * just walk the nonlinear vmas trying to age and unmap some.
773 * The mapcount of the page we came in with is irrelevant,
774 * but even so use it as a guide to how hard we should try?
776 mapcount = page_mapcount(page);
777 if (!mapcount)
778 goto out;
779 cond_resched_lock(&mapping->i_mmap_lock);
781 max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
782 if (max_nl_cursor == 0)
783 max_nl_cursor = CLUSTER_SIZE;
785 do {
786 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
787 shared.vm_set.list) {
788 if (vma->vm_flags & (VM_LOCKED|VM_RESERVED))
789 continue;
790 cursor = (unsigned long) vma->vm_private_data;
791 while (get_mm_counter(vma->vm_mm, rss) &&
792 cursor < max_nl_cursor &&
793 cursor < vma->vm_end - vma->vm_start) {
794 try_to_unmap_cluster(cursor, &mapcount, vma);
795 cursor += CLUSTER_SIZE;
796 vma->vm_private_data = (void *) cursor;
797 if ((int)mapcount <= 0)
798 goto out;
800 vma->vm_private_data = (void *) max_nl_cursor;
802 cond_resched_lock(&mapping->i_mmap_lock);
803 max_nl_cursor += CLUSTER_SIZE;
804 } while (max_nl_cursor <= max_nl_size);
807 * Don't loop forever (perhaps all the remaining pages are
808 * in locked vmas). Reset cursor on all unreserved nonlinear
809 * vmas, now forgetting on which ones it had fallen behind.
811 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
812 shared.vm_set.list) {
813 if (!(vma->vm_flags & VM_RESERVED))
814 vma->vm_private_data = NULL;
816 out:
817 spin_unlock(&mapping->i_mmap_lock);
818 return ret;
822 * try_to_unmap - try to remove all page table mappings to a page
823 * @page: the page to get unmapped
825 * Tries to remove all the page table entries which are mapping this
826 * page, used in the pageout path. Caller must hold the page lock.
827 * Return values are:
829 * SWAP_SUCCESS - we succeeded in removing all mappings
830 * SWAP_AGAIN - we missed a mapping, try again later
831 * SWAP_FAIL - the page is unswappable
833 int try_to_unmap(struct page *page)
835 int ret;
837 BUG_ON(PageReserved(page));
838 BUG_ON(!PageLocked(page));
840 if (PageAnon(page))
841 ret = try_to_unmap_anon(page);
842 else
843 ret = try_to_unmap_file(page);
845 if (!page_mapped(page))
846 ret = SWAP_SUCCESS;
847 return ret;