2 * Routines having to do with the 'struct sk_buff' memory handlers.
4 * Authors: Alan Cox <iiitac@pyr.swan.ac.uk>
5 * Florian La Roche <rzsfl@rz.uni-sb.de>
7 * Version: $Id: skbuff.c,v 1.90 2001/11/07 05:56:19 davem Exp $
10 * Alan Cox : Fixed the worst of the load
12 * Dave Platt : Interrupt stacking fix.
13 * Richard Kooijman : Timestamp fixes.
14 * Alan Cox : Changed buffer format.
15 * Alan Cox : destructor hook for AF_UNIX etc.
16 * Linus Torvalds : Better skb_clone.
17 * Alan Cox : Added skb_copy.
18 * Alan Cox : Added all the changed routines Linus
19 * only put in the headers
20 * Ray VanTassle : Fixed --skb->lock in free
21 * Alan Cox : skb_copy copy arp field
22 * Andi Kleen : slabified it.
23 * Robert Olsson : Removed skb_head_pool
26 * The __skb_ routines should be called with interrupts
27 * disabled, or you better be *real* sure that the operation is atomic
28 * with respect to whatever list is being frobbed (e.g. via lock_sock()
29 * or via disabling bottom half handlers, etc).
31 * This program is free software; you can redistribute it and/or
32 * modify it under the terms of the GNU General Public License
33 * as published by the Free Software Foundation; either version
34 * 2 of the License, or (at your option) any later version.
38 * The functions in this file will not compile correctly with gcc 2.4.x
41 #include <linux/config.h>
42 #include <linux/module.h>
43 #include <linux/types.h>
44 #include <linux/kernel.h>
45 #include <linux/sched.h>
47 #include <linux/interrupt.h>
49 #include <linux/inet.h>
50 #include <linux/slab.h>
51 #include <linux/netdevice.h>
52 #ifdef CONFIG_NET_CLS_ACT
53 #include <net/pkt_sched.h>
55 #include <linux/string.h>
56 #include <linux/skbuff.h>
57 #include <linux/cache.h>
58 #include <linux/rtnetlink.h>
59 #include <linux/init.h>
60 #include <linux/highmem.h>
62 #include <net/protocol.h>
65 #include <net/checksum.h>
68 #include <asm/uaccess.h>
69 #include <asm/system.h>
71 static kmem_cache_t
*skbuff_head_cache
;
74 * Keep out-of-line to prevent kernel bloat.
75 * __builtin_return_address is not used because it is not always
80 * skb_over_panic - private function
85 * Out of line support code for skb_put(). Not user callable.
87 void skb_over_panic(struct sk_buff
*skb
, int sz
, void *here
)
89 printk(KERN_EMERG
"skb_over_panic: text:%p len:%d put:%d head:%p "
90 "data:%p tail:%p end:%p dev:%s\n",
91 here
, skb
->len
, sz
, skb
->head
, skb
->data
, skb
->tail
, skb
->end
,
92 skb
->dev
? skb
->dev
->name
: "<NULL>");
97 * skb_under_panic - private function
102 * Out of line support code for skb_push(). Not user callable.
105 void skb_under_panic(struct sk_buff
*skb
, int sz
, void *here
)
107 printk(KERN_EMERG
"skb_under_panic: text:%p len:%d put:%d head:%p "
108 "data:%p tail:%p end:%p dev:%s\n",
109 here
, skb
->len
, sz
, skb
->head
, skb
->data
, skb
->tail
, skb
->end
,
110 skb
->dev
? skb
->dev
->name
: "<NULL>");
114 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
115 * 'private' fields and also do memory statistics to find all the
121 * alloc_skb - allocate a network buffer
122 * @size: size to allocate
123 * @gfp_mask: allocation mask
125 * Allocate a new &sk_buff. The returned buffer has no headroom and a
126 * tail room of size bytes. The object has a reference count of one.
127 * The return is the buffer. On a failure the return is %NULL.
129 * Buffers may only be allocated from interrupts using a @gfp_mask of
132 struct sk_buff
*alloc_skb(unsigned int size
, int gfp_mask
)
138 skb
= kmem_cache_alloc(skbuff_head_cache
,
139 gfp_mask
& ~__GFP_DMA
);
143 /* Get the DATA. Size must match skb_add_mtu(). */
144 size
= SKB_DATA_ALIGN(size
);
145 data
= kmalloc(size
+ sizeof(struct skb_shared_info
), gfp_mask
);
149 memset(skb
, 0, offsetof(struct sk_buff
, truesize
));
150 skb
->truesize
= size
+ sizeof(struct sk_buff
);
151 atomic_set(&skb
->users
, 1);
155 skb
->end
= data
+ size
;
157 atomic_set(&(skb_shinfo(skb
)->dataref
), 1);
158 skb_shinfo(skb
)->nr_frags
= 0;
159 skb_shinfo(skb
)->tso_size
= 0;
160 skb_shinfo(skb
)->tso_segs
= 0;
161 skb_shinfo(skb
)->frag_list
= NULL
;
165 kmem_cache_free(skbuff_head_cache
, skb
);
171 * alloc_skb_from_cache - allocate a network buffer
172 * @cp: kmem_cache from which to allocate the data area
173 * (object size must be big enough for @size bytes + skb overheads)
174 * @size: size to allocate
175 * @gfp_mask: allocation mask
177 * Allocate a new &sk_buff. The returned buffer has no headroom and
178 * tail room of size bytes. The object has a reference count of one.
179 * The return is the buffer. On a failure the return is %NULL.
181 * Buffers may only be allocated from interrupts using a @gfp_mask of
184 struct sk_buff
*alloc_skb_from_cache(kmem_cache_t
*cp
,
185 unsigned int size
, int gfp_mask
)
191 skb
= kmem_cache_alloc(skbuff_head_cache
,
192 gfp_mask
& ~__GFP_DMA
);
197 size
= SKB_DATA_ALIGN(size
);
198 data
= kmem_cache_alloc(cp
, gfp_mask
);
202 memset(skb
, 0, offsetof(struct sk_buff
, truesize
));
203 skb
->truesize
= size
+ sizeof(struct sk_buff
);
204 atomic_set(&skb
->users
, 1);
208 skb
->end
= data
+ size
;
210 atomic_set(&(skb_shinfo(skb
)->dataref
), 1);
211 skb_shinfo(skb
)->nr_frags
= 0;
212 skb_shinfo(skb
)->tso_size
= 0;
213 skb_shinfo(skb
)->tso_segs
= 0;
214 skb_shinfo(skb
)->frag_list
= NULL
;
218 kmem_cache_free(skbuff_head_cache
, skb
);
224 static void skb_drop_fraglist(struct sk_buff
*skb
)
226 struct sk_buff
*list
= skb_shinfo(skb
)->frag_list
;
228 skb_shinfo(skb
)->frag_list
= NULL
;
231 struct sk_buff
*this = list
;
237 static void skb_clone_fraglist(struct sk_buff
*skb
)
239 struct sk_buff
*list
;
241 for (list
= skb_shinfo(skb
)->frag_list
; list
; list
= list
->next
)
245 void skb_release_data(struct sk_buff
*skb
)
248 !atomic_sub_return(skb
->nohdr
? (1 << SKB_DATAREF_SHIFT
) + 1 : 1,
249 &skb_shinfo(skb
)->dataref
)) {
250 if (skb_shinfo(skb
)->nr_frags
) {
252 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++)
253 put_page(skb_shinfo(skb
)->frags
[i
].page
);
256 if (skb_shinfo(skb
)->frag_list
)
257 skb_drop_fraglist(skb
);
264 * Free an skbuff by memory without cleaning the state.
266 void kfree_skbmem(struct sk_buff
*skb
)
268 skb_release_data(skb
);
269 kmem_cache_free(skbuff_head_cache
, skb
);
273 * __kfree_skb - private function
276 * Free an sk_buff. Release anything attached to the buffer.
277 * Clean the state. This is an internal helper function. Users should
278 * always call kfree_skb
281 void __kfree_skb(struct sk_buff
*skb
)
283 BUG_ON(skb
->list
!= NULL
);
285 dst_release(skb
->dst
);
287 secpath_put(skb
->sp
);
289 if (skb
->destructor
) {
291 skb
->destructor(skb
);
293 #ifdef CONFIG_NETFILTER
294 nf_conntrack_put(skb
->nfct
);
295 #ifdef CONFIG_BRIDGE_NETFILTER
296 nf_bridge_put(skb
->nf_bridge
);
299 /* XXX: IS this still necessary? - JHS */
300 #ifdef CONFIG_NET_SCHED
302 #ifdef CONFIG_NET_CLS_ACT
312 * skb_clone - duplicate an sk_buff
313 * @skb: buffer to clone
314 * @gfp_mask: allocation priority
316 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
317 * copies share the same packet data but not structure. The new
318 * buffer has a reference count of 1. If the allocation fails the
319 * function returns %NULL otherwise the new buffer is returned.
321 * If this function is called from an interrupt gfp_mask() must be
325 struct sk_buff
*skb_clone(struct sk_buff
*skb
, int gfp_mask
)
327 struct sk_buff
*n
= kmem_cache_alloc(skbuff_head_cache
, gfp_mask
);
332 #define C(x) n->x = skb->x
334 n
->next
= n
->prev
= NULL
;
347 secpath_get(skb
->sp
);
349 memcpy(n
->cb
, skb
->cb
, sizeof(skb
->cb
));
361 n
->destructor
= NULL
;
362 #ifdef CONFIG_NETFILTER
366 nf_conntrack_get(skb
->nfct
);
368 #ifdef CONFIG_NETFILTER_DEBUG
371 #ifdef CONFIG_BRIDGE_NETFILTER
373 nf_bridge_get(skb
->nf_bridge
);
375 #endif /*CONFIG_NETFILTER*/
376 #if defined(CONFIG_HIPPI)
379 #ifdef CONFIG_NET_SCHED
381 #ifdef CONFIG_NET_CLS_ACT
382 n
->tc_verd
= SET_TC_VERD(skb
->tc_verd
,0);
383 n
->tc_verd
= CLR_TC_OK2MUNGE(skb
->tc_verd
);
384 n
->tc_verd
= CLR_TC_MUNGED(skb
->tc_verd
);
391 atomic_set(&n
->users
, 1);
397 atomic_inc(&(skb_shinfo(skb
)->dataref
));
403 static void copy_skb_header(struct sk_buff
*new, const struct sk_buff
*old
)
406 * Shift between the two data areas in bytes
408 unsigned long offset
= new->data
- old
->data
;
413 new->real_dev
= old
->real_dev
;
414 new->priority
= old
->priority
;
415 new->protocol
= old
->protocol
;
416 new->dst
= dst_clone(old
->dst
);
418 new->sp
= secpath_get(old
->sp
);
420 new->h
.raw
= old
->h
.raw
+ offset
;
421 new->nh
.raw
= old
->nh
.raw
+ offset
;
422 new->mac
.raw
= old
->mac
.raw
+ offset
;
423 memcpy(new->cb
, old
->cb
, sizeof(old
->cb
));
424 new->local_df
= old
->local_df
;
425 new->pkt_type
= old
->pkt_type
;
426 new->stamp
= old
->stamp
;
427 new->destructor
= NULL
;
428 new->security
= old
->security
;
429 #ifdef CONFIG_NETFILTER
430 new->nfmark
= old
->nfmark
;
431 new->nfcache
= old
->nfcache
;
432 new->nfct
= old
->nfct
;
433 nf_conntrack_get(old
->nfct
);
434 new->nfctinfo
= old
->nfctinfo
;
435 #ifdef CONFIG_NETFILTER_DEBUG
436 new->nf_debug
= old
->nf_debug
;
438 #ifdef CONFIG_BRIDGE_NETFILTER
439 new->nf_bridge
= old
->nf_bridge
;
440 nf_bridge_get(old
->nf_bridge
);
443 #ifdef CONFIG_NET_SCHED
444 #ifdef CONFIG_NET_CLS_ACT
445 new->tc_verd
= old
->tc_verd
;
447 new->tc_index
= old
->tc_index
;
449 atomic_set(&new->users
, 1);
450 skb_shinfo(new)->tso_size
= skb_shinfo(old
)->tso_size
;
451 skb_shinfo(new)->tso_segs
= skb_shinfo(old
)->tso_segs
;
455 * skb_copy - create private copy of an sk_buff
456 * @skb: buffer to copy
457 * @gfp_mask: allocation priority
459 * Make a copy of both an &sk_buff and its data. This is used when the
460 * caller wishes to modify the data and needs a private copy of the
461 * data to alter. Returns %NULL on failure or the pointer to the buffer
462 * on success. The returned buffer has a reference count of 1.
464 * As by-product this function converts non-linear &sk_buff to linear
465 * one, so that &sk_buff becomes completely private and caller is allowed
466 * to modify all the data of returned buffer. This means that this
467 * function is not recommended for use in circumstances when only
468 * header is going to be modified. Use pskb_copy() instead.
471 struct sk_buff
*skb_copy(const struct sk_buff
*skb
, int gfp_mask
)
473 int headerlen
= skb
->data
- skb
->head
;
475 * Allocate the copy buffer
477 struct sk_buff
*n
= alloc_skb(skb
->end
- skb
->head
+ skb
->data_len
,
482 /* Set the data pointer */
483 skb_reserve(n
, headerlen
);
484 /* Set the tail pointer and length */
485 skb_put(n
, skb
->len
);
487 n
->ip_summed
= skb
->ip_summed
;
489 if (skb_copy_bits(skb
, -headerlen
, n
->head
, headerlen
+ skb
->len
))
492 copy_skb_header(n
, skb
);
498 * pskb_copy - create copy of an sk_buff with private head.
499 * @skb: buffer to copy
500 * @gfp_mask: allocation priority
502 * Make a copy of both an &sk_buff and part of its data, located
503 * in header. Fragmented data remain shared. This is used when
504 * the caller wishes to modify only header of &sk_buff and needs
505 * private copy of the header to alter. Returns %NULL on failure
506 * or the pointer to the buffer on success.
507 * The returned buffer has a reference count of 1.
510 struct sk_buff
*pskb_copy(struct sk_buff
*skb
, int gfp_mask
)
513 * Allocate the copy buffer
515 struct sk_buff
*n
= alloc_skb(skb
->end
- skb
->head
, gfp_mask
);
520 /* Set the data pointer */
521 skb_reserve(n
, skb
->data
- skb
->head
);
522 /* Set the tail pointer and length */
523 skb_put(n
, skb_headlen(skb
));
525 memcpy(n
->data
, skb
->data
, n
->len
);
527 n
->ip_summed
= skb
->ip_summed
;
529 n
->data_len
= skb
->data_len
;
532 if (skb_shinfo(skb
)->nr_frags
) {
535 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
536 skb_shinfo(n
)->frags
[i
] = skb_shinfo(skb
)->frags
[i
];
537 get_page(skb_shinfo(n
)->frags
[i
].page
);
539 skb_shinfo(n
)->nr_frags
= i
;
542 if (skb_shinfo(skb
)->frag_list
) {
543 skb_shinfo(n
)->frag_list
= skb_shinfo(skb
)->frag_list
;
544 skb_clone_fraglist(n
);
547 copy_skb_header(n
, skb
);
553 * pskb_expand_head - reallocate header of &sk_buff
554 * @skb: buffer to reallocate
555 * @nhead: room to add at head
556 * @ntail: room to add at tail
557 * @gfp_mask: allocation priority
559 * Expands (or creates identical copy, if &nhead and &ntail are zero)
560 * header of skb. &sk_buff itself is not changed. &sk_buff MUST have
561 * reference count of 1. Returns zero in the case of success or error,
562 * if expansion failed. In the last case, &sk_buff is not changed.
564 * All the pointers pointing into skb header may change and must be
565 * reloaded after call to this function.
568 int pskb_expand_head(struct sk_buff
*skb
, int nhead
, int ntail
, int gfp_mask
)
572 int size
= nhead
+ (skb
->end
- skb
->head
) + ntail
;
578 size
= SKB_DATA_ALIGN(size
);
580 data
= kmalloc(size
+ sizeof(struct skb_shared_info
), gfp_mask
);
584 /* Copy only real data... and, alas, header. This should be
585 * optimized for the cases when header is void. */
586 memcpy(data
+ nhead
, skb
->head
, skb
->tail
- skb
->head
);
587 memcpy(data
+ size
, skb
->end
, sizeof(struct skb_shared_info
));
589 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++)
590 get_page(skb_shinfo(skb
)->frags
[i
].page
);
592 if (skb_shinfo(skb
)->frag_list
)
593 skb_clone_fraglist(skb
);
595 skb_release_data(skb
);
597 off
= (data
+ nhead
) - skb
->head
;
600 skb
->end
= data
+ size
;
608 atomic_set(&skb_shinfo(skb
)->dataref
, 1);
615 /* Make private copy of skb with writable head and some headroom */
617 struct sk_buff
*skb_realloc_headroom(struct sk_buff
*skb
, unsigned int headroom
)
619 struct sk_buff
*skb2
;
620 int delta
= headroom
- skb_headroom(skb
);
623 skb2
= pskb_copy(skb
, GFP_ATOMIC
);
625 skb2
= skb_clone(skb
, GFP_ATOMIC
);
626 if (skb2
&& pskb_expand_head(skb2
, SKB_DATA_ALIGN(delta
), 0,
637 * skb_copy_expand - copy and expand sk_buff
638 * @skb: buffer to copy
639 * @newheadroom: new free bytes at head
640 * @newtailroom: new free bytes at tail
641 * @gfp_mask: allocation priority
643 * Make a copy of both an &sk_buff and its data and while doing so
644 * allocate additional space.
646 * This is used when the caller wishes to modify the data and needs a
647 * private copy of the data to alter as well as more space for new fields.
648 * Returns %NULL on failure or the pointer to the buffer
649 * on success. The returned buffer has a reference count of 1.
651 * You must pass %GFP_ATOMIC as the allocation priority if this function
652 * is called from an interrupt.
654 * BUG ALERT: ip_summed is not copied. Why does this work? Is it used
655 * only by netfilter in the cases when checksum is recalculated? --ANK
657 struct sk_buff
*skb_copy_expand(const struct sk_buff
*skb
,
658 int newheadroom
, int newtailroom
, int gfp_mask
)
661 * Allocate the copy buffer
663 struct sk_buff
*n
= alloc_skb(newheadroom
+ skb
->len
+ newtailroom
,
665 int head_copy_len
, head_copy_off
;
670 skb_reserve(n
, newheadroom
);
672 /* Set the tail pointer and length */
673 skb_put(n
, skb
->len
);
675 head_copy_len
= skb_headroom(skb
);
677 if (newheadroom
<= head_copy_len
)
678 head_copy_len
= newheadroom
;
680 head_copy_off
= newheadroom
- head_copy_len
;
682 /* Copy the linear header and data. */
683 if (skb_copy_bits(skb
, -head_copy_len
, n
->head
+ head_copy_off
,
684 skb
->len
+ head_copy_len
))
687 copy_skb_header(n
, skb
);
693 * skb_pad - zero pad the tail of an skb
694 * @skb: buffer to pad
697 * Ensure that a buffer is followed by a padding area that is zero
698 * filled. Used by network drivers which may DMA or transfer data
699 * beyond the buffer end onto the wire.
701 * May return NULL in out of memory cases.
704 struct sk_buff
*skb_pad(struct sk_buff
*skb
, int pad
)
706 struct sk_buff
*nskb
;
708 /* If the skbuff is non linear tailroom is always zero.. */
709 if (skb_tailroom(skb
) >= pad
) {
710 memset(skb
->data
+skb
->len
, 0, pad
);
714 nskb
= skb_copy_expand(skb
, skb_headroom(skb
), skb_tailroom(skb
) + pad
, GFP_ATOMIC
);
717 memset(nskb
->data
+nskb
->len
, 0, pad
);
721 /* Trims skb to length len. It can change skb pointers, if "realloc" is 1.
722 * If realloc==0 and trimming is impossible without change of data,
726 int ___pskb_trim(struct sk_buff
*skb
, unsigned int len
, int realloc
)
728 int offset
= skb_headlen(skb
);
729 int nfrags
= skb_shinfo(skb
)->nr_frags
;
732 for (i
= 0; i
< nfrags
; i
++) {
733 int end
= offset
+ skb_shinfo(skb
)->frags
[i
].size
;
735 if (skb_cloned(skb
)) {
738 if (pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
))
742 put_page(skb_shinfo(skb
)->frags
[i
].page
);
743 skb_shinfo(skb
)->nr_frags
--;
745 skb_shinfo(skb
)->frags
[i
].size
= len
- offset
;
752 skb
->data_len
-= skb
->len
- len
;
755 if (len
<= skb_headlen(skb
)) {
758 skb
->tail
= skb
->data
+ len
;
759 if (skb_shinfo(skb
)->frag_list
&& !skb_cloned(skb
))
760 skb_drop_fraglist(skb
);
762 skb
->data_len
-= skb
->len
- len
;
771 * __pskb_pull_tail - advance tail of skb header
772 * @skb: buffer to reallocate
773 * @delta: number of bytes to advance tail
775 * The function makes a sense only on a fragmented &sk_buff,
776 * it expands header moving its tail forward and copying necessary
777 * data from fragmented part.
779 * &sk_buff MUST have reference count of 1.
781 * Returns %NULL (and &sk_buff does not change) if pull failed
782 * or value of new tail of skb in the case of success.
784 * All the pointers pointing into skb header may change and must be
785 * reloaded after call to this function.
788 /* Moves tail of skb head forward, copying data from fragmented part,
789 * when it is necessary.
790 * 1. It may fail due to malloc failure.
791 * 2. It may change skb pointers.
793 * It is pretty complicated. Luckily, it is called only in exceptional cases.
795 unsigned char *__pskb_pull_tail(struct sk_buff
*skb
, int delta
)
797 /* If skb has not enough free space at tail, get new one
798 * plus 128 bytes for future expansions. If we have enough
799 * room at tail, reallocate without expansion only if skb is cloned.
801 int i
, k
, eat
= (skb
->tail
+ delta
) - skb
->end
;
803 if (eat
> 0 || skb_cloned(skb
)) {
804 if (pskb_expand_head(skb
, 0, eat
> 0 ? eat
+ 128 : 0,
809 if (skb_copy_bits(skb
, skb_headlen(skb
), skb
->tail
, delta
))
812 /* Optimization: no fragments, no reasons to preestimate
813 * size of pulled pages. Superb.
815 if (!skb_shinfo(skb
)->frag_list
)
818 /* Estimate size of pulled pages. */
820 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
821 if (skb_shinfo(skb
)->frags
[i
].size
>= eat
)
823 eat
-= skb_shinfo(skb
)->frags
[i
].size
;
826 /* If we need update frag list, we are in troubles.
827 * Certainly, it possible to add an offset to skb data,
828 * but taking into account that pulling is expected to
829 * be very rare operation, it is worth to fight against
830 * further bloating skb head and crucify ourselves here instead.
831 * Pure masohism, indeed. 8)8)
834 struct sk_buff
*list
= skb_shinfo(skb
)->frag_list
;
835 struct sk_buff
*clone
= NULL
;
836 struct sk_buff
*insp
= NULL
;
842 if (list
->len
<= eat
) {
843 /* Eaten as whole. */
848 /* Eaten partially. */
850 if (skb_shared(list
)) {
851 /* Sucks! We need to fork list. :-( */
852 clone
= skb_clone(list
, GFP_ATOMIC
);
858 /* This may be pulled without
862 if (!pskb_pull(list
, eat
)) {
871 /* Free pulled out fragments. */
872 while ((list
= skb_shinfo(skb
)->frag_list
) != insp
) {
873 skb_shinfo(skb
)->frag_list
= list
->next
;
876 /* And insert new clone at head. */
879 skb_shinfo(skb
)->frag_list
= clone
;
882 /* Success! Now we may commit changes to skb data. */
887 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
888 if (skb_shinfo(skb
)->frags
[i
].size
<= eat
) {
889 put_page(skb_shinfo(skb
)->frags
[i
].page
);
890 eat
-= skb_shinfo(skb
)->frags
[i
].size
;
892 skb_shinfo(skb
)->frags
[k
] = skb_shinfo(skb
)->frags
[i
];
894 skb_shinfo(skb
)->frags
[k
].page_offset
+= eat
;
895 skb_shinfo(skb
)->frags
[k
].size
-= eat
;
901 skb_shinfo(skb
)->nr_frags
= k
;
904 skb
->data_len
-= delta
;
909 /* Copy some data bits from skb to kernel buffer. */
911 int skb_copy_bits(const struct sk_buff
*skb
, int offset
, void *to
, int len
)
914 int start
= skb_headlen(skb
);
916 if (offset
> (int)skb
->len
- len
)
920 if ((copy
= start
- offset
) > 0) {
923 memcpy(to
, skb
->data
+ offset
, copy
);
924 if ((len
-= copy
) == 0)
930 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
933 BUG_TRAP(start
<= offset
+ len
);
935 end
= start
+ skb_shinfo(skb
)->frags
[i
].size
;
936 if ((copy
= end
- offset
) > 0) {
942 vaddr
= kmap_skb_frag(&skb_shinfo(skb
)->frags
[i
]);
944 vaddr
+ skb_shinfo(skb
)->frags
[i
].page_offset
+
945 offset
- start
, copy
);
946 kunmap_skb_frag(vaddr
);
948 if ((len
-= copy
) == 0)
956 if (skb_shinfo(skb
)->frag_list
) {
957 struct sk_buff
*list
= skb_shinfo(skb
)->frag_list
;
959 for (; list
; list
= list
->next
) {
962 BUG_TRAP(start
<= offset
+ len
);
964 end
= start
+ list
->len
;
965 if ((copy
= end
- offset
) > 0) {
968 if (skb_copy_bits(list
, offset
- start
,
971 if ((len
-= copy
) == 0)
987 * skb_store_bits - store bits from kernel buffer to skb
988 * @skb: destination buffer
989 * @offset: offset in destination
990 * @from: source buffer
991 * @len: number of bytes to copy
993 * Copy the specified number of bytes from the source buffer to the
994 * destination skb. This function handles all the messy bits of
995 * traversing fragment lists and such.
998 int skb_store_bits(const struct sk_buff
*skb
, int offset
, void *from
, int len
)
1001 int start
= skb_headlen(skb
);
1003 if (offset
> (int)skb
->len
- len
)
1006 if ((copy
= start
- offset
) > 0) {
1009 memcpy(skb
->data
+ offset
, from
, copy
);
1010 if ((len
-= copy
) == 0)
1016 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1017 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
1020 BUG_TRAP(start
<= offset
+ len
);
1022 end
= start
+ frag
->size
;
1023 if ((copy
= end
- offset
) > 0) {
1029 vaddr
= kmap_skb_frag(frag
);
1030 memcpy(vaddr
+ frag
->page_offset
+ offset
- start
,
1032 kunmap_skb_frag(vaddr
);
1034 if ((len
-= copy
) == 0)
1042 if (skb_shinfo(skb
)->frag_list
) {
1043 struct sk_buff
*list
= skb_shinfo(skb
)->frag_list
;
1045 for (; list
; list
= list
->next
) {
1048 BUG_TRAP(start
<= offset
+ len
);
1050 end
= start
+ list
->len
;
1051 if ((copy
= end
- offset
) > 0) {
1054 if (skb_store_bits(list
, offset
- start
,
1057 if ((len
-= copy
) == 0)
1072 EXPORT_SYMBOL(skb_store_bits
);
1074 /* Checksum skb data. */
1076 unsigned int skb_checksum(const struct sk_buff
*skb
, int offset
,
1077 int len
, unsigned int csum
)
1079 int start
= skb_headlen(skb
);
1080 int i
, copy
= start
- offset
;
1083 /* Checksum header. */
1087 csum
= csum_partial(skb
->data
+ offset
, copy
, csum
);
1088 if ((len
-= copy
) == 0)
1094 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1097 BUG_TRAP(start
<= offset
+ len
);
1099 end
= start
+ skb_shinfo(skb
)->frags
[i
].size
;
1100 if ((copy
= end
- offset
) > 0) {
1103 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
1107 vaddr
= kmap_skb_frag(frag
);
1108 csum2
= csum_partial(vaddr
+ frag
->page_offset
+
1109 offset
- start
, copy
, 0);
1110 kunmap_skb_frag(vaddr
);
1111 csum
= csum_block_add(csum
, csum2
, pos
);
1120 if (skb_shinfo(skb
)->frag_list
) {
1121 struct sk_buff
*list
= skb_shinfo(skb
)->frag_list
;
1123 for (; list
; list
= list
->next
) {
1126 BUG_TRAP(start
<= offset
+ len
);
1128 end
= start
+ list
->len
;
1129 if ((copy
= end
- offset
) > 0) {
1133 csum2
= skb_checksum(list
, offset
- start
,
1135 csum
= csum_block_add(csum
, csum2
, pos
);
1136 if ((len
-= copy
) == 0)
1150 /* Both of above in one bottle. */
1152 unsigned int skb_copy_and_csum_bits(const struct sk_buff
*skb
, int offset
,
1153 u8
*to
, int len
, unsigned int csum
)
1155 int start
= skb_headlen(skb
);
1156 int i
, copy
= start
- offset
;
1163 csum
= csum_partial_copy_nocheck(skb
->data
+ offset
, to
,
1165 if ((len
-= copy
) == 0)
1172 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1175 BUG_TRAP(start
<= offset
+ len
);
1177 end
= start
+ skb_shinfo(skb
)->frags
[i
].size
;
1178 if ((copy
= end
- offset
) > 0) {
1181 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
1185 vaddr
= kmap_skb_frag(frag
);
1186 csum2
= csum_partial_copy_nocheck(vaddr
+
1190 kunmap_skb_frag(vaddr
);
1191 csum
= csum_block_add(csum
, csum2
, pos
);
1201 if (skb_shinfo(skb
)->frag_list
) {
1202 struct sk_buff
*list
= skb_shinfo(skb
)->frag_list
;
1204 for (; list
; list
= list
->next
) {
1208 BUG_TRAP(start
<= offset
+ len
);
1210 end
= start
+ list
->len
;
1211 if ((copy
= end
- offset
) > 0) {
1214 csum2
= skb_copy_and_csum_bits(list
,
1217 csum
= csum_block_add(csum
, csum2
, pos
);
1218 if ((len
-= copy
) == 0)
1232 void skb_copy_and_csum_dev(const struct sk_buff
*skb
, u8
*to
)
1237 if (skb
->ip_summed
== CHECKSUM_HW
)
1238 csstart
= skb
->h
.raw
- skb
->data
;
1240 csstart
= skb_headlen(skb
);
1242 if (csstart
> skb_headlen(skb
))
1245 memcpy(to
, skb
->data
, csstart
);
1248 if (csstart
!= skb
->len
)
1249 csum
= skb_copy_and_csum_bits(skb
, csstart
, to
+ csstart
,
1250 skb
->len
- csstart
, 0);
1252 if (skb
->ip_summed
== CHECKSUM_HW
) {
1253 long csstuff
= csstart
+ skb
->csum
;
1255 *((unsigned short *)(to
+ csstuff
)) = csum_fold(csum
);
1260 * skb_dequeue - remove from the head of the queue
1261 * @list: list to dequeue from
1263 * Remove the head of the list. The list lock is taken so the function
1264 * may be used safely with other locking list functions. The head item is
1265 * returned or %NULL if the list is empty.
1268 struct sk_buff
*skb_dequeue(struct sk_buff_head
*list
)
1270 unsigned long flags
;
1271 struct sk_buff
*result
;
1273 spin_lock_irqsave(&list
->lock
, flags
);
1274 result
= __skb_dequeue(list
);
1275 spin_unlock_irqrestore(&list
->lock
, flags
);
1280 * skb_dequeue_tail - remove from the tail of the queue
1281 * @list: list to dequeue from
1283 * Remove the tail of the list. The list lock is taken so the function
1284 * may be used safely with other locking list functions. The tail item is
1285 * returned or %NULL if the list is empty.
1287 struct sk_buff
*skb_dequeue_tail(struct sk_buff_head
*list
)
1289 unsigned long flags
;
1290 struct sk_buff
*result
;
1292 spin_lock_irqsave(&list
->lock
, flags
);
1293 result
= __skb_dequeue_tail(list
);
1294 spin_unlock_irqrestore(&list
->lock
, flags
);
1299 * skb_queue_purge - empty a list
1300 * @list: list to empty
1302 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1303 * the list and one reference dropped. This function takes the list
1304 * lock and is atomic with respect to other list locking functions.
1306 void skb_queue_purge(struct sk_buff_head
*list
)
1308 struct sk_buff
*skb
;
1309 while ((skb
= skb_dequeue(list
)) != NULL
)
1314 * skb_queue_head - queue a buffer at the list head
1315 * @list: list to use
1316 * @newsk: buffer to queue
1318 * Queue a buffer at the start of the list. This function takes the
1319 * list lock and can be used safely with other locking &sk_buff functions
1322 * A buffer cannot be placed on two lists at the same time.
1324 void skb_queue_head(struct sk_buff_head
*list
, struct sk_buff
*newsk
)
1326 unsigned long flags
;
1328 spin_lock_irqsave(&list
->lock
, flags
);
1329 __skb_queue_head(list
, newsk
);
1330 spin_unlock_irqrestore(&list
->lock
, flags
);
1334 * skb_queue_tail - queue a buffer at the list tail
1335 * @list: list to use
1336 * @newsk: buffer to queue
1338 * Queue a buffer at the tail of the list. This function takes the
1339 * list lock and can be used safely with other locking &sk_buff functions
1342 * A buffer cannot be placed on two lists at the same time.
1344 void skb_queue_tail(struct sk_buff_head
*list
, struct sk_buff
*newsk
)
1346 unsigned long flags
;
1348 spin_lock_irqsave(&list
->lock
, flags
);
1349 __skb_queue_tail(list
, newsk
);
1350 spin_unlock_irqrestore(&list
->lock
, flags
);
1353 * skb_unlink - remove a buffer from a list
1354 * @skb: buffer to remove
1356 * Place a packet after a given packet in a list. The list locks are taken
1357 * and this function is atomic with respect to other list locked calls
1359 * Works even without knowing the list it is sitting on, which can be
1360 * handy at times. It also means that THE LIST MUST EXIST when you
1361 * unlink. Thus a list must have its contents unlinked before it is
1364 void skb_unlink(struct sk_buff
*skb
)
1366 struct sk_buff_head
*list
= skb
->list
;
1369 unsigned long flags
;
1371 spin_lock_irqsave(&list
->lock
, flags
);
1372 if (skb
->list
== list
)
1373 __skb_unlink(skb
, skb
->list
);
1374 spin_unlock_irqrestore(&list
->lock
, flags
);
1380 * skb_append - append a buffer
1381 * @old: buffer to insert after
1382 * @newsk: buffer to insert
1384 * Place a packet after a given packet in a list. The list locks are taken
1385 * and this function is atomic with respect to other list locked calls.
1386 * A buffer cannot be placed on two lists at the same time.
1389 void skb_append(struct sk_buff
*old
, struct sk_buff
*newsk
)
1391 unsigned long flags
;
1393 spin_lock_irqsave(&old
->list
->lock
, flags
);
1394 __skb_append(old
, newsk
);
1395 spin_unlock_irqrestore(&old
->list
->lock
, flags
);
1400 * skb_insert - insert a buffer
1401 * @old: buffer to insert before
1402 * @newsk: buffer to insert
1404 * Place a packet before a given packet in a list. The list locks are taken
1405 * and this function is atomic with respect to other list locked calls
1406 * A buffer cannot be placed on two lists at the same time.
1409 void skb_insert(struct sk_buff
*old
, struct sk_buff
*newsk
)
1411 unsigned long flags
;
1413 spin_lock_irqsave(&old
->list
->lock
, flags
);
1414 __skb_insert(newsk
, old
->prev
, old
, old
->list
);
1415 spin_unlock_irqrestore(&old
->list
->lock
, flags
);
1420 * Tune the memory allocator for a new MTU size.
1422 void skb_add_mtu(int mtu
)
1424 /* Must match allocation in alloc_skb */
1425 mtu
= SKB_DATA_ALIGN(mtu
) + sizeof(struct skb_shared_info
);
1427 kmem_add_cache_size(mtu
);
1431 static inline void skb_split_inside_header(struct sk_buff
*skb
,
1432 struct sk_buff
* skb1
,
1433 const u32 len
, const int pos
)
1437 memcpy(skb_put(skb1
, pos
- len
), skb
->data
+ len
, pos
- len
);
1439 /* And move data appendix as is. */
1440 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++)
1441 skb_shinfo(skb1
)->frags
[i
] = skb_shinfo(skb
)->frags
[i
];
1443 skb_shinfo(skb1
)->nr_frags
= skb_shinfo(skb
)->nr_frags
;
1444 skb_shinfo(skb
)->nr_frags
= 0;
1445 skb1
->data_len
= skb
->data_len
;
1446 skb1
->len
+= skb1
->data_len
;
1449 skb
->tail
= skb
->data
+ len
;
1452 static inline void skb_split_no_header(struct sk_buff
*skb
,
1453 struct sk_buff
* skb1
,
1454 const u32 len
, int pos
)
1457 const int nfrags
= skb_shinfo(skb
)->nr_frags
;
1459 skb_shinfo(skb
)->nr_frags
= 0;
1460 skb1
->len
= skb1
->data_len
= skb
->len
- len
;
1462 skb
->data_len
= len
- pos
;
1464 for (i
= 0; i
< nfrags
; i
++) {
1465 int size
= skb_shinfo(skb
)->frags
[i
].size
;
1467 if (pos
+ size
> len
) {
1468 skb_shinfo(skb1
)->frags
[k
] = skb_shinfo(skb
)->frags
[i
];
1472 * We have two variants in this case:
1473 * 1. Move all the frag to the second
1474 * part, if it is possible. F.e.
1475 * this approach is mandatory for TUX,
1476 * where splitting is expensive.
1477 * 2. Split is accurately. We make this.
1479 get_page(skb_shinfo(skb
)->frags
[i
].page
);
1480 skb_shinfo(skb1
)->frags
[0].page_offset
+= len
- pos
;
1481 skb_shinfo(skb1
)->frags
[0].size
-= len
- pos
;
1482 skb_shinfo(skb
)->frags
[i
].size
= len
- pos
;
1483 skb_shinfo(skb
)->nr_frags
++;
1487 skb_shinfo(skb
)->nr_frags
++;
1490 skb_shinfo(skb1
)->nr_frags
= k
;
1494 * skb_split - Split fragmented skb to two parts at length len.
1495 * @skb: the buffer to split
1496 * @skb1: the buffer to receive the second part
1497 * @len: new length for skb
1499 void skb_split(struct sk_buff
*skb
, struct sk_buff
*skb1
, const u32 len
)
1501 int pos
= skb_headlen(skb
);
1503 if (len
< pos
) /* Split line is inside header. */
1504 skb_split_inside_header(skb
, skb1
, len
, pos
);
1505 else /* Second chunk has no header, nothing to copy. */
1506 skb_split_no_header(skb
, skb1
, len
, pos
);
1509 void __init
skb_init(void)
1511 skbuff_head_cache
= kmem_cache_create("skbuff_head_cache",
1512 sizeof(struct sk_buff
),
1516 if (!skbuff_head_cache
)
1517 panic("cannot create skbuff cache");
1520 EXPORT_SYMBOL(___pskb_trim
);
1521 EXPORT_SYMBOL(__kfree_skb
);
1522 EXPORT_SYMBOL(__pskb_pull_tail
);
1523 EXPORT_SYMBOL(alloc_skb
);
1524 EXPORT_SYMBOL(pskb_copy
);
1525 EXPORT_SYMBOL(pskb_expand_head
);
1526 EXPORT_SYMBOL(skb_checksum
);
1527 EXPORT_SYMBOL(skb_clone
);
1528 EXPORT_SYMBOL(skb_clone_fraglist
);
1529 EXPORT_SYMBOL(skb_copy
);
1530 EXPORT_SYMBOL(skb_copy_and_csum_bits
);
1531 EXPORT_SYMBOL(skb_copy_and_csum_dev
);
1532 EXPORT_SYMBOL(skb_copy_bits
);
1533 EXPORT_SYMBOL(skb_copy_expand
);
1534 EXPORT_SYMBOL(skb_over_panic
);
1535 EXPORT_SYMBOL(skb_pad
);
1536 EXPORT_SYMBOL(skb_realloc_headroom
);
1537 EXPORT_SYMBOL(skb_under_panic
);
1538 EXPORT_SYMBOL(skb_dequeue
);
1539 EXPORT_SYMBOL(skb_dequeue_tail
);
1540 EXPORT_SYMBOL(skb_insert
);
1541 EXPORT_SYMBOL(skb_queue_purge
);
1542 EXPORT_SYMBOL(skb_queue_head
);
1543 EXPORT_SYMBOL(skb_queue_tail
);
1544 EXPORT_SYMBOL(skb_unlink
);
1545 EXPORT_SYMBOL(skb_append
);
1546 EXPORT_SYMBOL(skb_split
);