2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * The Internet Protocol (IP) output module.
8 * Version: $Id: ip_output.c,v 1.100 2002/02/01 22:01:03 davem Exp $
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Donald Becker, <becker@super.org>
13 * Alan Cox, <Alan.Cox@linux.org>
15 * Stefan Becker, <stefanb@yello.ping.de>
16 * Jorge Cwik, <jorge@laser.satlink.net>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Hirokazu Takahashi, <taka@valinux.co.jp>
20 * See ip_input.c for original log
23 * Alan Cox : Missing nonblock feature in ip_build_xmit.
24 * Mike Kilburn : htons() missing in ip_build_xmit.
25 * Bradford Johnson: Fix faulty handling of some frames when
27 * Alexander Demenshin: Missing sk/skb free in ip_queue_xmit
28 * (in case if packet not accepted by
29 * output firewall rules)
30 * Mike McLagan : Routing by source
31 * Alexey Kuznetsov: use new route cache
32 * Andi Kleen: Fix broken PMTU recovery and remove
33 * some redundant tests.
34 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
35 * Andi Kleen : Replace ip_reply with ip_send_reply.
36 * Andi Kleen : Split fast and slow ip_build_xmit path
37 * for decreased register pressure on x86
38 * and more readibility.
39 * Marc Boucher : When call_out_firewall returns FW_QUEUE,
40 * silently drop skb instead of failing with -EPERM.
41 * Detlev Wengorz : Copy protocol for fragments.
42 * Hirokazu Takahashi: HW checksumming for outgoing UDP
44 * Hirokazu Takahashi: sendfile() on UDP works now.
47 #include <asm/uaccess.h>
48 #include <asm/system.h>
49 #include <linux/module.h>
50 #include <linux/types.h>
51 #include <linux/kernel.h>
52 #include <linux/sched.h>
54 #include <linux/string.h>
55 #include <linux/errno.h>
56 #include <linux/config.h>
58 #include <linux/socket.h>
59 #include <linux/sockios.h>
61 #include <linux/inet.h>
62 #include <linux/netdevice.h>
63 #include <linux/etherdevice.h>
64 #include <linux/proc_fs.h>
65 #include <linux/stat.h>
66 #include <linux/init.h>
70 #include <net/protocol.h>
71 #include <net/route.h>
74 #include <linux/skbuff.h>
79 #include <net/checksum.h>
80 #include <net/inetpeer.h>
81 #include <net/checksum.h>
82 #include <linux/igmp.h>
83 #include <linux/netfilter_ipv4.h>
84 #include <linux/netfilter_bridge.h>
85 #include <linux/mroute.h>
86 #include <linux/netlink.h>
89 * Shall we try to damage output packets if routing dev changes?
92 int sysctl_ip_dynaddr
;
93 int sysctl_ip_default_ttl
= IPDEFTTL
;
95 /* Generate a checksum for an outgoing IP datagram. */
96 __inline__
void ip_send_check(struct iphdr
*iph
)
99 iph
->check
= ip_fast_csum((unsigned char *)iph
, iph
->ihl
);
102 /* dev_loopback_xmit for use with netfilter. */
103 static int ip_dev_loopback_xmit(struct sk_buff
*newskb
)
105 newskb
->mac
.raw
= newskb
->data
;
106 __skb_pull(newskb
, newskb
->nh
.raw
- newskb
->data
);
107 newskb
->pkt_type
= PACKET_LOOPBACK
;
108 newskb
->ip_summed
= CHECKSUM_UNNECESSARY
;
109 BUG_TRAP(newskb
->dst
);
111 #ifdef CONFIG_NETFILTER_DEBUG
112 nf_debug_ip_loopback_xmit(newskb
);
119 static inline int ip_select_ttl(struct inet_sock
*inet
, struct dst_entry
*dst
)
121 int ttl
= inet
->uc_ttl
;
124 ttl
= dst_metric(dst
, RTAX_HOPLIMIT
);
129 * Add an ip header to a skbuff and send it out.
132 int ip_build_and_send_pkt(struct sk_buff
*skb
, struct sock
*sk
,
133 u32 saddr
, u32 daddr
, struct ip_options
*opt
)
135 struct inet_sock
*inet
= inet_sk(sk
);
136 struct rtable
*rt
= (struct rtable
*)skb
->dst
;
139 /* Build the IP header. */
141 iph
=(struct iphdr
*)skb_push(skb
,sizeof(struct iphdr
) + opt
->optlen
);
143 iph
=(struct iphdr
*)skb_push(skb
,sizeof(struct iphdr
));
147 iph
->tos
= inet
->tos
;
148 if (ip_dont_fragment(sk
, &rt
->u
.dst
))
149 iph
->frag_off
= htons(IP_DF
);
152 iph
->ttl
= ip_select_ttl(inet
, &rt
->u
.dst
);
153 iph
->daddr
= rt
->rt_dst
;
154 iph
->saddr
= rt
->rt_src
;
155 iph
->protocol
= sk
->sk_protocol
;
156 iph
->tot_len
= htons(skb
->len
);
157 ip_select_ident(iph
, &rt
->u
.dst
, sk
);
160 if (opt
&& opt
->optlen
) {
161 iph
->ihl
+= opt
->optlen
>>2;
162 ip_options_build(skb
, opt
, daddr
, rt
, 0);
166 skb
->priority
= sk
->sk_priority
;
169 return NF_HOOK(PF_INET
, NF_IP_LOCAL_OUT
, skb
, NULL
, rt
->u
.dst
.dev
,
173 static inline int ip_finish_output2(struct sk_buff
*skb
)
175 struct dst_entry
*dst
= skb
->dst
;
176 struct hh_cache
*hh
= dst
->hh
;
177 struct net_device
*dev
= dst
->dev
;
178 int hh_len
= LL_RESERVED_SPACE(dev
);
180 /* Be paranoid, rather than too clever. */
181 if (unlikely(skb_headroom(skb
) < hh_len
&& dev
->hard_header
)) {
182 struct sk_buff
*skb2
;
184 skb2
= skb_realloc_headroom(skb
, LL_RESERVED_SPACE(dev
));
190 skb_set_owner_w(skb2
, skb
->sk
);
195 #ifdef CONFIG_NETFILTER_DEBUG
196 nf_debug_ip_finish_output2(skb
);
197 #endif /*CONFIG_NETFILTER_DEBUG*/
204 read_lock_bh(&hh
->hh_lock
);
205 hh_alen
= HH_DATA_ALIGN(hh
->hh_len
);
206 memcpy(skb
->data
- hh_alen
, hh
->hh_data
, hh_alen
);
207 read_unlock_bh(&hh
->hh_lock
);
208 skb_push(skb
, hh
->hh_len
);
209 return hh
->hh_output(skb
);
210 } else if (dst
->neighbour
)
211 return dst
->neighbour
->output(skb
);
214 printk(KERN_DEBUG
"ip_finish_output2: No header cache and no neighbour!\n");
219 int ip_finish_output(struct sk_buff
*skb
)
221 struct net_device
*dev
= skb
->dst
->dev
;
224 skb
->protocol
= htons(ETH_P_IP
);
226 return NF_HOOK(PF_INET
, NF_IP_POST_ROUTING
, skb
, NULL
, dev
,
230 int ip_mc_output(struct sk_buff
*skb
)
232 struct sock
*sk
= skb
->sk
;
233 struct rtable
*rt
= (struct rtable
*)skb
->dst
;
234 struct net_device
*dev
= rt
->u
.dst
.dev
;
237 * If the indicated interface is up and running, send the packet.
239 IP_INC_STATS(IPSTATS_MIB_OUTREQUESTS
);
242 skb
->protocol
= htons(ETH_P_IP
);
245 * Multicasts are looped back for other local users
248 if (rt
->rt_flags
&RTCF_MULTICAST
) {
249 if ((!sk
|| inet_sk(sk
)->mc_loop
)
250 #ifdef CONFIG_IP_MROUTE
251 /* Small optimization: do not loopback not local frames,
252 which returned after forwarding; they will be dropped
253 by ip_mr_input in any case.
254 Note, that local frames are looped back to be delivered
257 This check is duplicated in ip_mr_input at the moment.
259 && ((rt
->rt_flags
&RTCF_LOCAL
) || !(IPCB(skb
)->flags
&IPSKB_FORWARDED
))
262 struct sk_buff
*newskb
= skb_clone(skb
, GFP_ATOMIC
);
264 NF_HOOK(PF_INET
, NF_IP_POST_ROUTING
, newskb
, NULL
,
266 ip_dev_loopback_xmit
);
269 /* Multicasts with ttl 0 must not go beyond the host */
271 if (skb
->nh
.iph
->ttl
== 0) {
277 if (rt
->rt_flags
&RTCF_BROADCAST
) {
278 struct sk_buff
*newskb
= skb_clone(skb
, GFP_ATOMIC
);
280 NF_HOOK(PF_INET
, NF_IP_POST_ROUTING
, newskb
, NULL
,
281 newskb
->dev
, ip_dev_loopback_xmit
);
284 if (skb
->len
> dst_mtu(&rt
->u
.dst
))
285 return ip_fragment(skb
, ip_finish_output
);
287 return ip_finish_output(skb
);
290 int ip_output(struct sk_buff
*skb
)
292 IP_INC_STATS(IPSTATS_MIB_OUTREQUESTS
);
294 if (skb
->len
> dst_mtu(skb
->dst
) && !skb_shinfo(skb
)->tso_size
)
295 return ip_fragment(skb
, ip_finish_output
);
297 return ip_finish_output(skb
);
300 int ip_queue_xmit(struct sk_buff
*skb
, int ipfragok
)
302 struct sock
*sk
= skb
->sk
;
303 struct inet_sock
*inet
= inet_sk(sk
);
304 struct ip_options
*opt
= inet
->opt
;
308 /* Skip all of this if the packet is already routed,
309 * f.e. by something like SCTP.
311 rt
= (struct rtable
*) skb
->dst
;
315 /* Make sure we can route this packet. */
316 rt
= (struct rtable
*)__sk_dst_check(sk
, 0);
320 /* Use correct destination address if we have options. */
326 struct flowi fl
= { .oif
= sk
->sk_bound_dev_if
,
329 .saddr
= inet
->saddr
,
330 .tos
= RT_CONN_FLAGS(sk
) } },
331 .proto
= sk
->sk_protocol
,
333 { .sport
= inet
->sport
,
334 .dport
= inet
->dport
} } };
336 /* If this fails, retransmit mechanism of transport layer will
337 * keep trying until route appears or the connection times
340 if (ip_route_output_flow(&rt
, &fl
, sk
, 0))
343 __sk_dst_set(sk
, &rt
->u
.dst
);
344 tcp_v4_setup_caps(sk
, &rt
->u
.dst
);
346 skb
->dst
= dst_clone(&rt
->u
.dst
);
349 if (opt
&& opt
->is_strictroute
&& rt
->rt_dst
!= rt
->rt_gateway
)
352 /* OK, we know where to send it, allocate and build IP header. */
353 iph
= (struct iphdr
*) skb_push(skb
, sizeof(struct iphdr
) + (opt
? opt
->optlen
: 0));
354 *((__u16
*)iph
) = htons((4 << 12) | (5 << 8) | (inet
->tos
& 0xff));
355 iph
->tot_len
= htons(skb
->len
);
356 if (ip_dont_fragment(sk
, &rt
->u
.dst
) && !ipfragok
)
357 iph
->frag_off
= htons(IP_DF
);
360 iph
->ttl
= ip_select_ttl(inet
, &rt
->u
.dst
);
361 iph
->protocol
= sk
->sk_protocol
;
362 iph
->saddr
= rt
->rt_src
;
363 iph
->daddr
= rt
->rt_dst
;
365 /* Transport layer set skb->h.foo itself. */
367 if (opt
&& opt
->optlen
) {
368 iph
->ihl
+= opt
->optlen
>> 2;
369 ip_options_build(skb
, opt
, inet
->daddr
, rt
, 0);
372 ip_select_ident_more(iph
, &rt
->u
.dst
, sk
, skb_shinfo(skb
)->tso_segs
);
374 /* Add an IP checksum. */
377 skb
->priority
= sk
->sk_priority
;
379 return NF_HOOK(PF_INET
, NF_IP_LOCAL_OUT
, skb
, NULL
, rt
->u
.dst
.dev
,
383 IP_INC_STATS(IPSTATS_MIB_OUTNOROUTES
);
385 return -EHOSTUNREACH
;
389 static void ip_copy_metadata(struct sk_buff
*to
, struct sk_buff
*from
)
391 to
->pkt_type
= from
->pkt_type
;
392 to
->priority
= from
->priority
;
393 to
->protocol
= from
->protocol
;
394 to
->security
= from
->security
;
395 dst_release(to
->dst
);
396 to
->dst
= dst_clone(from
->dst
);
399 /* Copy the flags to each fragment. */
400 IPCB(to
)->flags
= IPCB(from
)->flags
;
402 #ifdef CONFIG_NET_SCHED
403 to
->tc_index
= from
->tc_index
;
405 #ifdef CONFIG_NETFILTER
406 to
->nfmark
= from
->nfmark
;
407 to
->nfcache
= from
->nfcache
;
408 /* Connection association is same as pre-frag packet */
409 nf_conntrack_put(to
->nfct
);
410 to
->nfct
= from
->nfct
;
411 nf_conntrack_get(to
->nfct
);
412 to
->nfctinfo
= from
->nfctinfo
;
413 #ifdef CONFIG_BRIDGE_NETFILTER
414 nf_bridge_put(to
->nf_bridge
);
415 to
->nf_bridge
= from
->nf_bridge
;
416 nf_bridge_get(to
->nf_bridge
);
418 #ifdef CONFIG_NETFILTER_DEBUG
419 to
->nf_debug
= from
->nf_debug
;
425 * This IP datagram is too large to be sent in one piece. Break it up into
426 * smaller pieces (each of size equal to IP header plus
427 * a block of the data of the original IP data part) that will yet fit in a
428 * single device frame, and queue such a frame for sending.
431 int ip_fragment(struct sk_buff
*skb
, int (*output
)(struct sk_buff
*))
436 struct net_device
*dev
;
437 struct sk_buff
*skb2
;
438 unsigned int mtu
, hlen
, left
, len
, ll_rs
;
441 struct rtable
*rt
= (struct rtable
*)skb
->dst
;
447 * Point into the IP datagram header.
452 if (unlikely((iph
->frag_off
& htons(IP_DF
)) && !skb
->local_df
)) {
453 icmp_send(skb
, ICMP_DEST_UNREACH
, ICMP_FRAG_NEEDED
,
454 htonl(dst_mtu(&rt
->u
.dst
)));
460 * Setup starting values.
464 mtu
= dst_mtu(&rt
->u
.dst
) - hlen
; /* Size of data space */
466 /* When frag_list is given, use it. First, check its validity:
467 * some transformers could create wrong frag_list or break existing
468 * one, it is not prohibited. In this case fall back to copying.
470 * LATER: this step can be merged to real generation of fragments,
471 * we can switch to copy when see the first bad fragment.
473 if (skb_shinfo(skb
)->frag_list
) {
474 struct sk_buff
*frag
;
475 int first_len
= skb_pagelen(skb
);
477 if (first_len
- hlen
> mtu
||
478 ((first_len
- hlen
) & 7) ||
479 (iph
->frag_off
& htons(IP_MF
|IP_OFFSET
)) ||
483 for (frag
= skb_shinfo(skb
)->frag_list
; frag
; frag
= frag
->next
) {
484 /* Correct geometry. */
485 if (frag
->len
> mtu
||
486 ((frag
->len
& 7) && frag
->next
) ||
487 skb_headroom(frag
) < hlen
)
490 /* Partially cloned skb? */
491 if (skb_shared(frag
))
495 /* Everything is OK. Generate! */
499 frag
= skb_shinfo(skb
)->frag_list
;
500 skb_shinfo(skb
)->frag_list
= NULL
;
501 skb
->data_len
= first_len
- skb_headlen(skb
);
502 skb
->len
= first_len
;
503 iph
->tot_len
= htons(first_len
);
504 iph
->frag_off
= htons(IP_MF
);
508 /* Prepare header of the next frame,
509 * before previous one went down. */
511 frag
->ip_summed
= CHECKSUM_NONE
;
512 frag
->h
.raw
= frag
->data
;
513 frag
->nh
.raw
= __skb_push(frag
, hlen
);
514 memcpy(frag
->nh
.raw
, iph
, hlen
);
516 iph
->tot_len
= htons(frag
->len
);
517 ip_copy_metadata(frag
, skb
);
519 ip_options_fragment(frag
);
520 offset
+= skb
->len
- hlen
;
521 iph
->frag_off
= htons(offset
>>3);
522 if (frag
->next
!= NULL
)
523 iph
->frag_off
|= htons(IP_MF
);
524 /* Ready, complete checksum */
539 IP_INC_STATS(IPSTATS_MIB_FRAGOKS
);
548 IP_INC_STATS(IPSTATS_MIB_FRAGFAILS
);
553 left
= skb
->len
- hlen
; /* Space per frame */
554 ptr
= raw
+ hlen
; /* Where to start from */
556 #ifdef CONFIG_BRIDGE_NETFILTER
557 /* for bridged IP traffic encapsulated inside f.e. a vlan header,
558 * we need to make room for the encapsulating header */
559 ll_rs
= LL_RESERVED_SPACE_EXTRA(rt
->u
.dst
.dev
, nf_bridge_pad(skb
));
560 mtu
-= nf_bridge_pad(skb
);
562 ll_rs
= LL_RESERVED_SPACE(rt
->u
.dst
.dev
);
565 * Fragment the datagram.
568 offset
= (ntohs(iph
->frag_off
) & IP_OFFSET
) << 3;
569 not_last_frag
= iph
->frag_off
& htons(IP_MF
);
572 * Keep copying data until we run out.
577 /* IF: it doesn't fit, use 'mtu' - the data space left */
580 /* IF: we are not sending upto and including the packet end
581 then align the next start on an eight byte boundary */
589 if ((skb2
= alloc_skb(len
+hlen
+ll_rs
, GFP_ATOMIC
)) == NULL
) {
590 NETDEBUG(printk(KERN_INFO
"IP: frag: no memory for new fragment!\n"));
596 * Set up data on packet
599 ip_copy_metadata(skb2
, skb
);
600 skb_reserve(skb2
, ll_rs
);
601 skb_put(skb2
, len
+ hlen
);
602 skb2
->nh
.raw
= skb2
->data
;
603 skb2
->h
.raw
= skb2
->data
+ hlen
;
606 * Charge the memory for the fragment to any owner
611 skb_set_owner_w(skb2
, skb
->sk
);
614 * Copy the packet header into the new buffer.
617 memcpy(skb2
->nh
.raw
, skb
->data
, hlen
);
620 * Copy a block of the IP datagram.
622 if (skb_copy_bits(skb
, ptr
, skb2
->h
.raw
, len
))
627 * Fill in the new header fields.
630 iph
->frag_off
= htons((offset
>> 3));
632 /* ANK: dirty, but effective trick. Upgrade options only if
633 * the segment to be fragmented was THE FIRST (otherwise,
634 * options are already fixed) and make it ONCE
635 * on the initial skb, so that all the following fragments
636 * will inherit fixed options.
639 ip_options_fragment(skb
);
642 * Added AC : If we are fragmenting a fragment that's not the
643 * last fragment then keep MF on each bit
645 if (left
> 0 || not_last_frag
)
646 iph
->frag_off
|= htons(IP_MF
);
651 * Put this fragment into the sending queue.
654 IP_INC_STATS(IPSTATS_MIB_FRAGCREATES
);
656 iph
->tot_len
= htons(len
+ hlen
);
665 IP_INC_STATS(IPSTATS_MIB_FRAGOKS
);
670 IP_INC_STATS(IPSTATS_MIB_FRAGFAILS
);
675 ip_generic_getfrag(void *from
, char *to
, int offset
, int len
, int odd
, struct sk_buff
*skb
)
677 struct iovec
*iov
= from
;
679 if (skb
->ip_summed
== CHECKSUM_HW
) {
680 if (memcpy_fromiovecend(to
, iov
, offset
, len
) < 0)
683 unsigned int csum
= 0;
684 if (csum_partial_copy_fromiovecend(to
, iov
, offset
, len
, &csum
) < 0)
686 skb
->csum
= csum_block_add(skb
->csum
, csum
, odd
);
691 static inline unsigned int
692 csum_page(struct page
*page
, int offset
, int copy
)
697 csum
= csum_partial(kaddr
+ offset
, copy
, 0);
703 * ip_append_data() and ip_append_page() can make one large IP datagram
704 * from many pieces of data. Each pieces will be holded on the socket
705 * until ip_push_pending_frames() is called. Each piece can be a page
708 * Not only UDP, other transport protocols - e.g. raw sockets - can use
709 * this interface potentially.
711 * LATER: length must be adjusted by pad at tail, when it is required.
713 int ip_append_data(struct sock
*sk
,
714 int getfrag(void *from
, char *to
, int offset
, int len
,
715 int odd
, struct sk_buff
*skb
),
716 void *from
, int length
, int transhdrlen
,
717 struct ipcm_cookie
*ipc
, struct rtable
*rt
,
720 struct inet_sock
*inet
= inet_sk(sk
);
723 struct ip_options
*opt
= NULL
;
730 unsigned int maxfraglen
, fragheaderlen
;
731 int csummode
= CHECKSUM_NONE
;
736 if (skb_queue_empty(&sk
->sk_write_queue
)) {
742 if (inet
->cork
.opt
== NULL
) {
743 inet
->cork
.opt
= kmalloc(sizeof(struct ip_options
) + 40, sk
->sk_allocation
);
744 if (unlikely(inet
->cork
.opt
== NULL
))
747 memcpy(inet
->cork
.opt
, opt
, sizeof(struct ip_options
)+opt
->optlen
);
748 inet
->cork
.flags
|= IPCORK_OPT
;
749 inet
->cork
.addr
= ipc
->addr
;
751 dst_hold(&rt
->u
.dst
);
752 inet
->cork
.fragsize
= mtu
= dst_mtu(rt
->u
.dst
.path
);
754 inet
->cork
.length
= 0;
755 sk
->sk_sndmsg_page
= NULL
;
756 sk
->sk_sndmsg_off
= 0;
757 if ((exthdrlen
= rt
->u
.dst
.header_len
) != 0) {
759 transhdrlen
+= exthdrlen
;
763 if (inet
->cork
.flags
& IPCORK_OPT
)
764 opt
= inet
->cork
.opt
;
768 mtu
= inet
->cork
.fragsize
;
770 hh_len
= LL_RESERVED_SPACE(rt
->u
.dst
.dev
);
772 fragheaderlen
= sizeof(struct iphdr
) + (opt
? opt
->optlen
: 0);
773 maxfraglen
= ((mtu
- fragheaderlen
) & ~7) + fragheaderlen
;
775 if (inet
->cork
.length
+ length
> 0xFFFF - fragheaderlen
) {
776 ip_local_error(sk
, EMSGSIZE
, rt
->rt_dst
, inet
->dport
, mtu
-exthdrlen
);
781 * transhdrlen > 0 means that this is the first fragment and we wish
782 * it won't be fragmented in the future.
785 length
+ fragheaderlen
<= mtu
&&
786 rt
->u
.dst
.dev
->features
&(NETIF_F_IP_CSUM
|NETIF_F_NO_CSUM
|NETIF_F_HW_CSUM
) &&
788 csummode
= CHECKSUM_HW
;
790 inet
->cork
.length
+= length
;
792 /* So, what's going on in the loop below?
794 * We use calculated fragment length to generate chained skb,
795 * each of segments is IP fragment ready for sending to network after
796 * adding appropriate IP header.
799 if ((skb
= skb_peek_tail(&sk
->sk_write_queue
)) == NULL
)
803 /* Check if the remaining data fits into current packet. */
804 copy
= mtu
- skb
->len
;
806 copy
= maxfraglen
- skb
->len
;
809 unsigned int datalen
;
810 unsigned int fraglen
;
811 unsigned int fraggap
;
812 unsigned int alloclen
;
813 struct sk_buff
*skb_prev
;
817 fraggap
= skb_prev
->len
- maxfraglen
;
822 * If remaining data exceeds the mtu,
823 * we know we need more fragment(s).
825 datalen
= length
+ fraggap
;
826 if (datalen
> mtu
- fragheaderlen
)
827 datalen
= maxfraglen
- fragheaderlen
;
828 fraglen
= datalen
+ fragheaderlen
;
830 if ((flags
& MSG_MORE
) &&
831 !(rt
->u
.dst
.dev
->features
&NETIF_F_SG
))
834 alloclen
= datalen
+ fragheaderlen
;
836 /* The last fragment gets additional space at tail.
837 * Note, with MSG_MORE we overallocate on fragments,
838 * because we have no idea what fragment will be
841 if (datalen
== length
)
842 alloclen
+= rt
->u
.dst
.trailer_len
;
845 skb
= sock_alloc_send_skb(sk
,
846 alloclen
+ hh_len
+ 15,
847 (flags
& MSG_DONTWAIT
), &err
);
850 if (atomic_read(&sk
->sk_wmem_alloc
) <=
852 skb
= sock_wmalloc(sk
,
853 alloclen
+ hh_len
+ 15, 1,
855 if (unlikely(skb
== NULL
))
862 * Fill in the control structures
864 skb
->ip_summed
= csummode
;
866 skb_reserve(skb
, hh_len
);
869 * Find where to start putting bytes.
871 data
= skb_put(skb
, fraglen
);
872 skb
->nh
.raw
= data
+ exthdrlen
;
873 data
+= fragheaderlen
;
874 skb
->h
.raw
= data
+ exthdrlen
;
877 skb
->csum
= skb_copy_and_csum_bits(
878 skb_prev
, maxfraglen
,
879 data
+ transhdrlen
, fraggap
, 0);
880 skb_prev
->csum
= csum_sub(skb_prev
->csum
,
883 skb_trim(skb_prev
, maxfraglen
);
886 copy
= datalen
- transhdrlen
- fraggap
;
887 if (copy
> 0 && getfrag(from
, data
+ transhdrlen
, offset
, copy
, fraggap
, skb
) < 0) {
894 length
-= datalen
- fraggap
;
897 csummode
= CHECKSUM_NONE
;
900 * Put the packet on the pending queue.
902 __skb_queue_tail(&sk
->sk_write_queue
, skb
);
909 if (!(rt
->u
.dst
.dev
->features
&NETIF_F_SG
)) {
913 if (getfrag(from
, skb_put(skb
, copy
),
914 offset
, copy
, off
, skb
) < 0) {
915 __skb_trim(skb
, off
);
920 int i
= skb_shinfo(skb
)->nr_frags
;
921 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
-1];
922 struct page
*page
= sk
->sk_sndmsg_page
;
923 int off
= sk
->sk_sndmsg_off
;
926 if (page
&& (left
= PAGE_SIZE
- off
) > 0) {
929 if (page
!= frag
->page
) {
930 if (i
== MAX_SKB_FRAGS
) {
935 skb_fill_page_desc(skb
, i
, page
, sk
->sk_sndmsg_off
, 0);
936 frag
= &skb_shinfo(skb
)->frags
[i
];
938 } else if (i
< MAX_SKB_FRAGS
) {
939 if (copy
> PAGE_SIZE
)
941 page
= alloc_pages(sk
->sk_allocation
, 0);
946 sk
->sk_sndmsg_page
= page
;
947 sk
->sk_sndmsg_off
= 0;
949 skb_fill_page_desc(skb
, i
, page
, 0, 0);
950 frag
= &skb_shinfo(skb
)->frags
[i
];
951 skb
->truesize
+= PAGE_SIZE
;
952 atomic_add(PAGE_SIZE
, &sk
->sk_wmem_alloc
);
957 if (getfrag(from
, page_address(frag
->page
)+frag
->page_offset
+frag
->size
, offset
, copy
, skb
->len
, skb
) < 0) {
961 sk
->sk_sndmsg_off
+= copy
;
964 skb
->data_len
+= copy
;
973 inet
->cork
.length
-= length
;
974 IP_INC_STATS(IPSTATS_MIB_OUTDISCARDS
);
978 ssize_t
ip_append_page(struct sock
*sk
, struct page
*page
,
979 int offset
, size_t size
, int flags
)
981 struct inet_sock
*inet
= inet_sk(sk
);
984 struct ip_options
*opt
= NULL
;
989 unsigned int maxfraglen
, fragheaderlen
, fraggap
;
997 if (skb_queue_empty(&sk
->sk_write_queue
))
1001 if (inet
->cork
.flags
& IPCORK_OPT
)
1002 opt
= inet
->cork
.opt
;
1004 if (!(rt
->u
.dst
.dev
->features
&NETIF_F_SG
))
1007 hh_len
= LL_RESERVED_SPACE(rt
->u
.dst
.dev
);
1008 mtu
= inet
->cork
.fragsize
;
1010 fragheaderlen
= sizeof(struct iphdr
) + (opt
? opt
->optlen
: 0);
1011 maxfraglen
= ((mtu
- fragheaderlen
) & ~7) + fragheaderlen
;
1013 if (inet
->cork
.length
+ size
> 0xFFFF - fragheaderlen
) {
1014 ip_local_error(sk
, EMSGSIZE
, rt
->rt_dst
, inet
->dport
, mtu
);
1018 if ((skb
= skb_peek_tail(&sk
->sk_write_queue
)) == NULL
)
1021 inet
->cork
.length
+= size
;
1026 /* Check if the remaining data fits into current packet. */
1027 len
= mtu
- skb
->len
;
1029 len
= maxfraglen
- skb
->len
;
1031 struct sk_buff
*skb_prev
;
1038 fraggap
= skb_prev
->len
- maxfraglen
;
1042 alloclen
= fragheaderlen
+ hh_len
+ fraggap
+ 15;
1043 skb
= sock_wmalloc(sk
, alloclen
, 1, sk
->sk_allocation
);
1044 if (unlikely(!skb
)) {
1050 * Fill in the control structures
1052 skb
->ip_summed
= CHECKSUM_NONE
;
1054 skb_reserve(skb
, hh_len
);
1057 * Find where to start putting bytes.
1059 data
= skb_put(skb
, fragheaderlen
+ fraggap
);
1060 skb
->nh
.iph
= iph
= (struct iphdr
*)data
;
1061 data
+= fragheaderlen
;
1065 skb
->csum
= skb_copy_and_csum_bits(
1066 skb_prev
, maxfraglen
,
1068 skb_prev
->csum
= csum_sub(skb_prev
->csum
,
1070 skb_trim(skb_prev
, maxfraglen
);
1074 * Put the packet on the pending queue.
1076 __skb_queue_tail(&sk
->sk_write_queue
, skb
);
1080 i
= skb_shinfo(skb
)->nr_frags
;
1083 if (skb_can_coalesce(skb
, i
, page
, offset
)) {
1084 skb_shinfo(skb
)->frags
[i
-1].size
+= len
;
1085 } else if (i
< MAX_SKB_FRAGS
) {
1087 skb_fill_page_desc(skb
, i
, page
, offset
, len
);
1093 if (skb
->ip_summed
== CHECKSUM_NONE
) {
1095 csum
= csum_page(page
, offset
, len
);
1096 skb
->csum
= csum_block_add(skb
->csum
, csum
, skb
->len
);
1100 skb
->data_len
+= len
;
1107 inet
->cork
.length
-= size
;
1108 IP_INC_STATS(IPSTATS_MIB_OUTDISCARDS
);
1113 * Combined all pending IP fragments on the socket as one IP datagram
1114 * and push them out.
1116 int ip_push_pending_frames(struct sock
*sk
)
1118 struct sk_buff
*skb
, *tmp_skb
;
1119 struct sk_buff
**tail_skb
;
1120 struct inet_sock
*inet
= inet_sk(sk
);
1121 struct ip_options
*opt
= NULL
;
1122 struct rtable
*rt
= inet
->cork
.rt
;
1128 if ((skb
= __skb_dequeue(&sk
->sk_write_queue
)) == NULL
)
1130 tail_skb
= &(skb_shinfo(skb
)->frag_list
);
1132 /* move skb->data to ip header from ext header */
1133 if (skb
->data
< skb
->nh
.raw
)
1134 __skb_pull(skb
, skb
->nh
.raw
- skb
->data
);
1135 while ((tmp_skb
= __skb_dequeue(&sk
->sk_write_queue
)) != NULL
) {
1136 __skb_pull(tmp_skb
, skb
->h
.raw
- skb
->nh
.raw
);
1137 *tail_skb
= tmp_skb
;
1138 tail_skb
= &(tmp_skb
->next
);
1139 skb
->len
+= tmp_skb
->len
;
1140 skb
->data_len
+= tmp_skb
->len
;
1141 skb
->truesize
+= tmp_skb
->truesize
;
1142 __sock_put(tmp_skb
->sk
);
1143 tmp_skb
->destructor
= NULL
;
1147 /* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow
1148 * to fragment the frame generated here. No matter, what transforms
1149 * how transforms change size of the packet, it will come out.
1151 if (inet
->pmtudisc
!= IP_PMTUDISC_DO
)
1154 /* DF bit is set when we want to see DF on outgoing frames.
1155 * If local_df is set too, we still allow to fragment this frame
1157 if (inet
->pmtudisc
== IP_PMTUDISC_DO
||
1158 (skb
->len
<= dst_mtu(&rt
->u
.dst
) &&
1159 ip_dont_fragment(sk
, &rt
->u
.dst
)))
1162 if (inet
->cork
.flags
& IPCORK_OPT
)
1163 opt
= inet
->cork
.opt
;
1165 if (rt
->rt_type
== RTN_MULTICAST
)
1168 ttl
= ip_select_ttl(inet
, &rt
->u
.dst
);
1170 iph
= (struct iphdr
*)skb
->data
;
1174 iph
->ihl
+= opt
->optlen
>>2;
1175 ip_options_build(skb
, opt
, inet
->cork
.addr
, rt
, 0);
1177 iph
->tos
= inet
->tos
;
1178 iph
->tot_len
= htons(skb
->len
);
1181 __ip_select_ident(iph
, &rt
->u
.dst
, 0);
1183 iph
->id
= htons(inet
->id
++);
1186 iph
->protocol
= sk
->sk_protocol
;
1187 iph
->saddr
= rt
->rt_src
;
1188 iph
->daddr
= rt
->rt_dst
;
1191 skb
->priority
= sk
->sk_priority
;
1192 skb
->dst
= dst_clone(&rt
->u
.dst
);
1194 /* Netfilter gets whole the not fragmented skb. */
1195 err
= NF_HOOK(PF_INET
, NF_IP_LOCAL_OUT
, skb
, NULL
,
1196 skb
->dst
->dev
, dst_output
);
1199 err
= inet
->recverr
? net_xmit_errno(err
) : 0;
1205 inet
->cork
.flags
&= ~IPCORK_OPT
;
1206 if (inet
->cork
.opt
) {
1207 kfree(inet
->cork
.opt
);
1208 inet
->cork
.opt
= NULL
;
1210 if (inet
->cork
.rt
) {
1211 ip_rt_put(inet
->cork
.rt
);
1212 inet
->cork
.rt
= NULL
;
1217 IP_INC_STATS(IPSTATS_MIB_OUTDISCARDS
);
1222 * Throw away all pending data on the socket.
1224 void ip_flush_pending_frames(struct sock
*sk
)
1226 struct inet_sock
*inet
= inet_sk(sk
);
1227 struct sk_buff
*skb
;
1229 while ((skb
= __skb_dequeue_tail(&sk
->sk_write_queue
)) != NULL
)
1232 inet
->cork
.flags
&= ~IPCORK_OPT
;
1233 if (inet
->cork
.opt
) {
1234 kfree(inet
->cork
.opt
);
1235 inet
->cork
.opt
= NULL
;
1237 if (inet
->cork
.rt
) {
1238 ip_rt_put(inet
->cork
.rt
);
1239 inet
->cork
.rt
= NULL
;
1245 * Fetch data from kernel space and fill in checksum if needed.
1247 static int ip_reply_glue_bits(void *dptr
, char *to
, int offset
,
1248 int len
, int odd
, struct sk_buff
*skb
)
1252 csum
= csum_partial_copy_nocheck(dptr
+offset
, to
, len
, 0);
1253 skb
->csum
= csum_block_add(skb
->csum
, csum
, odd
);
1258 * Generic function to send a packet as reply to another packet.
1259 * Used to send TCP resets so far. ICMP should use this function too.
1261 * Should run single threaded per socket because it uses the sock
1262 * structure to pass arguments.
1264 * LATER: switch from ip_build_xmit to ip_append_*
1266 void ip_send_reply(struct sock
*sk
, struct sk_buff
*skb
, struct ip_reply_arg
*arg
,
1269 struct inet_sock
*inet
= inet_sk(sk
);
1271 struct ip_options opt
;
1274 struct ipcm_cookie ipc
;
1276 struct rtable
*rt
= (struct rtable
*)skb
->dst
;
1278 if (ip_options_echo(&replyopts
.opt
, skb
))
1281 daddr
= ipc
.addr
= rt
->rt_src
;
1284 if (replyopts
.opt
.optlen
) {
1285 ipc
.opt
= &replyopts
.opt
;
1288 daddr
= replyopts
.opt
.faddr
;
1292 struct flowi fl
= { .nl_u
= { .ip4_u
=
1294 .saddr
= rt
->rt_spec_dst
,
1295 .tos
= RT_TOS(skb
->nh
.iph
->tos
) } },
1296 /* Not quite clean, but right. */
1298 { .sport
= skb
->h
.th
->dest
,
1299 .dport
= skb
->h
.th
->source
} },
1300 .proto
= sk
->sk_protocol
};
1301 if (ip_route_output_key(&rt
, &fl
))
1305 /* And let IP do all the hard work.
1307 This chunk is not reenterable, hence spinlock.
1308 Note that it uses the fact, that this function is called
1309 with locally disabled BH and that sk cannot be already spinlocked.
1312 inet
->tos
= skb
->nh
.iph
->tos
;
1313 sk
->sk_priority
= skb
->priority
;
1314 sk
->sk_protocol
= skb
->nh
.iph
->protocol
;
1315 ip_append_data(sk
, ip_reply_glue_bits
, arg
->iov
->iov_base
, len
, 0,
1316 &ipc
, rt
, MSG_DONTWAIT
);
1317 if ((skb
= skb_peek(&sk
->sk_write_queue
)) != NULL
) {
1318 if (arg
->csumoffset
>= 0)
1319 *((u16
*)skb
->h
.raw
+ arg
->csumoffset
) = csum_fold(csum_add(skb
->csum
, arg
->csum
));
1320 skb
->ip_summed
= CHECKSUM_NONE
;
1321 ip_push_pending_frames(sk
);
1330 * IP protocol layer initialiser
1333 static struct packet_type ip_packet_type
= {
1334 .type
= __constant_htons(ETH_P_IP
),
1339 * IP registers the packet type and then calls the subprotocol initialisers
1342 void __init
ip_init(void)
1344 dev_add_pack(&ip_packet_type
);
1349 #if defined(CONFIG_IP_MULTICAST) && defined(CONFIG_PROC_FS)
1350 igmp_mc_proc_init();
1354 EXPORT_SYMBOL(ip_finish_output
);
1355 EXPORT_SYMBOL(ip_fragment
);
1356 EXPORT_SYMBOL(ip_generic_getfrag
);
1357 EXPORT_SYMBOL(ip_queue_xmit
);
1358 EXPORT_SYMBOL(ip_send_check
);
1360 #ifdef CONFIG_SYSCTL
1361 EXPORT_SYMBOL(sysctl_ip_default_ttl
);