[TG3]: Set minimal hw interrupt mitigation.
[linux-2.6/verdex.git] / net / irda / af_irda.c
blob92c6e8d4e731b196a58af56ab5803723db63f2e1
1 /*********************************************************************
3 * Filename: af_irda.c
4 * Version: 0.9
5 * Description: IrDA sockets implementation
6 * Status: Stable
7 * Author: Dag Brattli <dagb@cs.uit.no>
8 * Created at: Sun May 31 10:12:43 1998
9 * Modified at: Sat Dec 25 21:10:23 1999
10 * Modified by: Dag Brattli <dag@brattli.net>
11 * Sources: af_netroom.c, af_ax25.c, af_rose.c, af_x25.c etc.
13 * Copyright (c) 1999 Dag Brattli <dagb@cs.uit.no>
14 * Copyright (c) 1999-2003 Jean Tourrilhes <jt@hpl.hp.com>
15 * All Rights Reserved.
17 * This program is free software; you can redistribute it and/or
18 * modify it under the terms of the GNU General Public License as
19 * published by the Free Software Foundation; either version 2 of
20 * the License, or (at your option) any later version.
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
27 * You should have received a copy of the GNU General Public License
28 * along with this program; if not, write to the Free Software
29 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
30 * MA 02111-1307 USA
32 * Linux-IrDA now supports four different types of IrDA sockets:
34 * o SOCK_STREAM: TinyTP connections with SAR disabled. The
35 * max SDU size is 0 for conn. of this type
36 * o SOCK_SEQPACKET: TinyTP connections with SAR enabled. TTP may
37 * fragment the messages, but will preserve
38 * the message boundaries
39 * o SOCK_DGRAM: IRDAPROTO_UNITDATA: TinyTP connections with Unitdata
40 * (unreliable) transfers
41 * IRDAPROTO_ULTRA: Connectionless and unreliable data
43 ********************************************************************/
45 #include <linux/config.h>
46 #include <linux/module.h>
47 #include <linux/types.h>
48 #include <linux/socket.h>
49 #include <linux/sockios.h>
50 #include <linux/init.h>
51 #include <linux/net.h>
52 #include <linux/irda.h>
53 #include <linux/poll.h>
55 #include <asm/ioctls.h> /* TIOCOUTQ, TIOCINQ */
56 #include <asm/uaccess.h>
58 #include <net/sock.h>
59 #include <net/tcp.h>
61 #include <net/irda/af_irda.h>
63 static int irda_create(struct socket *sock, int protocol);
65 static struct proto_ops irda_stream_ops;
66 static struct proto_ops irda_seqpacket_ops;
67 static struct proto_ops irda_dgram_ops;
69 #ifdef CONFIG_IRDA_ULTRA
70 static struct proto_ops irda_ultra_ops;
71 #define ULTRA_MAX_DATA 382
72 #endif /* CONFIG_IRDA_ULTRA */
74 #define IRDA_MAX_HEADER (TTP_MAX_HEADER)
77 * Function irda_data_indication (instance, sap, skb)
79 * Received some data from TinyTP. Just queue it on the receive queue
82 static int irda_data_indication(void *instance, void *sap, struct sk_buff *skb)
84 struct irda_sock *self;
85 struct sock *sk;
86 int err;
88 IRDA_DEBUG(3, "%s()\n", __FUNCTION__);
90 self = instance;
91 sk = instance;
92 IRDA_ASSERT(sk != NULL, return -1;);
94 err = sock_queue_rcv_skb(sk, skb);
95 if (err) {
96 IRDA_DEBUG(1, "%s(), error: no more mem!\n", __FUNCTION__);
97 self->rx_flow = FLOW_STOP;
99 /* When we return error, TTP will need to requeue the skb */
100 return err;
103 return 0;
107 * Function irda_disconnect_indication (instance, sap, reason, skb)
109 * Connection has been closed. Check reason to find out why
112 static void irda_disconnect_indication(void *instance, void *sap,
113 LM_REASON reason, struct sk_buff *skb)
115 struct irda_sock *self;
116 struct sock *sk;
118 self = instance;
120 IRDA_DEBUG(2, "%s(%p)\n", __FUNCTION__, self);
122 /* Don't care about it, but let's not leak it */
123 if(skb)
124 dev_kfree_skb(skb);
126 sk = instance;
127 if (sk == NULL) {
128 IRDA_DEBUG(0, "%s(%p) : BUG : sk is NULL\n",
129 __FUNCTION__, self);
130 return;
133 /* Prevent race conditions with irda_release() and irda_shutdown() */
134 if (!sock_flag(sk, SOCK_DEAD) && sk->sk_state != TCP_CLOSE) {
135 sk->sk_state = TCP_CLOSE;
136 sk->sk_err = ECONNRESET;
137 sk->sk_shutdown |= SEND_SHUTDOWN;
139 sk->sk_state_change(sk);
140 /* Uh-oh... Should use sock_orphan ? */
141 sock_set_flag(sk, SOCK_DEAD);
143 /* Close our TSAP.
144 * If we leave it open, IrLMP put it back into the list of
145 * unconnected LSAPs. The problem is that any incoming request
146 * can then be matched to this socket (and it will be, because
147 * it is at the head of the list). This would prevent any
148 * listening socket waiting on the same TSAP to get those
149 * requests. Some apps forget to close sockets, or hang to it
150 * a bit too long, so we may stay in this dead state long
151 * enough to be noticed...
152 * Note : all socket function do check sk->sk_state, so we are
153 * safe...
154 * Jean II
156 if (self->tsap) {
157 irttp_close_tsap(self->tsap);
158 self->tsap = NULL;
162 /* Note : once we are there, there is not much you want to do
163 * with the socket anymore, apart from closing it.
164 * For example, bind() and connect() won't reset sk->sk_err,
165 * sk->sk_shutdown and sk->sk_flags to valid values...
166 * Jean II
171 * Function irda_connect_confirm (instance, sap, qos, max_sdu_size, skb)
173 * Connections has been confirmed by the remote device
176 static void irda_connect_confirm(void *instance, void *sap,
177 struct qos_info *qos,
178 __u32 max_sdu_size, __u8 max_header_size,
179 struct sk_buff *skb)
181 struct irda_sock *self;
182 struct sock *sk;
184 self = instance;
186 IRDA_DEBUG(2, "%s(%p)\n", __FUNCTION__, self);
188 sk = instance;
189 if (sk == NULL) {
190 dev_kfree_skb(skb);
191 return;
194 dev_kfree_skb(skb);
195 // Should be ??? skb_queue_tail(&sk->sk_receive_queue, skb);
197 /* How much header space do we need to reserve */
198 self->max_header_size = max_header_size;
200 /* IrTTP max SDU size in transmit direction */
201 self->max_sdu_size_tx = max_sdu_size;
203 /* Find out what the largest chunk of data that we can transmit is */
204 switch (sk->sk_type) {
205 case SOCK_STREAM:
206 if (max_sdu_size != 0) {
207 IRDA_ERROR("%s: max_sdu_size must be 0\n",
208 __FUNCTION__);
209 return;
211 self->max_data_size = irttp_get_max_seg_size(self->tsap);
212 break;
213 case SOCK_SEQPACKET:
214 if (max_sdu_size == 0) {
215 IRDA_ERROR("%s: max_sdu_size cannot be 0\n",
216 __FUNCTION__);
217 return;
219 self->max_data_size = max_sdu_size;
220 break;
221 default:
222 self->max_data_size = irttp_get_max_seg_size(self->tsap);
225 IRDA_DEBUG(2, "%s(), max_data_size=%d\n", __FUNCTION__,
226 self->max_data_size);
228 memcpy(&self->qos_tx, qos, sizeof(struct qos_info));
230 /* We are now connected! */
231 sk->sk_state = TCP_ESTABLISHED;
232 sk->sk_state_change(sk);
236 * Function irda_connect_indication(instance, sap, qos, max_sdu_size, userdata)
238 * Incoming connection
241 static void irda_connect_indication(void *instance, void *sap,
242 struct qos_info *qos, __u32 max_sdu_size,
243 __u8 max_header_size, struct sk_buff *skb)
245 struct irda_sock *self;
246 struct sock *sk;
248 self = instance;
250 IRDA_DEBUG(2, "%s(%p)\n", __FUNCTION__, self);
252 sk = instance;
253 if (sk == NULL) {
254 dev_kfree_skb(skb);
255 return;
258 /* How much header space do we need to reserve */
259 self->max_header_size = max_header_size;
261 /* IrTTP max SDU size in transmit direction */
262 self->max_sdu_size_tx = max_sdu_size;
264 /* Find out what the largest chunk of data that we can transmit is */
265 switch (sk->sk_type) {
266 case SOCK_STREAM:
267 if (max_sdu_size != 0) {
268 IRDA_ERROR("%s: max_sdu_size must be 0\n",
269 __FUNCTION__);
270 kfree_skb(skb);
271 return;
273 self->max_data_size = irttp_get_max_seg_size(self->tsap);
274 break;
275 case SOCK_SEQPACKET:
276 if (max_sdu_size == 0) {
277 IRDA_ERROR("%s: max_sdu_size cannot be 0\n",
278 __FUNCTION__);
279 kfree_skb(skb);
280 return;
282 self->max_data_size = max_sdu_size;
283 break;
284 default:
285 self->max_data_size = irttp_get_max_seg_size(self->tsap);
288 IRDA_DEBUG(2, "%s(), max_data_size=%d\n", __FUNCTION__,
289 self->max_data_size);
291 memcpy(&self->qos_tx, qos, sizeof(struct qos_info));
293 skb_queue_tail(&sk->sk_receive_queue, skb);
294 sk->sk_state_change(sk);
298 * Function irda_connect_response (handle)
300 * Accept incoming connection
303 static void irda_connect_response(struct irda_sock *self)
305 struct sk_buff *skb;
307 IRDA_DEBUG(2, "%s()\n", __FUNCTION__);
309 IRDA_ASSERT(self != NULL, return;);
311 skb = dev_alloc_skb(64);
312 if (skb == NULL) {
313 IRDA_DEBUG(0, "%s() Unable to allocate sk_buff!\n",
314 __FUNCTION__);
315 return;
318 /* Reserve space for MUX_CONTROL and LAP header */
319 skb_reserve(skb, IRDA_MAX_HEADER);
321 irttp_connect_response(self->tsap, self->max_sdu_size_rx, skb);
325 * Function irda_flow_indication (instance, sap, flow)
327 * Used by TinyTP to tell us if it can accept more data or not
330 static void irda_flow_indication(void *instance, void *sap, LOCAL_FLOW flow)
332 struct irda_sock *self;
333 struct sock *sk;
335 IRDA_DEBUG(2, "%s()\n", __FUNCTION__);
337 self = instance;
338 sk = instance;
339 IRDA_ASSERT(sk != NULL, return;);
341 switch (flow) {
342 case FLOW_STOP:
343 IRDA_DEBUG(1, "%s(), IrTTP wants us to slow down\n",
344 __FUNCTION__);
345 self->tx_flow = flow;
346 break;
347 case FLOW_START:
348 self->tx_flow = flow;
349 IRDA_DEBUG(1, "%s(), IrTTP wants us to start again\n",
350 __FUNCTION__);
351 wake_up_interruptible(sk->sk_sleep);
352 break;
353 default:
354 IRDA_DEBUG(0, "%s(), Unknown flow command!\n", __FUNCTION__);
355 /* Unknown flow command, better stop */
356 self->tx_flow = flow;
357 break;
362 * Function irda_getvalue_confirm (obj_id, value, priv)
364 * Got answer from remote LM-IAS, just pass object to requester...
366 * Note : duplicate from above, but we need our own version that
367 * doesn't touch the dtsap_sel and save the full value structure...
369 static void irda_getvalue_confirm(int result, __u16 obj_id,
370 struct ias_value *value, void *priv)
372 struct irda_sock *self;
374 self = (struct irda_sock *) priv;
375 if (!self) {
376 IRDA_WARNING("%s: lost myself!\n", __FUNCTION__);
377 return;
380 IRDA_DEBUG(2, "%s(%p)\n", __FUNCTION__, self);
382 /* We probably don't need to make any more queries */
383 iriap_close(self->iriap);
384 self->iriap = NULL;
386 /* Check if request succeeded */
387 if (result != IAS_SUCCESS) {
388 IRDA_DEBUG(1, "%s(), IAS query failed! (%d)\n", __FUNCTION__,
389 result);
391 self->errno = result; /* We really need it later */
393 /* Wake up any processes waiting for result */
394 wake_up_interruptible(&self->query_wait);
396 return;
399 /* Pass the object to the caller (so the caller must delete it) */
400 self->ias_result = value;
401 self->errno = 0;
403 /* Wake up any processes waiting for result */
404 wake_up_interruptible(&self->query_wait);
408 * Function irda_selective_discovery_indication (discovery)
410 * Got a selective discovery indication from IrLMP.
412 * IrLMP is telling us that this node is new and matching our hint bit
413 * filter. Wake up any process waiting for answer...
415 static void irda_selective_discovery_indication(discinfo_t *discovery,
416 DISCOVERY_MODE mode,
417 void *priv)
419 struct irda_sock *self;
421 IRDA_DEBUG(2, "%s()\n", __FUNCTION__);
423 self = (struct irda_sock *) priv;
424 if (!self) {
425 IRDA_WARNING("%s: lost myself!\n", __FUNCTION__);
426 return;
429 /* Pass parameter to the caller */
430 self->cachedaddr = discovery->daddr;
432 /* Wake up process if its waiting for device to be discovered */
433 wake_up_interruptible(&self->query_wait);
437 * Function irda_discovery_timeout (priv)
439 * Timeout in the selective discovery process
441 * We were waiting for a node to be discovered, but nothing has come up
442 * so far. Wake up the user and tell him that we failed...
444 static void irda_discovery_timeout(u_long priv)
446 struct irda_sock *self;
448 IRDA_DEBUG(2, "%s()\n", __FUNCTION__);
450 self = (struct irda_sock *) priv;
451 IRDA_ASSERT(self != NULL, return;);
453 /* Nothing for the caller */
454 self->cachelog = NULL;
455 self->cachedaddr = 0;
456 self->errno = -ETIME;
458 /* Wake up process if its still waiting... */
459 wake_up_interruptible(&self->query_wait);
463 * Function irda_open_tsap (self)
465 * Open local Transport Service Access Point (TSAP)
468 static int irda_open_tsap(struct irda_sock *self, __u8 tsap_sel, char *name)
470 notify_t notify;
472 if (self->tsap) {
473 IRDA_WARNING("%s: busy!\n", __FUNCTION__);
474 return -EBUSY;
477 /* Initialize callbacks to be used by the IrDA stack */
478 irda_notify_init(&notify);
479 notify.connect_confirm = irda_connect_confirm;
480 notify.connect_indication = irda_connect_indication;
481 notify.disconnect_indication = irda_disconnect_indication;
482 notify.data_indication = irda_data_indication;
483 notify.udata_indication = irda_data_indication;
484 notify.flow_indication = irda_flow_indication;
485 notify.instance = self;
486 strncpy(notify.name, name, NOTIFY_MAX_NAME);
488 self->tsap = irttp_open_tsap(tsap_sel, DEFAULT_INITIAL_CREDIT,
489 &notify);
490 if (self->tsap == NULL) {
491 IRDA_DEBUG(0, "%s(), Unable to allocate TSAP!\n",
492 __FUNCTION__);
493 return -ENOMEM;
495 /* Remember which TSAP selector we actually got */
496 self->stsap_sel = self->tsap->stsap_sel;
498 return 0;
502 * Function irda_open_lsap (self)
504 * Open local Link Service Access Point (LSAP). Used for opening Ultra
505 * sockets
507 #ifdef CONFIG_IRDA_ULTRA
508 static int irda_open_lsap(struct irda_sock *self, int pid)
510 notify_t notify;
512 if (self->lsap) {
513 IRDA_WARNING("%s(), busy!\n", __FUNCTION__);
514 return -EBUSY;
517 /* Initialize callbacks to be used by the IrDA stack */
518 irda_notify_init(&notify);
519 notify.udata_indication = irda_data_indication;
520 notify.instance = self;
521 strncpy(notify.name, "Ultra", NOTIFY_MAX_NAME);
523 self->lsap = irlmp_open_lsap(LSAP_CONNLESS, &notify, pid);
524 if (self->lsap == NULL) {
525 IRDA_DEBUG( 0, "%s(), Unable to allocate LSAP!\n", __FUNCTION__);
526 return -ENOMEM;
529 return 0;
531 #endif /* CONFIG_IRDA_ULTRA */
534 * Function irda_find_lsap_sel (self, name)
536 * Try to lookup LSAP selector in remote LM-IAS
538 * Basically, we start a IAP query, and then go to sleep. When the query
539 * return, irda_getvalue_confirm will wake us up, and we can examine the
540 * result of the query...
541 * Note that in some case, the query fail even before we go to sleep,
542 * creating some races...
544 static int irda_find_lsap_sel(struct irda_sock *self, char *name)
546 IRDA_DEBUG(2, "%s(%p, %s)\n", __FUNCTION__, self, name);
548 IRDA_ASSERT(self != NULL, return -1;);
550 if (self->iriap) {
551 IRDA_WARNING("%s(): busy with a previous query\n",
552 __FUNCTION__);
553 return -EBUSY;
556 self->iriap = iriap_open(LSAP_ANY, IAS_CLIENT, self,
557 irda_getvalue_confirm);
558 if(self->iriap == NULL)
559 return -ENOMEM;
561 /* Treat unexpected wakeup as disconnect */
562 self->errno = -EHOSTUNREACH;
564 /* Query remote LM-IAS */
565 iriap_getvaluebyclass_request(self->iriap, self->saddr, self->daddr,
566 name, "IrDA:TinyTP:LsapSel");
568 /* Wait for answer, if not yet finished (or failed) */
569 if (wait_event_interruptible(self->query_wait, (self->iriap==NULL)))
570 /* Treat signals as disconnect */
571 return -EHOSTUNREACH;
573 /* Check what happened */
574 if (self->errno)
576 /* Requested object/attribute doesn't exist */
577 if((self->errno == IAS_CLASS_UNKNOWN) ||
578 (self->errno == IAS_ATTRIB_UNKNOWN))
579 return (-EADDRNOTAVAIL);
580 else
581 return (-EHOSTUNREACH);
584 /* Get the remote TSAP selector */
585 switch (self->ias_result->type) {
586 case IAS_INTEGER:
587 IRDA_DEBUG(4, "%s() int=%d\n",
588 __FUNCTION__, self->ias_result->t.integer);
590 if (self->ias_result->t.integer != -1)
591 self->dtsap_sel = self->ias_result->t.integer;
592 else
593 self->dtsap_sel = 0;
594 break;
595 default:
596 self->dtsap_sel = 0;
597 IRDA_DEBUG(0, "%s(), bad type!\n", __FUNCTION__);
598 break;
600 if (self->ias_result)
601 irias_delete_value(self->ias_result);
603 if (self->dtsap_sel)
604 return 0;
606 return -EADDRNOTAVAIL;
610 * Function irda_discover_daddr_and_lsap_sel (self, name)
612 * This try to find a device with the requested service.
614 * It basically look into the discovery log. For each address in the list,
615 * it queries the LM-IAS of the device to find if this device offer
616 * the requested service.
617 * If there is more than one node supporting the service, we complain
618 * to the user (it should move devices around).
619 * The, we set both the destination address and the lsap selector to point
620 * on the service on the unique device we have found.
622 * Note : this function fails if there is more than one device in range,
623 * because IrLMP doesn't disconnect the LAP when the last LSAP is closed.
624 * Moreover, we would need to wait the LAP disconnection...
626 static int irda_discover_daddr_and_lsap_sel(struct irda_sock *self, char *name)
628 discinfo_t *discoveries; /* Copy of the discovery log */
629 int number; /* Number of nodes in the log */
630 int i;
631 int err = -ENETUNREACH;
632 __u32 daddr = DEV_ADDR_ANY; /* Address we found the service on */
633 __u8 dtsap_sel = 0x0; /* TSAP associated with it */
635 IRDA_DEBUG(2, "%s(), name=%s\n", __FUNCTION__, name);
637 IRDA_ASSERT(self != NULL, return -1;);
639 /* Ask lmp for the current discovery log
640 * Note : we have to use irlmp_get_discoveries(), as opposed
641 * to play with the cachelog directly, because while we are
642 * making our ias query, le log might change... */
643 discoveries = irlmp_get_discoveries(&number, self->mask.word,
644 self->nslots);
645 /* Check if the we got some results */
646 if (discoveries == NULL)
647 return -ENETUNREACH; /* No nodes discovered */
650 * Now, check all discovered devices (if any), and connect
651 * client only about the services that the client is
652 * interested in...
654 for(i = 0; i < number; i++) {
655 /* Try the address in the log */
656 self->daddr = discoveries[i].daddr;
657 self->saddr = 0x0;
658 IRDA_DEBUG(1, "%s(), trying daddr = %08x\n",
659 __FUNCTION__, self->daddr);
661 /* Query remote LM-IAS for this service */
662 err = irda_find_lsap_sel(self, name);
663 switch (err) {
664 case 0:
665 /* We found the requested service */
666 if(daddr != DEV_ADDR_ANY) {
667 IRDA_DEBUG(1, "%s(), discovered service ''%s'' in two different devices !!!\n",
668 __FUNCTION__, name);
669 self->daddr = DEV_ADDR_ANY;
670 kfree(discoveries);
671 return(-ENOTUNIQ);
673 /* First time we found that one, save it ! */
674 daddr = self->daddr;
675 dtsap_sel = self->dtsap_sel;
676 break;
677 case -EADDRNOTAVAIL:
678 /* Requested service simply doesn't exist on this node */
679 break;
680 default:
681 /* Something bad did happen :-( */
682 IRDA_DEBUG(0, "%s(), unexpected IAS query failure\n", __FUNCTION__);
683 self->daddr = DEV_ADDR_ANY;
684 kfree(discoveries);
685 return(-EHOSTUNREACH);
686 break;
689 /* Cleanup our copy of the discovery log */
690 kfree(discoveries);
692 /* Check out what we found */
693 if(daddr == DEV_ADDR_ANY) {
694 IRDA_DEBUG(1, "%s(), cannot discover service ''%s'' in any device !!!\n",
695 __FUNCTION__, name);
696 self->daddr = DEV_ADDR_ANY;
697 return(-EADDRNOTAVAIL);
700 /* Revert back to discovered device & service */
701 self->daddr = daddr;
702 self->saddr = 0x0;
703 self->dtsap_sel = dtsap_sel;
705 IRDA_DEBUG(1, "%s(), discovered requested service ''%s'' at address %08x\n",
706 __FUNCTION__, name, self->daddr);
708 return 0;
712 * Function irda_getname (sock, uaddr, uaddr_len, peer)
714 * Return the our own, or peers socket address (sockaddr_irda)
717 static int irda_getname(struct socket *sock, struct sockaddr *uaddr,
718 int *uaddr_len, int peer)
720 struct sockaddr_irda saddr;
721 struct sock *sk = sock->sk;
722 struct irda_sock *self = irda_sk(sk);
724 if (peer) {
725 if (sk->sk_state != TCP_ESTABLISHED)
726 return -ENOTCONN;
728 saddr.sir_family = AF_IRDA;
729 saddr.sir_lsap_sel = self->dtsap_sel;
730 saddr.sir_addr = self->daddr;
731 } else {
732 saddr.sir_family = AF_IRDA;
733 saddr.sir_lsap_sel = self->stsap_sel;
734 saddr.sir_addr = self->saddr;
737 IRDA_DEBUG(1, "%s(), tsap_sel = %#x\n", __FUNCTION__, saddr.sir_lsap_sel);
738 IRDA_DEBUG(1, "%s(), addr = %08x\n", __FUNCTION__, saddr.sir_addr);
740 /* uaddr_len come to us uninitialised */
741 *uaddr_len = sizeof (struct sockaddr_irda);
742 memcpy(uaddr, &saddr, *uaddr_len);
744 return 0;
748 * Function irda_listen (sock, backlog)
750 * Just move to the listen state
753 static int irda_listen(struct socket *sock, int backlog)
755 struct sock *sk = sock->sk;
757 IRDA_DEBUG(2, "%s()\n", __FUNCTION__);
759 if ((sk->sk_type != SOCK_STREAM) && (sk->sk_type != SOCK_SEQPACKET) &&
760 (sk->sk_type != SOCK_DGRAM))
761 return -EOPNOTSUPP;
763 if (sk->sk_state != TCP_LISTEN) {
764 sk->sk_max_ack_backlog = backlog;
765 sk->sk_state = TCP_LISTEN;
767 return 0;
770 return -EOPNOTSUPP;
774 * Function irda_bind (sock, uaddr, addr_len)
776 * Used by servers to register their well known TSAP
779 static int irda_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
781 struct sock *sk = sock->sk;
782 struct sockaddr_irda *addr = (struct sockaddr_irda *) uaddr;
783 struct irda_sock *self = irda_sk(sk);
784 int err;
786 IRDA_ASSERT(self != NULL, return -1;);
788 IRDA_DEBUG(2, "%s(%p)\n", __FUNCTION__, self);
790 if (addr_len != sizeof(struct sockaddr_irda))
791 return -EINVAL;
793 #ifdef CONFIG_IRDA_ULTRA
794 /* Special care for Ultra sockets */
795 if ((sk->sk_type == SOCK_DGRAM) &&
796 (sk->sk_protocol == IRDAPROTO_ULTRA)) {
797 self->pid = addr->sir_lsap_sel;
798 if (self->pid & 0x80) {
799 IRDA_DEBUG(0, "%s(), extension in PID not supp!\n", __FUNCTION__);
800 return -EOPNOTSUPP;
802 err = irda_open_lsap(self, self->pid);
803 if (err < 0)
804 return err;
806 /* Pretend we are connected */
807 sock->state = SS_CONNECTED;
808 sk->sk_state = TCP_ESTABLISHED;
810 return 0;
812 #endif /* CONFIG_IRDA_ULTRA */
814 err = irda_open_tsap(self, addr->sir_lsap_sel, addr->sir_name);
815 if (err < 0)
816 return err;
818 /* Register with LM-IAS */
819 self->ias_obj = irias_new_object(addr->sir_name, jiffies);
820 irias_add_integer_attrib(self->ias_obj, "IrDA:TinyTP:LsapSel",
821 self->stsap_sel, IAS_KERNEL_ATTR);
822 irias_insert_object(self->ias_obj);
824 return 0;
828 * Function irda_accept (sock, newsock, flags)
830 * Wait for incoming connection
833 static int irda_accept(struct socket *sock, struct socket *newsock, int flags)
835 struct sock *sk = sock->sk;
836 struct irda_sock *new, *self = irda_sk(sk);
837 struct sock *newsk;
838 struct sk_buff *skb;
839 int err;
841 IRDA_DEBUG(2, "%s()\n", __FUNCTION__);
843 IRDA_ASSERT(self != NULL, return -1;);
845 err = irda_create(newsock, sk->sk_protocol);
846 if (err)
847 return err;
849 if (sock->state != SS_UNCONNECTED)
850 return -EINVAL;
852 if ((sk = sock->sk) == NULL)
853 return -EINVAL;
855 if ((sk->sk_type != SOCK_STREAM) && (sk->sk_type != SOCK_SEQPACKET) &&
856 (sk->sk_type != SOCK_DGRAM))
857 return -EOPNOTSUPP;
859 if (sk->sk_state != TCP_LISTEN)
860 return -EINVAL;
863 * The read queue this time is holding sockets ready to use
864 * hooked into the SABM we saved
868 * We can perform the accept only if there is incoming data
869 * on the listening socket.
870 * So, we will block the caller until we receive any data.
871 * If the caller was waiting on select() or poll() before
872 * calling us, the data is waiting for us ;-)
873 * Jean II
875 skb = skb_dequeue(&sk->sk_receive_queue);
876 if (skb == NULL) {
877 int ret = 0;
878 DECLARE_WAITQUEUE(waitq, current);
880 /* Non blocking operation */
881 if (flags & O_NONBLOCK)
882 return -EWOULDBLOCK;
884 /* The following code is a cut'n'paste of the
885 * wait_event_interruptible() macro.
886 * We don't us the macro because the condition has
887 * side effects : we want to make sure that only one
888 * skb get dequeued - Jean II */
889 add_wait_queue(sk->sk_sleep, &waitq);
890 for (;;) {
891 set_current_state(TASK_INTERRUPTIBLE);
892 skb = skb_dequeue(&sk->sk_receive_queue);
893 if (skb != NULL)
894 break;
895 if (!signal_pending(current)) {
896 schedule();
897 continue;
899 ret = -ERESTARTSYS;
900 break;
902 current->state = TASK_RUNNING;
903 remove_wait_queue(sk->sk_sleep, &waitq);
904 if(ret)
905 return -ERESTARTSYS;
908 newsk = newsock->sk;
909 newsk->sk_state = TCP_ESTABLISHED;
911 new = irda_sk(newsk);
912 IRDA_ASSERT(new != NULL, return -1;);
914 /* Now attach up the new socket */
915 new->tsap = irttp_dup(self->tsap, new);
916 if (!new->tsap) {
917 IRDA_DEBUG(0, "%s(), dup failed!\n", __FUNCTION__);
918 kfree_skb(skb);
919 return -1;
922 new->stsap_sel = new->tsap->stsap_sel;
923 new->dtsap_sel = new->tsap->dtsap_sel;
924 new->saddr = irttp_get_saddr(new->tsap);
925 new->daddr = irttp_get_daddr(new->tsap);
927 new->max_sdu_size_tx = self->max_sdu_size_tx;
928 new->max_sdu_size_rx = self->max_sdu_size_rx;
929 new->max_data_size = self->max_data_size;
930 new->max_header_size = self->max_header_size;
932 memcpy(&new->qos_tx, &self->qos_tx, sizeof(struct qos_info));
934 /* Clean up the original one to keep it in listen state */
935 irttp_listen(self->tsap);
937 /* Wow ! What is that ? Jean II */
938 skb->sk = NULL;
939 skb->destructor = NULL;
940 kfree_skb(skb);
941 sk->sk_ack_backlog--;
943 newsock->state = SS_CONNECTED;
945 irda_connect_response(new);
947 return 0;
951 * Function irda_connect (sock, uaddr, addr_len, flags)
953 * Connect to a IrDA device
955 * The main difference with a "standard" connect is that with IrDA we need
956 * to resolve the service name into a TSAP selector (in TCP, port number
957 * doesn't have to be resolved).
958 * Because of this service name resoltion, we can offer "auto-connect",
959 * where we connect to a service without specifying a destination address.
961 * Note : by consulting "errno", the user space caller may learn the cause
962 * of the failure. Most of them are visible in the function, others may come
963 * from subroutines called and are listed here :
964 * o EBUSY : already processing a connect
965 * o EHOSTUNREACH : bad addr->sir_addr argument
966 * o EADDRNOTAVAIL : bad addr->sir_name argument
967 * o ENOTUNIQ : more than one node has addr->sir_name (auto-connect)
968 * o ENETUNREACH : no node found on the network (auto-connect)
970 static int irda_connect(struct socket *sock, struct sockaddr *uaddr,
971 int addr_len, int flags)
973 struct sock *sk = sock->sk;
974 struct sockaddr_irda *addr = (struct sockaddr_irda *) uaddr;
975 struct irda_sock *self = irda_sk(sk);
976 int err;
978 IRDA_DEBUG(2, "%s(%p)\n", __FUNCTION__, self);
980 /* Don't allow connect for Ultra sockets */
981 if ((sk->sk_type == SOCK_DGRAM) && (sk->sk_protocol == IRDAPROTO_ULTRA))
982 return -ESOCKTNOSUPPORT;
984 if (sk->sk_state == TCP_ESTABLISHED && sock->state == SS_CONNECTING) {
985 sock->state = SS_CONNECTED;
986 return 0; /* Connect completed during a ERESTARTSYS event */
989 if (sk->sk_state == TCP_CLOSE && sock->state == SS_CONNECTING) {
990 sock->state = SS_UNCONNECTED;
991 return -ECONNREFUSED;
994 if (sk->sk_state == TCP_ESTABLISHED)
995 return -EISCONN; /* No reconnect on a seqpacket socket */
997 sk->sk_state = TCP_CLOSE;
998 sock->state = SS_UNCONNECTED;
1000 if (addr_len != sizeof(struct sockaddr_irda))
1001 return -EINVAL;
1003 /* Check if user supplied any destination device address */
1004 if ((!addr->sir_addr) || (addr->sir_addr == DEV_ADDR_ANY)) {
1005 /* Try to find one suitable */
1006 err = irda_discover_daddr_and_lsap_sel(self, addr->sir_name);
1007 if (err) {
1008 IRDA_DEBUG(0, "%s(), auto-connect failed!\n", __FUNCTION__);
1009 return err;
1011 } else {
1012 /* Use the one provided by the user */
1013 self->daddr = addr->sir_addr;
1014 IRDA_DEBUG(1, "%s(), daddr = %08x\n", __FUNCTION__, self->daddr);
1016 /* If we don't have a valid service name, we assume the
1017 * user want to connect on a specific LSAP. Prevent
1018 * the use of invalid LSAPs (IrLMP 1.1 p10). Jean II */
1019 if((addr->sir_name[0] != '\0') ||
1020 (addr->sir_lsap_sel >= 0x70)) {
1021 /* Query remote LM-IAS using service name */
1022 err = irda_find_lsap_sel(self, addr->sir_name);
1023 if (err) {
1024 IRDA_DEBUG(0, "%s(), connect failed!\n", __FUNCTION__);
1025 return err;
1027 } else {
1028 /* Directly connect to the remote LSAP
1029 * specified by the sir_lsap field.
1030 * Please use with caution, in IrDA LSAPs are
1031 * dynamic and there is no "well-known" LSAP. */
1032 self->dtsap_sel = addr->sir_lsap_sel;
1036 /* Check if we have opened a local TSAP */
1037 if (!self->tsap)
1038 irda_open_tsap(self, LSAP_ANY, addr->sir_name);
1040 /* Move to connecting socket, start sending Connect Requests */
1041 sock->state = SS_CONNECTING;
1042 sk->sk_state = TCP_SYN_SENT;
1044 /* Connect to remote device */
1045 err = irttp_connect_request(self->tsap, self->dtsap_sel,
1046 self->saddr, self->daddr, NULL,
1047 self->max_sdu_size_rx, NULL);
1048 if (err) {
1049 IRDA_DEBUG(0, "%s(), connect failed!\n", __FUNCTION__);
1050 return err;
1053 /* Now the loop */
1054 if (sk->sk_state != TCP_ESTABLISHED && (flags & O_NONBLOCK))
1055 return -EINPROGRESS;
1057 if (wait_event_interruptible(*(sk->sk_sleep),
1058 (sk->sk_state != TCP_SYN_SENT)))
1059 return -ERESTARTSYS;
1061 if (sk->sk_state != TCP_ESTABLISHED) {
1062 sock->state = SS_UNCONNECTED;
1063 return sock_error(sk); /* Always set at this point */
1066 sock->state = SS_CONNECTED;
1068 /* At this point, IrLMP has assigned our source address */
1069 self->saddr = irttp_get_saddr(self->tsap);
1071 return 0;
1074 static struct proto irda_proto = {
1075 .name = "IRDA",
1076 .owner = THIS_MODULE,
1077 .obj_size = sizeof(struct irda_sock),
1081 * Function irda_create (sock, protocol)
1083 * Create IrDA socket
1086 static int irda_create(struct socket *sock, int protocol)
1088 struct sock *sk;
1089 struct irda_sock *self;
1091 IRDA_DEBUG(2, "%s()\n", __FUNCTION__);
1093 /* Check for valid socket type */
1094 switch (sock->type) {
1095 case SOCK_STREAM: /* For TTP connections with SAR disabled */
1096 case SOCK_SEQPACKET: /* For TTP connections with SAR enabled */
1097 case SOCK_DGRAM: /* For TTP Unitdata or LMP Ultra transfers */
1098 break;
1099 default:
1100 return -ESOCKTNOSUPPORT;
1103 /* Allocate networking socket */
1104 sk = sk_alloc(PF_IRDA, GFP_ATOMIC, &irda_proto, 1);
1105 if (sk == NULL)
1106 return -ENOMEM;
1108 self = irda_sk(sk);
1109 IRDA_DEBUG(2, "%s() : self is %p\n", __FUNCTION__, self);
1111 init_waitqueue_head(&self->query_wait);
1113 /* Initialise networking socket struct */
1114 sock_init_data(sock, sk); /* Note : set sk->sk_refcnt to 1 */
1115 sk->sk_family = PF_IRDA;
1116 sk->sk_protocol = protocol;
1118 switch (sock->type) {
1119 case SOCK_STREAM:
1120 sock->ops = &irda_stream_ops;
1121 self->max_sdu_size_rx = TTP_SAR_DISABLE;
1122 break;
1123 case SOCK_SEQPACKET:
1124 sock->ops = &irda_seqpacket_ops;
1125 self->max_sdu_size_rx = TTP_SAR_UNBOUND;
1126 break;
1127 case SOCK_DGRAM:
1128 switch (protocol) {
1129 #ifdef CONFIG_IRDA_ULTRA
1130 case IRDAPROTO_ULTRA:
1131 sock->ops = &irda_ultra_ops;
1132 /* Initialise now, because we may send on unbound
1133 * sockets. Jean II */
1134 self->max_data_size = ULTRA_MAX_DATA - LMP_PID_HEADER;
1135 self->max_header_size = IRDA_MAX_HEADER + LMP_PID_HEADER;
1136 break;
1137 #endif /* CONFIG_IRDA_ULTRA */
1138 case IRDAPROTO_UNITDATA:
1139 sock->ops = &irda_dgram_ops;
1140 /* We let Unitdata conn. be like seqpack conn. */
1141 self->max_sdu_size_rx = TTP_SAR_UNBOUND;
1142 break;
1143 default:
1144 IRDA_ERROR("%s: protocol not supported!\n",
1145 __FUNCTION__);
1146 return -ESOCKTNOSUPPORT;
1148 break;
1149 default:
1150 return -ESOCKTNOSUPPORT;
1153 /* Register as a client with IrLMP */
1154 self->ckey = irlmp_register_client(0, NULL, NULL, NULL);
1155 self->mask.word = 0xffff;
1156 self->rx_flow = self->tx_flow = FLOW_START;
1157 self->nslots = DISCOVERY_DEFAULT_SLOTS;
1158 self->daddr = DEV_ADDR_ANY; /* Until we get connected */
1159 self->saddr = 0x0; /* so IrLMP assign us any link */
1160 return 0;
1164 * Function irda_destroy_socket (self)
1166 * Destroy socket
1169 static void irda_destroy_socket(struct irda_sock *self)
1171 IRDA_DEBUG(2, "%s(%p)\n", __FUNCTION__, self);
1173 IRDA_ASSERT(self != NULL, return;);
1175 /* Unregister with IrLMP */
1176 irlmp_unregister_client(self->ckey);
1177 irlmp_unregister_service(self->skey);
1179 /* Unregister with LM-IAS */
1180 if (self->ias_obj) {
1181 irias_delete_object(self->ias_obj);
1182 self->ias_obj = NULL;
1185 if (self->iriap) {
1186 iriap_close(self->iriap);
1187 self->iriap = NULL;
1190 if (self->tsap) {
1191 irttp_disconnect_request(self->tsap, NULL, P_NORMAL);
1192 irttp_close_tsap(self->tsap);
1193 self->tsap = NULL;
1195 #ifdef CONFIG_IRDA_ULTRA
1196 if (self->lsap) {
1197 irlmp_close_lsap(self->lsap);
1198 self->lsap = NULL;
1200 #endif /* CONFIG_IRDA_ULTRA */
1204 * Function irda_release (sock)
1206 static int irda_release(struct socket *sock)
1208 struct sock *sk = sock->sk;
1210 IRDA_DEBUG(2, "%s()\n", __FUNCTION__);
1212 if (sk == NULL)
1213 return 0;
1215 sk->sk_state = TCP_CLOSE;
1216 sk->sk_shutdown |= SEND_SHUTDOWN;
1217 sk->sk_state_change(sk);
1219 /* Destroy IrDA socket */
1220 irda_destroy_socket(irda_sk(sk));
1222 sock_orphan(sk);
1223 sock->sk = NULL;
1225 /* Purge queues (see sock_init_data()) */
1226 skb_queue_purge(&sk->sk_receive_queue);
1228 /* Destroy networking socket if we are the last reference on it,
1229 * i.e. if(sk->sk_refcnt == 0) -> sk_free(sk) */
1230 sock_put(sk);
1232 /* Notes on socket locking and deallocation... - Jean II
1233 * In theory we should put pairs of sock_hold() / sock_put() to
1234 * prevent the socket to be destroyed whenever there is an
1235 * outstanding request or outstanding incoming packet or event.
1237 * 1) This may include IAS request, both in connect and getsockopt.
1238 * Unfortunately, the situation is a bit more messy than it looks,
1239 * because we close iriap and kfree(self) above.
1241 * 2) This may include selective discovery in getsockopt.
1242 * Same stuff as above, irlmp registration and self are gone.
1244 * Probably 1 and 2 may not matter, because it's all triggered
1245 * by a process and the socket layer already prevent the
1246 * socket to go away while a process is holding it, through
1247 * sockfd_put() and fput()...
1249 * 3) This may include deferred TSAP closure. In particular,
1250 * we may receive a late irda_disconnect_indication()
1251 * Fortunately, (tsap_cb *)->close_pend should protect us
1252 * from that.
1254 * I did some testing on SMP, and it looks solid. And the socket
1255 * memory leak is now gone... - Jean II
1258 return 0;
1262 * Function irda_sendmsg (iocb, sock, msg, len)
1264 * Send message down to TinyTP. This function is used for both STREAM and
1265 * SEQPACK services. This is possible since it forces the client to
1266 * fragment the message if necessary
1268 static int irda_sendmsg(struct kiocb *iocb, struct socket *sock,
1269 struct msghdr *msg, size_t len)
1271 struct sock *sk = sock->sk;
1272 struct irda_sock *self;
1273 struct sk_buff *skb;
1274 unsigned char *asmptr;
1275 int err;
1277 IRDA_DEBUG(4, "%s(), len=%zd\n", __FUNCTION__, len);
1279 /* Note : socket.c set MSG_EOR on SEQPACKET sockets */
1280 if (msg->msg_flags & ~(MSG_DONTWAIT|MSG_EOR|MSG_CMSG_COMPAT))
1281 return -EINVAL;
1283 if (sk->sk_shutdown & SEND_SHUTDOWN) {
1284 send_sig(SIGPIPE, current, 0);
1285 return -EPIPE;
1288 if (sk->sk_state != TCP_ESTABLISHED)
1289 return -ENOTCONN;
1291 self = irda_sk(sk);
1292 IRDA_ASSERT(self != NULL, return -1;);
1294 /* Check if IrTTP is wants us to slow down */
1296 if (wait_event_interruptible(*(sk->sk_sleep),
1297 (self->tx_flow != FLOW_STOP || sk->sk_state != TCP_ESTABLISHED)))
1298 return -ERESTARTSYS;
1300 /* Check if we are still connected */
1301 if (sk->sk_state != TCP_ESTABLISHED)
1302 return -ENOTCONN;
1304 /* Check that we don't send out to big frames */
1305 if (len > self->max_data_size) {
1306 IRDA_DEBUG(2, "%s(), Chopping frame from %zd to %d bytes!\n",
1307 __FUNCTION__, len, self->max_data_size);
1308 len = self->max_data_size;
1311 skb = sock_alloc_send_skb(sk, len + self->max_header_size + 16,
1312 msg->msg_flags & MSG_DONTWAIT, &err);
1313 if (!skb)
1314 return -ENOBUFS;
1316 skb_reserve(skb, self->max_header_size + 16);
1318 asmptr = skb->h.raw = skb_put(skb, len);
1319 err = memcpy_fromiovec(asmptr, msg->msg_iov, len);
1320 if (err) {
1321 kfree_skb(skb);
1322 return err;
1326 * Just send the message to TinyTP, and let it deal with possible
1327 * errors. No need to duplicate all that here
1329 err = irttp_data_request(self->tsap, skb);
1330 if (err) {
1331 IRDA_DEBUG(0, "%s(), err=%d\n", __FUNCTION__, err);
1332 return err;
1334 /* Tell client how much data we actually sent */
1335 return len;
1339 * Function irda_recvmsg_dgram (iocb, sock, msg, size, flags)
1341 * Try to receive message and copy it to user. The frame is discarded
1342 * after being read, regardless of how much the user actually read
1344 static int irda_recvmsg_dgram(struct kiocb *iocb, struct socket *sock,
1345 struct msghdr *msg, size_t size, int flags)
1347 struct sock *sk = sock->sk;
1348 struct irda_sock *self = irda_sk(sk);
1349 struct sk_buff *skb;
1350 size_t copied;
1351 int err;
1353 IRDA_DEBUG(4, "%s()\n", __FUNCTION__);
1355 IRDA_ASSERT(self != NULL, return -1;);
1357 skb = skb_recv_datagram(sk, flags & ~MSG_DONTWAIT,
1358 flags & MSG_DONTWAIT, &err);
1359 if (!skb)
1360 return err;
1362 skb->h.raw = skb->data;
1363 copied = skb->len;
1365 if (copied > size) {
1366 IRDA_DEBUG(2, "%s(), Received truncated frame (%zd < %zd)!\n",
1367 __FUNCTION__, copied, size);
1368 copied = size;
1369 msg->msg_flags |= MSG_TRUNC;
1371 skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
1373 skb_free_datagram(sk, skb);
1376 * Check if we have previously stopped IrTTP and we know
1377 * have more free space in our rx_queue. If so tell IrTTP
1378 * to start delivering frames again before our rx_queue gets
1379 * empty
1381 if (self->rx_flow == FLOW_STOP) {
1382 if ((atomic_read(&sk->sk_rmem_alloc) << 2) <= sk->sk_rcvbuf) {
1383 IRDA_DEBUG(2, "%s(), Starting IrTTP\n", __FUNCTION__);
1384 self->rx_flow = FLOW_START;
1385 irttp_flow_request(self->tsap, FLOW_START);
1389 return copied;
1393 * Function irda_recvmsg_stream (iocb, sock, msg, size, flags)
1395 static int irda_recvmsg_stream(struct kiocb *iocb, struct socket *sock,
1396 struct msghdr *msg, size_t size, int flags)
1398 struct sock *sk = sock->sk;
1399 struct irda_sock *self = irda_sk(sk);
1400 int noblock = flags & MSG_DONTWAIT;
1401 size_t copied = 0;
1402 int target = 1;
1403 DECLARE_WAITQUEUE(waitq, current);
1405 IRDA_DEBUG(3, "%s()\n", __FUNCTION__);
1407 IRDA_ASSERT(self != NULL, return -1;);
1409 if (sock->flags & __SO_ACCEPTCON)
1410 return(-EINVAL);
1412 if (flags & MSG_OOB)
1413 return -EOPNOTSUPP;
1415 if (flags & MSG_WAITALL)
1416 target = size;
1418 msg->msg_namelen = 0;
1420 do {
1421 int chunk;
1422 struct sk_buff *skb = skb_dequeue(&sk->sk_receive_queue);
1424 if (skb==NULL) {
1425 int ret = 0;
1427 if (copied >= target)
1428 break;
1430 /* The following code is a cut'n'paste of the
1431 * wait_event_interruptible() macro.
1432 * We don't us the macro because the test condition
1433 * is messy. - Jean II */
1434 set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1435 add_wait_queue(sk->sk_sleep, &waitq);
1436 set_current_state(TASK_INTERRUPTIBLE);
1439 * POSIX 1003.1g mandates this order.
1441 if (sk->sk_err)
1442 ret = sock_error(sk);
1443 else if (sk->sk_shutdown & RCV_SHUTDOWN)
1445 else if (noblock)
1446 ret = -EAGAIN;
1447 else if (signal_pending(current))
1448 ret = -ERESTARTSYS;
1449 else if (skb_peek(&sk->sk_receive_queue) == NULL)
1450 /* Wait process until data arrives */
1451 schedule();
1453 current->state = TASK_RUNNING;
1454 remove_wait_queue(sk->sk_sleep, &waitq);
1455 clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1457 if(ret)
1458 return(ret);
1459 if (sk->sk_shutdown & RCV_SHUTDOWN)
1460 break;
1462 continue;
1465 chunk = min_t(unsigned int, skb->len, size);
1466 if (memcpy_toiovec(msg->msg_iov, skb->data, chunk)) {
1467 skb_queue_head(&sk->sk_receive_queue, skb);
1468 if (copied == 0)
1469 copied = -EFAULT;
1470 break;
1472 copied += chunk;
1473 size -= chunk;
1475 /* Mark read part of skb as used */
1476 if (!(flags & MSG_PEEK)) {
1477 skb_pull(skb, chunk);
1479 /* put the skb back if we didn't use it up.. */
1480 if (skb->len) {
1481 IRDA_DEBUG(1, "%s(), back on q!\n",
1482 __FUNCTION__);
1483 skb_queue_head(&sk->sk_receive_queue, skb);
1484 break;
1487 kfree_skb(skb);
1488 } else {
1489 IRDA_DEBUG(0, "%s() questionable!?\n", __FUNCTION__);
1491 /* put message back and return */
1492 skb_queue_head(&sk->sk_receive_queue, skb);
1493 break;
1495 } while (size);
1498 * Check if we have previously stopped IrTTP and we know
1499 * have more free space in our rx_queue. If so tell IrTTP
1500 * to start delivering frames again before our rx_queue gets
1501 * empty
1503 if (self->rx_flow == FLOW_STOP) {
1504 if ((atomic_read(&sk->sk_rmem_alloc) << 2) <= sk->sk_rcvbuf) {
1505 IRDA_DEBUG(2, "%s(), Starting IrTTP\n", __FUNCTION__);
1506 self->rx_flow = FLOW_START;
1507 irttp_flow_request(self->tsap, FLOW_START);
1511 return copied;
1515 * Function irda_sendmsg_dgram (iocb, sock, msg, len)
1517 * Send message down to TinyTP for the unreliable sequenced
1518 * packet service...
1521 static int irda_sendmsg_dgram(struct kiocb *iocb, struct socket *sock,
1522 struct msghdr *msg, size_t len)
1524 struct sock *sk = sock->sk;
1525 struct irda_sock *self;
1526 struct sk_buff *skb;
1527 unsigned char *asmptr;
1528 int err;
1530 IRDA_DEBUG(4, "%s(), len=%zd\n", __FUNCTION__, len);
1532 if (msg->msg_flags & ~(MSG_DONTWAIT|MSG_CMSG_COMPAT))
1533 return -EINVAL;
1535 if (sk->sk_shutdown & SEND_SHUTDOWN) {
1536 send_sig(SIGPIPE, current, 0);
1537 return -EPIPE;
1540 if (sk->sk_state != TCP_ESTABLISHED)
1541 return -ENOTCONN;
1543 self = irda_sk(sk);
1544 IRDA_ASSERT(self != NULL, return -1;);
1547 * Check that we don't send out to big frames. This is an unreliable
1548 * service, so we have no fragmentation and no coalescence
1550 if (len > self->max_data_size) {
1551 IRDA_DEBUG(0, "%s(), Warning to much data! "
1552 "Chopping frame from %zd to %d bytes!\n",
1553 __FUNCTION__, len, self->max_data_size);
1554 len = self->max_data_size;
1557 skb = sock_alloc_send_skb(sk, len + self->max_header_size,
1558 msg->msg_flags & MSG_DONTWAIT, &err);
1559 if (!skb)
1560 return -ENOBUFS;
1562 skb_reserve(skb, self->max_header_size);
1564 IRDA_DEBUG(4, "%s(), appending user data\n", __FUNCTION__);
1565 asmptr = skb->h.raw = skb_put(skb, len);
1566 err = memcpy_fromiovec(asmptr, msg->msg_iov, len);
1567 if (err) {
1568 kfree_skb(skb);
1569 return err;
1573 * Just send the message to TinyTP, and let it deal with possible
1574 * errors. No need to duplicate all that here
1576 err = irttp_udata_request(self->tsap, skb);
1577 if (err) {
1578 IRDA_DEBUG(0, "%s(), err=%d\n", __FUNCTION__, err);
1579 return err;
1581 return len;
1585 * Function irda_sendmsg_ultra (iocb, sock, msg, len)
1587 * Send message down to IrLMP for the unreliable Ultra
1588 * packet service...
1590 #ifdef CONFIG_IRDA_ULTRA
1591 static int irda_sendmsg_ultra(struct kiocb *iocb, struct socket *sock,
1592 struct msghdr *msg, size_t len)
1594 struct sock *sk = sock->sk;
1595 struct irda_sock *self;
1596 __u8 pid = 0;
1597 int bound = 0;
1598 struct sk_buff *skb;
1599 unsigned char *asmptr;
1600 int err;
1602 IRDA_DEBUG(4, "%s(), len=%zd\n", __FUNCTION__, len);
1604 if (msg->msg_flags & ~(MSG_DONTWAIT|MSG_CMSG_COMPAT))
1605 return -EINVAL;
1607 if (sk->sk_shutdown & SEND_SHUTDOWN) {
1608 send_sig(SIGPIPE, current, 0);
1609 return -EPIPE;
1612 self = irda_sk(sk);
1613 IRDA_ASSERT(self != NULL, return -1;);
1615 /* Check if an address was specified with sendto. Jean II */
1616 if (msg->msg_name) {
1617 struct sockaddr_irda *addr = (struct sockaddr_irda *) msg->msg_name;
1618 /* Check address, extract pid. Jean II */
1619 if (msg->msg_namelen < sizeof(*addr))
1620 return -EINVAL;
1621 if (addr->sir_family != AF_IRDA)
1622 return -EINVAL;
1624 pid = addr->sir_lsap_sel;
1625 if (pid & 0x80) {
1626 IRDA_DEBUG(0, "%s(), extension in PID not supp!\n", __FUNCTION__);
1627 return -EOPNOTSUPP;
1629 } else {
1630 /* Check that the socket is properly bound to an Ultra
1631 * port. Jean II */
1632 if ((self->lsap == NULL) ||
1633 (sk->sk_state != TCP_ESTABLISHED)) {
1634 IRDA_DEBUG(0, "%s(), socket not bound to Ultra PID.\n",
1635 __FUNCTION__);
1636 return -ENOTCONN;
1638 /* Use PID from socket */
1639 bound = 1;
1643 * Check that we don't send out to big frames. This is an unreliable
1644 * service, so we have no fragmentation and no coalescence
1646 if (len > self->max_data_size) {
1647 IRDA_DEBUG(0, "%s(), Warning to much data! "
1648 "Chopping frame from %zd to %d bytes!\n",
1649 __FUNCTION__, len, self->max_data_size);
1650 len = self->max_data_size;
1653 skb = sock_alloc_send_skb(sk, len + self->max_header_size,
1654 msg->msg_flags & MSG_DONTWAIT, &err);
1655 if (!skb)
1656 return -ENOBUFS;
1658 skb_reserve(skb, self->max_header_size);
1660 IRDA_DEBUG(4, "%s(), appending user data\n", __FUNCTION__);
1661 asmptr = skb->h.raw = skb_put(skb, len);
1662 err = memcpy_fromiovec(asmptr, msg->msg_iov, len);
1663 if (err) {
1664 kfree_skb(skb);
1665 return err;
1668 err = irlmp_connless_data_request((bound ? self->lsap : NULL),
1669 skb, pid);
1670 if (err) {
1671 IRDA_DEBUG(0, "%s(), err=%d\n", __FUNCTION__, err);
1672 return err;
1674 return len;
1676 #endif /* CONFIG_IRDA_ULTRA */
1679 * Function irda_shutdown (sk, how)
1681 static int irda_shutdown(struct socket *sock, int how)
1683 struct sock *sk = sock->sk;
1684 struct irda_sock *self = irda_sk(sk);
1686 IRDA_ASSERT(self != NULL, return -1;);
1688 IRDA_DEBUG(1, "%s(%p)\n", __FUNCTION__, self);
1690 sk->sk_state = TCP_CLOSE;
1691 sk->sk_shutdown |= SEND_SHUTDOWN;
1692 sk->sk_state_change(sk);
1694 if (self->iriap) {
1695 iriap_close(self->iriap);
1696 self->iriap = NULL;
1699 if (self->tsap) {
1700 irttp_disconnect_request(self->tsap, NULL, P_NORMAL);
1701 irttp_close_tsap(self->tsap);
1702 self->tsap = NULL;
1705 /* A few cleanup so the socket look as good as new... */
1706 self->rx_flow = self->tx_flow = FLOW_START; /* needed ??? */
1707 self->daddr = DEV_ADDR_ANY; /* Until we get re-connected */
1708 self->saddr = 0x0; /* so IrLMP assign us any link */
1710 return 0;
1714 * Function irda_poll (file, sock, wait)
1716 static unsigned int irda_poll(struct file * file, struct socket *sock,
1717 poll_table *wait)
1719 struct sock *sk = sock->sk;
1720 struct irda_sock *self = irda_sk(sk);
1721 unsigned int mask;
1723 IRDA_DEBUG(4, "%s()\n", __FUNCTION__);
1725 poll_wait(file, sk->sk_sleep, wait);
1726 mask = 0;
1728 /* Exceptional events? */
1729 if (sk->sk_err)
1730 mask |= POLLERR;
1731 if (sk->sk_shutdown & RCV_SHUTDOWN) {
1732 IRDA_DEBUG(0, "%s(), POLLHUP\n", __FUNCTION__);
1733 mask |= POLLHUP;
1736 /* Readable? */
1737 if (!skb_queue_empty(&sk->sk_receive_queue)) {
1738 IRDA_DEBUG(4, "Socket is readable\n");
1739 mask |= POLLIN | POLLRDNORM;
1742 /* Connection-based need to check for termination and startup */
1743 switch (sk->sk_type) {
1744 case SOCK_STREAM:
1745 if (sk->sk_state == TCP_CLOSE) {
1746 IRDA_DEBUG(0, "%s(), POLLHUP\n", __FUNCTION__);
1747 mask |= POLLHUP;
1750 if (sk->sk_state == TCP_ESTABLISHED) {
1751 if ((self->tx_flow == FLOW_START) &&
1752 sock_writeable(sk))
1754 mask |= POLLOUT | POLLWRNORM | POLLWRBAND;
1757 break;
1758 case SOCK_SEQPACKET:
1759 if ((self->tx_flow == FLOW_START) &&
1760 sock_writeable(sk))
1762 mask |= POLLOUT | POLLWRNORM | POLLWRBAND;
1764 break;
1765 case SOCK_DGRAM:
1766 if (sock_writeable(sk))
1767 mask |= POLLOUT | POLLWRNORM | POLLWRBAND;
1768 break;
1769 default:
1770 break;
1772 return mask;
1776 * Function irda_ioctl (sock, cmd, arg)
1778 static int irda_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1780 struct sock *sk = sock->sk;
1782 IRDA_DEBUG(4, "%s(), cmd=%#x\n", __FUNCTION__, cmd);
1784 switch (cmd) {
1785 case TIOCOUTQ: {
1786 long amount;
1787 amount = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
1788 if (amount < 0)
1789 amount = 0;
1790 if (put_user(amount, (unsigned int __user *)arg))
1791 return -EFAULT;
1792 return 0;
1795 case TIOCINQ: {
1796 struct sk_buff *skb;
1797 long amount = 0L;
1798 /* These two are safe on a single CPU system as only user tasks fiddle here */
1799 if ((skb = skb_peek(&sk->sk_receive_queue)) != NULL)
1800 amount = skb->len;
1801 if (put_user(amount, (unsigned int __user *)arg))
1802 return -EFAULT;
1803 return 0;
1806 case SIOCGSTAMP:
1807 if (sk != NULL)
1808 return sock_get_timestamp(sk, (struct timeval __user *)arg);
1809 return -EINVAL;
1811 case SIOCGIFADDR:
1812 case SIOCSIFADDR:
1813 case SIOCGIFDSTADDR:
1814 case SIOCSIFDSTADDR:
1815 case SIOCGIFBRDADDR:
1816 case SIOCSIFBRDADDR:
1817 case SIOCGIFNETMASK:
1818 case SIOCSIFNETMASK:
1819 case SIOCGIFMETRIC:
1820 case SIOCSIFMETRIC:
1821 return -EINVAL;
1822 default:
1823 IRDA_DEBUG(1, "%s(), doing device ioctl!\n", __FUNCTION__);
1824 return dev_ioctl(cmd, (void __user *) arg);
1827 /*NOTREACHED*/
1828 return 0;
1832 * Function irda_setsockopt (sock, level, optname, optval, optlen)
1834 * Set some options for the socket
1837 static int irda_setsockopt(struct socket *sock, int level, int optname,
1838 char __user *optval, int optlen)
1840 struct sock *sk = sock->sk;
1841 struct irda_sock *self = irda_sk(sk);
1842 struct irda_ias_set *ias_opt;
1843 struct ias_object *ias_obj;
1844 struct ias_attrib * ias_attr; /* Attribute in IAS object */
1845 int opt;
1847 IRDA_ASSERT(self != NULL, return -1;);
1849 IRDA_DEBUG(2, "%s(%p)\n", __FUNCTION__, self);
1851 if (level != SOL_IRLMP)
1852 return -ENOPROTOOPT;
1854 switch (optname) {
1855 case IRLMP_IAS_SET:
1856 /* The user want to add an attribute to an existing IAS object
1857 * (in the IAS database) or to create a new object with this
1858 * attribute.
1859 * We first query IAS to know if the object exist, and then
1860 * create the right attribute...
1863 if (optlen != sizeof(struct irda_ias_set))
1864 return -EINVAL;
1866 ias_opt = kmalloc(sizeof(struct irda_ias_set), GFP_ATOMIC);
1867 if (ias_opt == NULL)
1868 return -ENOMEM;
1870 /* Copy query to the driver. */
1871 if (copy_from_user(ias_opt, optval, optlen)) {
1872 kfree(ias_opt);
1873 return -EFAULT;
1876 /* Find the object we target.
1877 * If the user gives us an empty string, we use the object
1878 * associated with this socket. This will workaround
1879 * duplicated class name - Jean II */
1880 if(ias_opt->irda_class_name[0] == '\0') {
1881 if(self->ias_obj == NULL) {
1882 kfree(ias_opt);
1883 return -EINVAL;
1885 ias_obj = self->ias_obj;
1886 } else
1887 ias_obj = irias_find_object(ias_opt->irda_class_name);
1889 /* Only ROOT can mess with the global IAS database.
1890 * Users can only add attributes to the object associated
1891 * with the socket they own - Jean II */
1892 if((!capable(CAP_NET_ADMIN)) &&
1893 ((ias_obj == NULL) || (ias_obj != self->ias_obj))) {
1894 kfree(ias_opt);
1895 return -EPERM;
1898 /* If the object doesn't exist, create it */
1899 if(ias_obj == (struct ias_object *) NULL) {
1900 /* Create a new object */
1901 ias_obj = irias_new_object(ias_opt->irda_class_name,
1902 jiffies);
1905 /* Do we have the attribute already ? */
1906 if(irias_find_attrib(ias_obj, ias_opt->irda_attrib_name)) {
1907 kfree(ias_opt);
1908 return -EINVAL;
1911 /* Look at the type */
1912 switch(ias_opt->irda_attrib_type) {
1913 case IAS_INTEGER:
1914 /* Add an integer attribute */
1915 irias_add_integer_attrib(
1916 ias_obj,
1917 ias_opt->irda_attrib_name,
1918 ias_opt->attribute.irda_attrib_int,
1919 IAS_USER_ATTR);
1920 break;
1921 case IAS_OCT_SEQ:
1922 /* Check length */
1923 if(ias_opt->attribute.irda_attrib_octet_seq.len >
1924 IAS_MAX_OCTET_STRING) {
1925 kfree(ias_opt);
1926 return -EINVAL;
1928 /* Add an octet sequence attribute */
1929 irias_add_octseq_attrib(
1930 ias_obj,
1931 ias_opt->irda_attrib_name,
1932 ias_opt->attribute.irda_attrib_octet_seq.octet_seq,
1933 ias_opt->attribute.irda_attrib_octet_seq.len,
1934 IAS_USER_ATTR);
1935 break;
1936 case IAS_STRING:
1937 /* Should check charset & co */
1938 /* Check length */
1939 /* The length is encoded in a __u8, and
1940 * IAS_MAX_STRING == 256, so there is no way
1941 * userspace can pass us a string too large.
1942 * Jean II */
1943 /* NULL terminate the string (avoid troubles) */
1944 ias_opt->attribute.irda_attrib_string.string[ias_opt->attribute.irda_attrib_string.len] = '\0';
1945 /* Add a string attribute */
1946 irias_add_string_attrib(
1947 ias_obj,
1948 ias_opt->irda_attrib_name,
1949 ias_opt->attribute.irda_attrib_string.string,
1950 IAS_USER_ATTR);
1951 break;
1952 default :
1953 kfree(ias_opt);
1954 return -EINVAL;
1956 irias_insert_object(ias_obj);
1957 kfree(ias_opt);
1958 break;
1959 case IRLMP_IAS_DEL:
1960 /* The user want to delete an object from our local IAS
1961 * database. We just need to query the IAS, check is the
1962 * object is not owned by the kernel and delete it.
1965 if (optlen != sizeof(struct irda_ias_set))
1966 return -EINVAL;
1968 ias_opt = kmalloc(sizeof(struct irda_ias_set), GFP_ATOMIC);
1969 if (ias_opt == NULL)
1970 return -ENOMEM;
1972 /* Copy query to the driver. */
1973 if (copy_from_user(ias_opt, optval, optlen)) {
1974 kfree(ias_opt);
1975 return -EFAULT;
1978 /* Find the object we target.
1979 * If the user gives us an empty string, we use the object
1980 * associated with this socket. This will workaround
1981 * duplicated class name - Jean II */
1982 if(ias_opt->irda_class_name[0] == '\0')
1983 ias_obj = self->ias_obj;
1984 else
1985 ias_obj = irias_find_object(ias_opt->irda_class_name);
1986 if(ias_obj == (struct ias_object *) NULL) {
1987 kfree(ias_opt);
1988 return -EINVAL;
1991 /* Only ROOT can mess with the global IAS database.
1992 * Users can only del attributes from the object associated
1993 * with the socket they own - Jean II */
1994 if((!capable(CAP_NET_ADMIN)) &&
1995 ((ias_obj == NULL) || (ias_obj != self->ias_obj))) {
1996 kfree(ias_opt);
1997 return -EPERM;
2000 /* Find the attribute (in the object) we target */
2001 ias_attr = irias_find_attrib(ias_obj,
2002 ias_opt->irda_attrib_name);
2003 if(ias_attr == (struct ias_attrib *) NULL) {
2004 kfree(ias_opt);
2005 return -EINVAL;
2008 /* Check is the user space own the object */
2009 if(ias_attr->value->owner != IAS_USER_ATTR) {
2010 IRDA_DEBUG(1, "%s(), attempting to delete a kernel attribute\n", __FUNCTION__);
2011 kfree(ias_opt);
2012 return -EPERM;
2015 /* Remove the attribute (and maybe the object) */
2016 irias_delete_attrib(ias_obj, ias_attr, 1);
2017 kfree(ias_opt);
2018 break;
2019 case IRLMP_MAX_SDU_SIZE:
2020 if (optlen < sizeof(int))
2021 return -EINVAL;
2023 if (get_user(opt, (int __user *)optval))
2024 return -EFAULT;
2026 /* Only possible for a seqpacket service (TTP with SAR) */
2027 if (sk->sk_type != SOCK_SEQPACKET) {
2028 IRDA_DEBUG(2, "%s(), setting max_sdu_size = %d\n",
2029 __FUNCTION__, opt);
2030 self->max_sdu_size_rx = opt;
2031 } else {
2032 IRDA_WARNING("%s: not allowed to set MAXSDUSIZE for this socket type!\n",
2033 __FUNCTION__);
2034 return -ENOPROTOOPT;
2036 break;
2037 case IRLMP_HINTS_SET:
2038 if (optlen < sizeof(int))
2039 return -EINVAL;
2041 /* The input is really a (__u8 hints[2]), easier as an int */
2042 if (get_user(opt, (int __user *)optval))
2043 return -EFAULT;
2045 /* Unregister any old registration */
2046 if (self->skey)
2047 irlmp_unregister_service(self->skey);
2049 self->skey = irlmp_register_service((__u16) opt);
2050 break;
2051 case IRLMP_HINT_MASK_SET:
2052 /* As opposed to the previous case which set the hint bits
2053 * that we advertise, this one set the filter we use when
2054 * making a discovery (nodes which don't match any hint
2055 * bit in the mask are not reported).
2057 if (optlen < sizeof(int))
2058 return -EINVAL;
2060 /* The input is really a (__u8 hints[2]), easier as an int */
2061 if (get_user(opt, (int __user *)optval))
2062 return -EFAULT;
2064 /* Set the new hint mask */
2065 self->mask.word = (__u16) opt;
2066 /* Mask out extension bits */
2067 self->mask.word &= 0x7f7f;
2068 /* Check if no bits */
2069 if(!self->mask.word)
2070 self->mask.word = 0xFFFF;
2072 break;
2073 default:
2074 return -ENOPROTOOPT;
2076 return 0;
2080 * Function irda_extract_ias_value(ias_opt, ias_value)
2082 * Translate internal IAS value structure to the user space representation
2084 * The external representation of IAS values, as we exchange them with
2085 * user space program is quite different from the internal representation,
2086 * as stored in the IAS database (because we need a flat structure for
2087 * crossing kernel boundary).
2088 * This function transform the former in the latter. We also check
2089 * that the value type is valid.
2091 static int irda_extract_ias_value(struct irda_ias_set *ias_opt,
2092 struct ias_value *ias_value)
2094 /* Look at the type */
2095 switch (ias_value->type) {
2096 case IAS_INTEGER:
2097 /* Copy the integer */
2098 ias_opt->attribute.irda_attrib_int = ias_value->t.integer;
2099 break;
2100 case IAS_OCT_SEQ:
2101 /* Set length */
2102 ias_opt->attribute.irda_attrib_octet_seq.len = ias_value->len;
2103 /* Copy over */
2104 memcpy(ias_opt->attribute.irda_attrib_octet_seq.octet_seq,
2105 ias_value->t.oct_seq, ias_value->len);
2106 break;
2107 case IAS_STRING:
2108 /* Set length */
2109 ias_opt->attribute.irda_attrib_string.len = ias_value->len;
2110 ias_opt->attribute.irda_attrib_string.charset = ias_value->charset;
2111 /* Copy over */
2112 memcpy(ias_opt->attribute.irda_attrib_string.string,
2113 ias_value->t.string, ias_value->len);
2114 /* NULL terminate the string (avoid troubles) */
2115 ias_opt->attribute.irda_attrib_string.string[ias_value->len] = '\0';
2116 break;
2117 case IAS_MISSING:
2118 default :
2119 return -EINVAL;
2122 /* Copy type over */
2123 ias_opt->irda_attrib_type = ias_value->type;
2125 return 0;
2129 * Function irda_getsockopt (sock, level, optname, optval, optlen)
2131 static int irda_getsockopt(struct socket *sock, int level, int optname,
2132 char __user *optval, int __user *optlen)
2134 struct sock *sk = sock->sk;
2135 struct irda_sock *self = irda_sk(sk);
2136 struct irda_device_list list;
2137 struct irda_device_info *discoveries;
2138 struct irda_ias_set * ias_opt; /* IAS get/query params */
2139 struct ias_object * ias_obj; /* Object in IAS */
2140 struct ias_attrib * ias_attr; /* Attribute in IAS object */
2141 int daddr = DEV_ADDR_ANY; /* Dest address for IAS queries */
2142 int val = 0;
2143 int len = 0;
2144 int err;
2145 int offset, total;
2147 IRDA_DEBUG(2, "%s(%p)\n", __FUNCTION__, self);
2149 if (level != SOL_IRLMP)
2150 return -ENOPROTOOPT;
2152 if (get_user(len, optlen))
2153 return -EFAULT;
2155 if(len < 0)
2156 return -EINVAL;
2158 switch (optname) {
2159 case IRLMP_ENUMDEVICES:
2160 /* Ask lmp for the current discovery log */
2161 discoveries = irlmp_get_discoveries(&list.len, self->mask.word,
2162 self->nslots);
2163 /* Check if the we got some results */
2164 if (discoveries == NULL)
2165 return -EAGAIN; /* Didn't find any devices */
2166 err = 0;
2168 /* Write total list length back to client */
2169 if (copy_to_user(optval, &list,
2170 sizeof(struct irda_device_list) -
2171 sizeof(struct irda_device_info)))
2172 err = -EFAULT;
2174 /* Offset to first device entry */
2175 offset = sizeof(struct irda_device_list) -
2176 sizeof(struct irda_device_info);
2178 /* Copy the list itself - watch for overflow */
2179 if(list.len > 2048)
2181 err = -EINVAL;
2182 goto bed;
2184 total = offset + (list.len * sizeof(struct irda_device_info));
2185 if (total > len)
2186 total = len;
2187 if (copy_to_user(optval+offset, discoveries, total - offset))
2188 err = -EFAULT;
2190 /* Write total number of bytes used back to client */
2191 if (put_user(total, optlen))
2192 err = -EFAULT;
2193 bed:
2194 /* Free up our buffer */
2195 kfree(discoveries);
2196 if (err)
2197 return err;
2198 break;
2199 case IRLMP_MAX_SDU_SIZE:
2200 val = self->max_data_size;
2201 len = sizeof(int);
2202 if (put_user(len, optlen))
2203 return -EFAULT;
2205 if (copy_to_user(optval, &val, len))
2206 return -EFAULT;
2207 break;
2208 case IRLMP_IAS_GET:
2209 /* The user want an object from our local IAS database.
2210 * We just need to query the IAS and return the value
2211 * that we found */
2213 /* Check that the user has allocated the right space for us */
2214 if (len != sizeof(struct irda_ias_set))
2215 return -EINVAL;
2217 ias_opt = kmalloc(sizeof(struct irda_ias_set), GFP_ATOMIC);
2218 if (ias_opt == NULL)
2219 return -ENOMEM;
2221 /* Copy query to the driver. */
2222 if (copy_from_user(ias_opt, optval, len)) {
2223 kfree(ias_opt);
2224 return -EFAULT;
2227 /* Find the object we target.
2228 * If the user gives us an empty string, we use the object
2229 * associated with this socket. This will workaround
2230 * duplicated class name - Jean II */
2231 if(ias_opt->irda_class_name[0] == '\0')
2232 ias_obj = self->ias_obj;
2233 else
2234 ias_obj = irias_find_object(ias_opt->irda_class_name);
2235 if(ias_obj == (struct ias_object *) NULL) {
2236 kfree(ias_opt);
2237 return -EINVAL;
2240 /* Find the attribute (in the object) we target */
2241 ias_attr = irias_find_attrib(ias_obj,
2242 ias_opt->irda_attrib_name);
2243 if(ias_attr == (struct ias_attrib *) NULL) {
2244 kfree(ias_opt);
2245 return -EINVAL;
2248 /* Translate from internal to user structure */
2249 err = irda_extract_ias_value(ias_opt, ias_attr->value);
2250 if(err) {
2251 kfree(ias_opt);
2252 return err;
2255 /* Copy reply to the user */
2256 if (copy_to_user(optval, ias_opt,
2257 sizeof(struct irda_ias_set))) {
2258 kfree(ias_opt);
2259 return -EFAULT;
2261 /* Note : don't need to put optlen, we checked it */
2262 kfree(ias_opt);
2263 break;
2264 case IRLMP_IAS_QUERY:
2265 /* The user want an object from a remote IAS database.
2266 * We need to use IAP to query the remote database and
2267 * then wait for the answer to come back. */
2269 /* Check that the user has allocated the right space for us */
2270 if (len != sizeof(struct irda_ias_set))
2271 return -EINVAL;
2273 ias_opt = kmalloc(sizeof(struct irda_ias_set), GFP_ATOMIC);
2274 if (ias_opt == NULL)
2275 return -ENOMEM;
2277 /* Copy query to the driver. */
2278 if (copy_from_user(ias_opt, optval, len)) {
2279 kfree(ias_opt);
2280 return -EFAULT;
2283 /* At this point, there are two cases...
2284 * 1) the socket is connected - that's the easy case, we
2285 * just query the device we are connected to...
2286 * 2) the socket is not connected - the user doesn't want
2287 * to connect and/or may not have a valid service name
2288 * (so can't create a fake connection). In this case,
2289 * we assume that the user pass us a valid destination
2290 * address in the requesting structure...
2292 if(self->daddr != DEV_ADDR_ANY) {
2293 /* We are connected - reuse known daddr */
2294 daddr = self->daddr;
2295 } else {
2296 /* We are not connected, we must specify a valid
2297 * destination address */
2298 daddr = ias_opt->daddr;
2299 if((!daddr) || (daddr == DEV_ADDR_ANY)) {
2300 kfree(ias_opt);
2301 return -EINVAL;
2305 /* Check that we can proceed with IAP */
2306 if (self->iriap) {
2307 IRDA_WARNING("%s: busy with a previous query\n",
2308 __FUNCTION__);
2309 kfree(ias_opt);
2310 return -EBUSY;
2313 self->iriap = iriap_open(LSAP_ANY, IAS_CLIENT, self,
2314 irda_getvalue_confirm);
2316 if (self->iriap == NULL) {
2317 kfree(ias_opt);
2318 return -ENOMEM;
2321 /* Treat unexpected wakeup as disconnect */
2322 self->errno = -EHOSTUNREACH;
2324 /* Query remote LM-IAS */
2325 iriap_getvaluebyclass_request(self->iriap,
2326 self->saddr, daddr,
2327 ias_opt->irda_class_name,
2328 ias_opt->irda_attrib_name);
2330 /* Wait for answer, if not yet finished (or failed) */
2331 if (wait_event_interruptible(self->query_wait,
2332 (self->iriap == NULL))) {
2333 /* pending request uses copy of ias_opt-content
2334 * we can free it regardless! */
2335 kfree(ias_opt);
2336 /* Treat signals as disconnect */
2337 return -EHOSTUNREACH;
2340 /* Check what happened */
2341 if (self->errno)
2343 kfree(ias_opt);
2344 /* Requested object/attribute doesn't exist */
2345 if((self->errno == IAS_CLASS_UNKNOWN) ||
2346 (self->errno == IAS_ATTRIB_UNKNOWN))
2347 return (-EADDRNOTAVAIL);
2348 else
2349 return (-EHOSTUNREACH);
2352 /* Translate from internal to user structure */
2353 err = irda_extract_ias_value(ias_opt, self->ias_result);
2354 if (self->ias_result)
2355 irias_delete_value(self->ias_result);
2356 if (err) {
2357 kfree(ias_opt);
2358 return err;
2361 /* Copy reply to the user */
2362 if (copy_to_user(optval, ias_opt,
2363 sizeof(struct irda_ias_set))) {
2364 kfree(ias_opt);
2365 return -EFAULT;
2367 /* Note : don't need to put optlen, we checked it */
2368 kfree(ias_opt);
2369 break;
2370 case IRLMP_WAITDEVICE:
2371 /* This function is just another way of seeing life ;-)
2372 * IRLMP_ENUMDEVICES assumes that you have a static network,
2373 * and that you just want to pick one of the devices present.
2374 * On the other hand, in here we assume that no device is
2375 * present and that at some point in the future a device will
2376 * come into range. When this device arrive, we just wake
2377 * up the caller, so that he has time to connect to it before
2378 * the device goes away...
2379 * Note : once the node has been discovered for more than a
2380 * few second, it won't trigger this function, unless it
2381 * goes away and come back changes its hint bits (so we
2382 * might call it IRLMP_WAITNEWDEVICE).
2385 /* Check that the user is passing us an int */
2386 if (len != sizeof(int))
2387 return -EINVAL;
2388 /* Get timeout in ms (max time we block the caller) */
2389 if (get_user(val, (int __user *)optval))
2390 return -EFAULT;
2392 /* Tell IrLMP we want to be notified */
2393 irlmp_update_client(self->ckey, self->mask.word,
2394 irda_selective_discovery_indication,
2395 NULL, (void *) self);
2397 /* Do some discovery (and also return cached results) */
2398 irlmp_discovery_request(self->nslots);
2400 /* Wait until a node is discovered */
2401 if (!self->cachedaddr) {
2402 int ret = 0;
2404 IRDA_DEBUG(1, "%s(), nothing discovered yet, going to sleep...\n", __FUNCTION__);
2406 /* Set watchdog timer to expire in <val> ms. */
2407 self->errno = 0;
2408 init_timer(&self->watchdog);
2409 self->watchdog.function = irda_discovery_timeout;
2410 self->watchdog.data = (unsigned long) self;
2411 self->watchdog.expires = jiffies + (val * HZ/1000);
2412 add_timer(&(self->watchdog));
2414 /* Wait for IR-LMP to call us back */
2415 __wait_event_interruptible(self->query_wait,
2416 (self->cachedaddr != 0 || self->errno == -ETIME),
2417 ret);
2419 /* If watchdog is still activated, kill it! */
2420 if(timer_pending(&(self->watchdog)))
2421 del_timer(&(self->watchdog));
2423 IRDA_DEBUG(1, "%s(), ...waking up !\n", __FUNCTION__);
2425 if (ret != 0)
2426 return ret;
2428 else
2429 IRDA_DEBUG(1, "%s(), found immediately !\n",
2430 __FUNCTION__);
2432 /* Tell IrLMP that we have been notified */
2433 irlmp_update_client(self->ckey, self->mask.word,
2434 NULL, NULL, NULL);
2436 /* Check if the we got some results */
2437 if (!self->cachedaddr)
2438 return -EAGAIN; /* Didn't find any devices */
2439 daddr = self->cachedaddr;
2440 /* Cleanup */
2441 self->cachedaddr = 0;
2443 /* We return the daddr of the device that trigger the
2444 * wakeup. As irlmp pass us only the new devices, we
2445 * are sure that it's not an old device.
2446 * If the user want more details, he should query
2447 * the whole discovery log and pick one device...
2449 if (put_user(daddr, (int __user *)optval))
2450 return -EFAULT;
2452 break;
2453 default:
2454 return -ENOPROTOOPT;
2457 return 0;
2460 static struct net_proto_family irda_family_ops = {
2461 .family = PF_IRDA,
2462 .create = irda_create,
2463 .owner = THIS_MODULE,
2466 static struct proto_ops SOCKOPS_WRAPPED(irda_stream_ops) = {
2467 .family = PF_IRDA,
2468 .owner = THIS_MODULE,
2469 .release = irda_release,
2470 .bind = irda_bind,
2471 .connect = irda_connect,
2472 .socketpair = sock_no_socketpair,
2473 .accept = irda_accept,
2474 .getname = irda_getname,
2475 .poll = irda_poll,
2476 .ioctl = irda_ioctl,
2477 .listen = irda_listen,
2478 .shutdown = irda_shutdown,
2479 .setsockopt = irda_setsockopt,
2480 .getsockopt = irda_getsockopt,
2481 .sendmsg = irda_sendmsg,
2482 .recvmsg = irda_recvmsg_stream,
2483 .mmap = sock_no_mmap,
2484 .sendpage = sock_no_sendpage,
2487 static struct proto_ops SOCKOPS_WRAPPED(irda_seqpacket_ops) = {
2488 .family = PF_IRDA,
2489 .owner = THIS_MODULE,
2490 .release = irda_release,
2491 .bind = irda_bind,
2492 .connect = irda_connect,
2493 .socketpair = sock_no_socketpair,
2494 .accept = irda_accept,
2495 .getname = irda_getname,
2496 .poll = datagram_poll,
2497 .ioctl = irda_ioctl,
2498 .listen = irda_listen,
2499 .shutdown = irda_shutdown,
2500 .setsockopt = irda_setsockopt,
2501 .getsockopt = irda_getsockopt,
2502 .sendmsg = irda_sendmsg,
2503 .recvmsg = irda_recvmsg_dgram,
2504 .mmap = sock_no_mmap,
2505 .sendpage = sock_no_sendpage,
2508 static struct proto_ops SOCKOPS_WRAPPED(irda_dgram_ops) = {
2509 .family = PF_IRDA,
2510 .owner = THIS_MODULE,
2511 .release = irda_release,
2512 .bind = irda_bind,
2513 .connect = irda_connect,
2514 .socketpair = sock_no_socketpair,
2515 .accept = irda_accept,
2516 .getname = irda_getname,
2517 .poll = datagram_poll,
2518 .ioctl = irda_ioctl,
2519 .listen = irda_listen,
2520 .shutdown = irda_shutdown,
2521 .setsockopt = irda_setsockopt,
2522 .getsockopt = irda_getsockopt,
2523 .sendmsg = irda_sendmsg_dgram,
2524 .recvmsg = irda_recvmsg_dgram,
2525 .mmap = sock_no_mmap,
2526 .sendpage = sock_no_sendpage,
2529 #ifdef CONFIG_IRDA_ULTRA
2530 static struct proto_ops SOCKOPS_WRAPPED(irda_ultra_ops) = {
2531 .family = PF_IRDA,
2532 .owner = THIS_MODULE,
2533 .release = irda_release,
2534 .bind = irda_bind,
2535 .connect = sock_no_connect,
2536 .socketpair = sock_no_socketpair,
2537 .accept = sock_no_accept,
2538 .getname = irda_getname,
2539 .poll = datagram_poll,
2540 .ioctl = irda_ioctl,
2541 .listen = sock_no_listen,
2542 .shutdown = irda_shutdown,
2543 .setsockopt = irda_setsockopt,
2544 .getsockopt = irda_getsockopt,
2545 .sendmsg = irda_sendmsg_ultra,
2546 .recvmsg = irda_recvmsg_dgram,
2547 .mmap = sock_no_mmap,
2548 .sendpage = sock_no_sendpage,
2550 #endif /* CONFIG_IRDA_ULTRA */
2552 #include <linux/smp_lock.h>
2553 SOCKOPS_WRAP(irda_stream, PF_IRDA);
2554 SOCKOPS_WRAP(irda_seqpacket, PF_IRDA);
2555 SOCKOPS_WRAP(irda_dgram, PF_IRDA);
2556 #ifdef CONFIG_IRDA_ULTRA
2557 SOCKOPS_WRAP(irda_ultra, PF_IRDA);
2558 #endif /* CONFIG_IRDA_ULTRA */
2561 * Function irsock_init (pro)
2563 * Initialize IrDA protocol
2566 int __init irsock_init(void)
2568 int rc = proto_register(&irda_proto, 0);
2570 if (rc == 0)
2571 rc = sock_register(&irda_family_ops);
2573 return rc;
2577 * Function irsock_cleanup (void)
2579 * Remove IrDA protocol
2582 void __exit irsock_cleanup(void)
2584 sock_unregister(PF_IRDA);
2585 proto_unregister(&irda_proto);