[PATCH] ppc32: enable use of early_param
[linux-2.6/verdex.git] / drivers / net / sunqe.c
blob1f2323be60d44648ea565e4edfe449af53155b66
1 /* $Id: sunqe.c,v 1.55 2002/01/15 06:48:55 davem Exp $
2 * sunqe.c: Sparc QuadEthernet 10baseT SBUS card driver.
3 * Once again I am out to prove that every ethernet
4 * controller out there can be most efficiently programmed
5 * if you make it look like a LANCE.
7 * Copyright (C) 1996, 1999, 2003 David S. Miller (davem@redhat.com)
8 */
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/types.h>
13 #include <linux/errno.h>
14 #include <linux/fcntl.h>
15 #include <linux/interrupt.h>
16 #include <linux/ioport.h>
17 #include <linux/in.h>
18 #include <linux/slab.h>
19 #include <linux/string.h>
20 #include <linux/delay.h>
21 #include <linux/init.h>
22 #include <linux/crc32.h>
23 #include <linux/netdevice.h>
24 #include <linux/etherdevice.h>
25 #include <linux/skbuff.h>
26 #include <linux/ethtool.h>
27 #include <linux/bitops.h>
29 #include <asm/system.h>
30 #include <asm/io.h>
31 #include <asm/dma.h>
32 #include <asm/byteorder.h>
33 #include <asm/idprom.h>
34 #include <asm/sbus.h>
35 #include <asm/openprom.h>
36 #include <asm/oplib.h>
37 #include <asm/auxio.h>
38 #include <asm/pgtable.h>
39 #include <asm/irq.h>
41 #include "sunqe.h"
43 #define DRV_NAME "sunqe"
44 #define DRV_VERSION "3.0"
45 #define DRV_RELDATE "8/24/03"
46 #define DRV_AUTHOR "David S. Miller (davem@redhat.com)"
48 static char version[] =
49 DRV_NAME ".c:v" DRV_VERSION " " DRV_RELDATE " " DRV_AUTHOR "\n";
51 MODULE_VERSION(DRV_VERSION);
52 MODULE_AUTHOR(DRV_AUTHOR);
53 MODULE_DESCRIPTION("Sun QuadEthernet 10baseT SBUS card driver");
54 MODULE_LICENSE("GPL");
56 static struct sunqec *root_qec_dev;
58 static void qe_set_multicast(struct net_device *dev);
60 #define QEC_RESET_TRIES 200
62 static inline int qec_global_reset(void __iomem *gregs)
64 int tries = QEC_RESET_TRIES;
66 sbus_writel(GLOB_CTRL_RESET, gregs + GLOB_CTRL);
67 while (--tries) {
68 u32 tmp = sbus_readl(gregs + GLOB_CTRL);
69 if (tmp & GLOB_CTRL_RESET) {
70 udelay(20);
71 continue;
73 break;
75 if (tries)
76 return 0;
77 printk(KERN_ERR "QuadEther: AIEEE cannot reset the QEC!\n");
78 return -1;
81 #define MACE_RESET_RETRIES 200
82 #define QE_RESET_RETRIES 200
84 static inline int qe_stop(struct sunqe *qep)
86 void __iomem *cregs = qep->qcregs;
87 void __iomem *mregs = qep->mregs;
88 int tries;
90 /* Reset the MACE, then the QEC channel. */
91 sbus_writeb(MREGS_BCONFIG_RESET, mregs + MREGS_BCONFIG);
92 tries = MACE_RESET_RETRIES;
93 while (--tries) {
94 u8 tmp = sbus_readb(mregs + MREGS_BCONFIG);
95 if (tmp & MREGS_BCONFIG_RESET) {
96 udelay(20);
97 continue;
99 break;
101 if (!tries) {
102 printk(KERN_ERR "QuadEther: AIEEE cannot reset the MACE!\n");
103 return -1;
106 sbus_writel(CREG_CTRL_RESET, cregs + CREG_CTRL);
107 tries = QE_RESET_RETRIES;
108 while (--tries) {
109 u32 tmp = sbus_readl(cregs + CREG_CTRL);
110 if (tmp & CREG_CTRL_RESET) {
111 udelay(20);
112 continue;
114 break;
116 if (!tries) {
117 printk(KERN_ERR "QuadEther: Cannot reset QE channel!\n");
118 return -1;
120 return 0;
123 static void qe_init_rings(struct sunqe *qep)
125 struct qe_init_block *qb = qep->qe_block;
126 struct sunqe_buffers *qbufs = qep->buffers;
127 __u32 qbufs_dvma = qep->buffers_dvma;
128 int i;
130 qep->rx_new = qep->rx_old = qep->tx_new = qep->tx_old = 0;
131 memset(qb, 0, sizeof(struct qe_init_block));
132 memset(qbufs, 0, sizeof(struct sunqe_buffers));
133 for (i = 0; i < RX_RING_SIZE; i++) {
134 qb->qe_rxd[i].rx_addr = qbufs_dvma + qebuf_offset(rx_buf, i);
135 qb->qe_rxd[i].rx_flags =
136 (RXD_OWN | ((RXD_PKT_SZ) & RXD_LENGTH));
140 static int qe_init(struct sunqe *qep, int from_irq)
142 struct sunqec *qecp = qep->parent;
143 void __iomem *cregs = qep->qcregs;
144 void __iomem *mregs = qep->mregs;
145 void __iomem *gregs = qecp->gregs;
146 unsigned char *e = &qep->dev->dev_addr[0];
147 u32 tmp;
148 int i;
150 /* Shut it up. */
151 if (qe_stop(qep))
152 return -EAGAIN;
154 /* Setup initial rx/tx init block pointers. */
155 sbus_writel(qep->qblock_dvma + qib_offset(qe_rxd, 0), cregs + CREG_RXDS);
156 sbus_writel(qep->qblock_dvma + qib_offset(qe_txd, 0), cregs + CREG_TXDS);
158 /* Enable/mask the various irq's. */
159 sbus_writel(0, cregs + CREG_RIMASK);
160 sbus_writel(1, cregs + CREG_TIMASK);
162 sbus_writel(0, cregs + CREG_QMASK);
163 sbus_writel(CREG_MMASK_RXCOLL, cregs + CREG_MMASK);
165 /* Setup the FIFO pointers into QEC local memory. */
166 tmp = qep->channel * sbus_readl(gregs + GLOB_MSIZE);
167 sbus_writel(tmp, cregs + CREG_RXRBUFPTR);
168 sbus_writel(tmp, cregs + CREG_RXWBUFPTR);
170 tmp = sbus_readl(cregs + CREG_RXRBUFPTR) +
171 sbus_readl(gregs + GLOB_RSIZE);
172 sbus_writel(tmp, cregs + CREG_TXRBUFPTR);
173 sbus_writel(tmp, cregs + CREG_TXWBUFPTR);
175 /* Clear the channel collision counter. */
176 sbus_writel(0, cregs + CREG_CCNT);
178 /* For 10baseT, inter frame space nor throttle seems to be necessary. */
179 sbus_writel(0, cregs + CREG_PIPG);
181 /* Now dork with the AMD MACE. */
182 sbus_writeb(MREGS_PHYCONFIG_AUTO, mregs + MREGS_PHYCONFIG);
183 sbus_writeb(MREGS_TXFCNTL_AUTOPAD, mregs + MREGS_TXFCNTL);
184 sbus_writeb(0, mregs + MREGS_RXFCNTL);
186 /* The QEC dma's the rx'd packets from local memory out to main memory,
187 * and therefore it interrupts when the packet reception is "complete".
188 * So don't listen for the MACE talking about it.
190 sbus_writeb(MREGS_IMASK_COLL | MREGS_IMASK_RXIRQ, mregs + MREGS_IMASK);
191 sbus_writeb(MREGS_BCONFIG_BSWAP | MREGS_BCONFIG_64TS, mregs + MREGS_BCONFIG);
192 sbus_writeb((MREGS_FCONFIG_TXF16 | MREGS_FCONFIG_RXF32 |
193 MREGS_FCONFIG_RFWU | MREGS_FCONFIG_TFWU),
194 mregs + MREGS_FCONFIG);
196 /* Only usable interface on QuadEther is twisted pair. */
197 sbus_writeb(MREGS_PLSCONFIG_TP, mregs + MREGS_PLSCONFIG);
199 /* Tell MACE we are changing the ether address. */
200 sbus_writeb(MREGS_IACONFIG_ACHNGE | MREGS_IACONFIG_PARESET,
201 mregs + MREGS_IACONFIG);
202 while ((sbus_readb(mregs + MREGS_IACONFIG) & MREGS_IACONFIG_ACHNGE) != 0)
203 barrier();
204 sbus_writeb(e[0], mregs + MREGS_ETHADDR);
205 sbus_writeb(e[1], mregs + MREGS_ETHADDR);
206 sbus_writeb(e[2], mregs + MREGS_ETHADDR);
207 sbus_writeb(e[3], mregs + MREGS_ETHADDR);
208 sbus_writeb(e[4], mregs + MREGS_ETHADDR);
209 sbus_writeb(e[5], mregs + MREGS_ETHADDR);
211 /* Clear out the address filter. */
212 sbus_writeb(MREGS_IACONFIG_ACHNGE | MREGS_IACONFIG_LARESET,
213 mregs + MREGS_IACONFIG);
214 while ((sbus_readb(mregs + MREGS_IACONFIG) & MREGS_IACONFIG_ACHNGE) != 0)
215 barrier();
216 for (i = 0; i < 8; i++)
217 sbus_writeb(0, mregs + MREGS_FILTER);
219 /* Address changes are now complete. */
220 sbus_writeb(0, mregs + MREGS_IACONFIG);
222 qe_init_rings(qep);
224 /* Wait a little bit for the link to come up... */
225 mdelay(5);
226 if (!(sbus_readb(mregs + MREGS_PHYCONFIG) & MREGS_PHYCONFIG_LTESTDIS)) {
227 int tries = 50;
229 while (tries--) {
230 u8 tmp;
232 mdelay(5);
233 barrier();
234 tmp = sbus_readb(mregs + MREGS_PHYCONFIG);
235 if ((tmp & MREGS_PHYCONFIG_LSTAT) != 0)
236 break;
238 if (tries == 0)
239 printk(KERN_NOTICE "%s: Warning, link state is down.\n", qep->dev->name);
242 /* Missed packet counter is cleared on a read. */
243 sbus_readb(mregs + MREGS_MPCNT);
245 /* Reload multicast information, this will enable the receiver
246 * and transmitter.
248 qe_set_multicast(qep->dev);
250 /* QEC should now start to show interrupts. */
251 return 0;
254 /* Grrr, certain error conditions completely lock up the AMD MACE,
255 * so when we get these we _must_ reset the chip.
257 static int qe_is_bolixed(struct sunqe *qep, u32 qe_status)
259 struct net_device *dev = qep->dev;
260 int mace_hwbug_workaround = 0;
262 if (qe_status & CREG_STAT_EDEFER) {
263 printk(KERN_ERR "%s: Excessive transmit defers.\n", dev->name);
264 qep->net_stats.tx_errors++;
267 if (qe_status & CREG_STAT_CLOSS) {
268 printk(KERN_ERR "%s: Carrier lost, link down?\n", dev->name);
269 qep->net_stats.tx_errors++;
270 qep->net_stats.tx_carrier_errors++;
273 if (qe_status & CREG_STAT_ERETRIES) {
274 printk(KERN_ERR "%s: Excessive transmit retries (more than 16).\n", dev->name);
275 qep->net_stats.tx_errors++;
276 mace_hwbug_workaround = 1;
279 if (qe_status & CREG_STAT_LCOLL) {
280 printk(KERN_ERR "%s: Late transmit collision.\n", dev->name);
281 qep->net_stats.tx_errors++;
282 qep->net_stats.collisions++;
283 mace_hwbug_workaround = 1;
286 if (qe_status & CREG_STAT_FUFLOW) {
287 printk(KERN_ERR "%s: Transmit fifo underflow, driver bug.\n", dev->name);
288 qep->net_stats.tx_errors++;
289 mace_hwbug_workaround = 1;
292 if (qe_status & CREG_STAT_JERROR) {
293 printk(KERN_ERR "%s: Jabber error.\n", dev->name);
296 if (qe_status & CREG_STAT_BERROR) {
297 printk(KERN_ERR "%s: Babble error.\n", dev->name);
300 if (qe_status & CREG_STAT_CCOFLOW) {
301 qep->net_stats.tx_errors += 256;
302 qep->net_stats.collisions += 256;
305 if (qe_status & CREG_STAT_TXDERROR) {
306 printk(KERN_ERR "%s: Transmit descriptor is bogus, driver bug.\n", dev->name);
307 qep->net_stats.tx_errors++;
308 qep->net_stats.tx_aborted_errors++;
309 mace_hwbug_workaround = 1;
312 if (qe_status & CREG_STAT_TXLERR) {
313 printk(KERN_ERR "%s: Transmit late error.\n", dev->name);
314 qep->net_stats.tx_errors++;
315 mace_hwbug_workaround = 1;
318 if (qe_status & CREG_STAT_TXPERR) {
319 printk(KERN_ERR "%s: Transmit DMA parity error.\n", dev->name);
320 qep->net_stats.tx_errors++;
321 qep->net_stats.tx_aborted_errors++;
322 mace_hwbug_workaround = 1;
325 if (qe_status & CREG_STAT_TXSERR) {
326 printk(KERN_ERR "%s: Transmit DMA sbus error ack.\n", dev->name);
327 qep->net_stats.tx_errors++;
328 qep->net_stats.tx_aborted_errors++;
329 mace_hwbug_workaround = 1;
332 if (qe_status & CREG_STAT_RCCOFLOW) {
333 qep->net_stats.rx_errors += 256;
334 qep->net_stats.collisions += 256;
337 if (qe_status & CREG_STAT_RUOFLOW) {
338 qep->net_stats.rx_errors += 256;
339 qep->net_stats.rx_over_errors += 256;
342 if (qe_status & CREG_STAT_MCOFLOW) {
343 qep->net_stats.rx_errors += 256;
344 qep->net_stats.rx_missed_errors += 256;
347 if (qe_status & CREG_STAT_RXFOFLOW) {
348 printk(KERN_ERR "%s: Receive fifo overflow.\n", dev->name);
349 qep->net_stats.rx_errors++;
350 qep->net_stats.rx_over_errors++;
353 if (qe_status & CREG_STAT_RLCOLL) {
354 printk(KERN_ERR "%s: Late receive collision.\n", dev->name);
355 qep->net_stats.rx_errors++;
356 qep->net_stats.collisions++;
359 if (qe_status & CREG_STAT_FCOFLOW) {
360 qep->net_stats.rx_errors += 256;
361 qep->net_stats.rx_frame_errors += 256;
364 if (qe_status & CREG_STAT_CECOFLOW) {
365 qep->net_stats.rx_errors += 256;
366 qep->net_stats.rx_crc_errors += 256;
369 if (qe_status & CREG_STAT_RXDROP) {
370 printk(KERN_ERR "%s: Receive packet dropped.\n", dev->name);
371 qep->net_stats.rx_errors++;
372 qep->net_stats.rx_dropped++;
373 qep->net_stats.rx_missed_errors++;
376 if (qe_status & CREG_STAT_RXSMALL) {
377 printk(KERN_ERR "%s: Receive buffer too small, driver bug.\n", dev->name);
378 qep->net_stats.rx_errors++;
379 qep->net_stats.rx_length_errors++;
382 if (qe_status & CREG_STAT_RXLERR) {
383 printk(KERN_ERR "%s: Receive late error.\n", dev->name);
384 qep->net_stats.rx_errors++;
385 mace_hwbug_workaround = 1;
388 if (qe_status & CREG_STAT_RXPERR) {
389 printk(KERN_ERR "%s: Receive DMA parity error.\n", dev->name);
390 qep->net_stats.rx_errors++;
391 qep->net_stats.rx_missed_errors++;
392 mace_hwbug_workaround = 1;
395 if (qe_status & CREG_STAT_RXSERR) {
396 printk(KERN_ERR "%s: Receive DMA sbus error ack.\n", dev->name);
397 qep->net_stats.rx_errors++;
398 qep->net_stats.rx_missed_errors++;
399 mace_hwbug_workaround = 1;
402 if (mace_hwbug_workaround)
403 qe_init(qep, 1);
404 return mace_hwbug_workaround;
407 /* Per-QE receive interrupt service routine. Just like on the happy meal
408 * we receive directly into skb's with a small packet copy water mark.
410 static void qe_rx(struct sunqe *qep)
412 struct qe_rxd *rxbase = &qep->qe_block->qe_rxd[0];
413 struct qe_rxd *this;
414 struct sunqe_buffers *qbufs = qep->buffers;
415 __u32 qbufs_dvma = qep->buffers_dvma;
416 int elem = qep->rx_new, drops = 0;
417 u32 flags;
419 this = &rxbase[elem];
420 while (!((flags = this->rx_flags) & RXD_OWN)) {
421 struct sk_buff *skb;
422 unsigned char *this_qbuf =
423 &qbufs->rx_buf[elem & (RX_RING_SIZE - 1)][0];
424 __u32 this_qbuf_dvma = qbufs_dvma +
425 qebuf_offset(rx_buf, (elem & (RX_RING_SIZE - 1)));
426 struct qe_rxd *end_rxd =
427 &rxbase[(elem+RX_RING_SIZE)&(RX_RING_MAXSIZE-1)];
428 int len = (flags & RXD_LENGTH) - 4; /* QE adds ether FCS size to len */
430 /* Check for errors. */
431 if (len < ETH_ZLEN) {
432 qep->net_stats.rx_errors++;
433 qep->net_stats.rx_length_errors++;
434 qep->net_stats.rx_dropped++;
435 } else {
436 skb = dev_alloc_skb(len + 2);
437 if (skb == NULL) {
438 drops++;
439 qep->net_stats.rx_dropped++;
440 } else {
441 skb->dev = qep->dev;
442 skb_reserve(skb, 2);
443 skb_put(skb, len);
444 eth_copy_and_sum(skb, (unsigned char *) this_qbuf,
445 len, 0);
446 skb->protocol = eth_type_trans(skb, qep->dev);
447 netif_rx(skb);
448 qep->dev->last_rx = jiffies;
449 qep->net_stats.rx_packets++;
450 qep->net_stats.rx_bytes += len;
453 end_rxd->rx_addr = this_qbuf_dvma;
454 end_rxd->rx_flags = (RXD_OWN | ((RXD_PKT_SZ) & RXD_LENGTH));
456 elem = NEXT_RX(elem);
457 this = &rxbase[elem];
459 qep->rx_new = elem;
460 if (drops)
461 printk(KERN_NOTICE "%s: Memory squeeze, deferring packet.\n", qep->dev->name);
464 static void qe_tx_reclaim(struct sunqe *qep);
466 /* Interrupts for all QE's get filtered out via the QEC master controller,
467 * so we just run through each qe and check to see who is signaling
468 * and thus needs to be serviced.
470 static irqreturn_t qec_interrupt(int irq, void *dev_id, struct pt_regs *regs)
472 struct sunqec *qecp = (struct sunqec *) dev_id;
473 u32 qec_status;
474 int channel = 0;
476 /* Latch the status now. */
477 qec_status = sbus_readl(qecp->gregs + GLOB_STAT);
478 while (channel < 4) {
479 if (qec_status & 0xf) {
480 struct sunqe *qep = qecp->qes[channel];
481 u32 qe_status;
483 qe_status = sbus_readl(qep->qcregs + CREG_STAT);
484 if (qe_status & CREG_STAT_ERRORS) {
485 if (qe_is_bolixed(qep, qe_status))
486 goto next;
488 if (qe_status & CREG_STAT_RXIRQ)
489 qe_rx(qep);
490 if (netif_queue_stopped(qep->dev) &&
491 (qe_status & CREG_STAT_TXIRQ)) {
492 spin_lock(&qep->lock);
493 qe_tx_reclaim(qep);
494 if (TX_BUFFS_AVAIL(qep) > 0) {
495 /* Wake net queue and return to
496 * lazy tx reclaim.
498 netif_wake_queue(qep->dev);
499 sbus_writel(1, qep->qcregs + CREG_TIMASK);
501 spin_unlock(&qep->lock);
503 next:
506 qec_status >>= 4;
507 channel++;
510 return IRQ_HANDLED;
513 static int qe_open(struct net_device *dev)
515 struct sunqe *qep = (struct sunqe *) dev->priv;
517 qep->mconfig = (MREGS_MCONFIG_TXENAB |
518 MREGS_MCONFIG_RXENAB |
519 MREGS_MCONFIG_MBAENAB);
520 return qe_init(qep, 0);
523 static int qe_close(struct net_device *dev)
525 struct sunqe *qep = (struct sunqe *) dev->priv;
527 qe_stop(qep);
528 return 0;
531 /* Reclaim TX'd frames from the ring. This must always run under
532 * the IRQ protected qep->lock.
534 static void qe_tx_reclaim(struct sunqe *qep)
536 struct qe_txd *txbase = &qep->qe_block->qe_txd[0];
537 int elem = qep->tx_old;
539 while (elem != qep->tx_new) {
540 u32 flags = txbase[elem].tx_flags;
542 if (flags & TXD_OWN)
543 break;
544 elem = NEXT_TX(elem);
546 qep->tx_old = elem;
549 static void qe_tx_timeout(struct net_device *dev)
551 struct sunqe *qep = (struct sunqe *) dev->priv;
552 int tx_full;
554 spin_lock_irq(&qep->lock);
556 /* Try to reclaim, if that frees up some tx
557 * entries, we're fine.
559 qe_tx_reclaim(qep);
560 tx_full = TX_BUFFS_AVAIL(qep) <= 0;
562 spin_unlock_irq(&qep->lock);
564 if (! tx_full)
565 goto out;
567 printk(KERN_ERR "%s: transmit timed out, resetting\n", dev->name);
568 qe_init(qep, 1);
570 out:
571 netif_wake_queue(dev);
574 /* Get a packet queued to go onto the wire. */
575 static int qe_start_xmit(struct sk_buff *skb, struct net_device *dev)
577 struct sunqe *qep = (struct sunqe *) dev->priv;
578 struct sunqe_buffers *qbufs = qep->buffers;
579 __u32 txbuf_dvma, qbufs_dvma = qep->buffers_dvma;
580 unsigned char *txbuf;
581 int len, entry;
583 spin_lock_irq(&qep->lock);
585 qe_tx_reclaim(qep);
587 len = skb->len;
588 entry = qep->tx_new;
590 txbuf = &qbufs->tx_buf[entry & (TX_RING_SIZE - 1)][0];
591 txbuf_dvma = qbufs_dvma +
592 qebuf_offset(tx_buf, (entry & (TX_RING_SIZE - 1)));
594 /* Avoid a race... */
595 qep->qe_block->qe_txd[entry].tx_flags = TXD_UPDATE;
597 memcpy(txbuf, skb->data, len);
599 qep->qe_block->qe_txd[entry].tx_addr = txbuf_dvma;
600 qep->qe_block->qe_txd[entry].tx_flags =
601 (TXD_OWN | TXD_SOP | TXD_EOP | (len & TXD_LENGTH));
602 qep->tx_new = NEXT_TX(entry);
604 /* Get it going. */
605 dev->trans_start = jiffies;
606 sbus_writel(CREG_CTRL_TWAKEUP, qep->qcregs + CREG_CTRL);
608 qep->net_stats.tx_packets++;
609 qep->net_stats.tx_bytes += len;
611 if (TX_BUFFS_AVAIL(qep) <= 0) {
612 /* Halt the net queue and enable tx interrupts.
613 * When the tx queue empties the tx irq handler
614 * will wake up the queue and return us back to
615 * the lazy tx reclaim scheme.
617 netif_stop_queue(dev);
618 sbus_writel(0, qep->qcregs + CREG_TIMASK);
620 spin_unlock_irq(&qep->lock);
622 dev_kfree_skb(skb);
624 return 0;
627 static struct net_device_stats *qe_get_stats(struct net_device *dev)
629 struct sunqe *qep = (struct sunqe *) dev->priv;
631 return &qep->net_stats;
634 static void qe_set_multicast(struct net_device *dev)
636 struct sunqe *qep = (struct sunqe *) dev->priv;
637 struct dev_mc_list *dmi = dev->mc_list;
638 u8 new_mconfig = qep->mconfig;
639 char *addrs;
640 int i;
641 u32 crc;
643 /* Lock out others. */
644 netif_stop_queue(dev);
646 if ((dev->flags & IFF_ALLMULTI) || (dev->mc_count > 64)) {
647 sbus_writeb(MREGS_IACONFIG_ACHNGE | MREGS_IACONFIG_LARESET,
648 qep->mregs + MREGS_IACONFIG);
649 while ((sbus_readb(qep->mregs + MREGS_IACONFIG) & MREGS_IACONFIG_ACHNGE) != 0)
650 barrier();
651 for (i = 0; i < 8; i++)
652 sbus_writeb(0xff, qep->mregs + MREGS_FILTER);
653 sbus_writeb(0, qep->mregs + MREGS_IACONFIG);
654 } else if (dev->flags & IFF_PROMISC) {
655 new_mconfig |= MREGS_MCONFIG_PROMISC;
656 } else {
657 u16 hash_table[4];
658 u8 *hbytes = (unsigned char *) &hash_table[0];
660 for (i = 0; i < 4; i++)
661 hash_table[i] = 0;
663 for (i = 0; i < dev->mc_count; i++) {
664 addrs = dmi->dmi_addr;
665 dmi = dmi->next;
667 if (!(*addrs & 1))
668 continue;
669 crc = ether_crc_le(6, addrs);
670 crc >>= 26;
671 hash_table[crc >> 4] |= 1 << (crc & 0xf);
673 /* Program the qe with the new filter value. */
674 sbus_writeb(MREGS_IACONFIG_ACHNGE | MREGS_IACONFIG_LARESET,
675 qep->mregs + MREGS_IACONFIG);
676 while ((sbus_readb(qep->mregs + MREGS_IACONFIG) & MREGS_IACONFIG_ACHNGE) != 0)
677 barrier();
678 for (i = 0; i < 8; i++) {
679 u8 tmp = *hbytes++;
680 sbus_writeb(tmp, qep->mregs + MREGS_FILTER);
682 sbus_writeb(0, qep->mregs + MREGS_IACONFIG);
685 /* Any change of the logical address filter, the physical address,
686 * or enabling/disabling promiscuous mode causes the MACE to disable
687 * the receiver. So we must re-enable them here or else the MACE
688 * refuses to listen to anything on the network. Sheesh, took
689 * me a day or two to find this bug.
691 qep->mconfig = new_mconfig;
692 sbus_writeb(qep->mconfig, qep->mregs + MREGS_MCONFIG);
694 /* Let us get going again. */
695 netif_wake_queue(dev);
698 /* Ethtool support... */
699 static void qe_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
701 struct sunqe *qep = dev->priv;
703 strcpy(info->driver, "sunqe");
704 strcpy(info->version, "3.0");
705 sprintf(info->bus_info, "SBUS:%d",
706 qep->qe_sdev->slot);
709 static u32 qe_get_link(struct net_device *dev)
711 struct sunqe *qep = dev->priv;
712 void __iomem *mregs = qep->mregs;
713 u8 phyconfig;
715 spin_lock_irq(&qep->lock);
716 phyconfig = sbus_readb(mregs + MREGS_PHYCONFIG);
717 spin_unlock_irq(&qep->lock);
719 return (phyconfig & MREGS_PHYCONFIG_LSTAT);
722 static struct ethtool_ops qe_ethtool_ops = {
723 .get_drvinfo = qe_get_drvinfo,
724 .get_link = qe_get_link,
727 /* This is only called once at boot time for each card probed. */
728 static inline void qec_init_once(struct sunqec *qecp, struct sbus_dev *qsdev)
730 u8 bsizes = qecp->qec_bursts;
732 if (sbus_can_burst64(qsdev) && (bsizes & DMA_BURST64)) {
733 sbus_writel(GLOB_CTRL_B64, qecp->gregs + GLOB_CTRL);
734 } else if (bsizes & DMA_BURST32) {
735 sbus_writel(GLOB_CTRL_B32, qecp->gregs + GLOB_CTRL);
736 } else {
737 sbus_writel(GLOB_CTRL_B16, qecp->gregs + GLOB_CTRL);
740 /* Packetsize only used in 100baseT BigMAC configurations,
741 * set it to zero just to be on the safe side.
743 sbus_writel(GLOB_PSIZE_2048, qecp->gregs + GLOB_PSIZE);
745 /* Set the local memsize register, divided up to one piece per QE channel. */
746 sbus_writel((qsdev->reg_addrs[1].reg_size >> 2),
747 qecp->gregs + GLOB_MSIZE);
749 /* Divide up the local QEC memory amongst the 4 QE receiver and
750 * transmitter FIFOs. Basically it is (total / 2 / num_channels).
752 sbus_writel((qsdev->reg_addrs[1].reg_size >> 2) >> 1,
753 qecp->gregs + GLOB_TSIZE);
754 sbus_writel((qsdev->reg_addrs[1].reg_size >> 2) >> 1,
755 qecp->gregs + GLOB_RSIZE);
758 /* Four QE's per QEC card. */
759 static int __init qec_ether_init(struct net_device *dev, struct sbus_dev *sdev)
761 static unsigned version_printed;
762 struct net_device *qe_devs[4];
763 struct sunqe *qeps[4];
764 struct sbus_dev *qesdevs[4];
765 struct sbus_dev *child;
766 struct sunqec *qecp = NULL;
767 u8 bsizes, bsizes_more;
768 int i, j, res = -ENOMEM;
770 for (i = 0; i < 4; i++) {
771 qe_devs[i] = alloc_etherdev(sizeof(struct sunqe));
772 if (!qe_devs[i])
773 goto out;
776 if (version_printed++ == 0)
777 printk(KERN_INFO "%s", version);
779 for (i = 0; i < 4; i++) {
780 qeps[i] = (struct sunqe *) qe_devs[i]->priv;
781 for (j = 0; j < 6; j++)
782 qe_devs[i]->dev_addr[j] = idprom->id_ethaddr[j];
783 qeps[i]->channel = i;
784 spin_lock_init(&qeps[i]->lock);
787 qecp = kmalloc(sizeof(struct sunqec), GFP_KERNEL);
788 if (qecp == NULL)
789 goto out1;
790 qecp->qec_sdev = sdev;
792 for (i = 0; i < 4; i++) {
793 qecp->qes[i] = qeps[i];
794 qeps[i]->dev = qe_devs[i];
795 qeps[i]->parent = qecp;
798 res = -ENODEV;
800 for (i = 0, child = sdev->child; i < 4; i++, child = child->next) {
801 /* Link in channel */
802 j = prom_getintdefault(child->prom_node, "channel#", -1);
803 if (j == -1)
804 goto out2;
805 qesdevs[j] = child;
808 for (i = 0; i < 4; i++)
809 qeps[i]->qe_sdev = qesdevs[i];
811 /* Now map in the registers, QEC globals first. */
812 qecp->gregs = sbus_ioremap(&sdev->resource[0], 0,
813 GLOB_REG_SIZE, "QEC Global Registers");
814 if (!qecp->gregs) {
815 printk(KERN_ERR "QuadEther: Cannot map QEC global registers.\n");
816 goto out2;
819 /* Make sure the QEC is in MACE mode. */
820 if ((sbus_readl(qecp->gregs + GLOB_CTRL) & 0xf0000000) != GLOB_CTRL_MMODE) {
821 printk(KERN_ERR "QuadEther: AIEEE, QEC is not in MACE mode!\n");
822 goto out3;
825 /* Reset the QEC. */
826 if (qec_global_reset(qecp->gregs))
827 goto out3;
829 /* Find and set the burst sizes for the QEC, since it does
830 * the actual dma for all 4 channels.
832 bsizes = prom_getintdefault(sdev->prom_node, "burst-sizes", 0xff);
833 bsizes &= 0xff;
834 bsizes_more = prom_getintdefault(sdev->bus->prom_node, "burst-sizes", 0xff);
836 if (bsizes_more != 0xff)
837 bsizes &= bsizes_more;
838 if (bsizes == 0xff || (bsizes & DMA_BURST16) == 0 ||
839 (bsizes & DMA_BURST32)==0)
840 bsizes = (DMA_BURST32 - 1);
842 qecp->qec_bursts = bsizes;
844 /* Perform one time QEC initialization, we never touch the QEC
845 * globals again after this.
847 qec_init_once(qecp, sdev);
849 for (i = 0; i < 4; i++) {
850 struct sunqe *qe = qeps[i];
851 /* Map in QEC per-channel control registers. */
852 qe->qcregs = sbus_ioremap(&qe->qe_sdev->resource[0], 0,
853 CREG_REG_SIZE, "QEC Channel Registers");
854 if (!qe->qcregs) {
855 printk(KERN_ERR "QuadEther: Cannot map QE %d's channel registers.\n", i);
856 goto out4;
859 /* Map in per-channel AMD MACE registers. */
860 qe->mregs = sbus_ioremap(&qe->qe_sdev->resource[1], 0,
861 MREGS_REG_SIZE, "QE MACE Registers");
862 if (!qe->mregs) {
863 printk(KERN_ERR "QuadEther: Cannot map QE %d's MACE registers.\n", i);
864 goto out4;
867 qe->qe_block = sbus_alloc_consistent(qe->qe_sdev,
868 PAGE_SIZE,
869 &qe->qblock_dvma);
870 qe->buffers = sbus_alloc_consistent(qe->qe_sdev,
871 sizeof(struct sunqe_buffers),
872 &qe->buffers_dvma);
873 if (qe->qe_block == NULL || qe->qblock_dvma == 0 ||
874 qe->buffers == NULL || qe->buffers_dvma == 0) {
875 goto out4;
878 /* Stop this QE. */
879 qe_stop(qe);
882 for (i = 0; i < 4; i++) {
883 SET_MODULE_OWNER(qe_devs[i]);
884 qe_devs[i]->open = qe_open;
885 qe_devs[i]->stop = qe_close;
886 qe_devs[i]->hard_start_xmit = qe_start_xmit;
887 qe_devs[i]->get_stats = qe_get_stats;
888 qe_devs[i]->set_multicast_list = qe_set_multicast;
889 qe_devs[i]->tx_timeout = qe_tx_timeout;
890 qe_devs[i]->watchdog_timeo = 5*HZ;
891 qe_devs[i]->irq = sdev->irqs[0];
892 qe_devs[i]->dma = 0;
893 qe_devs[i]->ethtool_ops = &qe_ethtool_ops;
896 /* QEC receives interrupts from each QE, then it sends the actual
897 * IRQ to the cpu itself. Since QEC is the single point of
898 * interrupt for all QE channels we register the IRQ handler
899 * for it now.
901 if (request_irq(sdev->irqs[0], &qec_interrupt,
902 SA_SHIRQ, "QuadEther", (void *) qecp)) {
903 printk(KERN_ERR "QuadEther: Can't register QEC master irq handler.\n");
904 res = -EAGAIN;
905 goto out4;
908 for (i = 0; i < 4; i++) {
909 if (register_netdev(qe_devs[i]) != 0)
910 goto out5;
913 /* Report the QE channels. */
914 for (i = 0; i < 4; i++) {
915 printk(KERN_INFO "%s: QuadEthernet channel[%d] ", qe_devs[i]->name, i);
916 for (j = 0; j < 6; j++)
917 printk ("%2.2x%c",
918 qe_devs[i]->dev_addr[j],
919 j == 5 ? ' ': ':');
920 printk("\n");
923 /* We are home free at this point, link the qe's into
924 * the master list for later driver exit.
926 qecp->next_module = root_qec_dev;
927 root_qec_dev = qecp;
929 return 0;
931 out5:
932 while (i--)
933 unregister_netdev(qe_devs[i]);
934 free_irq(sdev->irqs[0], (void *)qecp);
935 out4:
936 for (i = 0; i < 4; i++) {
937 struct sunqe *qe = (struct sunqe *)qe_devs[i]->priv;
939 if (qe->qcregs)
940 sbus_iounmap(qe->qcregs, CREG_REG_SIZE);
941 if (qe->mregs)
942 sbus_iounmap(qe->mregs, MREGS_REG_SIZE);
943 if (qe->qe_block)
944 sbus_free_consistent(qe->qe_sdev,
945 PAGE_SIZE,
946 qe->qe_block,
947 qe->qblock_dvma);
948 if (qe->buffers)
949 sbus_free_consistent(qe->qe_sdev,
950 sizeof(struct sunqe_buffers),
951 qe->buffers,
952 qe->buffers_dvma);
954 out3:
955 sbus_iounmap(qecp->gregs, GLOB_REG_SIZE);
956 out2:
957 kfree(qecp);
958 out1:
959 i = 4;
960 out:
961 while (i--)
962 free_netdev(qe_devs[i]);
963 return res;
966 static int __init qec_match(struct sbus_dev *sdev)
968 struct sbus_dev *sibling;
969 int i;
971 if (strcmp(sdev->prom_name, "qec") != 0)
972 return 0;
974 /* QEC can be parent of either QuadEthernet or BigMAC
975 * children. Do not confuse this with qfe/SUNW,qfe
976 * which is a quad-happymeal card and handled by
977 * a different driver.
979 sibling = sdev->child;
980 for (i = 0; i < 4; i++) {
981 if (sibling == NULL)
982 return 0;
983 if (strcmp(sibling->prom_name, "qe") != 0)
984 return 0;
985 sibling = sibling->next;
987 return 1;
990 static int __init qec_probe(void)
992 struct net_device *dev = NULL;
993 struct sbus_bus *bus;
994 struct sbus_dev *sdev = NULL;
995 static int called;
996 int cards = 0, v;
998 root_qec_dev = NULL;
1000 if (called)
1001 return -ENODEV;
1002 called++;
1004 for_each_sbus(bus) {
1005 for_each_sbusdev(sdev, bus) {
1006 if (cards)
1007 dev = NULL;
1009 if (qec_match(sdev)) {
1010 cards++;
1011 if ((v = qec_ether_init(dev, sdev)))
1012 return v;
1016 if (!cards)
1017 return -ENODEV;
1018 return 0;
1021 static void __exit qec_cleanup(void)
1023 struct sunqec *next_qec;
1024 int i;
1026 while (root_qec_dev) {
1027 next_qec = root_qec_dev->next_module;
1029 /* Release all four QE channels, then the QEC itself. */
1030 for (i = 0; i < 4; i++) {
1031 unregister_netdev(root_qec_dev->qes[i]->dev);
1032 sbus_iounmap(root_qec_dev->qes[i]->qcregs, CREG_REG_SIZE);
1033 sbus_iounmap(root_qec_dev->qes[i]->mregs, MREGS_REG_SIZE);
1034 sbus_free_consistent(root_qec_dev->qes[i]->qe_sdev,
1035 PAGE_SIZE,
1036 root_qec_dev->qes[i]->qe_block,
1037 root_qec_dev->qes[i]->qblock_dvma);
1038 sbus_free_consistent(root_qec_dev->qes[i]->qe_sdev,
1039 sizeof(struct sunqe_buffers),
1040 root_qec_dev->qes[i]->buffers,
1041 root_qec_dev->qes[i]->buffers_dvma);
1042 free_netdev(root_qec_dev->qes[i]->dev);
1044 free_irq(root_qec_dev->qec_sdev->irqs[0], (void *)root_qec_dev);
1045 sbus_iounmap(root_qec_dev->gregs, GLOB_REG_SIZE);
1046 kfree(root_qec_dev);
1047 root_qec_dev = next_qec;
1051 module_init(qec_probe);
1052 module_exit(qec_cleanup);