[PATCH] core-dumping unreadable binaries via PT_INTERP
[linux-2.6/verdex.git] / block / elevator.c
blobf6dafa8c7c4d03bea2522125895bf43579480cb9
1 /*
2 * Block device elevator/IO-scheduler.
4 * Copyright (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
6 * 30042000 Jens Axboe <axboe@kernel.dk> :
8 * Split the elevator a bit so that it is possible to choose a different
9 * one or even write a new "plug in". There are three pieces:
10 * - elevator_fn, inserts a new request in the queue list
11 * - elevator_merge_fn, decides whether a new buffer can be merged with
12 * an existing request
13 * - elevator_dequeue_fn, called when a request is taken off the active list
15 * 20082000 Dave Jones <davej@suse.de> :
16 * Removed tests for max-bomb-segments, which was breaking elvtune
17 * when run without -bN
19 * Jens:
20 * - Rework again to work with bio instead of buffer_heads
21 * - loose bi_dev comparisons, partition handling is right now
22 * - completely modularize elevator setup and teardown
25 #include <linux/kernel.h>
26 #include <linux/fs.h>
27 #include <linux/blkdev.h>
28 #include <linux/elevator.h>
29 #include <linux/bio.h>
30 #include <linux/module.h>
31 #include <linux/slab.h>
32 #include <linux/init.h>
33 #include <linux/compiler.h>
34 #include <linux/delay.h>
35 #include <linux/blktrace_api.h>
36 #include <linux/hash.h>
38 #include <asm/uaccess.h>
40 static DEFINE_SPINLOCK(elv_list_lock);
41 static LIST_HEAD(elv_list);
44 * Merge hash stuff.
46 static const int elv_hash_shift = 6;
47 #define ELV_HASH_BLOCK(sec) ((sec) >> 3)
48 #define ELV_HASH_FN(sec) (hash_long(ELV_HASH_BLOCK((sec)), elv_hash_shift))
49 #define ELV_HASH_ENTRIES (1 << elv_hash_shift)
50 #define rq_hash_key(rq) ((rq)->sector + (rq)->nr_sectors)
51 #define ELV_ON_HASH(rq) (!hlist_unhashed(&(rq)->hash))
54 * Query io scheduler to see if the current process issuing bio may be
55 * merged with rq.
57 static int elv_iosched_allow_merge(struct request *rq, struct bio *bio)
59 request_queue_t *q = rq->q;
60 elevator_t *e = q->elevator;
62 if (e->ops->elevator_allow_merge_fn)
63 return e->ops->elevator_allow_merge_fn(q, rq, bio);
65 return 1;
69 * can we safely merge with this request?
71 inline int elv_rq_merge_ok(struct request *rq, struct bio *bio)
73 if (!rq_mergeable(rq))
74 return 0;
77 * different data direction or already started, don't merge
79 if (bio_data_dir(bio) != rq_data_dir(rq))
80 return 0;
83 * must be same device and not a special request
85 if (rq->rq_disk != bio->bi_bdev->bd_disk || rq->special)
86 return 0;
88 if (!elv_iosched_allow_merge(rq, bio))
89 return 0;
91 return 1;
93 EXPORT_SYMBOL(elv_rq_merge_ok);
95 static inline int elv_try_merge(struct request *__rq, struct bio *bio)
97 int ret = ELEVATOR_NO_MERGE;
100 * we can merge and sequence is ok, check if it's possible
102 if (elv_rq_merge_ok(__rq, bio)) {
103 if (__rq->sector + __rq->nr_sectors == bio->bi_sector)
104 ret = ELEVATOR_BACK_MERGE;
105 else if (__rq->sector - bio_sectors(bio) == bio->bi_sector)
106 ret = ELEVATOR_FRONT_MERGE;
109 return ret;
112 static struct elevator_type *elevator_find(const char *name)
114 struct elevator_type *e;
115 struct list_head *entry;
117 list_for_each(entry, &elv_list) {
119 e = list_entry(entry, struct elevator_type, list);
121 if (!strcmp(e->elevator_name, name))
122 return e;
125 return NULL;
128 static void elevator_put(struct elevator_type *e)
130 module_put(e->elevator_owner);
133 static struct elevator_type *elevator_get(const char *name)
135 struct elevator_type *e;
137 spin_lock_irq(&elv_list_lock);
139 e = elevator_find(name);
140 if (e && !try_module_get(e->elevator_owner))
141 e = NULL;
143 spin_unlock_irq(&elv_list_lock);
145 return e;
148 static void *elevator_init_queue(request_queue_t *q, struct elevator_queue *eq)
150 return eq->ops->elevator_init_fn(q);
153 static void elevator_attach(request_queue_t *q, struct elevator_queue *eq,
154 void *data)
156 q->elevator = eq;
157 eq->elevator_data = data;
160 static char chosen_elevator[16];
162 static int __init elevator_setup(char *str)
165 * Be backwards-compatible with previous kernels, so users
166 * won't get the wrong elevator.
168 if (!strcmp(str, "as"))
169 strcpy(chosen_elevator, "anticipatory");
170 else
171 strncpy(chosen_elevator, str, sizeof(chosen_elevator) - 1);
172 return 1;
175 __setup("elevator=", elevator_setup);
177 static struct kobj_type elv_ktype;
179 static elevator_t *elevator_alloc(request_queue_t *q, struct elevator_type *e)
181 elevator_t *eq;
182 int i;
184 eq = kmalloc_node(sizeof(elevator_t), GFP_KERNEL, q->node);
185 if (unlikely(!eq))
186 goto err;
188 memset(eq, 0, sizeof(*eq));
189 eq->ops = &e->ops;
190 eq->elevator_type = e;
191 kobject_init(&eq->kobj);
192 snprintf(eq->kobj.name, KOBJ_NAME_LEN, "%s", "iosched");
193 eq->kobj.ktype = &elv_ktype;
194 mutex_init(&eq->sysfs_lock);
196 eq->hash = kmalloc_node(sizeof(struct hlist_head) * ELV_HASH_ENTRIES,
197 GFP_KERNEL, q->node);
198 if (!eq->hash)
199 goto err;
201 for (i = 0; i < ELV_HASH_ENTRIES; i++)
202 INIT_HLIST_HEAD(&eq->hash[i]);
204 return eq;
205 err:
206 kfree(eq);
207 elevator_put(e);
208 return NULL;
211 static void elevator_release(struct kobject *kobj)
213 elevator_t *e = container_of(kobj, elevator_t, kobj);
215 elevator_put(e->elevator_type);
216 kfree(e->hash);
217 kfree(e);
220 int elevator_init(request_queue_t *q, char *name)
222 struct elevator_type *e = NULL;
223 struct elevator_queue *eq;
224 int ret = 0;
225 void *data;
227 INIT_LIST_HEAD(&q->queue_head);
228 q->last_merge = NULL;
229 q->end_sector = 0;
230 q->boundary_rq = NULL;
232 if (name && !(e = elevator_get(name)))
233 return -EINVAL;
235 if (!e && *chosen_elevator && !(e = elevator_get(chosen_elevator)))
236 printk("I/O scheduler %s not found\n", chosen_elevator);
238 if (!e && !(e = elevator_get(CONFIG_DEFAULT_IOSCHED))) {
239 printk("Default I/O scheduler not found, using no-op\n");
240 e = elevator_get("noop");
243 eq = elevator_alloc(q, e);
244 if (!eq)
245 return -ENOMEM;
247 data = elevator_init_queue(q, eq);
248 if (!data) {
249 kobject_put(&eq->kobj);
250 return -ENOMEM;
253 elevator_attach(q, eq, data);
254 return ret;
257 EXPORT_SYMBOL(elevator_init);
259 void elevator_exit(elevator_t *e)
261 mutex_lock(&e->sysfs_lock);
262 if (e->ops->elevator_exit_fn)
263 e->ops->elevator_exit_fn(e);
264 e->ops = NULL;
265 mutex_unlock(&e->sysfs_lock);
267 kobject_put(&e->kobj);
270 EXPORT_SYMBOL(elevator_exit);
272 static inline void __elv_rqhash_del(struct request *rq)
274 hlist_del_init(&rq->hash);
277 static void elv_rqhash_del(request_queue_t *q, struct request *rq)
279 if (ELV_ON_HASH(rq))
280 __elv_rqhash_del(rq);
283 static void elv_rqhash_add(request_queue_t *q, struct request *rq)
285 elevator_t *e = q->elevator;
287 BUG_ON(ELV_ON_HASH(rq));
288 hlist_add_head(&rq->hash, &e->hash[ELV_HASH_FN(rq_hash_key(rq))]);
291 static void elv_rqhash_reposition(request_queue_t *q, struct request *rq)
293 __elv_rqhash_del(rq);
294 elv_rqhash_add(q, rq);
297 static struct request *elv_rqhash_find(request_queue_t *q, sector_t offset)
299 elevator_t *e = q->elevator;
300 struct hlist_head *hash_list = &e->hash[ELV_HASH_FN(offset)];
301 struct hlist_node *entry, *next;
302 struct request *rq;
304 hlist_for_each_entry_safe(rq, entry, next, hash_list, hash) {
305 BUG_ON(!ELV_ON_HASH(rq));
307 if (unlikely(!rq_mergeable(rq))) {
308 __elv_rqhash_del(rq);
309 continue;
312 if (rq_hash_key(rq) == offset)
313 return rq;
316 return NULL;
320 * RB-tree support functions for inserting/lookup/removal of requests
321 * in a sorted RB tree.
323 struct request *elv_rb_add(struct rb_root *root, struct request *rq)
325 struct rb_node **p = &root->rb_node;
326 struct rb_node *parent = NULL;
327 struct request *__rq;
329 while (*p) {
330 parent = *p;
331 __rq = rb_entry(parent, struct request, rb_node);
333 if (rq->sector < __rq->sector)
334 p = &(*p)->rb_left;
335 else if (rq->sector > __rq->sector)
336 p = &(*p)->rb_right;
337 else
338 return __rq;
341 rb_link_node(&rq->rb_node, parent, p);
342 rb_insert_color(&rq->rb_node, root);
343 return NULL;
346 EXPORT_SYMBOL(elv_rb_add);
348 void elv_rb_del(struct rb_root *root, struct request *rq)
350 BUG_ON(RB_EMPTY_NODE(&rq->rb_node));
351 rb_erase(&rq->rb_node, root);
352 RB_CLEAR_NODE(&rq->rb_node);
355 EXPORT_SYMBOL(elv_rb_del);
357 struct request *elv_rb_find(struct rb_root *root, sector_t sector)
359 struct rb_node *n = root->rb_node;
360 struct request *rq;
362 while (n) {
363 rq = rb_entry(n, struct request, rb_node);
365 if (sector < rq->sector)
366 n = n->rb_left;
367 else if (sector > rq->sector)
368 n = n->rb_right;
369 else
370 return rq;
373 return NULL;
376 EXPORT_SYMBOL(elv_rb_find);
379 * Insert rq into dispatch queue of q. Queue lock must be held on
380 * entry. rq is sort insted into the dispatch queue. To be used by
381 * specific elevators.
383 void elv_dispatch_sort(request_queue_t *q, struct request *rq)
385 sector_t boundary;
386 struct list_head *entry;
388 if (q->last_merge == rq)
389 q->last_merge = NULL;
391 elv_rqhash_del(q, rq);
393 q->nr_sorted--;
395 boundary = q->end_sector;
397 list_for_each_prev(entry, &q->queue_head) {
398 struct request *pos = list_entry_rq(entry);
400 if (pos->cmd_flags & (REQ_SOFTBARRIER|REQ_HARDBARRIER|REQ_STARTED))
401 break;
402 if (rq->sector >= boundary) {
403 if (pos->sector < boundary)
404 continue;
405 } else {
406 if (pos->sector >= boundary)
407 break;
409 if (rq->sector >= pos->sector)
410 break;
413 list_add(&rq->queuelist, entry);
416 EXPORT_SYMBOL(elv_dispatch_sort);
419 * Insert rq into dispatch queue of q. Queue lock must be held on
420 * entry. rq is added to the back of the dispatch queue. To be used by
421 * specific elevators.
423 void elv_dispatch_add_tail(struct request_queue *q, struct request *rq)
425 if (q->last_merge == rq)
426 q->last_merge = NULL;
428 elv_rqhash_del(q, rq);
430 q->nr_sorted--;
432 q->end_sector = rq_end_sector(rq);
433 q->boundary_rq = rq;
434 list_add_tail(&rq->queuelist, &q->queue_head);
437 EXPORT_SYMBOL(elv_dispatch_add_tail);
439 int elv_merge(request_queue_t *q, struct request **req, struct bio *bio)
441 elevator_t *e = q->elevator;
442 struct request *__rq;
443 int ret;
446 * First try one-hit cache.
448 if (q->last_merge) {
449 ret = elv_try_merge(q->last_merge, bio);
450 if (ret != ELEVATOR_NO_MERGE) {
451 *req = q->last_merge;
452 return ret;
457 * See if our hash lookup can find a potential backmerge.
459 __rq = elv_rqhash_find(q, bio->bi_sector);
460 if (__rq && elv_rq_merge_ok(__rq, bio)) {
461 *req = __rq;
462 return ELEVATOR_BACK_MERGE;
465 if (e->ops->elevator_merge_fn)
466 return e->ops->elevator_merge_fn(q, req, bio);
468 return ELEVATOR_NO_MERGE;
471 void elv_merged_request(request_queue_t *q, struct request *rq, int type)
473 elevator_t *e = q->elevator;
475 if (e->ops->elevator_merged_fn)
476 e->ops->elevator_merged_fn(q, rq, type);
478 if (type == ELEVATOR_BACK_MERGE)
479 elv_rqhash_reposition(q, rq);
481 q->last_merge = rq;
484 void elv_merge_requests(request_queue_t *q, struct request *rq,
485 struct request *next)
487 elevator_t *e = q->elevator;
489 if (e->ops->elevator_merge_req_fn)
490 e->ops->elevator_merge_req_fn(q, rq, next);
492 elv_rqhash_reposition(q, rq);
493 elv_rqhash_del(q, next);
495 q->nr_sorted--;
496 q->last_merge = rq;
499 void elv_requeue_request(request_queue_t *q, struct request *rq)
501 elevator_t *e = q->elevator;
504 * it already went through dequeue, we need to decrement the
505 * in_flight count again
507 if (blk_account_rq(rq)) {
508 q->in_flight--;
509 if (blk_sorted_rq(rq) && e->ops->elevator_deactivate_req_fn)
510 e->ops->elevator_deactivate_req_fn(q, rq);
513 rq->cmd_flags &= ~REQ_STARTED;
515 elv_insert(q, rq, ELEVATOR_INSERT_REQUEUE);
518 static void elv_drain_elevator(request_queue_t *q)
520 static int printed;
521 while (q->elevator->ops->elevator_dispatch_fn(q, 1))
523 if (q->nr_sorted == 0)
524 return;
525 if (printed++ < 10) {
526 printk(KERN_ERR "%s: forced dispatching is broken "
527 "(nr_sorted=%u), please report this\n",
528 q->elevator->elevator_type->elevator_name, q->nr_sorted);
532 void elv_insert(request_queue_t *q, struct request *rq, int where)
534 struct list_head *pos;
535 unsigned ordseq;
536 int unplug_it = 1;
538 blk_add_trace_rq(q, rq, BLK_TA_INSERT);
540 rq->q = q;
542 switch (where) {
543 case ELEVATOR_INSERT_FRONT:
544 rq->cmd_flags |= REQ_SOFTBARRIER;
546 list_add(&rq->queuelist, &q->queue_head);
547 break;
549 case ELEVATOR_INSERT_BACK:
550 rq->cmd_flags |= REQ_SOFTBARRIER;
551 elv_drain_elevator(q);
552 list_add_tail(&rq->queuelist, &q->queue_head);
554 * We kick the queue here for the following reasons.
555 * - The elevator might have returned NULL previously
556 * to delay requests and returned them now. As the
557 * queue wasn't empty before this request, ll_rw_blk
558 * won't run the queue on return, resulting in hang.
559 * - Usually, back inserted requests won't be merged
560 * with anything. There's no point in delaying queue
561 * processing.
563 blk_remove_plug(q);
564 q->request_fn(q);
565 break;
567 case ELEVATOR_INSERT_SORT:
568 BUG_ON(!blk_fs_request(rq));
569 rq->cmd_flags |= REQ_SORTED;
570 q->nr_sorted++;
571 if (rq_mergeable(rq)) {
572 elv_rqhash_add(q, rq);
573 if (!q->last_merge)
574 q->last_merge = rq;
578 * Some ioscheds (cfq) run q->request_fn directly, so
579 * rq cannot be accessed after calling
580 * elevator_add_req_fn.
582 q->elevator->ops->elevator_add_req_fn(q, rq);
583 break;
585 case ELEVATOR_INSERT_REQUEUE:
587 * If ordered flush isn't in progress, we do front
588 * insertion; otherwise, requests should be requeued
589 * in ordseq order.
591 rq->cmd_flags |= REQ_SOFTBARRIER;
594 * Most requeues happen because of a busy condition,
595 * don't force unplug of the queue for that case.
597 unplug_it = 0;
599 if (q->ordseq == 0) {
600 list_add(&rq->queuelist, &q->queue_head);
601 break;
604 ordseq = blk_ordered_req_seq(rq);
606 list_for_each(pos, &q->queue_head) {
607 struct request *pos_rq = list_entry_rq(pos);
608 if (ordseq <= blk_ordered_req_seq(pos_rq))
609 break;
612 list_add_tail(&rq->queuelist, pos);
613 break;
615 default:
616 printk(KERN_ERR "%s: bad insertion point %d\n",
617 __FUNCTION__, where);
618 BUG();
621 if (unplug_it && blk_queue_plugged(q)) {
622 int nrq = q->rq.count[READ] + q->rq.count[WRITE]
623 - q->in_flight;
625 if (nrq >= q->unplug_thresh)
626 __generic_unplug_device(q);
630 void __elv_add_request(request_queue_t *q, struct request *rq, int where,
631 int plug)
633 if (q->ordcolor)
634 rq->cmd_flags |= REQ_ORDERED_COLOR;
636 if (rq->cmd_flags & (REQ_SOFTBARRIER | REQ_HARDBARRIER)) {
638 * toggle ordered color
640 if (blk_barrier_rq(rq))
641 q->ordcolor ^= 1;
644 * barriers implicitly indicate back insertion
646 if (where == ELEVATOR_INSERT_SORT)
647 where = ELEVATOR_INSERT_BACK;
650 * this request is scheduling boundary, update
651 * end_sector
653 if (blk_fs_request(rq)) {
654 q->end_sector = rq_end_sector(rq);
655 q->boundary_rq = rq;
657 } else if (!(rq->cmd_flags & REQ_ELVPRIV) && where == ELEVATOR_INSERT_SORT)
658 where = ELEVATOR_INSERT_BACK;
660 if (plug)
661 blk_plug_device(q);
663 elv_insert(q, rq, where);
666 EXPORT_SYMBOL(__elv_add_request);
668 void elv_add_request(request_queue_t *q, struct request *rq, int where,
669 int plug)
671 unsigned long flags;
673 spin_lock_irqsave(q->queue_lock, flags);
674 __elv_add_request(q, rq, where, plug);
675 spin_unlock_irqrestore(q->queue_lock, flags);
678 EXPORT_SYMBOL(elv_add_request);
680 static inline struct request *__elv_next_request(request_queue_t *q)
682 struct request *rq;
684 while (1) {
685 while (!list_empty(&q->queue_head)) {
686 rq = list_entry_rq(q->queue_head.next);
687 if (blk_do_ordered(q, &rq))
688 return rq;
691 if (!q->elevator->ops->elevator_dispatch_fn(q, 0))
692 return NULL;
696 struct request *elv_next_request(request_queue_t *q)
698 struct request *rq;
699 int ret;
701 while ((rq = __elv_next_request(q)) != NULL) {
702 if (!(rq->cmd_flags & REQ_STARTED)) {
703 elevator_t *e = q->elevator;
706 * This is the first time the device driver
707 * sees this request (possibly after
708 * requeueing). Notify IO scheduler.
710 if (blk_sorted_rq(rq) &&
711 e->ops->elevator_activate_req_fn)
712 e->ops->elevator_activate_req_fn(q, rq);
715 * just mark as started even if we don't start
716 * it, a request that has been delayed should
717 * not be passed by new incoming requests
719 rq->cmd_flags |= REQ_STARTED;
720 blk_add_trace_rq(q, rq, BLK_TA_ISSUE);
723 if (!q->boundary_rq || q->boundary_rq == rq) {
724 q->end_sector = rq_end_sector(rq);
725 q->boundary_rq = NULL;
728 if ((rq->cmd_flags & REQ_DONTPREP) || !q->prep_rq_fn)
729 break;
731 ret = q->prep_rq_fn(q, rq);
732 if (ret == BLKPREP_OK) {
733 break;
734 } else if (ret == BLKPREP_DEFER) {
736 * the request may have been (partially) prepped.
737 * we need to keep this request in the front to
738 * avoid resource deadlock. REQ_STARTED will
739 * prevent other fs requests from passing this one.
741 rq = NULL;
742 break;
743 } else if (ret == BLKPREP_KILL) {
744 int nr_bytes = rq->hard_nr_sectors << 9;
746 if (!nr_bytes)
747 nr_bytes = rq->data_len;
749 blkdev_dequeue_request(rq);
750 rq->cmd_flags |= REQ_QUIET;
751 end_that_request_chunk(rq, 0, nr_bytes);
752 end_that_request_last(rq, 0);
753 } else {
754 printk(KERN_ERR "%s: bad return=%d\n", __FUNCTION__,
755 ret);
756 break;
760 return rq;
763 EXPORT_SYMBOL(elv_next_request);
765 void elv_dequeue_request(request_queue_t *q, struct request *rq)
767 BUG_ON(list_empty(&rq->queuelist));
768 BUG_ON(ELV_ON_HASH(rq));
770 list_del_init(&rq->queuelist);
773 * the time frame between a request being removed from the lists
774 * and to it is freed is accounted as io that is in progress at
775 * the driver side.
777 if (blk_account_rq(rq))
778 q->in_flight++;
781 EXPORT_SYMBOL(elv_dequeue_request);
783 int elv_queue_empty(request_queue_t *q)
785 elevator_t *e = q->elevator;
787 if (!list_empty(&q->queue_head))
788 return 0;
790 if (e->ops->elevator_queue_empty_fn)
791 return e->ops->elevator_queue_empty_fn(q);
793 return 1;
796 EXPORT_SYMBOL(elv_queue_empty);
798 struct request *elv_latter_request(request_queue_t *q, struct request *rq)
800 elevator_t *e = q->elevator;
802 if (e->ops->elevator_latter_req_fn)
803 return e->ops->elevator_latter_req_fn(q, rq);
804 return NULL;
807 struct request *elv_former_request(request_queue_t *q, struct request *rq)
809 elevator_t *e = q->elevator;
811 if (e->ops->elevator_former_req_fn)
812 return e->ops->elevator_former_req_fn(q, rq);
813 return NULL;
816 int elv_set_request(request_queue_t *q, struct request *rq, gfp_t gfp_mask)
818 elevator_t *e = q->elevator;
820 if (e->ops->elevator_set_req_fn)
821 return e->ops->elevator_set_req_fn(q, rq, gfp_mask);
823 rq->elevator_private = NULL;
824 return 0;
827 void elv_put_request(request_queue_t *q, struct request *rq)
829 elevator_t *e = q->elevator;
831 if (e->ops->elevator_put_req_fn)
832 e->ops->elevator_put_req_fn(rq);
835 int elv_may_queue(request_queue_t *q, int rw)
837 elevator_t *e = q->elevator;
839 if (e->ops->elevator_may_queue_fn)
840 return e->ops->elevator_may_queue_fn(q, rw);
842 return ELV_MQUEUE_MAY;
845 void elv_completed_request(request_queue_t *q, struct request *rq)
847 elevator_t *e = q->elevator;
850 * request is released from the driver, io must be done
852 if (blk_account_rq(rq)) {
853 q->in_flight--;
854 if (blk_sorted_rq(rq) && e->ops->elevator_completed_req_fn)
855 e->ops->elevator_completed_req_fn(q, rq);
859 * Check if the queue is waiting for fs requests to be
860 * drained for flush sequence.
862 if (unlikely(q->ordseq)) {
863 struct request *first_rq = list_entry_rq(q->queue_head.next);
864 if (q->in_flight == 0 &&
865 blk_ordered_cur_seq(q) == QUEUE_ORDSEQ_DRAIN &&
866 blk_ordered_req_seq(first_rq) > QUEUE_ORDSEQ_DRAIN) {
867 blk_ordered_complete_seq(q, QUEUE_ORDSEQ_DRAIN, 0);
868 q->request_fn(q);
873 #define to_elv(atr) container_of((atr), struct elv_fs_entry, attr)
875 static ssize_t
876 elv_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
878 elevator_t *e = container_of(kobj, elevator_t, kobj);
879 struct elv_fs_entry *entry = to_elv(attr);
880 ssize_t error;
882 if (!entry->show)
883 return -EIO;
885 mutex_lock(&e->sysfs_lock);
886 error = e->ops ? entry->show(e, page) : -ENOENT;
887 mutex_unlock(&e->sysfs_lock);
888 return error;
891 static ssize_t
892 elv_attr_store(struct kobject *kobj, struct attribute *attr,
893 const char *page, size_t length)
895 elevator_t *e = container_of(kobj, elevator_t, kobj);
896 struct elv_fs_entry *entry = to_elv(attr);
897 ssize_t error;
899 if (!entry->store)
900 return -EIO;
902 mutex_lock(&e->sysfs_lock);
903 error = e->ops ? entry->store(e, page, length) : -ENOENT;
904 mutex_unlock(&e->sysfs_lock);
905 return error;
908 static struct sysfs_ops elv_sysfs_ops = {
909 .show = elv_attr_show,
910 .store = elv_attr_store,
913 static struct kobj_type elv_ktype = {
914 .sysfs_ops = &elv_sysfs_ops,
915 .release = elevator_release,
918 int elv_register_queue(struct request_queue *q)
920 elevator_t *e = q->elevator;
921 int error;
923 e->kobj.parent = &q->kobj;
925 error = kobject_add(&e->kobj);
926 if (!error) {
927 struct elv_fs_entry *attr = e->elevator_type->elevator_attrs;
928 if (attr) {
929 while (attr->attr.name) {
930 if (sysfs_create_file(&e->kobj, &attr->attr))
931 break;
932 attr++;
935 kobject_uevent(&e->kobj, KOBJ_ADD);
937 return error;
940 static void __elv_unregister_queue(elevator_t *e)
942 kobject_uevent(&e->kobj, KOBJ_REMOVE);
943 kobject_del(&e->kobj);
946 void elv_unregister_queue(struct request_queue *q)
948 if (q)
949 __elv_unregister_queue(q->elevator);
952 int elv_register(struct elevator_type *e)
954 spin_lock_irq(&elv_list_lock);
955 BUG_ON(elevator_find(e->elevator_name));
956 list_add_tail(&e->list, &elv_list);
957 spin_unlock_irq(&elv_list_lock);
959 printk(KERN_INFO "io scheduler %s registered", e->elevator_name);
960 if (!strcmp(e->elevator_name, chosen_elevator) ||
961 (!*chosen_elevator &&
962 !strcmp(e->elevator_name, CONFIG_DEFAULT_IOSCHED)))
963 printk(" (default)");
964 printk("\n");
965 return 0;
967 EXPORT_SYMBOL_GPL(elv_register);
969 void elv_unregister(struct elevator_type *e)
971 struct task_struct *g, *p;
974 * Iterate every thread in the process to remove the io contexts.
976 if (e->ops.trim) {
977 read_lock(&tasklist_lock);
978 do_each_thread(g, p) {
979 task_lock(p);
980 if (p->io_context)
981 e->ops.trim(p->io_context);
982 task_unlock(p);
983 } while_each_thread(g, p);
984 read_unlock(&tasklist_lock);
987 spin_lock_irq(&elv_list_lock);
988 list_del_init(&e->list);
989 spin_unlock_irq(&elv_list_lock);
991 EXPORT_SYMBOL_GPL(elv_unregister);
994 * switch to new_e io scheduler. be careful not to introduce deadlocks -
995 * we don't free the old io scheduler, before we have allocated what we
996 * need for the new one. this way we have a chance of going back to the old
997 * one, if the new one fails init for some reason.
999 static int elevator_switch(request_queue_t *q, struct elevator_type *new_e)
1001 elevator_t *old_elevator, *e;
1002 void *data;
1005 * Allocate new elevator
1007 e = elevator_alloc(q, new_e);
1008 if (!e)
1009 return 0;
1011 data = elevator_init_queue(q, e);
1012 if (!data) {
1013 kobject_put(&e->kobj);
1014 return 0;
1018 * Turn on BYPASS and drain all requests w/ elevator private data
1020 spin_lock_irq(q->queue_lock);
1022 set_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
1024 elv_drain_elevator(q);
1026 while (q->rq.elvpriv) {
1027 blk_remove_plug(q);
1028 q->request_fn(q);
1029 spin_unlock_irq(q->queue_lock);
1030 msleep(10);
1031 spin_lock_irq(q->queue_lock);
1032 elv_drain_elevator(q);
1036 * Remember old elevator.
1038 old_elevator = q->elevator;
1041 * attach and start new elevator
1043 elevator_attach(q, e, data);
1045 spin_unlock_irq(q->queue_lock);
1047 __elv_unregister_queue(old_elevator);
1049 if (elv_register_queue(q))
1050 goto fail_register;
1053 * finally exit old elevator and turn off BYPASS.
1055 elevator_exit(old_elevator);
1056 clear_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
1057 return 1;
1059 fail_register:
1061 * switch failed, exit the new io scheduler and reattach the old
1062 * one again (along with re-adding the sysfs dir)
1064 elevator_exit(e);
1065 q->elevator = old_elevator;
1066 elv_register_queue(q);
1067 clear_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
1068 return 0;
1071 ssize_t elv_iosched_store(request_queue_t *q, const char *name, size_t count)
1073 char elevator_name[ELV_NAME_MAX];
1074 size_t len;
1075 struct elevator_type *e;
1077 elevator_name[sizeof(elevator_name) - 1] = '\0';
1078 strncpy(elevator_name, name, sizeof(elevator_name) - 1);
1079 len = strlen(elevator_name);
1081 if (len && elevator_name[len - 1] == '\n')
1082 elevator_name[len - 1] = '\0';
1084 e = elevator_get(elevator_name);
1085 if (!e) {
1086 printk(KERN_ERR "elevator: type %s not found\n", elevator_name);
1087 return -EINVAL;
1090 if (!strcmp(elevator_name, q->elevator->elevator_type->elevator_name)) {
1091 elevator_put(e);
1092 return count;
1095 if (!elevator_switch(q, e))
1096 printk(KERN_ERR "elevator: switch to %s failed\n",elevator_name);
1097 return count;
1100 ssize_t elv_iosched_show(request_queue_t *q, char *name)
1102 elevator_t *e = q->elevator;
1103 struct elevator_type *elv = e->elevator_type;
1104 struct list_head *entry;
1105 int len = 0;
1107 spin_lock_irq(&elv_list_lock);
1108 list_for_each(entry, &elv_list) {
1109 struct elevator_type *__e;
1111 __e = list_entry(entry, struct elevator_type, list);
1112 if (!strcmp(elv->elevator_name, __e->elevator_name))
1113 len += sprintf(name+len, "[%s] ", elv->elevator_name);
1114 else
1115 len += sprintf(name+len, "%s ", __e->elevator_name);
1117 spin_unlock_irq(&elv_list_lock);
1119 len += sprintf(len+name, "\n");
1120 return len;
1123 struct request *elv_rb_former_request(request_queue_t *q, struct request *rq)
1125 struct rb_node *rbprev = rb_prev(&rq->rb_node);
1127 if (rbprev)
1128 return rb_entry_rq(rbprev);
1130 return NULL;
1133 EXPORT_SYMBOL(elv_rb_former_request);
1135 struct request *elv_rb_latter_request(request_queue_t *q, struct request *rq)
1137 struct rb_node *rbnext = rb_next(&rq->rb_node);
1139 if (rbnext)
1140 return rb_entry_rq(rbnext);
1142 return NULL;
1145 EXPORT_SYMBOL(elv_rb_latter_request);