1 /*****************************************************************************/
4 * istallion.c -- stallion intelligent multiport serial driver.
6 * Copyright (C) 1996-1999 Stallion Technologies
7 * Copyright (C) 1994-1996 Greg Ungerer.
9 * This code is loosely based on the Linux serial driver, written by
10 * Linus Torvalds, Theodore T'so and others.
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
27 /*****************************************************************************/
29 #include <linux/config.h>
30 #include <linux/module.h>
31 #include <linux/slab.h>
32 #include <linux/interrupt.h>
33 #include <linux/tty.h>
34 #include <linux/tty_flip.h>
35 #include <linux/serial.h>
36 #include <linux/cdk.h>
37 #include <linux/comstats.h>
38 #include <linux/istallion.h>
39 #include <linux/ioport.h>
40 #include <linux/delay.h>
41 #include <linux/init.h>
42 #include <linux/devfs_fs_kernel.h>
43 #include <linux/device.h>
44 #include <linux/wait.h>
47 #include <asm/uaccess.h>
50 #include <linux/pci.h>
53 /*****************************************************************************/
56 * Define different board types. Not all of the following board types
57 * are supported by this driver. But I will use the standard "assigned"
58 * board numbers. Currently supported boards are abbreviated as:
59 * ECP = EasyConnection 8/64, ONB = ONboard, BBY = Brumby and
63 #define BRD_STALLION 1
65 #define BRD_ONBOARD2 3
68 #define BRD_BRUMBY16 6
69 #define BRD_ONBOARDE 7
70 #define BRD_ONBOARD32 9
71 #define BRD_ONBOARD2_32 10
72 #define BRD_ONBOARDRS 11
80 #define BRD_ECH64PCI 27
81 #define BRD_EASYIOPCI 28
84 #define BRD_BRUMBY BRD_BRUMBY4
87 * Define a configuration structure to hold the board configuration.
88 * Need to set this up in the code (for now) with the boards that are
89 * to be configured into the system. This is what needs to be modified
90 * when adding/removing/modifying boards. Each line entry in the
91 * stli_brdconf[] array is a board. Each line contains io/irq/memory
92 * ranges for that board (as well as what type of board it is).
94 * { BRD_ECP, 0x2a0, 0, 0xcc000, 0, 0 },
95 * This line will configure an EasyConnection 8/64 at io address 2a0,
96 * and shared memory address of cc000. Multiple EasyConnection 8/64
97 * boards can share the same shared memory address space. No interrupt
98 * is required for this board type.
100 * { BRD_ECPE, 0x5000, 0, 0x80000000, 0, 0 },
101 * This line will configure an EasyConnection 8/64 EISA in slot 5 and
102 * shared memory address of 0x80000000 (2 GByte). Multiple
103 * EasyConnection 8/64 EISA boards can share the same shared memory
104 * address space. No interrupt is required for this board type.
106 * { BRD_ONBOARD, 0x240, 0, 0xd0000, 0, 0 },
107 * This line will configure an ONboard (ISA type) at io address 240,
108 * and shared memory address of d0000. Multiple ONboards can share
109 * the same shared memory address space. No interrupt required.
111 * { BRD_BRUMBY4, 0x360, 0, 0xc8000, 0, 0 },
112 * This line will configure a Brumby board (any number of ports!) at
113 * io address 360 and shared memory address of c8000. All Brumby boards
114 * configured into a system must have their own separate io and memory
115 * addresses. No interrupt is required.
117 * { BRD_STALLION, 0x330, 0, 0xd0000, 0, 0 },
118 * This line will configure an original Stallion board at io address 330
119 * and shared memory address d0000 (this would only be valid for a "V4.0"
120 * or Rev.O Stallion board). All Stallion boards configured into the
121 * system must have their own separate io and memory addresses. No
122 * interrupt is required.
129 unsigned long memaddr
;
134 static stlconf_t stli_brdconf
[] = {
135 /*{ BRD_ECP, 0x2a0, 0, 0xcc000, 0, 0 },*/
138 static int stli_nrbrds
= sizeof(stli_brdconf
) / sizeof(stlconf_t
);
141 * There is some experimental EISA board detection code in this driver.
142 * By default it is disabled, but for those that want to try it out,
143 * then set the define below to be 1.
145 #define STLI_EISAPROBE 0
147 /*****************************************************************************/
150 * Define some important driver characteristics. Device major numbers
151 * allocated as per Linux Device Registry.
153 #ifndef STL_SIOMEMMAJOR
154 #define STL_SIOMEMMAJOR 28
156 #ifndef STL_SERIALMAJOR
157 #define STL_SERIALMAJOR 24
159 #ifndef STL_CALLOUTMAJOR
160 #define STL_CALLOUTMAJOR 25
163 /*****************************************************************************/
166 * Define our local driver identity first. Set up stuff to deal with
167 * all the local structures required by a serial tty driver.
169 static char *stli_drvtitle
= "Stallion Intelligent Multiport Serial Driver";
170 static char *stli_drvname
= "istallion";
171 static char *stli_drvversion
= "5.6.0";
172 static char *stli_serialname
= "ttyE";
174 static struct tty_driver
*stli_serial
;
177 * We will need to allocate a temporary write buffer for chars that
178 * come direct from user space. The problem is that a copy from user
179 * space might cause a page fault (typically on a system that is
180 * swapping!). All ports will share one buffer - since if the system
181 * is already swapping a shared buffer won't make things any worse.
183 static char *stli_tmpwritebuf
;
184 static DECLARE_MUTEX(stli_tmpwritesem
);
186 #define STLI_TXBUFSIZE 4096
189 * Use a fast local buffer for cooked characters. Typically a whole
190 * bunch of cooked characters come in for a port, 1 at a time. So we
191 * save those up into a local buffer, then write out the whole lot
192 * with a large memcpy. Just use 1 buffer for all ports, since its
193 * use it is only need for short periods of time by each port.
195 static char *stli_txcookbuf
;
196 static int stli_txcooksize
;
197 static int stli_txcookrealsize
;
198 static struct tty_struct
*stli_txcooktty
;
201 * Define a local default termios struct. All ports will be created
202 * with this termios initially. Basically all it defines is a raw port
203 * at 9600 baud, 8 data bits, no parity, 1 stop bit.
205 static struct termios stli_deftermios
= {
206 .c_cflag
= (B9600
| CS8
| CREAD
| HUPCL
| CLOCAL
),
211 * Define global stats structures. Not used often, and can be
212 * re-used for each stats call.
214 static comstats_t stli_comstats
;
215 static combrd_t stli_brdstats
;
216 static asystats_t stli_cdkstats
;
217 static stlibrd_t stli_dummybrd
;
218 static stliport_t stli_dummyport
;
220 /*****************************************************************************/
222 static stlibrd_t
*stli_brds
[STL_MAXBRDS
];
224 static int stli_shared
;
227 * Per board state flags. Used with the state field of the board struct.
228 * Not really much here... All we need to do is keep track of whether
229 * the board has been detected, and whether it is actually running a slave
232 #define BST_FOUND 0x1
233 #define BST_STARTED 0x2
236 * Define the set of port state flags. These are marked for internal
237 * state purposes only, usually to do with the state of communications
238 * with the slave. Most of them need to be updated atomically, so always
239 * use the bit setting operations (unless protected by cli/sti).
241 #define ST_INITIALIZING 1
247 #define ST_DOFLUSHRX 7
248 #define ST_DOFLUSHTX 8
251 #define ST_GETSIGS 11
254 * Define an array of board names as printable strings. Handy for
255 * referencing boards when printing trace and stuff.
257 static char *stli_brdnames
[] = {
290 /*****************************************************************************/
294 * Define some string labels for arguments passed from the module
295 * load line. These allow for easy board definitions, and easy
296 * modification of the io, memory and irq resoucres.
299 static char *board0
[8];
300 static char *board1
[8];
301 static char *board2
[8];
302 static char *board3
[8];
304 static char **stli_brdsp
[] = {
312 * Define a set of common board names, and types. This is used to
313 * parse any module arguments.
316 typedef struct stlibrdtype
{
321 static stlibrdtype_t stli_brdstr
[] = {
322 { "stallion", BRD_STALLION
},
323 { "1", BRD_STALLION
},
324 { "brumby", BRD_BRUMBY
},
325 { "brumby4", BRD_BRUMBY
},
326 { "brumby/4", BRD_BRUMBY
},
327 { "brumby-4", BRD_BRUMBY
},
328 { "brumby8", BRD_BRUMBY
},
329 { "brumby/8", BRD_BRUMBY
},
330 { "brumby-8", BRD_BRUMBY
},
331 { "brumby16", BRD_BRUMBY
},
332 { "brumby/16", BRD_BRUMBY
},
333 { "brumby-16", BRD_BRUMBY
},
335 { "onboard2", BRD_ONBOARD2
},
336 { "onboard-2", BRD_ONBOARD2
},
337 { "onboard/2", BRD_ONBOARD2
},
338 { "onboard-mc", BRD_ONBOARD2
},
339 { "onboard/mc", BRD_ONBOARD2
},
340 { "onboard-mca", BRD_ONBOARD2
},
341 { "onboard/mca", BRD_ONBOARD2
},
342 { "3", BRD_ONBOARD2
},
343 { "onboard", BRD_ONBOARD
},
344 { "onboardat", BRD_ONBOARD
},
345 { "4", BRD_ONBOARD
},
346 { "onboarde", BRD_ONBOARDE
},
347 { "onboard-e", BRD_ONBOARDE
},
348 { "onboard/e", BRD_ONBOARDE
},
349 { "onboard-ei", BRD_ONBOARDE
},
350 { "onboard/ei", BRD_ONBOARDE
},
351 { "7", BRD_ONBOARDE
},
353 { "ecpat", BRD_ECP
},
354 { "ec8/64", BRD_ECP
},
355 { "ec8/64-at", BRD_ECP
},
356 { "ec8/64-isa", BRD_ECP
},
358 { "ecpe", BRD_ECPE
},
359 { "ecpei", BRD_ECPE
},
360 { "ec8/64-e", BRD_ECPE
},
361 { "ec8/64-ei", BRD_ECPE
},
363 { "ecpmc", BRD_ECPMC
},
364 { "ec8/64-mc", BRD_ECPMC
},
365 { "ec8/64-mca", BRD_ECPMC
},
367 { "ecppci", BRD_ECPPCI
},
368 { "ec/ra", BRD_ECPPCI
},
369 { "ec/ra-pc", BRD_ECPPCI
},
370 { "ec/ra-pci", BRD_ECPPCI
},
371 { "29", BRD_ECPPCI
},
375 * Define the module agruments.
377 MODULE_AUTHOR("Greg Ungerer");
378 MODULE_DESCRIPTION("Stallion Intelligent Multiport Serial Driver");
379 MODULE_LICENSE("GPL");
382 MODULE_PARM(board0
, "1-3s");
383 MODULE_PARM_DESC(board0
, "Board 0 config -> name[,ioaddr[,memaddr]");
384 MODULE_PARM(board1
, "1-3s");
385 MODULE_PARM_DESC(board1
, "Board 1 config -> name[,ioaddr[,memaddr]");
386 MODULE_PARM(board2
, "1-3s");
387 MODULE_PARM_DESC(board2
, "Board 2 config -> name[,ioaddr[,memaddr]");
388 MODULE_PARM(board3
, "1-3s");
389 MODULE_PARM_DESC(board3
, "Board 3 config -> name[,ioaddr[,memaddr]");
394 * Set up a default memory address table for EISA board probing.
395 * The default addresses are all bellow 1Mbyte, which has to be the
396 * case anyway. They should be safe, since we only read values from
397 * them, and interrupts are disabled while we do it. If the higher
398 * memory support is compiled in then we also try probing around
399 * the 1Gb, 2Gb and 3Gb areas as well...
401 static unsigned long stli_eisamemprobeaddrs
[] = {
402 0xc0000, 0xd0000, 0xe0000, 0xf0000,
403 0x80000000, 0x80010000, 0x80020000, 0x80030000,
404 0x40000000, 0x40010000, 0x40020000, 0x40030000,
405 0xc0000000, 0xc0010000, 0xc0020000, 0xc0030000,
406 0xff000000, 0xff010000, 0xff020000, 0xff030000,
409 static int stli_eisamempsize
= sizeof(stli_eisamemprobeaddrs
) / sizeof(unsigned long);
412 * Define the Stallion PCI vendor and device IDs.
415 #ifndef PCI_VENDOR_ID_STALLION
416 #define PCI_VENDOR_ID_STALLION 0x124d
418 #ifndef PCI_DEVICE_ID_ECRA
419 #define PCI_DEVICE_ID_ECRA 0x0004
422 static struct pci_device_id istallion_pci_tbl
[] = {
423 { PCI_VENDOR_ID_STALLION
, PCI_DEVICE_ID_ECRA
, PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0 },
426 MODULE_DEVICE_TABLE(pci
, istallion_pci_tbl
);
428 #endif /* CONFIG_PCI */
430 /*****************************************************************************/
433 * Hardware configuration info for ECP boards. These defines apply
434 * to the directly accessible io ports of the ECP. There is a set of
435 * defines for each ECP board type, ISA, EISA, MCA and PCI.
439 #define ECP_MEMSIZE (128 * 1024)
440 #define ECP_PCIMEMSIZE (256 * 1024)
442 #define ECP_ATPAGESIZE (4 * 1024)
443 #define ECP_MCPAGESIZE (4 * 1024)
444 #define ECP_EIPAGESIZE (64 * 1024)
445 #define ECP_PCIPAGESIZE (64 * 1024)
447 #define STL_EISAID 0x8c4e
450 * Important defines for the ISA class of ECP board.
453 #define ECP_ATCONFR 1
454 #define ECP_ATMEMAR 2
455 #define ECP_ATMEMPR 3
456 #define ECP_ATSTOP 0x1
457 #define ECP_ATINTENAB 0x10
458 #define ECP_ATENABLE 0x20
459 #define ECP_ATDISABLE 0x00
460 #define ECP_ATADDRMASK 0x3f000
461 #define ECP_ATADDRSHFT 12
464 * Important defines for the EISA class of ECP board.
467 #define ECP_EIMEMARL 1
468 #define ECP_EICONFR 2
469 #define ECP_EIMEMARH 3
470 #define ECP_EIENABLE 0x1
471 #define ECP_EIDISABLE 0x0
472 #define ECP_EISTOP 0x4
473 #define ECP_EIEDGE 0x00
474 #define ECP_EILEVEL 0x80
475 #define ECP_EIADDRMASKL 0x00ff0000
476 #define ECP_EIADDRSHFTL 16
477 #define ECP_EIADDRMASKH 0xff000000
478 #define ECP_EIADDRSHFTH 24
479 #define ECP_EIBRDENAB 0xc84
481 #define ECP_EISAID 0x4
484 * Important defines for the Micro-channel class of ECP board.
485 * (It has a lot in common with the ISA boards.)
488 #define ECP_MCCONFR 1
489 #define ECP_MCSTOP 0x20
490 #define ECP_MCENABLE 0x80
491 #define ECP_MCDISABLE 0x00
494 * Important defines for the PCI class of ECP board.
495 * (It has a lot in common with the other ECP boards.)
497 #define ECP_PCIIREG 0
498 #define ECP_PCICONFR 1
499 #define ECP_PCISTOP 0x01
502 * Hardware configuration info for ONboard and Brumby boards. These
503 * defines apply to the directly accessible io ports of these boards.
505 #define ONB_IOSIZE 16
506 #define ONB_MEMSIZE (64 * 1024)
507 #define ONB_ATPAGESIZE (64 * 1024)
508 #define ONB_MCPAGESIZE (64 * 1024)
509 #define ONB_EIMEMSIZE (128 * 1024)
510 #define ONB_EIPAGESIZE (64 * 1024)
513 * Important defines for the ISA class of ONboard board.
516 #define ONB_ATMEMAR 1
517 #define ONB_ATCONFR 2
518 #define ONB_ATSTOP 0x4
519 #define ONB_ATENABLE 0x01
520 #define ONB_ATDISABLE 0x00
521 #define ONB_ATADDRMASK 0xff0000
522 #define ONB_ATADDRSHFT 16
524 #define ONB_MEMENABLO 0
525 #define ONB_MEMENABHI 0x02
528 * Important defines for the EISA class of ONboard board.
531 #define ONB_EIMEMARL 1
532 #define ONB_EICONFR 2
533 #define ONB_EIMEMARH 3
534 #define ONB_EIENABLE 0x1
535 #define ONB_EIDISABLE 0x0
536 #define ONB_EISTOP 0x4
537 #define ONB_EIEDGE 0x00
538 #define ONB_EILEVEL 0x80
539 #define ONB_EIADDRMASKL 0x00ff0000
540 #define ONB_EIADDRSHFTL 16
541 #define ONB_EIADDRMASKH 0xff000000
542 #define ONB_EIADDRSHFTH 24
543 #define ONB_EIBRDENAB 0xc84
545 #define ONB_EISAID 0x1
548 * Important defines for the Brumby boards. They are pretty simple,
549 * there is not much that is programmably configurable.
551 #define BBY_IOSIZE 16
552 #define BBY_MEMSIZE (64 * 1024)
553 #define BBY_PAGESIZE (16 * 1024)
556 #define BBY_ATCONFR 1
557 #define BBY_ATSTOP 0x4
560 * Important defines for the Stallion boards. They are pretty simple,
561 * there is not much that is programmably configurable.
563 #define STAL_IOSIZE 16
564 #define STAL_MEMSIZE (64 * 1024)
565 #define STAL_PAGESIZE (64 * 1024)
568 * Define the set of status register values for EasyConnection panels.
569 * The signature will return with the status value for each panel. From
570 * this we can determine what is attached to the board - before we have
571 * actually down loaded any code to it.
573 #define ECH_PNLSTATUS 2
574 #define ECH_PNL16PORT 0x20
575 #define ECH_PNLIDMASK 0x07
576 #define ECH_PNLXPID 0x40
577 #define ECH_PNLINTRPEND 0x80
580 * Define some macros to do things to the board. Even those these boards
581 * are somewhat related there is often significantly different ways of
582 * doing some operation on it (like enable, paging, reset, etc). So each
583 * board class has a set of functions which do the commonly required
584 * operations. The macros below basically just call these functions,
585 * generally checking for a NULL function - which means that the board
586 * needs nothing done to it to achieve this operation!
588 #define EBRDINIT(brdp) \
589 if (brdp->init != NULL) \
592 #define EBRDENABLE(brdp) \
593 if (brdp->enable != NULL) \
594 (* brdp->enable)(brdp);
596 #define EBRDDISABLE(brdp) \
597 if (brdp->disable != NULL) \
598 (* brdp->disable)(brdp);
600 #define EBRDINTR(brdp) \
601 if (brdp->intr != NULL) \
602 (* brdp->intr)(brdp);
604 #define EBRDRESET(brdp) \
605 if (brdp->reset != NULL) \
606 (* brdp->reset)(brdp);
608 #define EBRDGETMEMPTR(brdp,offset) \
609 (* brdp->getmemptr)(brdp, offset, __LINE__)
612 * Define the maximal baud rate, and the default baud base for ports.
614 #define STL_MAXBAUD 460800
615 #define STL_BAUDBASE 115200
616 #define STL_CLOSEDELAY (5 * HZ / 10)
618 /*****************************************************************************/
621 * Define macros to extract a brd or port number from a minor number.
623 #define MINOR2BRD(min) (((min) & 0xc0) >> 6)
624 #define MINOR2PORT(min) ((min) & 0x3f)
627 * Define a baud rate table that converts termios baud rate selector
628 * into the actual baud rate value. All baud rate calculations are based
629 * on the actual baud rate required.
631 static unsigned int stli_baudrates
[] = {
632 0, 50, 75, 110, 134, 150, 200, 300, 600, 1200, 1800, 2400, 4800,
633 9600, 19200, 38400, 57600, 115200, 230400, 460800, 921600
636 /*****************************************************************************/
639 * Define some handy local macros...
642 #define MIN(a,b) (((a) <= (b)) ? (a) : (b))
645 #define TOLOWER(x) ((((x) >= 'A') && ((x) <= 'Z')) ? ((x) + 0x20) : (x))
647 /*****************************************************************************/
650 * Prototype all functions in this driver!
654 static void stli_argbrds(void);
655 static int stli_parsebrd(stlconf_t
*confp
, char **argp
);
657 static unsigned long stli_atol(char *str
);
661 static int stli_open(struct tty_struct
*tty
, struct file
*filp
);
662 static void stli_close(struct tty_struct
*tty
, struct file
*filp
);
663 static int stli_write(struct tty_struct
*tty
, const unsigned char *buf
, int count
);
664 static void stli_putchar(struct tty_struct
*tty
, unsigned char ch
);
665 static void stli_flushchars(struct tty_struct
*tty
);
666 static int stli_writeroom(struct tty_struct
*tty
);
667 static int stli_charsinbuffer(struct tty_struct
*tty
);
668 static int stli_ioctl(struct tty_struct
*tty
, struct file
*file
, unsigned int cmd
, unsigned long arg
);
669 static void stli_settermios(struct tty_struct
*tty
, struct termios
*old
);
670 static void stli_throttle(struct tty_struct
*tty
);
671 static void stli_unthrottle(struct tty_struct
*tty
);
672 static void stli_stop(struct tty_struct
*tty
);
673 static void stli_start(struct tty_struct
*tty
);
674 static void stli_flushbuffer(struct tty_struct
*tty
);
675 static void stli_breakctl(struct tty_struct
*tty
, int state
);
676 static void stli_waituntilsent(struct tty_struct
*tty
, int timeout
);
677 static void stli_sendxchar(struct tty_struct
*tty
, char ch
);
678 static void stli_hangup(struct tty_struct
*tty
);
679 static int stli_portinfo(stlibrd_t
*brdp
, stliport_t
*portp
, int portnr
, char *pos
);
681 static int stli_brdinit(stlibrd_t
*brdp
);
682 static int stli_startbrd(stlibrd_t
*brdp
);
683 static ssize_t
stli_memread(struct file
*fp
, char __user
*buf
, size_t count
, loff_t
*offp
);
684 static ssize_t
stli_memwrite(struct file
*fp
, const char __user
*buf
, size_t count
, loff_t
*offp
);
685 static int stli_memioctl(struct inode
*ip
, struct file
*fp
, unsigned int cmd
, unsigned long arg
);
686 static void stli_brdpoll(stlibrd_t
*brdp
, volatile cdkhdr_t
*hdrp
);
687 static void stli_poll(unsigned long arg
);
688 static int stli_hostcmd(stlibrd_t
*brdp
, stliport_t
*portp
);
689 static int stli_initopen(stlibrd_t
*brdp
, stliport_t
*portp
);
690 static int stli_rawopen(stlibrd_t
*brdp
, stliport_t
*portp
, unsigned long arg
, int wait
);
691 static int stli_rawclose(stlibrd_t
*brdp
, stliport_t
*portp
, unsigned long arg
, int wait
);
692 static int stli_waitcarrier(stlibrd_t
*brdp
, stliport_t
*portp
, struct file
*filp
);
693 static void stli_dohangup(void *arg
);
694 static int stli_setport(stliport_t
*portp
);
695 static int stli_cmdwait(stlibrd_t
*brdp
, stliport_t
*portp
, unsigned long cmd
, void *arg
, int size
, int copyback
);
696 static void stli_sendcmd(stlibrd_t
*brdp
, stliport_t
*portp
, unsigned long cmd
, void *arg
, int size
, int copyback
);
697 static void stli_dodelaycmd(stliport_t
*portp
, volatile cdkctrl_t
*cp
);
698 static void stli_mkasyport(stliport_t
*portp
, asyport_t
*pp
, struct termios
*tiosp
);
699 static void stli_mkasysigs(asysigs_t
*sp
, int dtr
, int rts
);
700 static long stli_mktiocm(unsigned long sigvalue
);
701 static void stli_read(stlibrd_t
*brdp
, stliport_t
*portp
);
702 static int stli_getserial(stliport_t
*portp
, struct serial_struct __user
*sp
);
703 static int stli_setserial(stliport_t
*portp
, struct serial_struct __user
*sp
);
704 static int stli_getbrdstats(combrd_t __user
*bp
);
705 static int stli_getportstats(stliport_t
*portp
, comstats_t __user
*cp
);
706 static int stli_portcmdstats(stliport_t
*portp
);
707 static int stli_clrportstats(stliport_t
*portp
, comstats_t __user
*cp
);
708 static int stli_getportstruct(stliport_t __user
*arg
);
709 static int stli_getbrdstruct(stlibrd_t __user
*arg
);
710 static void *stli_memalloc(int len
);
711 static stlibrd_t
*stli_allocbrd(void);
713 static void stli_ecpinit(stlibrd_t
*brdp
);
714 static void stli_ecpenable(stlibrd_t
*brdp
);
715 static void stli_ecpdisable(stlibrd_t
*brdp
);
716 static char *stli_ecpgetmemptr(stlibrd_t
*brdp
, unsigned long offset
, int line
);
717 static void stli_ecpreset(stlibrd_t
*brdp
);
718 static void stli_ecpintr(stlibrd_t
*brdp
);
719 static void stli_ecpeiinit(stlibrd_t
*brdp
);
720 static void stli_ecpeienable(stlibrd_t
*brdp
);
721 static void stli_ecpeidisable(stlibrd_t
*brdp
);
722 static char *stli_ecpeigetmemptr(stlibrd_t
*brdp
, unsigned long offset
, int line
);
723 static void stli_ecpeireset(stlibrd_t
*brdp
);
724 static void stli_ecpmcenable(stlibrd_t
*brdp
);
725 static void stli_ecpmcdisable(stlibrd_t
*brdp
);
726 static char *stli_ecpmcgetmemptr(stlibrd_t
*brdp
, unsigned long offset
, int line
);
727 static void stli_ecpmcreset(stlibrd_t
*brdp
);
728 static void stli_ecppciinit(stlibrd_t
*brdp
);
729 static char *stli_ecppcigetmemptr(stlibrd_t
*brdp
, unsigned long offset
, int line
);
730 static void stli_ecppcireset(stlibrd_t
*brdp
);
732 static void stli_onbinit(stlibrd_t
*brdp
);
733 static void stli_onbenable(stlibrd_t
*brdp
);
734 static void stli_onbdisable(stlibrd_t
*brdp
);
735 static char *stli_onbgetmemptr(stlibrd_t
*brdp
, unsigned long offset
, int line
);
736 static void stli_onbreset(stlibrd_t
*brdp
);
737 static void stli_onbeinit(stlibrd_t
*brdp
);
738 static void stli_onbeenable(stlibrd_t
*brdp
);
739 static void stli_onbedisable(stlibrd_t
*brdp
);
740 static char *stli_onbegetmemptr(stlibrd_t
*brdp
, unsigned long offset
, int line
);
741 static void stli_onbereset(stlibrd_t
*brdp
);
742 static void stli_bbyinit(stlibrd_t
*brdp
);
743 static char *stli_bbygetmemptr(stlibrd_t
*brdp
, unsigned long offset
, int line
);
744 static void stli_bbyreset(stlibrd_t
*brdp
);
745 static void stli_stalinit(stlibrd_t
*brdp
);
746 static char *stli_stalgetmemptr(stlibrd_t
*brdp
, unsigned long offset
, int line
);
747 static void stli_stalreset(stlibrd_t
*brdp
);
749 static stliport_t
*stli_getport(int brdnr
, int panelnr
, int portnr
);
751 static int stli_initecp(stlibrd_t
*brdp
);
752 static int stli_initonb(stlibrd_t
*brdp
);
753 static int stli_eisamemprobe(stlibrd_t
*brdp
);
754 static int stli_initports(stlibrd_t
*brdp
);
757 static int stli_initpcibrd(int brdtype
, struct pci_dev
*devp
);
760 /*****************************************************************************/
763 * Define the driver info for a user level shared memory device. This
764 * device will work sort of like the /dev/kmem device - except that it
765 * will give access to the shared memory on the Stallion intelligent
766 * board. This is also a very useful debugging tool.
768 static struct file_operations stli_fsiomem
= {
769 .owner
= THIS_MODULE
,
770 .read
= stli_memread
,
771 .write
= stli_memwrite
,
772 .ioctl
= stli_memioctl
,
775 /*****************************************************************************/
778 * Define a timer_list entry for our poll routine. The slave board
779 * is polled every so often to see if anything needs doing. This is
780 * much cheaper on host cpu than using interrupts. It turns out to
781 * not increase character latency by much either...
783 static DEFINE_TIMER(stli_timerlist
, stli_poll
, 0, 0);
785 static int stli_timeron
;
788 * Define the calculation for the timeout routine.
790 #define STLI_TIMEOUT (jiffies + 1)
792 /*****************************************************************************/
794 static struct class *istallion_class
;
799 * Loadable module initialization stuff.
802 static int __init
istallion_module_init(void)
807 printk("init_module()\n");
813 restore_flags(flags
);
818 /*****************************************************************************/
820 static void __exit
istallion_module_exit(void)
828 printk("cleanup_module()\n");
831 printk(KERN_INFO
"Unloading %s: version %s\n", stli_drvtitle
,
838 * Free up all allocated resources used by the ports. This includes
839 * memory and interrupts.
843 del_timer(&stli_timerlist
);
846 i
= tty_unregister_driver(stli_serial
);
848 printk("STALLION: failed to un-register tty driver, "
850 restore_flags(flags
);
853 put_tty_driver(stli_serial
);
854 for (i
= 0; i
< 4; i
++) {
855 devfs_remove("staliomem/%d", i
);
856 class_device_destroy(istallion_class
, MKDEV(STL_SIOMEMMAJOR
, i
));
858 devfs_remove("staliomem");
859 class_destroy(istallion_class
);
860 if ((i
= unregister_chrdev(STL_SIOMEMMAJOR
, "staliomem")))
861 printk("STALLION: failed to un-register serial memory device, "
864 kfree(stli_tmpwritebuf
);
865 kfree(stli_txcookbuf
);
867 for (i
= 0; (i
< stli_nrbrds
); i
++) {
868 if ((brdp
= stli_brds
[i
]) == (stlibrd_t
*) NULL
)
870 for (j
= 0; (j
< STL_MAXPORTS
); j
++) {
871 portp
= brdp
->ports
[j
];
872 if (portp
!= (stliport_t
*) NULL
) {
873 if (portp
->tty
!= (struct tty_struct
*) NULL
)
874 tty_hangup(portp
->tty
);
879 iounmap(brdp
->membase
);
880 if (brdp
->iosize
> 0)
881 release_region(brdp
->iobase
, brdp
->iosize
);
883 stli_brds
[i
] = (stlibrd_t
*) NULL
;
886 restore_flags(flags
);
889 module_init(istallion_module_init
);
890 module_exit(istallion_module_exit
);
892 /*****************************************************************************/
895 * Check for any arguments passed in on the module load command line.
898 static void stli_argbrds(void)
905 printk("stli_argbrds()\n");
908 nrargs
= sizeof(stli_brdsp
) / sizeof(char **);
910 for (i
= stli_nrbrds
; (i
< nrargs
); i
++) {
911 memset(&conf
, 0, sizeof(conf
));
912 if (stli_parsebrd(&conf
, stli_brdsp
[i
]) == 0)
914 if ((brdp
= stli_allocbrd()) == (stlibrd_t
*) NULL
)
918 brdp
->brdtype
= conf
.brdtype
;
919 brdp
->iobase
= conf
.ioaddr1
;
920 brdp
->memaddr
= conf
.memaddr
;
925 /*****************************************************************************/
928 * Convert an ascii string number into an unsigned long.
931 static unsigned long stli_atol(char *str
)
939 if ((*sp
== '0') && (*(sp
+1) == 'x')) {
942 } else if (*sp
== '0') {
949 for (; (*sp
!= 0); sp
++) {
950 c
= (*sp
> '9') ? (TOLOWER(*sp
) - 'a' + 10) : (*sp
- '0');
951 if ((c
< 0) || (c
>= base
)) {
952 printk("STALLION: invalid argument %s\n", str
);
956 val
= (val
* base
) + c
;
961 /*****************************************************************************/
964 * Parse the supplied argument string, into the board conf struct.
967 static int stli_parsebrd(stlconf_t
*confp
, char **argp
)
973 printk("stli_parsebrd(confp=%x,argp=%x)\n", (int) confp
, (int) argp
);
976 if ((argp
[0] == (char *) NULL
) || (*argp
[0] == 0))
979 for (sp
= argp
[0], i
= 0; ((*sp
!= 0) && (i
< 25)); sp
++, i
++)
982 nrbrdnames
= sizeof(stli_brdstr
) / sizeof(stlibrdtype_t
);
983 for (i
= 0; (i
< nrbrdnames
); i
++) {
984 if (strcmp(stli_brdstr
[i
].name
, argp
[0]) == 0)
987 if (i
>= nrbrdnames
) {
988 printk("STALLION: unknown board name, %s?\n", argp
[0]);
992 confp
->brdtype
= stli_brdstr
[i
].type
;
993 if ((argp
[1] != (char *) NULL
) && (*argp
[1] != 0))
994 confp
->ioaddr1
= stli_atol(argp
[1]);
995 if ((argp
[2] != (char *) NULL
) && (*argp
[2] != 0))
996 confp
->memaddr
= stli_atol(argp
[2]);
1002 /*****************************************************************************/
1005 * Local driver kernel malloc routine.
1008 static void *stli_memalloc(int len
)
1010 return((void *) kmalloc(len
, GFP_KERNEL
));
1013 /*****************************************************************************/
1015 static int stli_open(struct tty_struct
*tty
, struct file
*filp
)
1019 unsigned int minordev
;
1020 int brdnr
, portnr
, rc
;
1023 printk("stli_open(tty=%x,filp=%x): device=%s\n", (int) tty
,
1024 (int) filp
, tty
->name
);
1027 minordev
= tty
->index
;
1028 brdnr
= MINOR2BRD(minordev
);
1029 if (brdnr
>= stli_nrbrds
)
1031 brdp
= stli_brds
[brdnr
];
1032 if (brdp
== (stlibrd_t
*) NULL
)
1034 if ((brdp
->state
& BST_STARTED
) == 0)
1036 portnr
= MINOR2PORT(minordev
);
1037 if ((portnr
< 0) || (portnr
> brdp
->nrports
))
1040 portp
= brdp
->ports
[portnr
];
1041 if (portp
== (stliport_t
*) NULL
)
1043 if (portp
->devnr
< 1)
1048 * Check if this port is in the middle of closing. If so then wait
1049 * until it is closed then return error status based on flag settings.
1050 * The sleep here does not need interrupt protection since the wakeup
1051 * for it is done with the same context.
1053 if (portp
->flags
& ASYNC_CLOSING
) {
1054 interruptible_sleep_on(&portp
->close_wait
);
1055 if (portp
->flags
& ASYNC_HUP_NOTIFY
)
1057 return(-ERESTARTSYS
);
1061 * On the first open of the device setup the port hardware, and
1062 * initialize the per port data structure. Since initializing the port
1063 * requires several commands to the board we will need to wait for any
1064 * other open that is already initializing the port.
1067 tty
->driver_data
= portp
;
1070 wait_event_interruptible(portp
->raw_wait
,
1071 !test_bit(ST_INITIALIZING
, &portp
->state
));
1072 if (signal_pending(current
))
1073 return(-ERESTARTSYS
);
1075 if ((portp
->flags
& ASYNC_INITIALIZED
) == 0) {
1076 set_bit(ST_INITIALIZING
, &portp
->state
);
1077 if ((rc
= stli_initopen(brdp
, portp
)) >= 0) {
1078 portp
->flags
|= ASYNC_INITIALIZED
;
1079 clear_bit(TTY_IO_ERROR
, &tty
->flags
);
1081 clear_bit(ST_INITIALIZING
, &portp
->state
);
1082 wake_up_interruptible(&portp
->raw_wait
);
1088 * Check if this port is in the middle of closing. If so then wait
1089 * until it is closed then return error status, based on flag settings.
1090 * The sleep here does not need interrupt protection since the wakeup
1091 * for it is done with the same context.
1093 if (portp
->flags
& ASYNC_CLOSING
) {
1094 interruptible_sleep_on(&portp
->close_wait
);
1095 if (portp
->flags
& ASYNC_HUP_NOTIFY
)
1097 return(-ERESTARTSYS
);
1101 * Based on type of open being done check if it can overlap with any
1102 * previous opens still in effect. If we are a normal serial device
1103 * then also we might have to wait for carrier.
1105 if (!(filp
->f_flags
& O_NONBLOCK
)) {
1106 if ((rc
= stli_waitcarrier(brdp
, portp
, filp
)) != 0)
1109 portp
->flags
|= ASYNC_NORMAL_ACTIVE
;
1113 /*****************************************************************************/
1115 static void stli_close(struct tty_struct
*tty
, struct file
*filp
)
1119 unsigned long flags
;
1122 printk("stli_close(tty=%x,filp=%x)\n", (int) tty
, (int) filp
);
1125 portp
= tty
->driver_data
;
1126 if (portp
== (stliport_t
*) NULL
)
1131 if (tty_hung_up_p(filp
)) {
1132 restore_flags(flags
);
1135 if ((tty
->count
== 1) && (portp
->refcount
!= 1))
1136 portp
->refcount
= 1;
1137 if (portp
->refcount
-- > 1) {
1138 restore_flags(flags
);
1142 portp
->flags
|= ASYNC_CLOSING
;
1145 * May want to wait for data to drain before closing. The BUSY flag
1146 * keeps track of whether we are still transmitting or not. It is
1147 * updated by messages from the slave - indicating when all chars
1148 * really have drained.
1150 if (tty
== stli_txcooktty
)
1151 stli_flushchars(tty
);
1153 if (portp
->closing_wait
!= ASYNC_CLOSING_WAIT_NONE
)
1154 tty_wait_until_sent(tty
, portp
->closing_wait
);
1156 portp
->flags
&= ~ASYNC_INITIALIZED
;
1157 brdp
= stli_brds
[portp
->brdnr
];
1158 stli_rawclose(brdp
, portp
, 0, 0);
1159 if (tty
->termios
->c_cflag
& HUPCL
) {
1160 stli_mkasysigs(&portp
->asig
, 0, 0);
1161 if (test_bit(ST_CMDING
, &portp
->state
))
1162 set_bit(ST_DOSIGS
, &portp
->state
);
1164 stli_sendcmd(brdp
, portp
, A_SETSIGNALS
, &portp
->asig
,
1165 sizeof(asysigs_t
), 0);
1167 clear_bit(ST_TXBUSY
, &portp
->state
);
1168 clear_bit(ST_RXSTOP
, &portp
->state
);
1169 set_bit(TTY_IO_ERROR
, &tty
->flags
);
1170 if (tty
->ldisc
.flush_buffer
)
1171 (tty
->ldisc
.flush_buffer
)(tty
);
1172 set_bit(ST_DOFLUSHRX
, &portp
->state
);
1173 stli_flushbuffer(tty
);
1176 portp
->tty
= (struct tty_struct
*) NULL
;
1178 if (portp
->openwaitcnt
) {
1179 if (portp
->close_delay
)
1180 msleep_interruptible(jiffies_to_msecs(portp
->close_delay
));
1181 wake_up_interruptible(&portp
->open_wait
);
1184 portp
->flags
&= ~(ASYNC_NORMAL_ACTIVE
|ASYNC_CLOSING
);
1185 wake_up_interruptible(&portp
->close_wait
);
1186 restore_flags(flags
);
1189 /*****************************************************************************/
1192 * Carry out first open operations on a port. This involves a number of
1193 * commands to be sent to the slave. We need to open the port, set the
1194 * notification events, set the initial port settings, get and set the
1195 * initial signal values. We sleep and wait in between each one. But
1196 * this still all happens pretty quickly.
1199 static int stli_initopen(stlibrd_t
*brdp
, stliport_t
*portp
)
1201 struct tty_struct
*tty
;
1207 printk("stli_initopen(brdp=%x,portp=%x)\n", (int) brdp
, (int) portp
);
1210 if ((rc
= stli_rawopen(brdp
, portp
, 0, 1)) < 0)
1213 memset(&nt
, 0, sizeof(asynotify_t
));
1214 nt
.data
= (DT_TXLOW
| DT_TXEMPTY
| DT_RXBUSY
| DT_RXBREAK
);
1216 if ((rc
= stli_cmdwait(brdp
, portp
, A_SETNOTIFY
, &nt
,
1217 sizeof(asynotify_t
), 0)) < 0)
1221 if (tty
== (struct tty_struct
*) NULL
)
1223 stli_mkasyport(portp
, &aport
, tty
->termios
);
1224 if ((rc
= stli_cmdwait(brdp
, portp
, A_SETPORT
, &aport
,
1225 sizeof(asyport_t
), 0)) < 0)
1228 set_bit(ST_GETSIGS
, &portp
->state
);
1229 if ((rc
= stli_cmdwait(brdp
, portp
, A_GETSIGNALS
, &portp
->asig
,
1230 sizeof(asysigs_t
), 1)) < 0)
1232 if (test_and_clear_bit(ST_GETSIGS
, &portp
->state
))
1233 portp
->sigs
= stli_mktiocm(portp
->asig
.sigvalue
);
1234 stli_mkasysigs(&portp
->asig
, 1, 1);
1235 if ((rc
= stli_cmdwait(brdp
, portp
, A_SETSIGNALS
, &portp
->asig
,
1236 sizeof(asysigs_t
), 0)) < 0)
1242 /*****************************************************************************/
1245 * Send an open message to the slave. This will sleep waiting for the
1246 * acknowledgement, so must have user context. We need to co-ordinate
1247 * with close events here, since we don't want open and close events
1251 static int stli_rawopen(stlibrd_t
*brdp
, stliport_t
*portp
, unsigned long arg
, int wait
)
1253 volatile cdkhdr_t
*hdrp
;
1254 volatile cdkctrl_t
*cp
;
1255 volatile unsigned char *bits
;
1256 unsigned long flags
;
1260 printk("stli_rawopen(brdp=%x,portp=%x,arg=%x,wait=%d)\n",
1261 (int) brdp
, (int) portp
, (int) arg
, wait
);
1265 * Send a message to the slave to open this port.
1271 * Slave is already closing this port. This can happen if a hangup
1272 * occurs on this port. So we must wait until it is complete. The
1273 * order of opens and closes may not be preserved across shared
1274 * memory, so we must wait until it is complete.
1276 wait_event_interruptible(portp
->raw_wait
,
1277 !test_bit(ST_CLOSING
, &portp
->state
));
1278 if (signal_pending(current
)) {
1279 restore_flags(flags
);
1280 return -ERESTARTSYS
;
1284 * Everything is ready now, so write the open message into shared
1285 * memory. Once the message is in set the service bits to say that
1286 * this port wants service.
1289 cp
= &((volatile cdkasy_t
*) EBRDGETMEMPTR(brdp
, portp
->addr
))->ctrl
;
1292 hdrp
= (volatile cdkhdr_t
*) EBRDGETMEMPTR(brdp
, CDK_CDKADDR
);
1293 bits
= ((volatile unsigned char *) hdrp
) + brdp
->slaveoffset
+
1295 *bits
|= portp
->portbit
;
1299 restore_flags(flags
);
1304 * Slave is in action, so now we must wait for the open acknowledgment
1308 set_bit(ST_OPENING
, &portp
->state
);
1309 wait_event_interruptible(portp
->raw_wait
,
1310 !test_bit(ST_OPENING
, &portp
->state
));
1311 if (signal_pending(current
))
1313 restore_flags(flags
);
1315 if ((rc
== 0) && (portp
->rc
!= 0))
1320 /*****************************************************************************/
1323 * Send a close message to the slave. Normally this will sleep waiting
1324 * for the acknowledgement, but if wait parameter is 0 it will not. If
1325 * wait is true then must have user context (to sleep).
1328 static int stli_rawclose(stlibrd_t
*brdp
, stliport_t
*portp
, unsigned long arg
, int wait
)
1330 volatile cdkhdr_t
*hdrp
;
1331 volatile cdkctrl_t
*cp
;
1332 volatile unsigned char *bits
;
1333 unsigned long flags
;
1337 printk("stli_rawclose(brdp=%x,portp=%x,arg=%x,wait=%d)\n",
1338 (int) brdp
, (int) portp
, (int) arg
, wait
);
1345 * Slave is already closing this port. This can happen if a hangup
1346 * occurs on this port.
1349 wait_event_interruptible(portp
->raw_wait
,
1350 !test_bit(ST_CLOSING
, &portp
->state
));
1351 if (signal_pending(current
)) {
1352 restore_flags(flags
);
1353 return -ERESTARTSYS
;
1358 * Write the close command into shared memory.
1361 cp
= &((volatile cdkasy_t
*) EBRDGETMEMPTR(brdp
, portp
->addr
))->ctrl
;
1364 hdrp
= (volatile cdkhdr_t
*) EBRDGETMEMPTR(brdp
, CDK_CDKADDR
);
1365 bits
= ((volatile unsigned char *) hdrp
) + brdp
->slaveoffset
+
1367 *bits
|= portp
->portbit
;
1370 set_bit(ST_CLOSING
, &portp
->state
);
1372 restore_flags(flags
);
1377 * Slave is in action, so now we must wait for the open acknowledgment
1381 wait_event_interruptible(portp
->raw_wait
,
1382 !test_bit(ST_CLOSING
, &portp
->state
));
1383 if (signal_pending(current
))
1385 restore_flags(flags
);
1387 if ((rc
== 0) && (portp
->rc
!= 0))
1392 /*****************************************************************************/
1395 * Send a command to the slave and wait for the response. This must
1396 * have user context (it sleeps). This routine is generic in that it
1397 * can send any type of command. Its purpose is to wait for that command
1398 * to complete (as opposed to initiating the command then returning).
1401 static int stli_cmdwait(stlibrd_t
*brdp
, stliport_t
*portp
, unsigned long cmd
, void *arg
, int size
, int copyback
)
1403 unsigned long flags
;
1406 printk("stli_cmdwait(brdp=%x,portp=%x,cmd=%x,arg=%x,size=%d,"
1407 "copyback=%d)\n", (int) brdp
, (int) portp
, (int) cmd
,
1408 (int) arg
, size
, copyback
);
1413 wait_event_interruptible(portp
->raw_wait
,
1414 !test_bit(ST_CMDING
, &portp
->state
));
1415 if (signal_pending(current
)) {
1416 restore_flags(flags
);
1417 return -ERESTARTSYS
;
1420 stli_sendcmd(brdp
, portp
, cmd
, arg
, size
, copyback
);
1422 wait_event_interruptible(portp
->raw_wait
,
1423 !test_bit(ST_CMDING
, &portp
->state
));
1424 if (signal_pending(current
)) {
1425 restore_flags(flags
);
1426 return -ERESTARTSYS
;
1428 restore_flags(flags
);
1435 /*****************************************************************************/
1438 * Send the termios settings for this port to the slave. This sleeps
1439 * waiting for the command to complete - so must have user context.
1442 static int stli_setport(stliport_t
*portp
)
1448 printk("stli_setport(portp=%x)\n", (int) portp
);
1451 if (portp
== (stliport_t
*) NULL
)
1453 if (portp
->tty
== (struct tty_struct
*) NULL
)
1455 if ((portp
->brdnr
< 0) && (portp
->brdnr
>= stli_nrbrds
))
1457 brdp
= stli_brds
[portp
->brdnr
];
1458 if (brdp
== (stlibrd_t
*) NULL
)
1461 stli_mkasyport(portp
, &aport
, portp
->tty
->termios
);
1462 return(stli_cmdwait(brdp
, portp
, A_SETPORT
, &aport
, sizeof(asyport_t
), 0));
1465 /*****************************************************************************/
1468 * Possibly need to wait for carrier (DCD signal) to come high. Say
1469 * maybe because if we are clocal then we don't need to wait...
1472 static int stli_waitcarrier(stlibrd_t
*brdp
, stliport_t
*portp
, struct file
*filp
)
1474 unsigned long flags
;
1478 printk("stli_waitcarrier(brdp=%x,portp=%x,filp=%x)\n",
1479 (int) brdp
, (int) portp
, (int) filp
);
1485 if (portp
->tty
->termios
->c_cflag
& CLOCAL
)
1490 portp
->openwaitcnt
++;
1491 if (! tty_hung_up_p(filp
))
1495 stli_mkasysigs(&portp
->asig
, 1, 1);
1496 if ((rc
= stli_cmdwait(brdp
, portp
, A_SETSIGNALS
,
1497 &portp
->asig
, sizeof(asysigs_t
), 0)) < 0)
1499 if (tty_hung_up_p(filp
) ||
1500 ((portp
->flags
& ASYNC_INITIALIZED
) == 0)) {
1501 if (portp
->flags
& ASYNC_HUP_NOTIFY
)
1507 if (((portp
->flags
& ASYNC_CLOSING
) == 0) &&
1508 (doclocal
|| (portp
->sigs
& TIOCM_CD
))) {
1511 if (signal_pending(current
)) {
1515 interruptible_sleep_on(&portp
->open_wait
);
1518 if (! tty_hung_up_p(filp
))
1520 portp
->openwaitcnt
--;
1521 restore_flags(flags
);
1526 /*****************************************************************************/
1529 * Write routine. Take the data and put it in the shared memory ring
1530 * queue. If port is not already sending chars then need to mark the
1531 * service bits for this port.
1534 static int stli_write(struct tty_struct
*tty
, const unsigned char *buf
, int count
)
1536 volatile cdkasy_t
*ap
;
1537 volatile cdkhdr_t
*hdrp
;
1538 volatile unsigned char *bits
;
1539 unsigned char *shbuf
, *chbuf
;
1542 unsigned int len
, stlen
, head
, tail
, size
;
1543 unsigned long flags
;
1546 printk("stli_write(tty=%x,buf=%x,count=%d)\n",
1547 (int) tty
, (int) buf
, count
);
1550 if ((tty
== (struct tty_struct
*) NULL
) ||
1551 (stli_tmpwritebuf
== (char *) NULL
))
1553 if (tty
== stli_txcooktty
)
1554 stli_flushchars(tty
);
1555 portp
= tty
->driver_data
;
1556 if (portp
== (stliport_t
*) NULL
)
1558 if ((portp
->brdnr
< 0) || (portp
->brdnr
>= stli_nrbrds
))
1560 brdp
= stli_brds
[portp
->brdnr
];
1561 if (brdp
== (stlibrd_t
*) NULL
)
1563 chbuf
= (unsigned char *) buf
;
1566 * All data is now local, shove as much as possible into shared memory.
1571 ap
= (volatile cdkasy_t
*) EBRDGETMEMPTR(brdp
, portp
->addr
);
1572 head
= (unsigned int) ap
->txq
.head
;
1573 tail
= (unsigned int) ap
->txq
.tail
;
1574 if (tail
!= ((unsigned int) ap
->txq
.tail
))
1575 tail
= (unsigned int) ap
->txq
.tail
;
1576 size
= portp
->txsize
;
1578 len
= size
- (head
- tail
) - 1;
1579 stlen
= size
- head
;
1581 len
= tail
- head
- 1;
1585 len
= MIN(len
, count
);
1587 shbuf
= (char *) EBRDGETMEMPTR(brdp
, portp
->txoffset
);
1590 stlen
= MIN(len
, stlen
);
1591 memcpy((shbuf
+ head
), chbuf
, stlen
);
1602 ap
= (volatile cdkasy_t
*) EBRDGETMEMPTR(brdp
, portp
->addr
);
1603 ap
->txq
.head
= head
;
1604 if (test_bit(ST_TXBUSY
, &portp
->state
)) {
1605 if (ap
->changed
.data
& DT_TXEMPTY
)
1606 ap
->changed
.data
&= ~DT_TXEMPTY
;
1608 hdrp
= (volatile cdkhdr_t
*) EBRDGETMEMPTR(brdp
, CDK_CDKADDR
);
1609 bits
= ((volatile unsigned char *) hdrp
) + brdp
->slaveoffset
+
1611 *bits
|= portp
->portbit
;
1612 set_bit(ST_TXBUSY
, &portp
->state
);
1615 restore_flags(flags
);
1620 /*****************************************************************************/
1623 * Output a single character. We put it into a temporary local buffer
1624 * (for speed) then write out that buffer when the flushchars routine
1625 * is called. There is a safety catch here so that if some other port
1626 * writes chars before the current buffer has been, then we write them
1627 * first them do the new ports.
1630 static void stli_putchar(struct tty_struct
*tty
, unsigned char ch
)
1633 printk("stli_putchar(tty=%x,ch=%x)\n", (int) tty
, (int) ch
);
1636 if (tty
== (struct tty_struct
*) NULL
)
1638 if (tty
!= stli_txcooktty
) {
1639 if (stli_txcooktty
!= (struct tty_struct
*) NULL
)
1640 stli_flushchars(stli_txcooktty
);
1641 stli_txcooktty
= tty
;
1644 stli_txcookbuf
[stli_txcooksize
++] = ch
;
1647 /*****************************************************************************/
1650 * Transfer characters from the local TX cooking buffer to the board.
1651 * We sort of ignore the tty that gets passed in here. We rely on the
1652 * info stored with the TX cook buffer to tell us which port to flush
1653 * the data on. In any case we clean out the TX cook buffer, for re-use
1657 static void stli_flushchars(struct tty_struct
*tty
)
1659 volatile cdkhdr_t
*hdrp
;
1660 volatile unsigned char *bits
;
1661 volatile cdkasy_t
*ap
;
1662 struct tty_struct
*cooktty
;
1665 unsigned int len
, stlen
, head
, tail
, size
, count
, cooksize
;
1666 unsigned char *buf
, *shbuf
;
1667 unsigned long flags
;
1670 printk("stli_flushchars(tty=%x)\n", (int) tty
);
1673 cooksize
= stli_txcooksize
;
1674 cooktty
= stli_txcooktty
;
1675 stli_txcooksize
= 0;
1676 stli_txcookrealsize
= 0;
1677 stli_txcooktty
= (struct tty_struct
*) NULL
;
1679 if (tty
== (struct tty_struct
*) NULL
)
1681 if (cooktty
== (struct tty_struct
*) NULL
)
1688 portp
= tty
->driver_data
;
1689 if (portp
== (stliport_t
*) NULL
)
1691 if ((portp
->brdnr
< 0) || (portp
->brdnr
>= stli_nrbrds
))
1693 brdp
= stli_brds
[portp
->brdnr
];
1694 if (brdp
== (stlibrd_t
*) NULL
)
1701 ap
= (volatile cdkasy_t
*) EBRDGETMEMPTR(brdp
, portp
->addr
);
1702 head
= (unsigned int) ap
->txq
.head
;
1703 tail
= (unsigned int) ap
->txq
.tail
;
1704 if (tail
!= ((unsigned int) ap
->txq
.tail
))
1705 tail
= (unsigned int) ap
->txq
.tail
;
1706 size
= portp
->txsize
;
1708 len
= size
- (head
- tail
) - 1;
1709 stlen
= size
- head
;
1711 len
= tail
- head
- 1;
1715 len
= MIN(len
, cooksize
);
1717 shbuf
= (char *) EBRDGETMEMPTR(brdp
, portp
->txoffset
);
1718 buf
= stli_txcookbuf
;
1721 stlen
= MIN(len
, stlen
);
1722 memcpy((shbuf
+ head
), buf
, stlen
);
1733 ap
= (volatile cdkasy_t
*) EBRDGETMEMPTR(brdp
, portp
->addr
);
1734 ap
->txq
.head
= head
;
1736 if (test_bit(ST_TXBUSY
, &portp
->state
)) {
1737 if (ap
->changed
.data
& DT_TXEMPTY
)
1738 ap
->changed
.data
&= ~DT_TXEMPTY
;
1740 hdrp
= (volatile cdkhdr_t
*) EBRDGETMEMPTR(brdp
, CDK_CDKADDR
);
1741 bits
= ((volatile unsigned char *) hdrp
) + brdp
->slaveoffset
+
1743 *bits
|= portp
->portbit
;
1744 set_bit(ST_TXBUSY
, &portp
->state
);
1747 restore_flags(flags
);
1750 /*****************************************************************************/
1752 static int stli_writeroom(struct tty_struct
*tty
)
1754 volatile cdkasyrq_t
*rp
;
1757 unsigned int head
, tail
, len
;
1758 unsigned long flags
;
1761 printk("stli_writeroom(tty=%x)\n", (int) tty
);
1764 if (tty
== (struct tty_struct
*) NULL
)
1766 if (tty
== stli_txcooktty
) {
1767 if (stli_txcookrealsize
!= 0) {
1768 len
= stli_txcookrealsize
- stli_txcooksize
;
1773 portp
= tty
->driver_data
;
1774 if (portp
== (stliport_t
*) NULL
)
1776 if ((portp
->brdnr
< 0) || (portp
->brdnr
>= stli_nrbrds
))
1778 brdp
= stli_brds
[portp
->brdnr
];
1779 if (brdp
== (stlibrd_t
*) NULL
)
1785 rp
= &((volatile cdkasy_t
*) EBRDGETMEMPTR(brdp
, portp
->addr
))->txq
;
1786 head
= (unsigned int) rp
->head
;
1787 tail
= (unsigned int) rp
->tail
;
1788 if (tail
!= ((unsigned int) rp
->tail
))
1789 tail
= (unsigned int) rp
->tail
;
1790 len
= (head
>= tail
) ? (portp
->txsize
- (head
- tail
)) : (tail
- head
);
1793 restore_flags(flags
);
1795 if (tty
== stli_txcooktty
) {
1796 stli_txcookrealsize
= len
;
1797 len
-= stli_txcooksize
;
1802 /*****************************************************************************/
1805 * Return the number of characters in the transmit buffer. Normally we
1806 * will return the number of chars in the shared memory ring queue.
1807 * We need to kludge around the case where the shared memory buffer is
1808 * empty but not all characters have drained yet, for this case just
1809 * return that there is 1 character in the buffer!
1812 static int stli_charsinbuffer(struct tty_struct
*tty
)
1814 volatile cdkasyrq_t
*rp
;
1817 unsigned int head
, tail
, len
;
1818 unsigned long flags
;
1821 printk("stli_charsinbuffer(tty=%x)\n", (int) tty
);
1824 if (tty
== (struct tty_struct
*) NULL
)
1826 if (tty
== stli_txcooktty
)
1827 stli_flushchars(tty
);
1828 portp
= tty
->driver_data
;
1829 if (portp
== (stliport_t
*) NULL
)
1831 if ((portp
->brdnr
< 0) || (portp
->brdnr
>= stli_nrbrds
))
1833 brdp
= stli_brds
[portp
->brdnr
];
1834 if (brdp
== (stlibrd_t
*) NULL
)
1840 rp
= &((volatile cdkasy_t
*) EBRDGETMEMPTR(brdp
, portp
->addr
))->txq
;
1841 head
= (unsigned int) rp
->head
;
1842 tail
= (unsigned int) rp
->tail
;
1843 if (tail
!= ((unsigned int) rp
->tail
))
1844 tail
= (unsigned int) rp
->tail
;
1845 len
= (head
>= tail
) ? (head
- tail
) : (portp
->txsize
- (tail
- head
));
1846 if ((len
== 0) && test_bit(ST_TXBUSY
, &portp
->state
))
1849 restore_flags(flags
);
1854 /*****************************************************************************/
1857 * Generate the serial struct info.
1860 static int stli_getserial(stliport_t
*portp
, struct serial_struct __user
*sp
)
1862 struct serial_struct sio
;
1866 printk("stli_getserial(portp=%x,sp=%x)\n", (int) portp
, (int) sp
);
1869 memset(&sio
, 0, sizeof(struct serial_struct
));
1870 sio
.type
= PORT_UNKNOWN
;
1871 sio
.line
= portp
->portnr
;
1873 sio
.flags
= portp
->flags
;
1874 sio
.baud_base
= portp
->baud_base
;
1875 sio
.close_delay
= portp
->close_delay
;
1876 sio
.closing_wait
= portp
->closing_wait
;
1877 sio
.custom_divisor
= portp
->custom_divisor
;
1878 sio
.xmit_fifo_size
= 0;
1881 brdp
= stli_brds
[portp
->brdnr
];
1882 if (brdp
!= (stlibrd_t
*) NULL
)
1883 sio
.port
= brdp
->iobase
;
1885 return copy_to_user(sp
, &sio
, sizeof(struct serial_struct
)) ?
1889 /*****************************************************************************/
1892 * Set port according to the serial struct info.
1893 * At this point we do not do any auto-configure stuff, so we will
1894 * just quietly ignore any requests to change irq, etc.
1897 static int stli_setserial(stliport_t
*portp
, struct serial_struct __user
*sp
)
1899 struct serial_struct sio
;
1903 printk("stli_setserial(portp=%p,sp=%p)\n", portp
, sp
);
1906 if (copy_from_user(&sio
, sp
, sizeof(struct serial_struct
)))
1908 if (!capable(CAP_SYS_ADMIN
)) {
1909 if ((sio
.baud_base
!= portp
->baud_base
) ||
1910 (sio
.close_delay
!= portp
->close_delay
) ||
1911 ((sio
.flags
& ~ASYNC_USR_MASK
) !=
1912 (portp
->flags
& ~ASYNC_USR_MASK
)))
1916 portp
->flags
= (portp
->flags
& ~ASYNC_USR_MASK
) |
1917 (sio
.flags
& ASYNC_USR_MASK
);
1918 portp
->baud_base
= sio
.baud_base
;
1919 portp
->close_delay
= sio
.close_delay
;
1920 portp
->closing_wait
= sio
.closing_wait
;
1921 portp
->custom_divisor
= sio
.custom_divisor
;
1923 if ((rc
= stli_setport(portp
)) < 0)
1928 /*****************************************************************************/
1930 static int stli_tiocmget(struct tty_struct
*tty
, struct file
*file
)
1932 stliport_t
*portp
= tty
->driver_data
;
1936 if (portp
== (stliport_t
*) NULL
)
1938 if ((portp
->brdnr
< 0) || (portp
->brdnr
>= stli_nrbrds
))
1940 brdp
= stli_brds
[portp
->brdnr
];
1941 if (brdp
== (stlibrd_t
*) NULL
)
1943 if (tty
->flags
& (1 << TTY_IO_ERROR
))
1946 if ((rc
= stli_cmdwait(brdp
, portp
, A_GETSIGNALS
,
1947 &portp
->asig
, sizeof(asysigs_t
), 1)) < 0)
1950 return stli_mktiocm(portp
->asig
.sigvalue
);
1953 static int stli_tiocmset(struct tty_struct
*tty
, struct file
*file
,
1954 unsigned int set
, unsigned int clear
)
1956 stliport_t
*portp
= tty
->driver_data
;
1958 int rts
= -1, dtr
= -1;
1960 if (portp
== (stliport_t
*) NULL
)
1962 if ((portp
->brdnr
< 0) || (portp
->brdnr
>= stli_nrbrds
))
1964 brdp
= stli_brds
[portp
->brdnr
];
1965 if (brdp
== (stlibrd_t
*) NULL
)
1967 if (tty
->flags
& (1 << TTY_IO_ERROR
))
1970 if (set
& TIOCM_RTS
)
1972 if (set
& TIOCM_DTR
)
1974 if (clear
& TIOCM_RTS
)
1976 if (clear
& TIOCM_DTR
)
1979 stli_mkasysigs(&portp
->asig
, dtr
, rts
);
1981 return stli_cmdwait(brdp
, portp
, A_SETSIGNALS
, &portp
->asig
,
1982 sizeof(asysigs_t
), 0);
1985 static int stli_ioctl(struct tty_struct
*tty
, struct file
*file
, unsigned int cmd
, unsigned long arg
)
1991 void __user
*argp
= (void __user
*)arg
;
1994 printk("stli_ioctl(tty=%x,file=%x,cmd=%x,arg=%x)\n",
1995 (int) tty
, (int) file
, cmd
, (int) arg
);
1998 if (tty
== (struct tty_struct
*) NULL
)
2000 portp
= tty
->driver_data
;
2001 if (portp
== (stliport_t
*) NULL
)
2003 if ((portp
->brdnr
< 0) || (portp
->brdnr
>= stli_nrbrds
))
2005 brdp
= stli_brds
[portp
->brdnr
];
2006 if (brdp
== (stlibrd_t
*) NULL
)
2009 if ((cmd
!= TIOCGSERIAL
) && (cmd
!= TIOCSSERIAL
) &&
2010 (cmd
!= COM_GETPORTSTATS
) && (cmd
!= COM_CLRPORTSTATS
)) {
2011 if (tty
->flags
& (1 << TTY_IO_ERROR
))
2019 rc
= put_user(((tty
->termios
->c_cflag
& CLOCAL
) ? 1 : 0),
2020 (unsigned __user
*) arg
);
2023 if ((rc
= get_user(ival
, (unsigned __user
*) arg
)) == 0)
2024 tty
->termios
->c_cflag
=
2025 (tty
->termios
->c_cflag
& ~CLOCAL
) |
2026 (ival
? CLOCAL
: 0);
2029 rc
= stli_getserial(portp
, argp
);
2032 rc
= stli_setserial(portp
, argp
);
2035 rc
= put_user(portp
->pflag
, (unsigned __user
*)argp
);
2038 if ((rc
= get_user(portp
->pflag
, (unsigned __user
*)argp
)) == 0)
2039 stli_setport(portp
);
2041 case COM_GETPORTSTATS
:
2042 rc
= stli_getportstats(portp
, argp
);
2044 case COM_CLRPORTSTATS
:
2045 rc
= stli_clrportstats(portp
, argp
);
2051 case TIOCSERGSTRUCT
:
2052 case TIOCSERGETMULTI
:
2053 case TIOCSERSETMULTI
:
2062 /*****************************************************************************/
2065 * This routine assumes that we have user context and can sleep.
2066 * Looks like it is true for the current ttys implementation..!!
2069 static void stli_settermios(struct tty_struct
*tty
, struct termios
*old
)
2073 struct termios
*tiosp
;
2077 printk("stli_settermios(tty=%x,old=%x)\n", (int) tty
, (int) old
);
2080 if (tty
== (struct tty_struct
*) NULL
)
2082 portp
= tty
->driver_data
;
2083 if (portp
== (stliport_t
*) NULL
)
2085 if ((portp
->brdnr
< 0) || (portp
->brdnr
>= stli_nrbrds
))
2087 brdp
= stli_brds
[portp
->brdnr
];
2088 if (brdp
== (stlibrd_t
*) NULL
)
2091 tiosp
= tty
->termios
;
2092 if ((tiosp
->c_cflag
== old
->c_cflag
) &&
2093 (tiosp
->c_iflag
== old
->c_iflag
))
2096 stli_mkasyport(portp
, &aport
, tiosp
);
2097 stli_cmdwait(brdp
, portp
, A_SETPORT
, &aport
, sizeof(asyport_t
), 0);
2098 stli_mkasysigs(&portp
->asig
, ((tiosp
->c_cflag
& CBAUD
) ? 1 : 0), -1);
2099 stli_cmdwait(brdp
, portp
, A_SETSIGNALS
, &portp
->asig
,
2100 sizeof(asysigs_t
), 0);
2101 if ((old
->c_cflag
& CRTSCTS
) && ((tiosp
->c_cflag
& CRTSCTS
) == 0))
2102 tty
->hw_stopped
= 0;
2103 if (((old
->c_cflag
& CLOCAL
) == 0) && (tiosp
->c_cflag
& CLOCAL
))
2104 wake_up_interruptible(&portp
->open_wait
);
2107 /*****************************************************************************/
2110 * Attempt to flow control who ever is sending us data. We won't really
2111 * do any flow control action here. We can't directly, and even if we
2112 * wanted to we would have to send a command to the slave. The slave
2113 * knows how to flow control, and will do so when its buffers reach its
2114 * internal high water marks. So what we will do is set a local state
2115 * bit that will stop us sending any RX data up from the poll routine
2116 * (which is the place where RX data from the slave is handled).
2119 static void stli_throttle(struct tty_struct
*tty
)
2124 printk("stli_throttle(tty=%x)\n", (int) tty
);
2127 if (tty
== (struct tty_struct
*) NULL
)
2129 portp
= tty
->driver_data
;
2130 if (portp
== (stliport_t
*) NULL
)
2133 set_bit(ST_RXSTOP
, &portp
->state
);
2136 /*****************************************************************************/
2139 * Unflow control the device sending us data... That means that all
2140 * we have to do is clear the RXSTOP state bit. The next poll call
2141 * will then be able to pass the RX data back up.
2144 static void stli_unthrottle(struct tty_struct
*tty
)
2149 printk("stli_unthrottle(tty=%x)\n", (int) tty
);
2152 if (tty
== (struct tty_struct
*) NULL
)
2154 portp
= tty
->driver_data
;
2155 if (portp
== (stliport_t
*) NULL
)
2158 clear_bit(ST_RXSTOP
, &portp
->state
);
2161 /*****************************************************************************/
2164 * Stop the transmitter. Basically to do this we will just turn TX
2168 static void stli_stop(struct tty_struct
*tty
)
2175 printk("stli_stop(tty=%x)\n", (int) tty
);
2178 if (tty
== (struct tty_struct
*) NULL
)
2180 portp
= tty
->driver_data
;
2181 if (portp
== (stliport_t
*) NULL
)
2183 if ((portp
->brdnr
< 0) || (portp
->brdnr
>= stli_nrbrds
))
2185 brdp
= stli_brds
[portp
->brdnr
];
2186 if (brdp
== (stlibrd_t
*) NULL
)
2189 memset(&actrl
, 0, sizeof(asyctrl_t
));
2190 actrl
.txctrl
= CT_STOPFLOW
;
2192 stli_cmdwait(brdp
, portp
, A_PORTCTRL
, &actrl
, sizeof(asyctrl_t
), 0);
2196 /*****************************************************************************/
2199 * Start the transmitter again. Just turn TX interrupts back on.
2202 static void stli_start(struct tty_struct
*tty
)
2209 printk("stli_start(tty=%x)\n", (int) tty
);
2212 if (tty
== (struct tty_struct
*) NULL
)
2214 portp
= tty
->driver_data
;
2215 if (portp
== (stliport_t
*) NULL
)
2217 if ((portp
->brdnr
< 0) || (portp
->brdnr
>= stli_nrbrds
))
2219 brdp
= stli_brds
[portp
->brdnr
];
2220 if (brdp
== (stlibrd_t
*) NULL
)
2223 memset(&actrl
, 0, sizeof(asyctrl_t
));
2224 actrl
.txctrl
= CT_STARTFLOW
;
2226 stli_cmdwait(brdp
, portp
, A_PORTCTRL
, &actrl
, sizeof(asyctrl_t
), 0);
2230 /*****************************************************************************/
2233 * Scheduler called hang up routine. This is called from the scheduler,
2234 * not direct from the driver "poll" routine. We can't call it there
2235 * since the real local hangup code will enable/disable the board and
2236 * other things that we can't do while handling the poll. Much easier
2237 * to deal with it some time later (don't really care when, hangups
2238 * aren't that time critical).
2241 static void stli_dohangup(void *arg
)
2246 printk(KERN_DEBUG
"stli_dohangup(portp=%x)\n", (int) arg
);
2250 * FIXME: There's a module removal race here: tty_hangup
2251 * calls schedule_work which will call into this
2254 portp
= (stliport_t
*) arg
;
2255 if (portp
!= (stliport_t
*) NULL
) {
2256 if (portp
->tty
!= (struct tty_struct
*) NULL
) {
2257 tty_hangup(portp
->tty
);
2262 /*****************************************************************************/
2265 * Hangup this port. This is pretty much like closing the port, only
2266 * a little more brutal. No waiting for data to drain. Shutdown the
2267 * port and maybe drop signals. This is rather tricky really. We want
2268 * to close the port as well.
2271 static void stli_hangup(struct tty_struct
*tty
)
2275 unsigned long flags
;
2278 printk(KERN_DEBUG
"stli_hangup(tty=%x)\n", (int) tty
);
2281 if (tty
== (struct tty_struct
*) NULL
)
2283 portp
= tty
->driver_data
;
2284 if (portp
== (stliport_t
*) NULL
)
2286 if ((portp
->brdnr
< 0) || (portp
->brdnr
>= stli_nrbrds
))
2288 brdp
= stli_brds
[portp
->brdnr
];
2289 if (brdp
== (stlibrd_t
*) NULL
)
2292 portp
->flags
&= ~ASYNC_INITIALIZED
;
2296 if (! test_bit(ST_CLOSING
, &portp
->state
))
2297 stli_rawclose(brdp
, portp
, 0, 0);
2298 if (tty
->termios
->c_cflag
& HUPCL
) {
2299 stli_mkasysigs(&portp
->asig
, 0, 0);
2300 if (test_bit(ST_CMDING
, &portp
->state
)) {
2301 set_bit(ST_DOSIGS
, &portp
->state
);
2302 set_bit(ST_DOFLUSHTX
, &portp
->state
);
2303 set_bit(ST_DOFLUSHRX
, &portp
->state
);
2305 stli_sendcmd(brdp
, portp
, A_SETSIGNALSF
,
2306 &portp
->asig
, sizeof(asysigs_t
), 0);
2309 restore_flags(flags
);
2311 clear_bit(ST_TXBUSY
, &portp
->state
);
2312 clear_bit(ST_RXSTOP
, &portp
->state
);
2313 set_bit(TTY_IO_ERROR
, &tty
->flags
);
2314 portp
->tty
= (struct tty_struct
*) NULL
;
2315 portp
->flags
&= ~ASYNC_NORMAL_ACTIVE
;
2316 portp
->refcount
= 0;
2317 wake_up_interruptible(&portp
->open_wait
);
2320 /*****************************************************************************/
2323 * Flush characters from the lower buffer. We may not have user context
2324 * so we cannot sleep waiting for it to complete. Also we need to check
2325 * if there is chars for this port in the TX cook buffer, and flush them
2329 static void stli_flushbuffer(struct tty_struct
*tty
)
2333 unsigned long ftype
, flags
;
2336 printk(KERN_DEBUG
"stli_flushbuffer(tty=%x)\n", (int) tty
);
2339 if (tty
== (struct tty_struct
*) NULL
)
2341 portp
= tty
->driver_data
;
2342 if (portp
== (stliport_t
*) NULL
)
2344 if ((portp
->brdnr
< 0) || (portp
->brdnr
>= stli_nrbrds
))
2346 brdp
= stli_brds
[portp
->brdnr
];
2347 if (brdp
== (stlibrd_t
*) NULL
)
2352 if (tty
== stli_txcooktty
) {
2353 stli_txcooktty
= (struct tty_struct
*) NULL
;
2354 stli_txcooksize
= 0;
2355 stli_txcookrealsize
= 0;
2357 if (test_bit(ST_CMDING
, &portp
->state
)) {
2358 set_bit(ST_DOFLUSHTX
, &portp
->state
);
2361 if (test_bit(ST_DOFLUSHRX
, &portp
->state
)) {
2363 clear_bit(ST_DOFLUSHRX
, &portp
->state
);
2365 stli_sendcmd(brdp
, portp
, A_FLUSH
, &ftype
,
2366 sizeof(unsigned long), 0);
2368 restore_flags(flags
);
2370 wake_up_interruptible(&tty
->write_wait
);
2371 if ((tty
->flags
& (1 << TTY_DO_WRITE_WAKEUP
)) &&
2372 tty
->ldisc
.write_wakeup
)
2373 (tty
->ldisc
.write_wakeup
)(tty
);
2376 /*****************************************************************************/
2378 static void stli_breakctl(struct tty_struct
*tty
, int state
)
2383 /* long savestate, savetime; */
2386 printk(KERN_DEBUG
"stli_breakctl(tty=%x,state=%d)\n", (int) tty
, state
);
2389 if (tty
== (struct tty_struct
*) NULL
)
2391 portp
= tty
->driver_data
;
2392 if (portp
== (stliport_t
*) NULL
)
2394 if ((portp
->brdnr
< 0) || (portp
->brdnr
>= stli_nrbrds
))
2396 brdp
= stli_brds
[portp
->brdnr
];
2397 if (brdp
== (stlibrd_t
*) NULL
)
2401 * Due to a bug in the tty send_break() code we need to preserve
2402 * the current process state and timeout...
2403 savetime = current->timeout;
2404 savestate = current->state;
2407 arg
= (state
== -1) ? BREAKON
: BREAKOFF
;
2408 stli_cmdwait(brdp
, portp
, A_BREAK
, &arg
, sizeof(long), 0);
2412 current->timeout = savetime;
2413 current->state = savestate;
2417 /*****************************************************************************/
2419 static void stli_waituntilsent(struct tty_struct
*tty
, int timeout
)
2425 printk(KERN_DEBUG
"stli_waituntilsent(tty=%x,timeout=%x)\n", (int) tty
, timeout
);
2428 if (tty
== (struct tty_struct
*) NULL
)
2430 portp
= tty
->driver_data
;
2431 if (portp
== (stliport_t
*) NULL
)
2436 tend
= jiffies
+ timeout
;
2438 while (test_bit(ST_TXBUSY
, &portp
->state
)) {
2439 if (signal_pending(current
))
2441 msleep_interruptible(20);
2442 if (time_after_eq(jiffies
, tend
))
2447 /*****************************************************************************/
2449 static void stli_sendxchar(struct tty_struct
*tty
, char ch
)
2456 printk(KERN_DEBUG
"stli_sendxchar(tty=%x,ch=%x)\n", (int) tty
, ch
);
2459 if (tty
== (struct tty_struct
*) NULL
)
2461 portp
= tty
->driver_data
;
2462 if (portp
== (stliport_t
*) NULL
)
2464 if ((portp
->brdnr
< 0) || (portp
->brdnr
>= stli_nrbrds
))
2466 brdp
= stli_brds
[portp
->brdnr
];
2467 if (brdp
== (stlibrd_t
*) NULL
)
2470 memset(&actrl
, 0, sizeof(asyctrl_t
));
2471 if (ch
== STOP_CHAR(tty
)) {
2472 actrl
.rxctrl
= CT_STOPFLOW
;
2473 } else if (ch
== START_CHAR(tty
)) {
2474 actrl
.rxctrl
= CT_STARTFLOW
;
2476 actrl
.txctrl
= CT_SENDCHR
;
2480 stli_cmdwait(brdp
, portp
, A_PORTCTRL
, &actrl
, sizeof(asyctrl_t
), 0);
2483 /*****************************************************************************/
2488 * Format info for a specified port. The line is deliberately limited
2489 * to 80 characters. (If it is too long it will be truncated, if too
2490 * short then padded with spaces).
2493 static int stli_portinfo(stlibrd_t
*brdp
, stliport_t
*portp
, int portnr
, char *pos
)
2498 rc
= stli_portcmdstats(portp
);
2501 if (brdp
->state
& BST_STARTED
) {
2502 switch (stli_comstats
.hwid
) {
2503 case 0: uart
= "2681"; break;
2504 case 1: uart
= "SC26198"; break;
2505 default: uart
= "CD1400"; break;
2510 sp
+= sprintf(sp
, "%d: uart:%s ", portnr
, uart
);
2512 if ((brdp
->state
& BST_STARTED
) && (rc
>= 0)) {
2513 sp
+= sprintf(sp
, "tx:%d rx:%d", (int) stli_comstats
.txtotal
,
2514 (int) stli_comstats
.rxtotal
);
2516 if (stli_comstats
.rxframing
)
2517 sp
+= sprintf(sp
, " fe:%d",
2518 (int) stli_comstats
.rxframing
);
2519 if (stli_comstats
.rxparity
)
2520 sp
+= sprintf(sp
, " pe:%d",
2521 (int) stli_comstats
.rxparity
);
2522 if (stli_comstats
.rxbreaks
)
2523 sp
+= sprintf(sp
, " brk:%d",
2524 (int) stli_comstats
.rxbreaks
);
2525 if (stli_comstats
.rxoverrun
)
2526 sp
+= sprintf(sp
, " oe:%d",
2527 (int) stli_comstats
.rxoverrun
);
2529 cnt
= sprintf(sp
, "%s%s%s%s%s ",
2530 (stli_comstats
.signals
& TIOCM_RTS
) ? "|RTS" : "",
2531 (stli_comstats
.signals
& TIOCM_CTS
) ? "|CTS" : "",
2532 (stli_comstats
.signals
& TIOCM_DTR
) ? "|DTR" : "",
2533 (stli_comstats
.signals
& TIOCM_CD
) ? "|DCD" : "",
2534 (stli_comstats
.signals
& TIOCM_DSR
) ? "|DSR" : "");
2539 for (cnt
= (sp
- pos
); (cnt
< (MAXLINE
- 1)); cnt
++)
2542 pos
[(MAXLINE
- 2)] = '+';
2543 pos
[(MAXLINE
- 1)] = '\n';
2548 /*****************************************************************************/
2551 * Port info, read from the /proc file system.
2554 static int stli_readproc(char *page
, char **start
, off_t off
, int count
, int *eof
, void *data
)
2558 int brdnr
, portnr
, totalport
;
2563 printk(KERN_DEBUG
"stli_readproc(page=%x,start=%x,off=%x,count=%d,eof=%x,"
2564 "data=%x\n", (int) page
, (int) start
, (int) off
, count
,
2565 (int) eof
, (int) data
);
2573 pos
+= sprintf(pos
, "%s: version %s", stli_drvtitle
,
2575 while (pos
< (page
+ MAXLINE
- 1))
2582 * We scan through for each board, panel and port. The offset is
2583 * calculated on the fly, and irrelevant ports are skipped.
2585 for (brdnr
= 0; (brdnr
< stli_nrbrds
); brdnr
++) {
2586 brdp
= stli_brds
[brdnr
];
2587 if (brdp
== (stlibrd_t
*) NULL
)
2589 if (brdp
->state
== 0)
2592 maxoff
= curoff
+ (brdp
->nrports
* MAXLINE
);
2593 if (off
>= maxoff
) {
2598 totalport
= brdnr
* STL_MAXPORTS
;
2599 for (portnr
= 0; (portnr
< brdp
->nrports
); portnr
++,
2601 portp
= brdp
->ports
[portnr
];
2602 if (portp
== (stliport_t
*) NULL
)
2604 if (off
>= (curoff
+= MAXLINE
))
2606 if ((pos
- page
+ MAXLINE
) > count
)
2608 pos
+= stli_portinfo(brdp
, portp
, totalport
, pos
);
2619 /*****************************************************************************/
2622 * Generic send command routine. This will send a message to the slave,
2623 * of the specified type with the specified argument. Must be very
2624 * careful of data that will be copied out from shared memory -
2625 * containing command results. The command completion is all done from
2626 * a poll routine that does not have user context. Therefore you cannot
2627 * copy back directly into user space, or to the kernel stack of a
2628 * process. This routine does not sleep, so can be called from anywhere.
2631 static void stli_sendcmd(stlibrd_t
*brdp
, stliport_t
*portp
, unsigned long cmd
, void *arg
, int size
, int copyback
)
2633 volatile cdkhdr_t
*hdrp
;
2634 volatile cdkctrl_t
*cp
;
2635 volatile unsigned char *bits
;
2636 unsigned long flags
;
2639 printk(KERN_DEBUG
"stli_sendcmd(brdp=%x,portp=%x,cmd=%x,arg=%x,size=%d,"
2640 "copyback=%d)\n", (int) brdp
, (int) portp
, (int) cmd
,
2641 (int) arg
, size
, copyback
);
2647 if (test_bit(ST_CMDING
, &portp
->state
)) {
2648 printk(KERN_ERR
"STALLION: command already busy, cmd=%x!\n",
2650 restore_flags(flags
);
2655 cp
= &((volatile cdkasy_t
*) EBRDGETMEMPTR(brdp
, portp
->addr
))->ctrl
;
2657 memcpy((void *) &(cp
->args
[0]), arg
, size
);
2660 portp
->argsize
= size
;
2665 hdrp
= (volatile cdkhdr_t
*) EBRDGETMEMPTR(brdp
, CDK_CDKADDR
);
2666 bits
= ((volatile unsigned char *) hdrp
) + brdp
->slaveoffset
+
2668 *bits
|= portp
->portbit
;
2669 set_bit(ST_CMDING
, &portp
->state
);
2671 restore_flags(flags
);
2674 /*****************************************************************************/
2677 * Read data from shared memory. This assumes that the shared memory
2678 * is enabled and that interrupts are off. Basically we just empty out
2679 * the shared memory buffer into the tty buffer. Must be careful to
2680 * handle the case where we fill up the tty buffer, but still have
2681 * more chars to unload.
2684 static void stli_read(stlibrd_t
*brdp
, stliport_t
*portp
)
2686 volatile cdkasyrq_t
*rp
;
2687 volatile char *shbuf
;
2688 struct tty_struct
*tty
;
2689 unsigned int head
, tail
, size
;
2690 unsigned int len
, stlen
;
2693 printk(KERN_DEBUG
"stli_read(brdp=%x,portp=%d)\n",
2694 (int) brdp
, (int) portp
);
2697 if (test_bit(ST_RXSTOP
, &portp
->state
))
2700 if (tty
== (struct tty_struct
*) NULL
)
2703 rp
= &((volatile cdkasy_t
*) EBRDGETMEMPTR(brdp
, portp
->addr
))->rxq
;
2704 head
= (unsigned int) rp
->head
;
2705 if (head
!= ((unsigned int) rp
->head
))
2706 head
= (unsigned int) rp
->head
;
2707 tail
= (unsigned int) rp
->tail
;
2708 size
= portp
->rxsize
;
2713 len
= size
- (tail
- head
);
2714 stlen
= size
- tail
;
2717 len
= MIN(len
, (TTY_FLIPBUF_SIZE
- tty
->flip
.count
));
2718 shbuf
= (volatile char *) EBRDGETMEMPTR(brdp
, portp
->rxoffset
);
2721 stlen
= MIN(len
, stlen
);
2722 memcpy(tty
->flip
.char_buf_ptr
, (char *) (shbuf
+ tail
), stlen
);
2723 memset(tty
->flip
.flag_buf_ptr
, 0, stlen
);
2724 tty
->flip
.char_buf_ptr
+= stlen
;
2725 tty
->flip
.flag_buf_ptr
+= stlen
;
2726 tty
->flip
.count
+= stlen
;
2735 rp
= &((volatile cdkasy_t
*) EBRDGETMEMPTR(brdp
, portp
->addr
))->rxq
;
2739 set_bit(ST_RXING
, &portp
->state
);
2741 tty_schedule_flip(tty
);
2744 /*****************************************************************************/
2747 * Set up and carry out any delayed commands. There is only a small set
2748 * of slave commands that can be done "off-level". So it is not too
2749 * difficult to deal with them here.
2752 static void stli_dodelaycmd(stliport_t
*portp
, volatile cdkctrl_t
*cp
)
2756 if (test_bit(ST_DOSIGS
, &portp
->state
)) {
2757 if (test_bit(ST_DOFLUSHTX
, &portp
->state
) &&
2758 test_bit(ST_DOFLUSHRX
, &portp
->state
))
2759 cmd
= A_SETSIGNALSF
;
2760 else if (test_bit(ST_DOFLUSHTX
, &portp
->state
))
2761 cmd
= A_SETSIGNALSFTX
;
2762 else if (test_bit(ST_DOFLUSHRX
, &portp
->state
))
2763 cmd
= A_SETSIGNALSFRX
;
2766 clear_bit(ST_DOFLUSHTX
, &portp
->state
);
2767 clear_bit(ST_DOFLUSHRX
, &portp
->state
);
2768 clear_bit(ST_DOSIGS
, &portp
->state
);
2769 memcpy((void *) &(cp
->args
[0]), (void *) &portp
->asig
,
2773 set_bit(ST_CMDING
, &portp
->state
);
2774 } else if (test_bit(ST_DOFLUSHTX
, &portp
->state
) ||
2775 test_bit(ST_DOFLUSHRX
, &portp
->state
)) {
2776 cmd
= ((test_bit(ST_DOFLUSHTX
, &portp
->state
)) ? FLUSHTX
: 0);
2777 cmd
|= ((test_bit(ST_DOFLUSHRX
, &portp
->state
)) ? FLUSHRX
: 0);
2778 clear_bit(ST_DOFLUSHTX
, &portp
->state
);
2779 clear_bit(ST_DOFLUSHRX
, &portp
->state
);
2780 memcpy((void *) &(cp
->args
[0]), (void *) &cmd
, sizeof(int));
2783 set_bit(ST_CMDING
, &portp
->state
);
2787 /*****************************************************************************/
2790 * Host command service checking. This handles commands or messages
2791 * coming from the slave to the host. Must have board shared memory
2792 * enabled and interrupts off when called. Notice that by servicing the
2793 * read data last we don't need to change the shared memory pointer
2794 * during processing (which is a slow IO operation).
2795 * Return value indicates if this port is still awaiting actions from
2796 * the slave (like open, command, or even TX data being sent). If 0
2797 * then port is still busy, otherwise no longer busy.
2800 static int stli_hostcmd(stlibrd_t
*brdp
, stliport_t
*portp
)
2802 volatile cdkasy_t
*ap
;
2803 volatile cdkctrl_t
*cp
;
2804 struct tty_struct
*tty
;
2806 unsigned long oldsigs
;
2810 printk(KERN_DEBUG
"stli_hostcmd(brdp=%x,channr=%d)\n",
2811 (int) brdp
, channr
);
2814 ap
= (volatile cdkasy_t
*) EBRDGETMEMPTR(brdp
, portp
->addr
);
2818 * Check if we are waiting for an open completion message.
2820 if (test_bit(ST_OPENING
, &portp
->state
)) {
2821 rc
= (int) cp
->openarg
;
2822 if ((cp
->open
== 0) && (rc
!= 0)) {
2827 clear_bit(ST_OPENING
, &portp
->state
);
2828 wake_up_interruptible(&portp
->raw_wait
);
2833 * Check if we are waiting for a close completion message.
2835 if (test_bit(ST_CLOSING
, &portp
->state
)) {
2836 rc
= (int) cp
->closearg
;
2837 if ((cp
->close
== 0) && (rc
!= 0)) {
2842 clear_bit(ST_CLOSING
, &portp
->state
);
2843 wake_up_interruptible(&portp
->raw_wait
);
2848 * Check if we are waiting for a command completion message. We may
2849 * need to copy out the command results associated with this command.
2851 if (test_bit(ST_CMDING
, &portp
->state
)) {
2853 if ((cp
->cmd
== 0) && (rc
!= 0)) {
2856 if (portp
->argp
!= (void *) NULL
) {
2857 memcpy(portp
->argp
, (void *) &(cp
->args
[0]),
2859 portp
->argp
= (void *) NULL
;
2863 clear_bit(ST_CMDING
, &portp
->state
);
2864 stli_dodelaycmd(portp
, cp
);
2865 wake_up_interruptible(&portp
->raw_wait
);
2870 * Check for any notification messages ready. This includes lots of
2871 * different types of events - RX chars ready, RX break received,
2872 * TX data low or empty in the slave, modem signals changed state.
2881 if (nt
.signal
& SG_DCD
) {
2882 oldsigs
= portp
->sigs
;
2883 portp
->sigs
= stli_mktiocm(nt
.sigvalue
);
2884 clear_bit(ST_GETSIGS
, &portp
->state
);
2885 if ((portp
->sigs
& TIOCM_CD
) &&
2886 ((oldsigs
& TIOCM_CD
) == 0))
2887 wake_up_interruptible(&portp
->open_wait
);
2888 if ((oldsigs
& TIOCM_CD
) &&
2889 ((portp
->sigs
& TIOCM_CD
) == 0)) {
2890 if (portp
->flags
& ASYNC_CHECK_CD
) {
2892 schedule_work(&portp
->tqhangup
);
2897 if (nt
.data
& DT_TXEMPTY
)
2898 clear_bit(ST_TXBUSY
, &portp
->state
);
2899 if (nt
.data
& (DT_TXEMPTY
| DT_TXLOW
)) {
2900 if (tty
!= (struct tty_struct
*) NULL
) {
2901 if ((tty
->flags
& (1 << TTY_DO_WRITE_WAKEUP
)) &&
2902 tty
->ldisc
.write_wakeup
) {
2903 (tty
->ldisc
.write_wakeup
)(tty
);
2906 wake_up_interruptible(&tty
->write_wait
);
2910 if ((nt
.data
& DT_RXBREAK
) && (portp
->rxmarkmsk
& BRKINT
)) {
2911 if (tty
!= (struct tty_struct
*) NULL
) {
2912 if (tty
->flip
.count
< TTY_FLIPBUF_SIZE
) {
2914 *tty
->flip
.flag_buf_ptr
++ = TTY_BREAK
;
2915 *tty
->flip
.char_buf_ptr
++ = 0;
2916 if (portp
->flags
& ASYNC_SAK
) {
2920 tty_schedule_flip(tty
);
2925 if (nt
.data
& DT_RXBUSY
) {
2927 stli_read(brdp
, portp
);
2932 * It might seem odd that we are checking for more RX chars here.
2933 * But, we need to handle the case where the tty buffer was previously
2934 * filled, but we had more characters to pass up. The slave will not
2935 * send any more RX notify messages until the RX buffer has been emptied.
2936 * But it will leave the service bits on (since the buffer is not empty).
2937 * So from here we can try to process more RX chars.
2939 if ((!donerx
) && test_bit(ST_RXING
, &portp
->state
)) {
2940 clear_bit(ST_RXING
, &portp
->state
);
2941 stli_read(brdp
, portp
);
2944 return((test_bit(ST_OPENING
, &portp
->state
) ||
2945 test_bit(ST_CLOSING
, &portp
->state
) ||
2946 test_bit(ST_CMDING
, &portp
->state
) ||
2947 test_bit(ST_TXBUSY
, &portp
->state
) ||
2948 test_bit(ST_RXING
, &portp
->state
)) ? 0 : 1);
2951 /*****************************************************************************/
2954 * Service all ports on a particular board. Assumes that the boards
2955 * shared memory is enabled, and that the page pointer is pointed
2956 * at the cdk header structure.
2959 static void stli_brdpoll(stlibrd_t
*brdp
, volatile cdkhdr_t
*hdrp
)
2962 unsigned char hostbits
[(STL_MAXCHANS
/ 8) + 1];
2963 unsigned char slavebits
[(STL_MAXCHANS
/ 8) + 1];
2964 unsigned char *slavep
;
2965 int bitpos
, bitat
, bitsize
;
2966 int channr
, nrdevs
, slavebitchange
;
2968 bitsize
= brdp
->bitsize
;
2969 nrdevs
= brdp
->nrdevs
;
2972 * Check if slave wants any service. Basically we try to do as
2973 * little work as possible here. There are 2 levels of service
2974 * bits. So if there is nothing to do we bail early. We check
2975 * 8 service bits at a time in the inner loop, so we can bypass
2976 * the lot if none of them want service.
2978 memcpy(&hostbits
[0], (((unsigned char *) hdrp
) + brdp
->hostoffset
),
2981 memset(&slavebits
[0], 0, bitsize
);
2984 for (bitpos
= 0; (bitpos
< bitsize
); bitpos
++) {
2985 if (hostbits
[bitpos
] == 0)
2987 channr
= bitpos
* 8;
2988 for (bitat
= 0x1; (channr
< nrdevs
); channr
++, bitat
<<= 1) {
2989 if (hostbits
[bitpos
] & bitat
) {
2990 portp
= brdp
->ports
[(channr
- 1)];
2991 if (stli_hostcmd(brdp
, portp
)) {
2993 slavebits
[bitpos
] |= bitat
;
3000 * If any of the ports are no longer busy then update them in the
3001 * slave request bits. We need to do this after, since a host port
3002 * service may initiate more slave requests.
3004 if (slavebitchange
) {
3005 hdrp
= (volatile cdkhdr_t
*) EBRDGETMEMPTR(brdp
, CDK_CDKADDR
);
3006 slavep
= ((unsigned char *) hdrp
) + brdp
->slaveoffset
;
3007 for (bitpos
= 0; (bitpos
< bitsize
); bitpos
++) {
3008 if (slavebits
[bitpos
])
3009 slavep
[bitpos
] &= ~slavebits
[bitpos
];
3014 /*****************************************************************************/
3017 * Driver poll routine. This routine polls the boards in use and passes
3018 * messages back up to host when necessary. This is actually very
3019 * CPU efficient, since we will always have the kernel poll clock, it
3020 * adds only a few cycles when idle (since board service can be
3021 * determined very easily), but when loaded generates no interrupts
3022 * (with their expensive associated context change).
3025 static void stli_poll(unsigned long arg
)
3027 volatile cdkhdr_t
*hdrp
;
3031 stli_timerlist
.expires
= STLI_TIMEOUT
;
3032 add_timer(&stli_timerlist
);
3035 * Check each board and do any servicing required.
3037 for (brdnr
= 0; (brdnr
< stli_nrbrds
); brdnr
++) {
3038 brdp
= stli_brds
[brdnr
];
3039 if (brdp
== (stlibrd_t
*) NULL
)
3041 if ((brdp
->state
& BST_STARTED
) == 0)
3045 hdrp
= (volatile cdkhdr_t
*) EBRDGETMEMPTR(brdp
, CDK_CDKADDR
);
3047 stli_brdpoll(brdp
, hdrp
);
3052 /*****************************************************************************/
3055 * Translate the termios settings into the port setting structure of
3059 static void stli_mkasyport(stliport_t
*portp
, asyport_t
*pp
, struct termios
*tiosp
)
3062 printk(KERN_DEBUG
"stli_mkasyport(portp=%x,pp=%x,tiosp=%d)\n",
3063 (int) portp
, (int) pp
, (int) tiosp
);
3066 memset(pp
, 0, sizeof(asyport_t
));
3069 * Start of by setting the baud, char size, parity and stop bit info.
3071 pp
->baudout
= tiosp
->c_cflag
& CBAUD
;
3072 if (pp
->baudout
& CBAUDEX
) {
3073 pp
->baudout
&= ~CBAUDEX
;
3074 if ((pp
->baudout
< 1) || (pp
->baudout
> 4))
3075 tiosp
->c_cflag
&= ~CBAUDEX
;
3079 pp
->baudout
= stli_baudrates
[pp
->baudout
];
3080 if ((tiosp
->c_cflag
& CBAUD
) == B38400
) {
3081 if ((portp
->flags
& ASYNC_SPD_MASK
) == ASYNC_SPD_HI
)
3082 pp
->baudout
= 57600;
3083 else if ((portp
->flags
& ASYNC_SPD_MASK
) == ASYNC_SPD_VHI
)
3084 pp
->baudout
= 115200;
3085 else if ((portp
->flags
& ASYNC_SPD_MASK
) == ASYNC_SPD_SHI
)
3086 pp
->baudout
= 230400;
3087 else if ((portp
->flags
& ASYNC_SPD_MASK
) == ASYNC_SPD_WARP
)
3088 pp
->baudout
= 460800;
3089 else if ((portp
->flags
& ASYNC_SPD_MASK
) == ASYNC_SPD_CUST
)
3090 pp
->baudout
= (portp
->baud_base
/ portp
->custom_divisor
);
3092 if (pp
->baudout
> STL_MAXBAUD
)
3093 pp
->baudout
= STL_MAXBAUD
;
3094 pp
->baudin
= pp
->baudout
;
3096 switch (tiosp
->c_cflag
& CSIZE
) {
3111 if (tiosp
->c_cflag
& CSTOPB
)
3112 pp
->stopbs
= PT_STOP2
;
3114 pp
->stopbs
= PT_STOP1
;
3116 if (tiosp
->c_cflag
& PARENB
) {
3117 if (tiosp
->c_cflag
& PARODD
)
3118 pp
->parity
= PT_ODDPARITY
;
3120 pp
->parity
= PT_EVENPARITY
;
3122 pp
->parity
= PT_NOPARITY
;
3126 * Set up any flow control options enabled.
3128 if (tiosp
->c_iflag
& IXON
) {
3130 if (tiosp
->c_iflag
& IXANY
)
3131 pp
->flow
|= F_IXANY
;
3133 if (tiosp
->c_cflag
& CRTSCTS
)
3134 pp
->flow
|= (F_RTSFLOW
| F_CTSFLOW
);
3136 pp
->startin
= tiosp
->c_cc
[VSTART
];
3137 pp
->stopin
= tiosp
->c_cc
[VSTOP
];
3138 pp
->startout
= tiosp
->c_cc
[VSTART
];
3139 pp
->stopout
= tiosp
->c_cc
[VSTOP
];
3142 * Set up the RX char marking mask with those RX error types we must
3143 * catch. We can get the slave to help us out a little here, it will
3144 * ignore parity errors and breaks for us, and mark parity errors in
3147 if (tiosp
->c_iflag
& IGNPAR
)
3148 pp
->iflag
|= FI_IGNRXERRS
;
3149 if (tiosp
->c_iflag
& IGNBRK
)
3150 pp
->iflag
|= FI_IGNBREAK
;
3152 portp
->rxmarkmsk
= 0;
3153 if (tiosp
->c_iflag
& (INPCK
| PARMRK
))
3154 pp
->iflag
|= FI_1MARKRXERRS
;
3155 if (tiosp
->c_iflag
& BRKINT
)
3156 portp
->rxmarkmsk
|= BRKINT
;
3159 * Set up clocal processing as required.
3161 if (tiosp
->c_cflag
& CLOCAL
)
3162 portp
->flags
&= ~ASYNC_CHECK_CD
;
3164 portp
->flags
|= ASYNC_CHECK_CD
;
3167 * Transfer any persistent flags into the asyport structure.
3169 pp
->pflag
= (portp
->pflag
& 0xffff);
3170 pp
->vmin
= (portp
->pflag
& P_RXIMIN
) ? 1 : 0;
3171 pp
->vtime
= (portp
->pflag
& P_RXITIME
) ? 1 : 0;
3172 pp
->cc
[1] = (portp
->pflag
& P_RXTHOLD
) ? 1 : 0;
3175 /*****************************************************************************/
3178 * Construct a slave signals structure for setting the DTR and RTS
3179 * signals as specified.
3182 static void stli_mkasysigs(asysigs_t
*sp
, int dtr
, int rts
)
3185 printk(KERN_DEBUG
"stli_mkasysigs(sp=%x,dtr=%d,rts=%d)\n",
3186 (int) sp
, dtr
, rts
);
3189 memset(sp
, 0, sizeof(asysigs_t
));
3191 sp
->signal
|= SG_DTR
;
3192 sp
->sigvalue
|= ((dtr
> 0) ? SG_DTR
: 0);
3195 sp
->signal
|= SG_RTS
;
3196 sp
->sigvalue
|= ((rts
> 0) ? SG_RTS
: 0);
3200 /*****************************************************************************/
3203 * Convert the signals returned from the slave into a local TIOCM type
3204 * signals value. We keep them locally in TIOCM format.
3207 static long stli_mktiocm(unsigned long sigvalue
)
3212 printk(KERN_DEBUG
"stli_mktiocm(sigvalue=%x)\n", (int) sigvalue
);
3216 tiocm
|= ((sigvalue
& SG_DCD
) ? TIOCM_CD
: 0);
3217 tiocm
|= ((sigvalue
& SG_CTS
) ? TIOCM_CTS
: 0);
3218 tiocm
|= ((sigvalue
& SG_RI
) ? TIOCM_RI
: 0);
3219 tiocm
|= ((sigvalue
& SG_DSR
) ? TIOCM_DSR
: 0);
3220 tiocm
|= ((sigvalue
& SG_DTR
) ? TIOCM_DTR
: 0);
3221 tiocm
|= ((sigvalue
& SG_RTS
) ? TIOCM_RTS
: 0);
3225 /*****************************************************************************/
3228 * All panels and ports actually attached have been worked out. All
3229 * we need to do here is set up the appropriate per port data structures.
3232 static int stli_initports(stlibrd_t
*brdp
)
3235 int i
, panelnr
, panelport
;
3238 printk(KERN_DEBUG
"stli_initports(brdp=%x)\n", (int) brdp
);
3241 for (i
= 0, panelnr
= 0, panelport
= 0; (i
< brdp
->nrports
); i
++) {
3242 portp
= (stliport_t
*) stli_memalloc(sizeof(stliport_t
));
3243 if (portp
== (stliport_t
*) NULL
) {
3244 printk("STALLION: failed to allocate port structure\n");
3248 memset(portp
, 0, sizeof(stliport_t
));
3249 portp
->magic
= STLI_PORTMAGIC
;
3251 portp
->brdnr
= brdp
->brdnr
;
3252 portp
->panelnr
= panelnr
;
3253 portp
->baud_base
= STL_BAUDBASE
;
3254 portp
->close_delay
= STL_CLOSEDELAY
;
3255 portp
->closing_wait
= 30 * HZ
;
3256 INIT_WORK(&portp
->tqhangup
, stli_dohangup
, portp
);
3257 init_waitqueue_head(&portp
->open_wait
);
3258 init_waitqueue_head(&portp
->close_wait
);
3259 init_waitqueue_head(&portp
->raw_wait
);
3261 if (panelport
>= brdp
->panels
[panelnr
]) {
3265 brdp
->ports
[i
] = portp
;
3271 /*****************************************************************************/
3274 * All the following routines are board specific hardware operations.
3277 static void stli_ecpinit(stlibrd_t
*brdp
)
3279 unsigned long memconf
;
3282 printk(KERN_DEBUG
"stli_ecpinit(brdp=%d)\n", (int) brdp
);
3285 outb(ECP_ATSTOP
, (brdp
->iobase
+ ECP_ATCONFR
));
3287 outb(ECP_ATDISABLE
, (brdp
->iobase
+ ECP_ATCONFR
));
3290 memconf
= (brdp
->memaddr
& ECP_ATADDRMASK
) >> ECP_ATADDRSHFT
;
3291 outb(memconf
, (brdp
->iobase
+ ECP_ATMEMAR
));
3294 /*****************************************************************************/
3296 static void stli_ecpenable(stlibrd_t
*brdp
)
3299 printk(KERN_DEBUG
"stli_ecpenable(brdp=%x)\n", (int) brdp
);
3301 outb(ECP_ATENABLE
, (brdp
->iobase
+ ECP_ATCONFR
));
3304 /*****************************************************************************/
3306 static void stli_ecpdisable(stlibrd_t
*brdp
)
3309 printk(KERN_DEBUG
"stli_ecpdisable(brdp=%x)\n", (int) brdp
);
3311 outb(ECP_ATDISABLE
, (brdp
->iobase
+ ECP_ATCONFR
));
3314 /*****************************************************************************/
3316 static char *stli_ecpgetmemptr(stlibrd_t
*brdp
, unsigned long offset
, int line
)
3322 printk(KERN_DEBUG
"stli_ecpgetmemptr(brdp=%x,offset=%x)\n", (int) brdp
,
3326 if (offset
> brdp
->memsize
) {
3327 printk(KERN_ERR
"STALLION: shared memory pointer=%x out of "
3328 "range at line=%d(%d), brd=%d\n",
3329 (int) offset
, line
, __LINE__
, brdp
->brdnr
);
3333 ptr
= brdp
->membase
+ (offset
% ECP_ATPAGESIZE
);
3334 val
= (unsigned char) (offset
/ ECP_ATPAGESIZE
);
3336 outb(val
, (brdp
->iobase
+ ECP_ATMEMPR
));
3340 /*****************************************************************************/
3342 static void stli_ecpreset(stlibrd_t
*brdp
)
3345 printk(KERN_DEBUG
"stli_ecpreset(brdp=%x)\n", (int) brdp
);
3348 outb(ECP_ATSTOP
, (brdp
->iobase
+ ECP_ATCONFR
));
3350 outb(ECP_ATDISABLE
, (brdp
->iobase
+ ECP_ATCONFR
));
3354 /*****************************************************************************/
3356 static void stli_ecpintr(stlibrd_t
*brdp
)
3359 printk(KERN_DEBUG
"stli_ecpintr(brdp=%x)\n", (int) brdp
);
3361 outb(0x1, brdp
->iobase
);
3364 /*****************************************************************************/
3367 * The following set of functions act on ECP EISA boards.
3370 static void stli_ecpeiinit(stlibrd_t
*brdp
)
3372 unsigned long memconf
;
3375 printk(KERN_DEBUG
"stli_ecpeiinit(brdp=%x)\n", (int) brdp
);
3378 outb(0x1, (brdp
->iobase
+ ECP_EIBRDENAB
));
3379 outb(ECP_EISTOP
, (brdp
->iobase
+ ECP_EICONFR
));
3381 outb(ECP_EIDISABLE
, (brdp
->iobase
+ ECP_EICONFR
));
3384 memconf
= (brdp
->memaddr
& ECP_EIADDRMASKL
) >> ECP_EIADDRSHFTL
;
3385 outb(memconf
, (brdp
->iobase
+ ECP_EIMEMARL
));
3386 memconf
= (brdp
->memaddr
& ECP_EIADDRMASKH
) >> ECP_EIADDRSHFTH
;
3387 outb(memconf
, (brdp
->iobase
+ ECP_EIMEMARH
));
3390 /*****************************************************************************/
3392 static void stli_ecpeienable(stlibrd_t
*brdp
)
3394 outb(ECP_EIENABLE
, (brdp
->iobase
+ ECP_EICONFR
));
3397 /*****************************************************************************/
3399 static void stli_ecpeidisable(stlibrd_t
*brdp
)
3401 outb(ECP_EIDISABLE
, (brdp
->iobase
+ ECP_EICONFR
));
3404 /*****************************************************************************/
3406 static char *stli_ecpeigetmemptr(stlibrd_t
*brdp
, unsigned long offset
, int line
)
3412 printk(KERN_DEBUG
"stli_ecpeigetmemptr(brdp=%x,offset=%x,line=%d)\n",
3413 (int) brdp
, (int) offset
, line
);
3416 if (offset
> brdp
->memsize
) {
3417 printk(KERN_ERR
"STALLION: shared memory pointer=%x out of "
3418 "range at line=%d(%d), brd=%d\n",
3419 (int) offset
, line
, __LINE__
, brdp
->brdnr
);
3423 ptr
= brdp
->membase
+ (offset
% ECP_EIPAGESIZE
);
3424 if (offset
< ECP_EIPAGESIZE
)
3427 val
= ECP_EIENABLE
| 0x40;
3429 outb(val
, (brdp
->iobase
+ ECP_EICONFR
));
3433 /*****************************************************************************/
3435 static void stli_ecpeireset(stlibrd_t
*brdp
)
3437 outb(ECP_EISTOP
, (brdp
->iobase
+ ECP_EICONFR
));
3439 outb(ECP_EIDISABLE
, (brdp
->iobase
+ ECP_EICONFR
));
3443 /*****************************************************************************/
3446 * The following set of functions act on ECP MCA boards.
3449 static void stli_ecpmcenable(stlibrd_t
*brdp
)
3451 outb(ECP_MCENABLE
, (brdp
->iobase
+ ECP_MCCONFR
));
3454 /*****************************************************************************/
3456 static void stli_ecpmcdisable(stlibrd_t
*brdp
)
3458 outb(ECP_MCDISABLE
, (brdp
->iobase
+ ECP_MCCONFR
));
3461 /*****************************************************************************/
3463 static char *stli_ecpmcgetmemptr(stlibrd_t
*brdp
, unsigned long offset
, int line
)
3468 if (offset
> brdp
->memsize
) {
3469 printk(KERN_ERR
"STALLION: shared memory pointer=%x out of "
3470 "range at line=%d(%d), brd=%d\n",
3471 (int) offset
, line
, __LINE__
, brdp
->brdnr
);
3475 ptr
= brdp
->membase
+ (offset
% ECP_MCPAGESIZE
);
3476 val
= ((unsigned char) (offset
/ ECP_MCPAGESIZE
)) | ECP_MCENABLE
;
3478 outb(val
, (brdp
->iobase
+ ECP_MCCONFR
));
3482 /*****************************************************************************/
3484 static void stli_ecpmcreset(stlibrd_t
*brdp
)
3486 outb(ECP_MCSTOP
, (brdp
->iobase
+ ECP_MCCONFR
));
3488 outb(ECP_MCDISABLE
, (brdp
->iobase
+ ECP_MCCONFR
));
3492 /*****************************************************************************/
3495 * The following set of functions act on ECP PCI boards.
3498 static void stli_ecppciinit(stlibrd_t
*brdp
)
3501 printk(KERN_DEBUG
"stli_ecppciinit(brdp=%x)\n", (int) brdp
);
3504 outb(ECP_PCISTOP
, (brdp
->iobase
+ ECP_PCICONFR
));
3506 outb(0, (brdp
->iobase
+ ECP_PCICONFR
));
3510 /*****************************************************************************/
3512 static char *stli_ecppcigetmemptr(stlibrd_t
*brdp
, unsigned long offset
, int line
)
3518 printk(KERN_DEBUG
"stli_ecppcigetmemptr(brdp=%x,offset=%x,line=%d)\n",
3519 (int) brdp
, (int) offset
, line
);
3522 if (offset
> brdp
->memsize
) {
3523 printk(KERN_ERR
"STALLION: shared memory pointer=%x out of "
3524 "range at line=%d(%d), board=%d\n",
3525 (int) offset
, line
, __LINE__
, brdp
->brdnr
);
3529 ptr
= brdp
->membase
+ (offset
% ECP_PCIPAGESIZE
);
3530 val
= (offset
/ ECP_PCIPAGESIZE
) << 1;
3532 outb(val
, (brdp
->iobase
+ ECP_PCICONFR
));
3536 /*****************************************************************************/
3538 static void stli_ecppcireset(stlibrd_t
*brdp
)
3540 outb(ECP_PCISTOP
, (brdp
->iobase
+ ECP_PCICONFR
));
3542 outb(0, (brdp
->iobase
+ ECP_PCICONFR
));
3546 /*****************************************************************************/
3549 * The following routines act on ONboards.
3552 static void stli_onbinit(stlibrd_t
*brdp
)
3554 unsigned long memconf
;
3557 printk(KERN_DEBUG
"stli_onbinit(brdp=%d)\n", (int) brdp
);
3560 outb(ONB_ATSTOP
, (brdp
->iobase
+ ONB_ATCONFR
));
3562 outb(ONB_ATDISABLE
, (brdp
->iobase
+ ONB_ATCONFR
));
3565 memconf
= (brdp
->memaddr
& ONB_ATADDRMASK
) >> ONB_ATADDRSHFT
;
3566 outb(memconf
, (brdp
->iobase
+ ONB_ATMEMAR
));
3567 outb(0x1, brdp
->iobase
);
3571 /*****************************************************************************/
3573 static void stli_onbenable(stlibrd_t
*brdp
)
3576 printk(KERN_DEBUG
"stli_onbenable(brdp=%x)\n", (int) brdp
);
3578 outb((brdp
->enabval
| ONB_ATENABLE
), (brdp
->iobase
+ ONB_ATCONFR
));
3581 /*****************************************************************************/
3583 static void stli_onbdisable(stlibrd_t
*brdp
)
3586 printk(KERN_DEBUG
"stli_onbdisable(brdp=%x)\n", (int) brdp
);
3588 outb((brdp
->enabval
| ONB_ATDISABLE
), (brdp
->iobase
+ ONB_ATCONFR
));
3591 /*****************************************************************************/
3593 static char *stli_onbgetmemptr(stlibrd_t
*brdp
, unsigned long offset
, int line
)
3598 printk(KERN_DEBUG
"stli_onbgetmemptr(brdp=%x,offset=%x)\n", (int) brdp
,
3602 if (offset
> brdp
->memsize
) {
3603 printk(KERN_ERR
"STALLION: shared memory pointer=%x out of "
3604 "range at line=%d(%d), brd=%d\n",
3605 (int) offset
, line
, __LINE__
, brdp
->brdnr
);
3608 ptr
= brdp
->membase
+ (offset
% ONB_ATPAGESIZE
);
3613 /*****************************************************************************/
3615 static void stli_onbreset(stlibrd_t
*brdp
)
3619 printk(KERN_DEBUG
"stli_onbreset(brdp=%x)\n", (int) brdp
);
3622 outb(ONB_ATSTOP
, (brdp
->iobase
+ ONB_ATCONFR
));
3624 outb(ONB_ATDISABLE
, (brdp
->iobase
+ ONB_ATCONFR
));
3628 /*****************************************************************************/
3631 * The following routines act on ONboard EISA.
3634 static void stli_onbeinit(stlibrd_t
*brdp
)
3636 unsigned long memconf
;
3639 printk(KERN_DEBUG
"stli_onbeinit(brdp=%d)\n", (int) brdp
);
3642 outb(0x1, (brdp
->iobase
+ ONB_EIBRDENAB
));
3643 outb(ONB_EISTOP
, (brdp
->iobase
+ ONB_EICONFR
));
3645 outb(ONB_EIDISABLE
, (brdp
->iobase
+ ONB_EICONFR
));
3648 memconf
= (brdp
->memaddr
& ONB_EIADDRMASKL
) >> ONB_EIADDRSHFTL
;
3649 outb(memconf
, (brdp
->iobase
+ ONB_EIMEMARL
));
3650 memconf
= (brdp
->memaddr
& ONB_EIADDRMASKH
) >> ONB_EIADDRSHFTH
;
3651 outb(memconf
, (brdp
->iobase
+ ONB_EIMEMARH
));
3652 outb(0x1, brdp
->iobase
);
3656 /*****************************************************************************/
3658 static void stli_onbeenable(stlibrd_t
*brdp
)
3661 printk(KERN_DEBUG
"stli_onbeenable(brdp=%x)\n", (int) brdp
);
3663 outb(ONB_EIENABLE
, (brdp
->iobase
+ ONB_EICONFR
));
3666 /*****************************************************************************/
3668 static void stli_onbedisable(stlibrd_t
*brdp
)
3671 printk(KERN_DEBUG
"stli_onbedisable(brdp=%x)\n", (int) brdp
);
3673 outb(ONB_EIDISABLE
, (brdp
->iobase
+ ONB_EICONFR
));
3676 /*****************************************************************************/
3678 static char *stli_onbegetmemptr(stlibrd_t
*brdp
, unsigned long offset
, int line
)
3684 printk(KERN_DEBUG
"stli_onbegetmemptr(brdp=%x,offset=%x,line=%d)\n",
3685 (int) brdp
, (int) offset
, line
);
3688 if (offset
> brdp
->memsize
) {
3689 printk(KERN_ERR
"STALLION: shared memory pointer=%x out of "
3690 "range at line=%d(%d), brd=%d\n",
3691 (int) offset
, line
, __LINE__
, brdp
->brdnr
);
3695 ptr
= brdp
->membase
+ (offset
% ONB_EIPAGESIZE
);
3696 if (offset
< ONB_EIPAGESIZE
)
3699 val
= ONB_EIENABLE
| 0x40;
3701 outb(val
, (brdp
->iobase
+ ONB_EICONFR
));
3705 /*****************************************************************************/
3707 static void stli_onbereset(stlibrd_t
*brdp
)
3711 printk(KERN_ERR
"stli_onbereset(brdp=%x)\n", (int) brdp
);
3714 outb(ONB_EISTOP
, (brdp
->iobase
+ ONB_EICONFR
));
3716 outb(ONB_EIDISABLE
, (brdp
->iobase
+ ONB_EICONFR
));
3720 /*****************************************************************************/
3723 * The following routines act on Brumby boards.
3726 static void stli_bbyinit(stlibrd_t
*brdp
)
3730 printk(KERN_ERR
"stli_bbyinit(brdp=%d)\n", (int) brdp
);
3733 outb(BBY_ATSTOP
, (brdp
->iobase
+ BBY_ATCONFR
));
3735 outb(0, (brdp
->iobase
+ BBY_ATCONFR
));
3737 outb(0x1, brdp
->iobase
);
3741 /*****************************************************************************/
3743 static char *stli_bbygetmemptr(stlibrd_t
*brdp
, unsigned long offset
, int line
)
3749 printk(KERN_ERR
"stli_bbygetmemptr(brdp=%x,offset=%x)\n", (int) brdp
,
3753 if (offset
> brdp
->memsize
) {
3754 printk(KERN_ERR
"STALLION: shared memory pointer=%x out of "
3755 "range at line=%d(%d), brd=%d\n",
3756 (int) offset
, line
, __LINE__
, brdp
->brdnr
);
3760 ptr
= brdp
->membase
+ (offset
% BBY_PAGESIZE
);
3761 val
= (unsigned char) (offset
/ BBY_PAGESIZE
);
3763 outb(val
, (brdp
->iobase
+ BBY_ATCONFR
));
3767 /*****************************************************************************/
3769 static void stli_bbyreset(stlibrd_t
*brdp
)
3773 printk(KERN_DEBUG
"stli_bbyreset(brdp=%x)\n", (int) brdp
);
3776 outb(BBY_ATSTOP
, (brdp
->iobase
+ BBY_ATCONFR
));
3778 outb(0, (brdp
->iobase
+ BBY_ATCONFR
));
3782 /*****************************************************************************/
3785 * The following routines act on original old Stallion boards.
3788 static void stli_stalinit(stlibrd_t
*brdp
)
3792 printk(KERN_DEBUG
"stli_stalinit(brdp=%d)\n", (int) brdp
);
3795 outb(0x1, brdp
->iobase
);
3799 /*****************************************************************************/
3801 static char *stli_stalgetmemptr(stlibrd_t
*brdp
, unsigned long offset
, int line
)
3806 printk(KERN_DEBUG
"stli_stalgetmemptr(brdp=%x,offset=%x)\n", (int) brdp
,
3810 if (offset
> brdp
->memsize
) {
3811 printk(KERN_ERR
"STALLION: shared memory pointer=%x out of "
3812 "range at line=%d(%d), brd=%d\n",
3813 (int) offset
, line
, __LINE__
, brdp
->brdnr
);
3816 ptr
= brdp
->membase
+ (offset
% STAL_PAGESIZE
);
3821 /*****************************************************************************/
3823 static void stli_stalreset(stlibrd_t
*brdp
)
3825 volatile unsigned long *vecp
;
3828 printk(KERN_DEBUG
"stli_stalreset(brdp=%x)\n", (int) brdp
);
3831 vecp
= (volatile unsigned long *) (brdp
->membase
+ 0x30);
3833 outb(0, brdp
->iobase
);
3837 /*****************************************************************************/
3840 * Try to find an ECP board and initialize it. This handles only ECP
3844 static int stli_initecp(stlibrd_t
*brdp
)
3848 unsigned int status
, nxtid
;
3850 int panelnr
, nrports
;
3853 printk(KERN_DEBUG
"stli_initecp(brdp=%x)\n", (int) brdp
);
3856 if (!request_region(brdp
->iobase
, brdp
->iosize
, "istallion"))
3859 if ((brdp
->iobase
== 0) || (brdp
->memaddr
== 0))
3861 release_region(brdp
->iobase
, brdp
->iosize
);
3865 brdp
->iosize
= ECP_IOSIZE
;
3868 * Based on the specific board type setup the common vars to access
3869 * and enable shared memory. Set all board specific information now
3872 switch (brdp
->brdtype
) {
3874 brdp
->membase
= (void *) brdp
->memaddr
;
3875 brdp
->memsize
= ECP_MEMSIZE
;
3876 brdp
->pagesize
= ECP_ATPAGESIZE
;
3877 brdp
->init
= stli_ecpinit
;
3878 brdp
->enable
= stli_ecpenable
;
3879 brdp
->reenable
= stli_ecpenable
;
3880 brdp
->disable
= stli_ecpdisable
;
3881 brdp
->getmemptr
= stli_ecpgetmemptr
;
3882 brdp
->intr
= stli_ecpintr
;
3883 brdp
->reset
= stli_ecpreset
;
3884 name
= "serial(EC8/64)";
3888 brdp
->membase
= (void *) brdp
->memaddr
;
3889 brdp
->memsize
= ECP_MEMSIZE
;
3890 brdp
->pagesize
= ECP_EIPAGESIZE
;
3891 brdp
->init
= stli_ecpeiinit
;
3892 brdp
->enable
= stli_ecpeienable
;
3893 brdp
->reenable
= stli_ecpeienable
;
3894 brdp
->disable
= stli_ecpeidisable
;
3895 brdp
->getmemptr
= stli_ecpeigetmemptr
;
3896 brdp
->intr
= stli_ecpintr
;
3897 brdp
->reset
= stli_ecpeireset
;
3898 name
= "serial(EC8/64-EI)";
3902 brdp
->membase
= (void *) brdp
->memaddr
;
3903 brdp
->memsize
= ECP_MEMSIZE
;
3904 brdp
->pagesize
= ECP_MCPAGESIZE
;
3906 brdp
->enable
= stli_ecpmcenable
;
3907 brdp
->reenable
= stli_ecpmcenable
;
3908 brdp
->disable
= stli_ecpmcdisable
;
3909 brdp
->getmemptr
= stli_ecpmcgetmemptr
;
3910 brdp
->intr
= stli_ecpintr
;
3911 brdp
->reset
= stli_ecpmcreset
;
3912 name
= "serial(EC8/64-MCA)";
3916 brdp
->membase
= (void *) brdp
->memaddr
;
3917 brdp
->memsize
= ECP_PCIMEMSIZE
;
3918 brdp
->pagesize
= ECP_PCIPAGESIZE
;
3919 brdp
->init
= stli_ecppciinit
;
3920 brdp
->enable
= NULL
;
3921 brdp
->reenable
= NULL
;
3922 brdp
->disable
= NULL
;
3923 brdp
->getmemptr
= stli_ecppcigetmemptr
;
3924 brdp
->intr
= stli_ecpintr
;
3925 brdp
->reset
= stli_ecppcireset
;
3926 name
= "serial(EC/RA-PCI)";
3930 release_region(brdp
->iobase
, brdp
->iosize
);
3935 * The per-board operations structure is all set up, so now let's go
3936 * and get the board operational. Firstly initialize board configuration
3937 * registers. Set the memory mapping info so we can get at the boards
3942 brdp
->membase
= ioremap(brdp
->memaddr
, brdp
->memsize
);
3943 if (brdp
->membase
== (void *) NULL
)
3945 release_region(brdp
->iobase
, brdp
->iosize
);
3950 * Now that all specific code is set up, enable the shared memory and
3951 * look for the a signature area that will tell us exactly what board
3952 * this is, and what it is connected to it.
3955 sigsp
= (cdkecpsig_t
*) EBRDGETMEMPTR(brdp
, CDK_SIGADDR
);
3956 memcpy(&sig
, sigsp
, sizeof(cdkecpsig_t
));
3960 printk("%s(%d): sig-> magic=%x rom=%x panel=%x,%x,%x,%x,%x,%x,%x,%x\n",
3961 __FILE__
, __LINE__
, (int) sig
.magic
, sig
.romver
, sig
.panelid
[0],
3962 (int) sig
.panelid
[1], (int) sig
.panelid
[2],
3963 (int) sig
.panelid
[3], (int) sig
.panelid
[4],
3964 (int) sig
.panelid
[5], (int) sig
.panelid
[6],
3965 (int) sig
.panelid
[7]);
3968 if (sig
.magic
!= ECP_MAGIC
)
3970 release_region(brdp
->iobase
, brdp
->iosize
);
3975 * Scan through the signature looking at the panels connected to the
3976 * board. Calculate the total number of ports as we go.
3978 for (panelnr
= 0, nxtid
= 0; (panelnr
< STL_MAXPANELS
); panelnr
++) {
3979 status
= sig
.panelid
[nxtid
];
3980 if ((status
& ECH_PNLIDMASK
) != nxtid
)
3983 brdp
->panelids
[panelnr
] = status
;
3984 nrports
= (status
& ECH_PNL16PORT
) ? 16 : 8;
3985 if ((nrports
== 16) && ((status
& ECH_PNLXPID
) == 0))
3987 brdp
->panels
[panelnr
] = nrports
;
3988 brdp
->nrports
+= nrports
;
3994 brdp
->state
|= BST_FOUND
;
3998 /*****************************************************************************/
4001 * Try to find an ONboard, Brumby or Stallion board and initialize it.
4002 * This handles only these board types.
4005 static int stli_initonb(stlibrd_t
*brdp
)
4013 printk(KERN_DEBUG
"stli_initonb(brdp=%x)\n", (int) brdp
);
4017 * Do a basic sanity check on the IO and memory addresses.
4019 if ((brdp
->iobase
== 0) || (brdp
->memaddr
== 0))
4022 brdp
->iosize
= ONB_IOSIZE
;
4024 if (!request_region(brdp
->iobase
, brdp
->iosize
, "istallion"))
4028 * Based on the specific board type setup the common vars to access
4029 * and enable shared memory. Set all board specific information now
4032 switch (brdp
->brdtype
) {
4036 case BRD_ONBOARD2_32
:
4038 brdp
->membase
= (void *) brdp
->memaddr
;
4039 brdp
->memsize
= ONB_MEMSIZE
;
4040 brdp
->pagesize
= ONB_ATPAGESIZE
;
4041 brdp
->init
= stli_onbinit
;
4042 brdp
->enable
= stli_onbenable
;
4043 brdp
->reenable
= stli_onbenable
;
4044 brdp
->disable
= stli_onbdisable
;
4045 brdp
->getmemptr
= stli_onbgetmemptr
;
4046 brdp
->intr
= stli_ecpintr
;
4047 brdp
->reset
= stli_onbreset
;
4048 if (brdp
->memaddr
> 0x100000)
4049 brdp
->enabval
= ONB_MEMENABHI
;
4051 brdp
->enabval
= ONB_MEMENABLO
;
4052 name
= "serial(ONBoard)";
4056 brdp
->membase
= (void *) brdp
->memaddr
;
4057 brdp
->memsize
= ONB_EIMEMSIZE
;
4058 brdp
->pagesize
= ONB_EIPAGESIZE
;
4059 brdp
->init
= stli_onbeinit
;
4060 brdp
->enable
= stli_onbeenable
;
4061 brdp
->reenable
= stli_onbeenable
;
4062 brdp
->disable
= stli_onbedisable
;
4063 brdp
->getmemptr
= stli_onbegetmemptr
;
4064 brdp
->intr
= stli_ecpintr
;
4065 brdp
->reset
= stli_onbereset
;
4066 name
= "serial(ONBoard/E)";
4072 brdp
->membase
= (void *) brdp
->memaddr
;
4073 brdp
->memsize
= BBY_MEMSIZE
;
4074 brdp
->pagesize
= BBY_PAGESIZE
;
4075 brdp
->init
= stli_bbyinit
;
4076 brdp
->enable
= NULL
;
4077 brdp
->reenable
= NULL
;
4078 brdp
->disable
= NULL
;
4079 brdp
->getmemptr
= stli_bbygetmemptr
;
4080 brdp
->intr
= stli_ecpintr
;
4081 brdp
->reset
= stli_bbyreset
;
4082 name
= "serial(Brumby)";
4086 brdp
->membase
= (void *) brdp
->memaddr
;
4087 brdp
->memsize
= STAL_MEMSIZE
;
4088 brdp
->pagesize
= STAL_PAGESIZE
;
4089 brdp
->init
= stli_stalinit
;
4090 brdp
->enable
= NULL
;
4091 brdp
->reenable
= NULL
;
4092 brdp
->disable
= NULL
;
4093 brdp
->getmemptr
= stli_stalgetmemptr
;
4094 brdp
->intr
= stli_ecpintr
;
4095 brdp
->reset
= stli_stalreset
;
4096 name
= "serial(Stallion)";
4100 release_region(brdp
->iobase
, brdp
->iosize
);
4105 * The per-board operations structure is all set up, so now let's go
4106 * and get the board operational. Firstly initialize board configuration
4107 * registers. Set the memory mapping info so we can get at the boards
4112 brdp
->membase
= ioremap(brdp
->memaddr
, brdp
->memsize
);
4113 if (brdp
->membase
== (void *) NULL
)
4115 release_region(brdp
->iobase
, brdp
->iosize
);
4120 * Now that all specific code is set up, enable the shared memory and
4121 * look for the a signature area that will tell us exactly what board
4122 * this is, and how many ports.
4125 sigsp
= (cdkonbsig_t
*) EBRDGETMEMPTR(brdp
, CDK_SIGADDR
);
4126 memcpy(&sig
, sigsp
, sizeof(cdkonbsig_t
));
4130 printk("%s(%d): sig-> magic=%x:%x:%x:%x romver=%x amask=%x:%x:%x\n",
4131 __FILE__
, __LINE__
, sig
.magic0
, sig
.magic1
, sig
.magic2
,
4132 sig
.magic3
, sig
.romver
, sig
.amask0
, sig
.amask1
, sig
.amask2
);
4135 if ((sig
.magic0
!= ONB_MAGIC0
) || (sig
.magic1
!= ONB_MAGIC1
) ||
4136 (sig
.magic2
!= ONB_MAGIC2
) || (sig
.magic3
!= ONB_MAGIC3
))
4138 release_region(brdp
->iobase
, brdp
->iosize
);
4143 * Scan through the signature alive mask and calculate how many ports
4144 * there are on this board.
4150 for (i
= 0; (i
< 16); i
++) {
4151 if (((sig
.amask0
<< i
) & 0x8000) == 0)
4156 brdp
->panels
[0] = brdp
->nrports
;
4159 brdp
->state
|= BST_FOUND
;
4163 /*****************************************************************************/
4166 * Start up a running board. This routine is only called after the
4167 * code has been down loaded to the board and is operational. It will
4168 * read in the memory map, and get the show on the road...
4171 static int stli_startbrd(stlibrd_t
*brdp
)
4173 volatile cdkhdr_t
*hdrp
;
4174 volatile cdkmem_t
*memp
;
4175 volatile cdkasy_t
*ap
;
4176 unsigned long flags
;
4178 int portnr
, nrdevs
, i
, rc
;
4181 printk(KERN_DEBUG
"stli_startbrd(brdp=%x)\n", (int) brdp
);
4189 hdrp
= (volatile cdkhdr_t
*) EBRDGETMEMPTR(brdp
, CDK_CDKADDR
);
4190 nrdevs
= hdrp
->nrdevs
;
4193 printk("%s(%d): CDK version %d.%d.%d --> "
4194 "nrdevs=%d memp=%x hostp=%x slavep=%x\n",
4195 __FILE__
, __LINE__
, hdrp
->ver_release
, hdrp
->ver_modification
,
4196 hdrp
->ver_fix
, nrdevs
, (int) hdrp
->memp
, (int) hdrp
->hostp
,
4197 (int) hdrp
->slavep
);
4200 if (nrdevs
< (brdp
->nrports
+ 1)) {
4201 printk(KERN_ERR
"STALLION: slave failed to allocate memory for "
4202 "all devices, devices=%d\n", nrdevs
);
4203 brdp
->nrports
= nrdevs
- 1;
4205 brdp
->nrdevs
= nrdevs
;
4206 brdp
->hostoffset
= hdrp
->hostp
- CDK_CDKADDR
;
4207 brdp
->slaveoffset
= hdrp
->slavep
- CDK_CDKADDR
;
4208 brdp
->bitsize
= (nrdevs
+ 7) / 8;
4209 memp
= (volatile cdkmem_t
*) hdrp
->memp
;
4210 if (((unsigned long) memp
) > brdp
->memsize
) {
4211 printk(KERN_ERR
"STALLION: corrupted shared memory region?\n");
4213 goto stli_donestartup
;
4215 memp
= (volatile cdkmem_t
*) EBRDGETMEMPTR(brdp
, (unsigned long) memp
);
4216 if (memp
->dtype
!= TYP_ASYNCTRL
) {
4217 printk(KERN_ERR
"STALLION: no slave control device found\n");
4218 goto stli_donestartup
;
4223 * Cycle through memory allocation of each port. We are guaranteed to
4224 * have all ports inside the first page of slave window, so no need to
4225 * change pages while reading memory map.
4227 for (i
= 1, portnr
= 0; (i
< nrdevs
); i
++, portnr
++, memp
++) {
4228 if (memp
->dtype
!= TYP_ASYNC
)
4230 portp
= brdp
->ports
[portnr
];
4231 if (portp
== (stliport_t
*) NULL
)
4234 portp
->addr
= memp
->offset
;
4235 portp
->reqbit
= (unsigned char) (0x1 << (i
* 8 / nrdevs
));
4236 portp
->portidx
= (unsigned char) (i
/ 8);
4237 portp
->portbit
= (unsigned char) (0x1 << (i
% 8));
4240 hdrp
->slavereq
= 0xff;
4243 * For each port setup a local copy of the RX and TX buffer offsets
4244 * and sizes. We do this separate from the above, because we need to
4245 * move the shared memory page...
4247 for (i
= 1, portnr
= 0; (i
< nrdevs
); i
++, portnr
++) {
4248 portp
= brdp
->ports
[portnr
];
4249 if (portp
== (stliport_t
*) NULL
)
4251 if (portp
->addr
== 0)
4253 ap
= (volatile cdkasy_t
*) EBRDGETMEMPTR(brdp
, portp
->addr
);
4254 if (ap
!= (volatile cdkasy_t
*) NULL
) {
4255 portp
->rxsize
= ap
->rxq
.size
;
4256 portp
->txsize
= ap
->txq
.size
;
4257 portp
->rxoffset
= ap
->rxq
.offset
;
4258 portp
->txoffset
= ap
->txq
.offset
;
4264 restore_flags(flags
);
4267 brdp
->state
|= BST_STARTED
;
4269 if (! stli_timeron
) {
4271 stli_timerlist
.expires
= STLI_TIMEOUT
;
4272 add_timer(&stli_timerlist
);
4278 /*****************************************************************************/
4281 * Probe and initialize the specified board.
4284 static int __init
stli_brdinit(stlibrd_t
*brdp
)
4287 printk(KERN_DEBUG
"stli_brdinit(brdp=%x)\n", (int) brdp
);
4290 stli_brds
[brdp
->brdnr
] = brdp
;
4292 switch (brdp
->brdtype
) {
4303 case BRD_ONBOARD2_32
:
4315 printk(KERN_ERR
"STALLION: %s board type not supported in "
4316 "this driver\n", stli_brdnames
[brdp
->brdtype
]);
4319 printk(KERN_ERR
"STALLION: board=%d is unknown board "
4320 "type=%d\n", brdp
->brdnr
, brdp
->brdtype
);
4324 if ((brdp
->state
& BST_FOUND
) == 0) {
4325 printk(KERN_ERR
"STALLION: %s board not found, board=%d "
4327 stli_brdnames
[brdp
->brdtype
], brdp
->brdnr
,
4328 brdp
->iobase
, (int) brdp
->memaddr
);
4332 stli_initports(brdp
);
4333 printk(KERN_INFO
"STALLION: %s found, board=%d io=%x mem=%x "
4334 "nrpanels=%d nrports=%d\n", stli_brdnames
[brdp
->brdtype
],
4335 brdp
->brdnr
, brdp
->iobase
, (int) brdp
->memaddr
,
4336 brdp
->nrpanels
, brdp
->nrports
);
4340 /*****************************************************************************/
4343 * Probe around trying to find where the EISA boards shared memory
4344 * might be. This is a bit if hack, but it is the best we can do.
4347 static int stli_eisamemprobe(stlibrd_t
*brdp
)
4349 cdkecpsig_t ecpsig
, *ecpsigp
;
4350 cdkonbsig_t onbsig
, *onbsigp
;
4354 printk(KERN_DEBUG
"stli_eisamemprobe(brdp=%x)\n", (int) brdp
);
4358 * First up we reset the board, to get it into a known state. There
4359 * is only 2 board types here we need to worry about. Don;t use the
4360 * standard board init routine here, it programs up the shared
4361 * memory address, and we don't know it yet...
4363 if (brdp
->brdtype
== BRD_ECPE
) {
4364 outb(0x1, (brdp
->iobase
+ ECP_EIBRDENAB
));
4365 outb(ECP_EISTOP
, (brdp
->iobase
+ ECP_EICONFR
));
4367 outb(ECP_EIDISABLE
, (brdp
->iobase
+ ECP_EICONFR
));
4369 stli_ecpeienable(brdp
);
4370 } else if (brdp
->brdtype
== BRD_ONBOARDE
) {
4371 outb(0x1, (brdp
->iobase
+ ONB_EIBRDENAB
));
4372 outb(ONB_EISTOP
, (brdp
->iobase
+ ONB_EICONFR
));
4374 outb(ONB_EIDISABLE
, (brdp
->iobase
+ ONB_EICONFR
));
4376 outb(0x1, brdp
->iobase
);
4378 stli_onbeenable(brdp
);
4384 brdp
->memsize
= ECP_MEMSIZE
;
4387 * Board shared memory is enabled, so now we have a poke around and
4388 * see if we can find it.
4390 for (i
= 0; (i
< stli_eisamempsize
); i
++) {
4391 brdp
->memaddr
= stli_eisamemprobeaddrs
[i
];
4392 brdp
->membase
= (void *) brdp
->memaddr
;
4393 brdp
->membase
= ioremap(brdp
->memaddr
, brdp
->memsize
);
4394 if (brdp
->membase
== (void *) NULL
)
4397 if (brdp
->brdtype
== BRD_ECPE
) {
4398 ecpsigp
= (cdkecpsig_t
*) stli_ecpeigetmemptr(brdp
,
4399 CDK_SIGADDR
, __LINE__
);
4400 memcpy(&ecpsig
, ecpsigp
, sizeof(cdkecpsig_t
));
4401 if (ecpsig
.magic
== ECP_MAGIC
)
4404 onbsigp
= (cdkonbsig_t
*) stli_onbegetmemptr(brdp
,
4405 CDK_SIGADDR
, __LINE__
);
4406 memcpy(&onbsig
, onbsigp
, sizeof(cdkonbsig_t
));
4407 if ((onbsig
.magic0
== ONB_MAGIC0
) &&
4408 (onbsig
.magic1
== ONB_MAGIC1
) &&
4409 (onbsig
.magic2
== ONB_MAGIC2
) &&
4410 (onbsig
.magic3
== ONB_MAGIC3
))
4414 iounmap(brdp
->membase
);
4420 * Regardless of whether we found the shared memory or not we must
4421 * disable the region. After that return success or failure.
4423 if (brdp
->brdtype
== BRD_ECPE
)
4424 stli_ecpeidisable(brdp
);
4426 stli_onbedisable(brdp
);
4430 brdp
->membase
= NULL
;
4431 printk(KERN_ERR
"STALLION: failed to probe shared memory "
4432 "region for %s in EISA slot=%d\n",
4433 stli_brdnames
[brdp
->brdtype
], (brdp
->iobase
>> 12));
4439 static int stli_getbrdnr(void)
4443 for (i
= 0; i
< STL_MAXBRDS
; i
++) {
4444 if (!stli_brds
[i
]) {
4445 if (i
>= stli_nrbrds
)
4446 stli_nrbrds
= i
+ 1;
4453 /*****************************************************************************/
4456 * Probe around and try to find any EISA boards in system. The biggest
4457 * problem here is finding out what memory address is associated with
4458 * an EISA board after it is found. The registers of the ECPE and
4459 * ONboardE are not readable - so we can't read them from there. We
4460 * don't have access to the EISA CMOS (or EISA BIOS) so we don't
4461 * actually have any way to find out the real value. The best we can
4462 * do is go probing around in the usual places hoping we can find it.
4465 static int stli_findeisabrds(void)
4468 unsigned int iobase
, eid
;
4472 printk(KERN_DEBUG
"stli_findeisabrds()\n");
4476 * Firstly check if this is an EISA system. Do this by probing for
4477 * the system board EISA ID. If this is not an EISA system then
4478 * don't bother going any further!
4481 if (inb(0xc80) == 0xff)
4485 * Looks like an EISA system, so go searching for EISA boards.
4487 for (iobase
= 0x1000; (iobase
<= 0xc000); iobase
+= 0x1000) {
4488 outb(0xff, (iobase
+ 0xc80));
4489 eid
= inb(iobase
+ 0xc80);
4490 eid
|= inb(iobase
+ 0xc81) << 8;
4491 if (eid
!= STL_EISAID
)
4495 * We have found a board. Need to check if this board was
4496 * statically configured already (just in case!).
4498 for (i
= 0; (i
< STL_MAXBRDS
); i
++) {
4499 brdp
= stli_brds
[i
];
4500 if (brdp
== (stlibrd_t
*) NULL
)
4502 if (brdp
->iobase
== iobase
)
4505 if (i
< STL_MAXBRDS
)
4509 * We have found a Stallion board and it is not configured already.
4510 * Allocate a board structure and initialize it.
4512 if ((brdp
= stli_allocbrd()) == (stlibrd_t
*) NULL
)
4514 if ((brdp
->brdnr
= stli_getbrdnr()) < 0)
4516 eid
= inb(iobase
+ 0xc82);
4517 if (eid
== ECP_EISAID
)
4518 brdp
->brdtype
= BRD_ECPE
;
4519 else if (eid
== ONB_EISAID
)
4520 brdp
->brdtype
= BRD_ONBOARDE
;
4522 brdp
->brdtype
= BRD_UNKNOWN
;
4523 brdp
->iobase
= iobase
;
4524 outb(0x1, (iobase
+ 0xc84));
4525 if (stli_eisamemprobe(brdp
))
4526 outb(0, (iobase
+ 0xc84));
4533 /*****************************************************************************/
4536 * Find the next available board number that is free.
4539 /*****************************************************************************/
4544 * We have a Stallion board. Allocate a board structure and
4545 * initialize it. Read its IO and MEMORY resources from PCI
4546 * configuration space.
4549 static int stli_initpcibrd(int brdtype
, struct pci_dev
*devp
)
4554 printk(KERN_DEBUG
"stli_initpcibrd(brdtype=%d,busnr=%x,devnr=%x)\n",
4555 brdtype
, dev
->bus
->number
, dev
->devfn
);
4558 if (pci_enable_device(devp
))
4560 if ((brdp
= stli_allocbrd()) == (stlibrd_t
*) NULL
)
4562 if ((brdp
->brdnr
= stli_getbrdnr()) < 0) {
4563 printk(KERN_INFO
"STALLION: too many boards found, "
4564 "maximum supported %d\n", STL_MAXBRDS
);
4567 brdp
->brdtype
= brdtype
;
4570 printk(KERN_DEBUG
"%s(%d): BAR[]=%lx,%lx,%lx,%lx\n", __FILE__
, __LINE__
,
4571 pci_resource_start(devp
, 0),
4572 pci_resource_start(devp
, 1),
4573 pci_resource_start(devp
, 2),
4574 pci_resource_start(devp
, 3));
4578 * We have all resources from the board, so lets setup the actual
4579 * board structure now.
4581 brdp
->iobase
= pci_resource_start(devp
, 3);
4582 brdp
->memaddr
= pci_resource_start(devp
, 2);
4588 /*****************************************************************************/
4591 * Find all Stallion PCI boards that might be installed. Initialize each
4592 * one as it is found.
4595 static int stli_findpcibrds(void)
4597 struct pci_dev
*dev
= NULL
;
4601 printk("stli_findpcibrds()\n");
4604 while ((dev
= pci_find_device(PCI_VENDOR_ID_STALLION
,
4605 PCI_DEVICE_ID_ECRA
, dev
))) {
4606 if ((rc
= stli_initpcibrd(BRD_ECPPCI
, dev
)))
4615 /*****************************************************************************/
4618 * Allocate a new board structure. Fill out the basic info in it.
4621 static stlibrd_t
*stli_allocbrd(void)
4625 brdp
= (stlibrd_t
*) stli_memalloc(sizeof(stlibrd_t
));
4626 if (brdp
== (stlibrd_t
*) NULL
) {
4627 printk(KERN_ERR
"STALLION: failed to allocate memory "
4628 "(size=%d)\n", sizeof(stlibrd_t
));
4629 return((stlibrd_t
*) NULL
);
4632 memset(brdp
, 0, sizeof(stlibrd_t
));
4633 brdp
->magic
= STLI_BOARDMAGIC
;
4637 /*****************************************************************************/
4640 * Scan through all the boards in the configuration and see what we
4644 static int stli_initbrds(void)
4646 stlibrd_t
*brdp
, *nxtbrdp
;
4651 printk(KERN_DEBUG
"stli_initbrds()\n");
4654 if (stli_nrbrds
> STL_MAXBRDS
) {
4655 printk(KERN_INFO
"STALLION: too many boards in configuration "
4656 "table, truncating to %d\n", STL_MAXBRDS
);
4657 stli_nrbrds
= STL_MAXBRDS
;
4661 * Firstly scan the list of static boards configured. Allocate
4662 * resources and initialize the boards as found. If this is a
4663 * module then let the module args override static configuration.
4665 for (i
= 0; (i
< stli_nrbrds
); i
++) {
4666 confp
= &stli_brdconf
[i
];
4668 stli_parsebrd(confp
, stli_brdsp
[i
]);
4670 if ((brdp
= stli_allocbrd()) == (stlibrd_t
*) NULL
)
4673 brdp
->brdtype
= confp
->brdtype
;
4674 brdp
->iobase
= confp
->ioaddr1
;
4675 brdp
->memaddr
= confp
->memaddr
;
4680 * Static configuration table done, so now use dynamic methods to
4681 * see if any more boards should be configured.
4687 stli_findeisabrds();
4693 * All found boards are initialized. Now for a little optimization, if
4694 * no boards are sharing the "shared memory" regions then we can just
4695 * leave them all enabled. This is in fact the usual case.
4698 if (stli_nrbrds
> 1) {
4699 for (i
= 0; (i
< stli_nrbrds
); i
++) {
4700 brdp
= stli_brds
[i
];
4701 if (brdp
== (stlibrd_t
*) NULL
)
4703 for (j
= i
+ 1; (j
< stli_nrbrds
); j
++) {
4704 nxtbrdp
= stli_brds
[j
];
4705 if (nxtbrdp
== (stlibrd_t
*) NULL
)
4707 if ((brdp
->membase
>= nxtbrdp
->membase
) &&
4708 (brdp
->membase
<= (nxtbrdp
->membase
+
4709 nxtbrdp
->memsize
- 1))) {
4717 if (stli_shared
== 0) {
4718 for (i
= 0; (i
< stli_nrbrds
); i
++) {
4719 brdp
= stli_brds
[i
];
4720 if (brdp
== (stlibrd_t
*) NULL
)
4722 if (brdp
->state
& BST_FOUND
) {
4724 brdp
->enable
= NULL
;
4725 brdp
->disable
= NULL
;
4733 /*****************************************************************************/
4736 * Code to handle an "staliomem" read operation. This device is the
4737 * contents of the board shared memory. It is used for down loading
4738 * the slave image (and debugging :-)
4741 static ssize_t
stli_memread(struct file
*fp
, char __user
*buf
, size_t count
, loff_t
*offp
)
4743 unsigned long flags
;
4749 printk(KERN_DEBUG
"stli_memread(fp=%x,buf=%x,count=%x,offp=%x)\n",
4750 (int) fp
, (int) buf
, count
, (int) offp
);
4753 brdnr
= iminor(fp
->f_dentry
->d_inode
);
4754 if (brdnr
>= stli_nrbrds
)
4756 brdp
= stli_brds
[brdnr
];
4757 if (brdp
== (stlibrd_t
*) NULL
)
4759 if (brdp
->state
== 0)
4761 if (fp
->f_pos
>= brdp
->memsize
)
4764 size
= MIN(count
, (brdp
->memsize
- fp
->f_pos
));
4770 memptr
= (void *) EBRDGETMEMPTR(brdp
, fp
->f_pos
);
4771 n
= MIN(size
, (brdp
->pagesize
- (((unsigned long) fp
->f_pos
) % brdp
->pagesize
)));
4772 if (copy_to_user(buf
, memptr
, n
)) {
4782 restore_flags(flags
);
4787 /*****************************************************************************/
4790 * Code to handle an "staliomem" write operation. This device is the
4791 * contents of the board shared memory. It is used for down loading
4792 * the slave image (and debugging :-)
4795 static ssize_t
stli_memwrite(struct file
*fp
, const char __user
*buf
, size_t count
, loff_t
*offp
)
4797 unsigned long flags
;
4804 printk(KERN_DEBUG
"stli_memwrite(fp=%x,buf=%x,count=%x,offp=%x)\n",
4805 (int) fp
, (int) buf
, count
, (int) offp
);
4808 brdnr
= iminor(fp
->f_dentry
->d_inode
);
4809 if (brdnr
>= stli_nrbrds
)
4811 brdp
= stli_brds
[brdnr
];
4812 if (brdp
== (stlibrd_t
*) NULL
)
4814 if (brdp
->state
== 0)
4816 if (fp
->f_pos
>= brdp
->memsize
)
4819 chbuf
= (char __user
*) buf
;
4820 size
= MIN(count
, (brdp
->memsize
- fp
->f_pos
));
4826 memptr
= (void *) EBRDGETMEMPTR(brdp
, fp
->f_pos
);
4827 n
= MIN(size
, (brdp
->pagesize
- (((unsigned long) fp
->f_pos
) % brdp
->pagesize
)));
4828 if (copy_from_user(memptr
, chbuf
, n
)) {
4838 restore_flags(flags
);
4843 /*****************************************************************************/
4846 * Return the board stats structure to user app.
4849 static int stli_getbrdstats(combrd_t __user
*bp
)
4854 if (copy_from_user(&stli_brdstats
, bp
, sizeof(combrd_t
)))
4856 if (stli_brdstats
.brd
>= STL_MAXBRDS
)
4858 brdp
= stli_brds
[stli_brdstats
.brd
];
4859 if (brdp
== (stlibrd_t
*) NULL
)
4862 memset(&stli_brdstats
, 0, sizeof(combrd_t
));
4863 stli_brdstats
.brd
= brdp
->brdnr
;
4864 stli_brdstats
.type
= brdp
->brdtype
;
4865 stli_brdstats
.hwid
= 0;
4866 stli_brdstats
.state
= brdp
->state
;
4867 stli_brdstats
.ioaddr
= brdp
->iobase
;
4868 stli_brdstats
.memaddr
= brdp
->memaddr
;
4869 stli_brdstats
.nrpanels
= brdp
->nrpanels
;
4870 stli_brdstats
.nrports
= brdp
->nrports
;
4871 for (i
= 0; (i
< brdp
->nrpanels
); i
++) {
4872 stli_brdstats
.panels
[i
].panel
= i
;
4873 stli_brdstats
.panels
[i
].hwid
= brdp
->panelids
[i
];
4874 stli_brdstats
.panels
[i
].nrports
= brdp
->panels
[i
];
4877 if (copy_to_user(bp
, &stli_brdstats
, sizeof(combrd_t
)))
4882 /*****************************************************************************/
4885 * Resolve the referenced port number into a port struct pointer.
4888 static stliport_t
*stli_getport(int brdnr
, int panelnr
, int portnr
)
4893 if ((brdnr
< 0) || (brdnr
>= STL_MAXBRDS
))
4894 return((stliport_t
*) NULL
);
4895 brdp
= stli_brds
[brdnr
];
4896 if (brdp
== (stlibrd_t
*) NULL
)
4897 return((stliport_t
*) NULL
);
4898 for (i
= 0; (i
< panelnr
); i
++)
4899 portnr
+= brdp
->panels
[i
];
4900 if ((portnr
< 0) || (portnr
>= brdp
->nrports
))
4901 return((stliport_t
*) NULL
);
4902 return(brdp
->ports
[portnr
]);
4905 /*****************************************************************************/
4908 * Return the port stats structure to user app. A NULL port struct
4909 * pointer passed in means that we need to find out from the app
4910 * what port to get stats for (used through board control device).
4913 static int stli_portcmdstats(stliport_t
*portp
)
4915 unsigned long flags
;
4919 memset(&stli_comstats
, 0, sizeof(comstats_t
));
4921 if (portp
== (stliport_t
*) NULL
)
4923 brdp
= stli_brds
[portp
->brdnr
];
4924 if (brdp
== (stlibrd_t
*) NULL
)
4927 if (brdp
->state
& BST_STARTED
) {
4928 if ((rc
= stli_cmdwait(brdp
, portp
, A_GETSTATS
,
4929 &stli_cdkstats
, sizeof(asystats_t
), 1)) < 0)
4932 memset(&stli_cdkstats
, 0, sizeof(asystats_t
));
4935 stli_comstats
.brd
= portp
->brdnr
;
4936 stli_comstats
.panel
= portp
->panelnr
;
4937 stli_comstats
.port
= portp
->portnr
;
4938 stli_comstats
.state
= portp
->state
;
4939 stli_comstats
.flags
= portp
->flags
;
4943 if (portp
->tty
!= (struct tty_struct
*) NULL
) {
4944 if (portp
->tty
->driver_data
== portp
) {
4945 stli_comstats
.ttystate
= portp
->tty
->flags
;
4946 stli_comstats
.rxbuffered
= portp
->tty
->flip
.count
;
4947 if (portp
->tty
->termios
!= (struct termios
*) NULL
) {
4948 stli_comstats
.cflags
= portp
->tty
->termios
->c_cflag
;
4949 stli_comstats
.iflags
= portp
->tty
->termios
->c_iflag
;
4950 stli_comstats
.oflags
= portp
->tty
->termios
->c_oflag
;
4951 stli_comstats
.lflags
= portp
->tty
->termios
->c_lflag
;
4955 restore_flags(flags
);
4957 stli_comstats
.txtotal
= stli_cdkstats
.txchars
;
4958 stli_comstats
.rxtotal
= stli_cdkstats
.rxchars
+ stli_cdkstats
.ringover
;
4959 stli_comstats
.txbuffered
= stli_cdkstats
.txringq
;
4960 stli_comstats
.rxbuffered
+= stli_cdkstats
.rxringq
;
4961 stli_comstats
.rxoverrun
= stli_cdkstats
.overruns
;
4962 stli_comstats
.rxparity
= stli_cdkstats
.parity
;
4963 stli_comstats
.rxframing
= stli_cdkstats
.framing
;
4964 stli_comstats
.rxlost
= stli_cdkstats
.ringover
;
4965 stli_comstats
.rxbreaks
= stli_cdkstats
.rxbreaks
;
4966 stli_comstats
.txbreaks
= stli_cdkstats
.txbreaks
;
4967 stli_comstats
.txxon
= stli_cdkstats
.txstart
;
4968 stli_comstats
.txxoff
= stli_cdkstats
.txstop
;
4969 stli_comstats
.rxxon
= stli_cdkstats
.rxstart
;
4970 stli_comstats
.rxxoff
= stli_cdkstats
.rxstop
;
4971 stli_comstats
.rxrtsoff
= stli_cdkstats
.rtscnt
/ 2;
4972 stli_comstats
.rxrtson
= stli_cdkstats
.rtscnt
- stli_comstats
.rxrtsoff
;
4973 stli_comstats
.modem
= stli_cdkstats
.dcdcnt
;
4974 stli_comstats
.hwid
= stli_cdkstats
.hwid
;
4975 stli_comstats
.signals
= stli_mktiocm(stli_cdkstats
.signals
);
4980 /*****************************************************************************/
4983 * Return the port stats structure to user app. A NULL port struct
4984 * pointer passed in means that we need to find out from the app
4985 * what port to get stats for (used through board control device).
4988 static int stli_getportstats(stliport_t
*portp
, comstats_t __user
*cp
)
4994 if (copy_from_user(&stli_comstats
, cp
, sizeof(comstats_t
)))
4996 portp
= stli_getport(stli_comstats
.brd
, stli_comstats
.panel
,
4997 stli_comstats
.port
);
5002 brdp
= stli_brds
[portp
->brdnr
];
5006 if ((rc
= stli_portcmdstats(portp
)) < 0)
5009 return copy_to_user(cp
, &stli_comstats
, sizeof(comstats_t
)) ?
5013 /*****************************************************************************/
5016 * Clear the port stats structure. We also return it zeroed out...
5019 static int stli_clrportstats(stliport_t
*portp
, comstats_t __user
*cp
)
5025 if (copy_from_user(&stli_comstats
, cp
, sizeof(comstats_t
)))
5027 portp
= stli_getport(stli_comstats
.brd
, stli_comstats
.panel
,
5028 stli_comstats
.port
);
5033 brdp
= stli_brds
[portp
->brdnr
];
5037 if (brdp
->state
& BST_STARTED
) {
5038 if ((rc
= stli_cmdwait(brdp
, portp
, A_CLEARSTATS
, NULL
, 0, 0)) < 0)
5042 memset(&stli_comstats
, 0, sizeof(comstats_t
));
5043 stli_comstats
.brd
= portp
->brdnr
;
5044 stli_comstats
.panel
= portp
->panelnr
;
5045 stli_comstats
.port
= portp
->portnr
;
5047 if (copy_to_user(cp
, &stli_comstats
, sizeof(comstats_t
)))
5052 /*****************************************************************************/
5055 * Return the entire driver ports structure to a user app.
5058 static int stli_getportstruct(stliport_t __user
*arg
)
5062 if (copy_from_user(&stli_dummyport
, arg
, sizeof(stliport_t
)))
5064 portp
= stli_getport(stli_dummyport
.brdnr
, stli_dummyport
.panelnr
,
5065 stli_dummyport
.portnr
);
5068 if (copy_to_user(arg
, portp
, sizeof(stliport_t
)))
5073 /*****************************************************************************/
5076 * Return the entire driver board structure to a user app.
5079 static int stli_getbrdstruct(stlibrd_t __user
*arg
)
5083 if (copy_from_user(&stli_dummybrd
, arg
, sizeof(stlibrd_t
)))
5085 if ((stli_dummybrd
.brdnr
< 0) || (stli_dummybrd
.brdnr
>= STL_MAXBRDS
))
5087 brdp
= stli_brds
[stli_dummybrd
.brdnr
];
5090 if (copy_to_user(arg
, brdp
, sizeof(stlibrd_t
)))
5095 /*****************************************************************************/
5098 * The "staliomem" device is also required to do some special operations on
5099 * the board. We need to be able to send an interrupt to the board,
5100 * reset it, and start/stop it.
5103 static int stli_memioctl(struct inode
*ip
, struct file
*fp
, unsigned int cmd
, unsigned long arg
)
5106 int brdnr
, rc
, done
;
5107 void __user
*argp
= (void __user
*)arg
;
5110 printk(KERN_DEBUG
"stli_memioctl(ip=%x,fp=%x,cmd=%x,arg=%x)\n",
5111 (int) ip
, (int) fp
, cmd
, (int) arg
);
5115 * First up handle the board independent ioctls.
5121 case COM_GETPORTSTATS
:
5122 rc
= stli_getportstats(NULL
, argp
);
5125 case COM_CLRPORTSTATS
:
5126 rc
= stli_clrportstats(NULL
, argp
);
5129 case COM_GETBRDSTATS
:
5130 rc
= stli_getbrdstats(argp
);
5134 rc
= stli_getportstruct(argp
);
5138 rc
= stli_getbrdstruct(argp
);
5147 * Now handle the board specific ioctls. These all depend on the
5148 * minor number of the device they were called from.
5151 if (brdnr
>= STL_MAXBRDS
)
5153 brdp
= stli_brds
[brdnr
];
5156 if (brdp
->state
== 0)
5164 rc
= stli_startbrd(brdp
);
5167 brdp
->state
&= ~BST_STARTED
;
5170 brdp
->state
&= ~BST_STARTED
;
5172 if (stli_shared
== 0) {
5173 if (brdp
->reenable
!= NULL
)
5174 (* brdp
->reenable
)(brdp
);
5185 static struct tty_operations stli_ops
= {
5187 .close
= stli_close
,
5188 .write
= stli_write
,
5189 .put_char
= stli_putchar
,
5190 .flush_chars
= stli_flushchars
,
5191 .write_room
= stli_writeroom
,
5192 .chars_in_buffer
= stli_charsinbuffer
,
5193 .ioctl
= stli_ioctl
,
5194 .set_termios
= stli_settermios
,
5195 .throttle
= stli_throttle
,
5196 .unthrottle
= stli_unthrottle
,
5198 .start
= stli_start
,
5199 .hangup
= stli_hangup
,
5200 .flush_buffer
= stli_flushbuffer
,
5201 .break_ctl
= stli_breakctl
,
5202 .wait_until_sent
= stli_waituntilsent
,
5203 .send_xchar
= stli_sendxchar
,
5204 .read_proc
= stli_readproc
,
5205 .tiocmget
= stli_tiocmget
,
5206 .tiocmset
= stli_tiocmset
,
5209 /*****************************************************************************/
5211 int __init
stli_init(void)
5214 printk(KERN_INFO
"%s: version %s\n", stli_drvtitle
, stli_drvversion
);
5218 stli_serial
= alloc_tty_driver(STL_MAXBRDS
* STL_MAXPORTS
);
5223 * Allocate a temporary write buffer.
5225 stli_tmpwritebuf
= (char *) stli_memalloc(STLI_TXBUFSIZE
);
5226 if (stli_tmpwritebuf
== (char *) NULL
)
5227 printk(KERN_ERR
"STALLION: failed to allocate memory "
5228 "(size=%d)\n", STLI_TXBUFSIZE
);
5229 stli_txcookbuf
= stli_memalloc(STLI_TXBUFSIZE
);
5230 if (stli_txcookbuf
== (char *) NULL
)
5231 printk(KERN_ERR
"STALLION: failed to allocate memory "
5232 "(size=%d)\n", STLI_TXBUFSIZE
);
5235 * Set up a character driver for the shared memory region. We need this
5236 * to down load the slave code image. Also it is a useful debugging tool.
5238 if (register_chrdev(STL_SIOMEMMAJOR
, "staliomem", &stli_fsiomem
))
5239 printk(KERN_ERR
"STALLION: failed to register serial memory "
5242 devfs_mk_dir("staliomem");
5243 istallion_class
= class_create(THIS_MODULE
, "staliomem");
5244 for (i
= 0; i
< 4; i
++) {
5245 devfs_mk_cdev(MKDEV(STL_SIOMEMMAJOR
, i
),
5246 S_IFCHR
| S_IRUSR
| S_IWUSR
,
5248 class_device_create(istallion_class
, NULL
,
5249 MKDEV(STL_SIOMEMMAJOR
, i
),
5250 NULL
, "staliomem%d", i
);
5254 * Set up the tty driver structure and register us as a driver.
5256 stli_serial
->owner
= THIS_MODULE
;
5257 stli_serial
->driver_name
= stli_drvname
;
5258 stli_serial
->name
= stli_serialname
;
5259 stli_serial
->major
= STL_SERIALMAJOR
;
5260 stli_serial
->minor_start
= 0;
5261 stli_serial
->type
= TTY_DRIVER_TYPE_SERIAL
;
5262 stli_serial
->subtype
= SERIAL_TYPE_NORMAL
;
5263 stli_serial
->init_termios
= stli_deftermios
;
5264 stli_serial
->flags
= TTY_DRIVER_REAL_RAW
;
5265 tty_set_operations(stli_serial
, &stli_ops
);
5267 if (tty_register_driver(stli_serial
)) {
5268 put_tty_driver(stli_serial
);
5269 printk(KERN_ERR
"STALLION: failed to register serial driver\n");
5275 /*****************************************************************************/