1 /*******************************************************************************
4 Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 2 of the License, or (at your option)
11 This program is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
16 You should have received a copy of the GNU General Public License along with
17 this program; if not, write to the Free Software Foundation, Inc., 59
18 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
20 The full GNU General Public License is included in this distribution in the
24 Linux NICS <linux.nics@intel.com>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
29 /* ethtool support for e1000 */
33 #include <asm/uaccess.h>
35 extern char e1000_driver_name
[];
36 extern char e1000_driver_version
[];
38 extern int e1000_up(struct e1000_adapter
*adapter
);
39 extern void e1000_down(struct e1000_adapter
*adapter
);
40 extern void e1000_reset(struct e1000_adapter
*adapter
);
41 extern int e1000_set_spd_dplx(struct e1000_adapter
*adapter
, uint16_t spddplx
);
42 extern int e1000_setup_all_rx_resources(struct e1000_adapter
*adapter
);
43 extern int e1000_setup_all_tx_resources(struct e1000_adapter
*adapter
);
44 extern void e1000_free_all_rx_resources(struct e1000_adapter
*adapter
);
45 extern void e1000_free_all_tx_resources(struct e1000_adapter
*adapter
);
46 extern void e1000_update_stats(struct e1000_adapter
*adapter
);
49 char stat_string
[ETH_GSTRING_LEN
];
54 #define E1000_STAT(m) sizeof(((struct e1000_adapter *)0)->m), \
55 offsetof(struct e1000_adapter, m)
56 static const struct e1000_stats e1000_gstrings_stats
[] = {
57 { "rx_packets", E1000_STAT(net_stats
.rx_packets
) },
58 { "tx_packets", E1000_STAT(net_stats
.tx_packets
) },
59 { "rx_bytes", E1000_STAT(net_stats
.rx_bytes
) },
60 { "tx_bytes", E1000_STAT(net_stats
.tx_bytes
) },
61 { "rx_errors", E1000_STAT(net_stats
.rx_errors
) },
62 { "tx_errors", E1000_STAT(net_stats
.tx_errors
) },
63 { "rx_dropped", E1000_STAT(net_stats
.rx_dropped
) },
64 { "tx_dropped", E1000_STAT(net_stats
.tx_dropped
) },
65 { "multicast", E1000_STAT(net_stats
.multicast
) },
66 { "collisions", E1000_STAT(net_stats
.collisions
) },
67 { "rx_length_errors", E1000_STAT(net_stats
.rx_length_errors
) },
68 { "rx_over_errors", E1000_STAT(net_stats
.rx_over_errors
) },
69 { "rx_crc_errors", E1000_STAT(net_stats
.rx_crc_errors
) },
70 { "rx_frame_errors", E1000_STAT(net_stats
.rx_frame_errors
) },
71 { "rx_fifo_errors", E1000_STAT(net_stats
.rx_fifo_errors
) },
72 { "rx_no_buffer_count", E1000_STAT(stats
.rnbc
) },
73 { "rx_missed_errors", E1000_STAT(net_stats
.rx_missed_errors
) },
74 { "tx_aborted_errors", E1000_STAT(net_stats
.tx_aborted_errors
) },
75 { "tx_carrier_errors", E1000_STAT(net_stats
.tx_carrier_errors
) },
76 { "tx_fifo_errors", E1000_STAT(net_stats
.tx_fifo_errors
) },
77 { "tx_heartbeat_errors", E1000_STAT(net_stats
.tx_heartbeat_errors
) },
78 { "tx_window_errors", E1000_STAT(net_stats
.tx_window_errors
) },
79 { "tx_abort_late_coll", E1000_STAT(stats
.latecol
) },
80 { "tx_deferred_ok", E1000_STAT(stats
.dc
) },
81 { "tx_single_coll_ok", E1000_STAT(stats
.scc
) },
82 { "tx_multi_coll_ok", E1000_STAT(stats
.mcc
) },
83 { "rx_long_length_errors", E1000_STAT(stats
.roc
) },
84 { "rx_short_length_errors", E1000_STAT(stats
.ruc
) },
85 { "rx_align_errors", E1000_STAT(stats
.algnerrc
) },
86 { "tx_tcp_seg_good", E1000_STAT(stats
.tsctc
) },
87 { "tx_tcp_seg_failed", E1000_STAT(stats
.tsctfc
) },
88 { "rx_flow_control_xon", E1000_STAT(stats
.xonrxc
) },
89 { "rx_flow_control_xoff", E1000_STAT(stats
.xoffrxc
) },
90 { "tx_flow_control_xon", E1000_STAT(stats
.xontxc
) },
91 { "tx_flow_control_xoff", E1000_STAT(stats
.xofftxc
) },
92 { "rx_long_byte_count", E1000_STAT(stats
.gorcl
) },
93 { "rx_csum_offload_good", E1000_STAT(hw_csum_good
) },
94 { "rx_csum_offload_errors", E1000_STAT(hw_csum_err
) },
95 { "rx_header_split", E1000_STAT(rx_hdr_split
) },
97 #define E1000_STATS_LEN \
98 sizeof(e1000_gstrings_stats) / sizeof(struct e1000_stats)
99 static const char e1000_gstrings_test
[][ETH_GSTRING_LEN
] = {
100 "Register test (offline)", "Eeprom test (offline)",
101 "Interrupt test (offline)", "Loopback test (offline)",
102 "Link test (on/offline)"
104 #define E1000_TEST_LEN sizeof(e1000_gstrings_test) / ETH_GSTRING_LEN
107 e1000_get_settings(struct net_device
*netdev
, struct ethtool_cmd
*ecmd
)
109 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
110 struct e1000_hw
*hw
= &adapter
->hw
;
112 if(hw
->media_type
== e1000_media_type_copper
) {
114 ecmd
->supported
= (SUPPORTED_10baseT_Half
|
115 SUPPORTED_10baseT_Full
|
116 SUPPORTED_100baseT_Half
|
117 SUPPORTED_100baseT_Full
|
118 SUPPORTED_1000baseT_Full
|
122 ecmd
->advertising
= ADVERTISED_TP
;
124 if(hw
->autoneg
== 1) {
125 ecmd
->advertising
|= ADVERTISED_Autoneg
;
127 /* the e1000 autoneg seems to match ethtool nicely */
129 ecmd
->advertising
|= hw
->autoneg_advertised
;
132 ecmd
->port
= PORT_TP
;
133 ecmd
->phy_address
= hw
->phy_addr
;
135 if(hw
->mac_type
== e1000_82543
)
136 ecmd
->transceiver
= XCVR_EXTERNAL
;
138 ecmd
->transceiver
= XCVR_INTERNAL
;
141 ecmd
->supported
= (SUPPORTED_1000baseT_Full
|
145 ecmd
->advertising
= (ADVERTISED_1000baseT_Full
|
149 ecmd
->port
= PORT_FIBRE
;
151 if(hw
->mac_type
>= e1000_82545
)
152 ecmd
->transceiver
= XCVR_INTERNAL
;
154 ecmd
->transceiver
= XCVR_EXTERNAL
;
157 if(netif_carrier_ok(adapter
->netdev
)) {
159 e1000_get_speed_and_duplex(hw
, &adapter
->link_speed
,
160 &adapter
->link_duplex
);
161 ecmd
->speed
= adapter
->link_speed
;
163 /* unfortunatly FULL_DUPLEX != DUPLEX_FULL
164 * and HALF_DUPLEX != DUPLEX_HALF */
166 if(adapter
->link_duplex
== FULL_DUPLEX
)
167 ecmd
->duplex
= DUPLEX_FULL
;
169 ecmd
->duplex
= DUPLEX_HALF
;
175 ecmd
->autoneg
= ((hw
->media_type
== e1000_media_type_fiber
) ||
176 hw
->autoneg
) ? AUTONEG_ENABLE
: AUTONEG_DISABLE
;
181 e1000_set_settings(struct net_device
*netdev
, struct ethtool_cmd
*ecmd
)
183 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
184 struct e1000_hw
*hw
= &adapter
->hw
;
186 if(ecmd
->autoneg
== AUTONEG_ENABLE
) {
188 if(hw
->media_type
== e1000_media_type_fiber
)
189 hw
->autoneg_advertised
= ADVERTISED_1000baseT_Full
|
193 hw
->autoneg_advertised
= ADVERTISED_10baseT_Half
|
194 ADVERTISED_10baseT_Full
|
195 ADVERTISED_100baseT_Half
|
196 ADVERTISED_100baseT_Full
|
197 ADVERTISED_1000baseT_Full
|
200 ecmd
->advertising
= hw
->autoneg_advertised
;
202 if(e1000_set_spd_dplx(adapter
, ecmd
->speed
+ ecmd
->duplex
))
207 if(netif_running(adapter
->netdev
)) {
209 e1000_reset(adapter
);
212 e1000_reset(adapter
);
218 e1000_get_pauseparam(struct net_device
*netdev
,
219 struct ethtool_pauseparam
*pause
)
221 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
222 struct e1000_hw
*hw
= &adapter
->hw
;
225 (adapter
->fc_autoneg
? AUTONEG_ENABLE
: AUTONEG_DISABLE
);
227 if(hw
->fc
== e1000_fc_rx_pause
)
229 else if(hw
->fc
== e1000_fc_tx_pause
)
231 else if(hw
->fc
== e1000_fc_full
) {
238 e1000_set_pauseparam(struct net_device
*netdev
,
239 struct ethtool_pauseparam
*pause
)
241 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
242 struct e1000_hw
*hw
= &adapter
->hw
;
244 adapter
->fc_autoneg
= pause
->autoneg
;
246 if(pause
->rx_pause
&& pause
->tx_pause
)
247 hw
->fc
= e1000_fc_full
;
248 else if(pause
->rx_pause
&& !pause
->tx_pause
)
249 hw
->fc
= e1000_fc_rx_pause
;
250 else if(!pause
->rx_pause
&& pause
->tx_pause
)
251 hw
->fc
= e1000_fc_tx_pause
;
252 else if(!pause
->rx_pause
&& !pause
->tx_pause
)
253 hw
->fc
= e1000_fc_none
;
255 hw
->original_fc
= hw
->fc
;
257 if(adapter
->fc_autoneg
== AUTONEG_ENABLE
) {
258 if(netif_running(adapter
->netdev
)) {
262 e1000_reset(adapter
);
265 return ((hw
->media_type
== e1000_media_type_fiber
) ?
266 e1000_setup_link(hw
) : e1000_force_mac_fc(hw
));
272 e1000_get_rx_csum(struct net_device
*netdev
)
274 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
275 return adapter
->rx_csum
;
279 e1000_set_rx_csum(struct net_device
*netdev
, uint32_t data
)
281 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
282 adapter
->rx_csum
= data
;
284 if(netif_running(netdev
)) {
288 e1000_reset(adapter
);
293 e1000_get_tx_csum(struct net_device
*netdev
)
295 return (netdev
->features
& NETIF_F_HW_CSUM
) != 0;
299 e1000_set_tx_csum(struct net_device
*netdev
, uint32_t data
)
301 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
303 if(adapter
->hw
.mac_type
< e1000_82543
) {
310 netdev
->features
|= NETIF_F_HW_CSUM
;
312 netdev
->features
&= ~NETIF_F_HW_CSUM
;
319 e1000_set_tso(struct net_device
*netdev
, uint32_t data
)
321 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
322 if((adapter
->hw
.mac_type
< e1000_82544
) ||
323 (adapter
->hw
.mac_type
== e1000_82547
))
324 return data
? -EINVAL
: 0;
327 netdev
->features
|= NETIF_F_TSO
;
329 netdev
->features
&= ~NETIF_F_TSO
;
332 #endif /* NETIF_F_TSO */
335 e1000_get_msglevel(struct net_device
*netdev
)
337 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
338 return adapter
->msg_enable
;
342 e1000_set_msglevel(struct net_device
*netdev
, uint32_t data
)
344 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
345 adapter
->msg_enable
= data
;
349 e1000_get_regs_len(struct net_device
*netdev
)
351 #define E1000_REGS_LEN 32
352 return E1000_REGS_LEN
* sizeof(uint32_t);
356 e1000_get_regs(struct net_device
*netdev
,
357 struct ethtool_regs
*regs
, void *p
)
359 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
360 struct e1000_hw
*hw
= &adapter
->hw
;
361 uint32_t *regs_buff
= p
;
364 memset(p
, 0, E1000_REGS_LEN
* sizeof(uint32_t));
366 regs
->version
= (1 << 24) | (hw
->revision_id
<< 16) | hw
->device_id
;
368 regs_buff
[0] = E1000_READ_REG(hw
, CTRL
);
369 regs_buff
[1] = E1000_READ_REG(hw
, STATUS
);
371 regs_buff
[2] = E1000_READ_REG(hw
, RCTL
);
372 regs_buff
[3] = E1000_READ_REG(hw
, RDLEN
);
373 regs_buff
[4] = E1000_READ_REG(hw
, RDH
);
374 regs_buff
[5] = E1000_READ_REG(hw
, RDT
);
375 regs_buff
[6] = E1000_READ_REG(hw
, RDTR
);
377 regs_buff
[7] = E1000_READ_REG(hw
, TCTL
);
378 regs_buff
[8] = E1000_READ_REG(hw
, TDLEN
);
379 regs_buff
[9] = E1000_READ_REG(hw
, TDH
);
380 regs_buff
[10] = E1000_READ_REG(hw
, TDT
);
381 regs_buff
[11] = E1000_READ_REG(hw
, TIDV
);
383 regs_buff
[12] = adapter
->hw
.phy_type
; /* PHY type (IGP=1, M88=0) */
384 if(hw
->phy_type
== e1000_phy_igp
) {
385 e1000_write_phy_reg(hw
, IGP01E1000_PHY_PAGE_SELECT
,
386 IGP01E1000_PHY_AGC_A
);
387 e1000_read_phy_reg(hw
, IGP01E1000_PHY_AGC_A
&
388 IGP01E1000_PHY_PAGE_SELECT
, &phy_data
);
389 regs_buff
[13] = (uint32_t)phy_data
; /* cable length */
390 e1000_write_phy_reg(hw
, IGP01E1000_PHY_PAGE_SELECT
,
391 IGP01E1000_PHY_AGC_B
);
392 e1000_read_phy_reg(hw
, IGP01E1000_PHY_AGC_B
&
393 IGP01E1000_PHY_PAGE_SELECT
, &phy_data
);
394 regs_buff
[14] = (uint32_t)phy_data
; /* cable length */
395 e1000_write_phy_reg(hw
, IGP01E1000_PHY_PAGE_SELECT
,
396 IGP01E1000_PHY_AGC_C
);
397 e1000_read_phy_reg(hw
, IGP01E1000_PHY_AGC_C
&
398 IGP01E1000_PHY_PAGE_SELECT
, &phy_data
);
399 regs_buff
[15] = (uint32_t)phy_data
; /* cable length */
400 e1000_write_phy_reg(hw
, IGP01E1000_PHY_PAGE_SELECT
,
401 IGP01E1000_PHY_AGC_D
);
402 e1000_read_phy_reg(hw
, IGP01E1000_PHY_AGC_D
&
403 IGP01E1000_PHY_PAGE_SELECT
, &phy_data
);
404 regs_buff
[16] = (uint32_t)phy_data
; /* cable length */
405 regs_buff
[17] = 0; /* extended 10bt distance (not needed) */
406 e1000_write_phy_reg(hw
, IGP01E1000_PHY_PAGE_SELECT
, 0x0);
407 e1000_read_phy_reg(hw
, IGP01E1000_PHY_PORT_STATUS
&
408 IGP01E1000_PHY_PAGE_SELECT
, &phy_data
);
409 regs_buff
[18] = (uint32_t)phy_data
; /* cable polarity */
410 e1000_write_phy_reg(hw
, IGP01E1000_PHY_PAGE_SELECT
,
411 IGP01E1000_PHY_PCS_INIT_REG
);
412 e1000_read_phy_reg(hw
, IGP01E1000_PHY_PCS_INIT_REG
&
413 IGP01E1000_PHY_PAGE_SELECT
, &phy_data
);
414 regs_buff
[19] = (uint32_t)phy_data
; /* cable polarity */
415 regs_buff
[20] = 0; /* polarity correction enabled (always) */
416 regs_buff
[22] = 0; /* phy receive errors (unavailable) */
417 regs_buff
[23] = regs_buff
[18]; /* mdix mode */
418 e1000_write_phy_reg(hw
, IGP01E1000_PHY_PAGE_SELECT
, 0x0);
420 e1000_read_phy_reg(hw
, M88E1000_PHY_SPEC_STATUS
, &phy_data
);
421 regs_buff
[13] = (uint32_t)phy_data
; /* cable length */
422 regs_buff
[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */
423 regs_buff
[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */
424 regs_buff
[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */
425 e1000_read_phy_reg(hw
, M88E1000_PHY_SPEC_CTRL
, &phy_data
);
426 regs_buff
[17] = (uint32_t)phy_data
; /* extended 10bt distance */
427 regs_buff
[18] = regs_buff
[13]; /* cable polarity */
428 regs_buff
[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */
429 regs_buff
[20] = regs_buff
[17]; /* polarity correction */
430 /* phy receive errors */
431 regs_buff
[22] = adapter
->phy_stats
.receive_errors
;
432 regs_buff
[23] = regs_buff
[13]; /* mdix mode */
434 regs_buff
[21] = adapter
->phy_stats
.idle_errors
; /* phy idle errors */
435 e1000_read_phy_reg(hw
, PHY_1000T_STATUS
, &phy_data
);
436 regs_buff
[24] = (uint32_t)phy_data
; /* phy local receiver status */
437 regs_buff
[25] = regs_buff
[24]; /* phy remote receiver status */
438 if(hw
->mac_type
>= e1000_82540
&&
439 hw
->media_type
== e1000_media_type_copper
) {
440 regs_buff
[26] = E1000_READ_REG(hw
, MANC
);
445 e1000_get_eeprom_len(struct net_device
*netdev
)
447 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
448 return adapter
->hw
.eeprom
.word_size
* 2;
452 e1000_get_eeprom(struct net_device
*netdev
,
453 struct ethtool_eeprom
*eeprom
, uint8_t *bytes
)
455 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
456 struct e1000_hw
*hw
= &adapter
->hw
;
457 uint16_t *eeprom_buff
;
458 int first_word
, last_word
;
465 eeprom
->magic
= hw
->vendor_id
| (hw
->device_id
<< 16);
467 first_word
= eeprom
->offset
>> 1;
468 last_word
= (eeprom
->offset
+ eeprom
->len
- 1) >> 1;
470 eeprom_buff
= kmalloc(sizeof(uint16_t) *
471 (last_word
- first_word
+ 1), GFP_KERNEL
);
475 if(hw
->eeprom
.type
== e1000_eeprom_spi
)
476 ret_val
= e1000_read_eeprom(hw
, first_word
,
477 last_word
- first_word
+ 1,
480 for (i
= 0; i
< last_word
- first_word
+ 1; i
++)
481 if((ret_val
= e1000_read_eeprom(hw
, first_word
+ i
, 1,
486 /* Device's eeprom is always little-endian, word addressable */
487 for (i
= 0; i
< last_word
- first_word
+ 1; i
++)
488 le16_to_cpus(&eeprom_buff
[i
]);
490 memcpy(bytes
, (uint8_t *)eeprom_buff
+ (eeprom
->offset
& 1),
498 e1000_set_eeprom(struct net_device
*netdev
,
499 struct ethtool_eeprom
*eeprom
, uint8_t *bytes
)
501 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
502 struct e1000_hw
*hw
= &adapter
->hw
;
503 uint16_t *eeprom_buff
;
505 int max_len
, first_word
, last_word
, ret_val
= 0;
511 if(eeprom
->magic
!= (hw
->vendor_id
| (hw
->device_id
<< 16)))
514 max_len
= hw
->eeprom
.word_size
* 2;
516 first_word
= eeprom
->offset
>> 1;
517 last_word
= (eeprom
->offset
+ eeprom
->len
- 1) >> 1;
518 eeprom_buff
= kmalloc(max_len
, GFP_KERNEL
);
522 ptr
= (void *)eeprom_buff
;
524 if(eeprom
->offset
& 1) {
525 /* need read/modify/write of first changed EEPROM word */
526 /* only the second byte of the word is being modified */
527 ret_val
= e1000_read_eeprom(hw
, first_word
, 1,
531 if(((eeprom
->offset
+ eeprom
->len
) & 1) && (ret_val
== 0)) {
532 /* need read/modify/write of last changed EEPROM word */
533 /* only the first byte of the word is being modified */
534 ret_val
= e1000_read_eeprom(hw
, last_word
, 1,
535 &eeprom_buff
[last_word
- first_word
]);
538 /* Device's eeprom is always little-endian, word addressable */
539 for (i
= 0; i
< last_word
- first_word
+ 1; i
++)
540 le16_to_cpus(&eeprom_buff
[i
]);
542 memcpy(ptr
, bytes
, eeprom
->len
);
544 for (i
= 0; i
< last_word
- first_word
+ 1; i
++)
545 eeprom_buff
[i
] = cpu_to_le16(eeprom_buff
[i
]);
547 ret_val
= e1000_write_eeprom(hw
, first_word
,
548 last_word
- first_word
+ 1, eeprom_buff
);
550 /* Update the checksum over the first part of the EEPROM if needed
551 * and flush shadow RAM for 82573 conrollers */
552 if((ret_val
== 0) && ((first_word
<= EEPROM_CHECKSUM_REG
) ||
553 (hw
->mac_type
== e1000_82573
)))
554 e1000_update_eeprom_checksum(hw
);
561 e1000_get_drvinfo(struct net_device
*netdev
,
562 struct ethtool_drvinfo
*drvinfo
)
564 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
565 char firmware_version
[32];
566 uint16_t eeprom_data
;
568 strncpy(drvinfo
->driver
, e1000_driver_name
, 32);
569 strncpy(drvinfo
->version
, e1000_driver_version
, 32);
571 /* EEPROM image version # is reported as firware version # for
572 * 8257{1|2|3} controllers */
573 e1000_read_eeprom(&adapter
->hw
, 5, 1, &eeprom_data
);
574 switch (adapter
->hw
.mac_type
) {
578 sprintf(firmware_version
, "%d.%d-%d",
579 (eeprom_data
& 0xF000) >> 12,
580 (eeprom_data
& 0x0FF0) >> 4,
581 eeprom_data
& 0x000F);
584 sprintf(firmware_version
, "n/a");
587 strncpy(drvinfo
->fw_version
, firmware_version
, 32);
588 strncpy(drvinfo
->bus_info
, pci_name(adapter
->pdev
), 32);
589 drvinfo
->n_stats
= E1000_STATS_LEN
;
590 drvinfo
->testinfo_len
= E1000_TEST_LEN
;
591 drvinfo
->regdump_len
= e1000_get_regs_len(netdev
);
592 drvinfo
->eedump_len
= e1000_get_eeprom_len(netdev
);
596 e1000_get_ringparam(struct net_device
*netdev
,
597 struct ethtool_ringparam
*ring
)
599 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
600 e1000_mac_type mac_type
= adapter
->hw
.mac_type
;
601 struct e1000_tx_ring
*txdr
= adapter
->tx_ring
;
602 struct e1000_rx_ring
*rxdr
= adapter
->rx_ring
;
604 ring
->rx_max_pending
= (mac_type
< e1000_82544
) ? E1000_MAX_RXD
:
606 ring
->tx_max_pending
= (mac_type
< e1000_82544
) ? E1000_MAX_TXD
:
608 ring
->rx_mini_max_pending
= 0;
609 ring
->rx_jumbo_max_pending
= 0;
610 ring
->rx_pending
= rxdr
->count
;
611 ring
->tx_pending
= txdr
->count
;
612 ring
->rx_mini_pending
= 0;
613 ring
->rx_jumbo_pending
= 0;
617 e1000_set_ringparam(struct net_device
*netdev
,
618 struct ethtool_ringparam
*ring
)
620 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
621 e1000_mac_type mac_type
= adapter
->hw
.mac_type
;
622 struct e1000_tx_ring
*txdr
, *tx_old
, *tx_new
;
623 struct e1000_rx_ring
*rxdr
, *rx_old
, *rx_new
;
624 int i
, err
, tx_ring_size
, rx_ring_size
;
626 tx_ring_size
= sizeof(struct e1000_tx_ring
) * adapter
->num_queues
;
627 rx_ring_size
= sizeof(struct e1000_rx_ring
) * adapter
->num_queues
;
629 if (netif_running(adapter
->netdev
))
632 tx_old
= adapter
->tx_ring
;
633 rx_old
= adapter
->rx_ring
;
635 adapter
->tx_ring
= kmalloc(tx_ring_size
, GFP_KERNEL
);
636 if (!adapter
->tx_ring
) {
640 memset(adapter
->tx_ring
, 0, tx_ring_size
);
642 adapter
->rx_ring
= kmalloc(rx_ring_size
, GFP_KERNEL
);
643 if (!adapter
->rx_ring
) {
644 kfree(adapter
->tx_ring
);
648 memset(adapter
->rx_ring
, 0, rx_ring_size
);
650 txdr
= adapter
->tx_ring
;
651 rxdr
= adapter
->rx_ring
;
653 if((ring
->rx_mini_pending
) || (ring
->rx_jumbo_pending
))
656 rxdr
->count
= max(ring
->rx_pending
,(uint32_t)E1000_MIN_RXD
);
657 rxdr
->count
= min(rxdr
->count
,(uint32_t)(mac_type
< e1000_82544
?
658 E1000_MAX_RXD
: E1000_MAX_82544_RXD
));
659 E1000_ROUNDUP(rxdr
->count
, REQ_RX_DESCRIPTOR_MULTIPLE
);
661 txdr
->count
= max(ring
->tx_pending
,(uint32_t)E1000_MIN_TXD
);
662 txdr
->count
= min(txdr
->count
,(uint32_t)(mac_type
< e1000_82544
?
663 E1000_MAX_TXD
: E1000_MAX_82544_TXD
));
664 E1000_ROUNDUP(txdr
->count
, REQ_TX_DESCRIPTOR_MULTIPLE
);
666 for (i
= 0; i
< adapter
->num_queues
; i
++) {
667 txdr
[i
].count
= txdr
->count
;
668 rxdr
[i
].count
= rxdr
->count
;
671 if(netif_running(adapter
->netdev
)) {
672 /* Try to get new resources before deleting old */
673 if ((err
= e1000_setup_all_rx_resources(adapter
)))
675 if ((err
= e1000_setup_all_tx_resources(adapter
)))
678 /* save the new, restore the old in order to free it,
679 * then restore the new back again */
681 rx_new
= adapter
->rx_ring
;
682 tx_new
= adapter
->tx_ring
;
683 adapter
->rx_ring
= rx_old
;
684 adapter
->tx_ring
= tx_old
;
685 e1000_free_all_rx_resources(adapter
);
686 e1000_free_all_tx_resources(adapter
);
689 adapter
->rx_ring
= rx_new
;
690 adapter
->tx_ring
= tx_new
;
691 if((err
= e1000_up(adapter
)))
697 e1000_free_all_rx_resources(adapter
);
699 adapter
->rx_ring
= rx_old
;
700 adapter
->tx_ring
= tx_old
;
705 #define REG_PATTERN_TEST(R, M, W) \
707 uint32_t pat, value; \
709 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF}; \
710 for(pat = 0; pat < sizeof(test)/sizeof(test[0]); pat++) { \
711 E1000_WRITE_REG(&adapter->hw, R, (test[pat] & W)); \
712 value = E1000_READ_REG(&adapter->hw, R); \
713 if(value != (test[pat] & W & M)) { \
714 DPRINTK(DRV, ERR, "pattern test reg %04X failed: got " \
715 "0x%08X expected 0x%08X\n", \
716 E1000_##R, value, (test[pat] & W & M)); \
717 *data = (adapter->hw.mac_type < e1000_82543) ? \
718 E1000_82542_##R : E1000_##R; \
724 #define REG_SET_AND_CHECK(R, M, W) \
727 E1000_WRITE_REG(&adapter->hw, R, W & M); \
728 value = E1000_READ_REG(&adapter->hw, R); \
729 if((W & M) != (value & M)) { \
730 DPRINTK(DRV, ERR, "set/check reg %04X test failed: got 0x%08X "\
731 "expected 0x%08X\n", E1000_##R, (value & M), (W & M)); \
732 *data = (adapter->hw.mac_type < e1000_82543) ? \
733 E1000_82542_##R : E1000_##R; \
739 e1000_reg_test(struct e1000_adapter
*adapter
, uint64_t *data
)
741 uint32_t value
, before
, after
;
744 /* The status register is Read Only, so a write should fail.
745 * Some bits that get toggled are ignored.
747 switch (adapter
->hw
.mac_type
) {
748 /* there are several bits on newer hardware that are r/w */
761 before
= E1000_READ_REG(&adapter
->hw
, STATUS
);
762 value
= (E1000_READ_REG(&adapter
->hw
, STATUS
) & toggle
);
763 E1000_WRITE_REG(&adapter
->hw
, STATUS
, toggle
);
764 after
= E1000_READ_REG(&adapter
->hw
, STATUS
) & toggle
;
766 DPRINTK(DRV
, ERR
, "failed STATUS register test got: "
767 "0x%08X expected: 0x%08X\n", after
, value
);
771 /* restore previous status */
772 E1000_WRITE_REG(&adapter
->hw
, STATUS
, before
);
774 REG_PATTERN_TEST(FCAL
, 0xFFFFFFFF, 0xFFFFFFFF);
775 REG_PATTERN_TEST(FCAH
, 0x0000FFFF, 0xFFFFFFFF);
776 REG_PATTERN_TEST(FCT
, 0x0000FFFF, 0xFFFFFFFF);
777 REG_PATTERN_TEST(VET
, 0x0000FFFF, 0xFFFFFFFF);
778 REG_PATTERN_TEST(RDTR
, 0x0000FFFF, 0xFFFFFFFF);
779 REG_PATTERN_TEST(RDBAH
, 0xFFFFFFFF, 0xFFFFFFFF);
780 REG_PATTERN_TEST(RDLEN
, 0x000FFF80, 0x000FFFFF);
781 REG_PATTERN_TEST(RDH
, 0x0000FFFF, 0x0000FFFF);
782 REG_PATTERN_TEST(RDT
, 0x0000FFFF, 0x0000FFFF);
783 REG_PATTERN_TEST(FCRTH
, 0x0000FFF8, 0x0000FFF8);
784 REG_PATTERN_TEST(FCTTV
, 0x0000FFFF, 0x0000FFFF);
785 REG_PATTERN_TEST(TIPG
, 0x3FFFFFFF, 0x3FFFFFFF);
786 REG_PATTERN_TEST(TDBAH
, 0xFFFFFFFF, 0xFFFFFFFF);
787 REG_PATTERN_TEST(TDLEN
, 0x000FFF80, 0x000FFFFF);
789 REG_SET_AND_CHECK(RCTL
, 0xFFFFFFFF, 0x00000000);
790 REG_SET_AND_CHECK(RCTL
, 0x06DFB3FE, 0x003FFFFB);
791 REG_SET_AND_CHECK(TCTL
, 0xFFFFFFFF, 0x00000000);
793 if(adapter
->hw
.mac_type
>= e1000_82543
) {
795 REG_SET_AND_CHECK(RCTL
, 0x06DFB3FE, 0xFFFFFFFF);
796 REG_PATTERN_TEST(RDBAL
, 0xFFFFFFF0, 0xFFFFFFFF);
797 REG_PATTERN_TEST(TXCW
, 0xC000FFFF, 0x0000FFFF);
798 REG_PATTERN_TEST(TDBAL
, 0xFFFFFFF0, 0xFFFFFFFF);
799 REG_PATTERN_TEST(TIDV
, 0x0000FFFF, 0x0000FFFF);
801 for(i
= 0; i
< E1000_RAR_ENTRIES
; i
++) {
802 REG_PATTERN_TEST(RA
+ ((i
<< 1) << 2), 0xFFFFFFFF,
804 REG_PATTERN_TEST(RA
+ (((i
<< 1) + 1) << 2), 0x8003FFFF,
810 REG_SET_AND_CHECK(RCTL
, 0xFFFFFFFF, 0x01FFFFFF);
811 REG_PATTERN_TEST(RDBAL
, 0xFFFFF000, 0xFFFFFFFF);
812 REG_PATTERN_TEST(TXCW
, 0x0000FFFF, 0x0000FFFF);
813 REG_PATTERN_TEST(TDBAL
, 0xFFFFF000, 0xFFFFFFFF);
817 for(i
= 0; i
< E1000_MC_TBL_SIZE
; i
++)
818 REG_PATTERN_TEST(MTA
+ (i
<< 2), 0xFFFFFFFF, 0xFFFFFFFF);
825 e1000_eeprom_test(struct e1000_adapter
*adapter
, uint64_t *data
)
828 uint16_t checksum
= 0;
832 /* Read and add up the contents of the EEPROM */
833 for(i
= 0; i
< (EEPROM_CHECKSUM_REG
+ 1); i
++) {
834 if((e1000_read_eeprom(&adapter
->hw
, i
, 1, &temp
)) < 0) {
841 /* If Checksum is not Correct return error else test passed */
842 if((checksum
!= (uint16_t) EEPROM_SUM
) && !(*data
))
849 e1000_test_intr(int irq
,
851 struct pt_regs
*regs
)
853 struct net_device
*netdev
= (struct net_device
*) data
;
854 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
856 adapter
->test_icr
|= E1000_READ_REG(&adapter
->hw
, ICR
);
862 e1000_intr_test(struct e1000_adapter
*adapter
, uint64_t *data
)
864 struct net_device
*netdev
= adapter
->netdev
;
865 uint32_t mask
, i
=0, shared_int
= TRUE
;
866 uint32_t irq
= adapter
->pdev
->irq
;
870 /* Hook up test interrupt handler just for this test */
871 if(!request_irq(irq
, &e1000_test_intr
, 0, netdev
->name
, netdev
)) {
873 } else if(request_irq(irq
, &e1000_test_intr
, SA_SHIRQ
,
874 netdev
->name
, netdev
)){
879 /* Disable all the interrupts */
880 E1000_WRITE_REG(&adapter
->hw
, IMC
, 0xFFFFFFFF);
883 /* Test each interrupt */
886 /* Interrupt to test */
890 /* Disable the interrupt to be reported in
891 * the cause register and then force the same
892 * interrupt and see if one gets posted. If
893 * an interrupt was posted to the bus, the
896 adapter
->test_icr
= 0;
897 E1000_WRITE_REG(&adapter
->hw
, IMC
, mask
);
898 E1000_WRITE_REG(&adapter
->hw
, ICS
, mask
);
901 if(adapter
->test_icr
& mask
) {
907 /* Enable the interrupt to be reported in
908 * the cause register and then force the same
909 * interrupt and see if one gets posted. If
910 * an interrupt was not posted to the bus, the
913 adapter
->test_icr
= 0;
914 E1000_WRITE_REG(&adapter
->hw
, IMS
, mask
);
915 E1000_WRITE_REG(&adapter
->hw
, ICS
, mask
);
918 if(!(adapter
->test_icr
& mask
)) {
924 /* Disable the other interrupts to be reported in
925 * the cause register and then force the other
926 * interrupts and see if any get posted. If
927 * an interrupt was posted to the bus, the
930 adapter
->test_icr
= 0;
931 E1000_WRITE_REG(&adapter
->hw
, IMC
, ~mask
& 0x00007FFF);
932 E1000_WRITE_REG(&adapter
->hw
, ICS
, ~mask
& 0x00007FFF);
935 if(adapter
->test_icr
) {
942 /* Disable all the interrupts */
943 E1000_WRITE_REG(&adapter
->hw
, IMC
, 0xFFFFFFFF);
946 /* Unhook test interrupt handler */
947 free_irq(irq
, netdev
);
953 e1000_free_desc_rings(struct e1000_adapter
*adapter
)
955 struct e1000_tx_ring
*txdr
= &adapter
->test_tx_ring
;
956 struct e1000_rx_ring
*rxdr
= &adapter
->test_rx_ring
;
957 struct pci_dev
*pdev
= adapter
->pdev
;
960 if(txdr
->desc
&& txdr
->buffer_info
) {
961 for(i
= 0; i
< txdr
->count
; i
++) {
962 if(txdr
->buffer_info
[i
].dma
)
963 pci_unmap_single(pdev
, txdr
->buffer_info
[i
].dma
,
964 txdr
->buffer_info
[i
].length
,
966 if(txdr
->buffer_info
[i
].skb
)
967 dev_kfree_skb(txdr
->buffer_info
[i
].skb
);
971 if(rxdr
->desc
&& rxdr
->buffer_info
) {
972 for(i
= 0; i
< rxdr
->count
; i
++) {
973 if(rxdr
->buffer_info
[i
].dma
)
974 pci_unmap_single(pdev
, rxdr
->buffer_info
[i
].dma
,
975 rxdr
->buffer_info
[i
].length
,
977 if(rxdr
->buffer_info
[i
].skb
)
978 dev_kfree_skb(rxdr
->buffer_info
[i
].skb
);
983 pci_free_consistent(pdev
, txdr
->size
, txdr
->desc
, txdr
->dma
);
987 pci_free_consistent(pdev
, rxdr
->size
, rxdr
->desc
, rxdr
->dma
);
991 kfree(txdr
->buffer_info
);
992 txdr
->buffer_info
= NULL
;
994 kfree(rxdr
->buffer_info
);
995 rxdr
->buffer_info
= NULL
;
1001 e1000_setup_desc_rings(struct e1000_adapter
*adapter
)
1003 struct e1000_tx_ring
*txdr
= &adapter
->test_tx_ring
;
1004 struct e1000_rx_ring
*rxdr
= &adapter
->test_rx_ring
;
1005 struct pci_dev
*pdev
= adapter
->pdev
;
1007 int size
, i
, ret_val
;
1009 /* Setup Tx descriptor ring and Tx buffers */
1012 txdr
->count
= E1000_DEFAULT_TXD
;
1014 size
= txdr
->count
* sizeof(struct e1000_buffer
);
1015 if(!(txdr
->buffer_info
= kmalloc(size
, GFP_KERNEL
))) {
1019 memset(txdr
->buffer_info
, 0, size
);
1021 txdr
->size
= txdr
->count
* sizeof(struct e1000_tx_desc
);
1022 E1000_ROUNDUP(txdr
->size
, 4096);
1023 if(!(txdr
->desc
= pci_alloc_consistent(pdev
, txdr
->size
, &txdr
->dma
))) {
1027 memset(txdr
->desc
, 0, txdr
->size
);
1028 txdr
->next_to_use
= txdr
->next_to_clean
= 0;
1030 E1000_WRITE_REG(&adapter
->hw
, TDBAL
,
1031 ((uint64_t) txdr
->dma
& 0x00000000FFFFFFFF));
1032 E1000_WRITE_REG(&adapter
->hw
, TDBAH
, ((uint64_t) txdr
->dma
>> 32));
1033 E1000_WRITE_REG(&adapter
->hw
, TDLEN
,
1034 txdr
->count
* sizeof(struct e1000_tx_desc
));
1035 E1000_WRITE_REG(&adapter
->hw
, TDH
, 0);
1036 E1000_WRITE_REG(&adapter
->hw
, TDT
, 0);
1037 E1000_WRITE_REG(&adapter
->hw
, TCTL
,
1038 E1000_TCTL_PSP
| E1000_TCTL_EN
|
1039 E1000_COLLISION_THRESHOLD
<< E1000_CT_SHIFT
|
1040 E1000_FDX_COLLISION_DISTANCE
<< E1000_COLD_SHIFT
);
1042 for(i
= 0; i
< txdr
->count
; i
++) {
1043 struct e1000_tx_desc
*tx_desc
= E1000_TX_DESC(*txdr
, i
);
1044 struct sk_buff
*skb
;
1045 unsigned int size
= 1024;
1047 if(!(skb
= alloc_skb(size
, GFP_KERNEL
))) {
1052 txdr
->buffer_info
[i
].skb
= skb
;
1053 txdr
->buffer_info
[i
].length
= skb
->len
;
1054 txdr
->buffer_info
[i
].dma
=
1055 pci_map_single(pdev
, skb
->data
, skb
->len
,
1057 tx_desc
->buffer_addr
= cpu_to_le64(txdr
->buffer_info
[i
].dma
);
1058 tx_desc
->lower
.data
= cpu_to_le32(skb
->len
);
1059 tx_desc
->lower
.data
|= cpu_to_le32(E1000_TXD_CMD_EOP
|
1060 E1000_TXD_CMD_IFCS
|
1062 tx_desc
->upper
.data
= 0;
1065 /* Setup Rx descriptor ring and Rx buffers */
1068 rxdr
->count
= E1000_DEFAULT_RXD
;
1070 size
= rxdr
->count
* sizeof(struct e1000_buffer
);
1071 if(!(rxdr
->buffer_info
= kmalloc(size
, GFP_KERNEL
))) {
1075 memset(rxdr
->buffer_info
, 0, size
);
1077 rxdr
->size
= rxdr
->count
* sizeof(struct e1000_rx_desc
);
1078 if(!(rxdr
->desc
= pci_alloc_consistent(pdev
, rxdr
->size
, &rxdr
->dma
))) {
1082 memset(rxdr
->desc
, 0, rxdr
->size
);
1083 rxdr
->next_to_use
= rxdr
->next_to_clean
= 0;
1085 rctl
= E1000_READ_REG(&adapter
->hw
, RCTL
);
1086 E1000_WRITE_REG(&adapter
->hw
, RCTL
, rctl
& ~E1000_RCTL_EN
);
1087 E1000_WRITE_REG(&adapter
->hw
, RDBAL
,
1088 ((uint64_t) rxdr
->dma
& 0xFFFFFFFF));
1089 E1000_WRITE_REG(&adapter
->hw
, RDBAH
, ((uint64_t) rxdr
->dma
>> 32));
1090 E1000_WRITE_REG(&adapter
->hw
, RDLEN
, rxdr
->size
);
1091 E1000_WRITE_REG(&adapter
->hw
, RDH
, 0);
1092 E1000_WRITE_REG(&adapter
->hw
, RDT
, 0);
1093 rctl
= E1000_RCTL_EN
| E1000_RCTL_BAM
| E1000_RCTL_SZ_2048
|
1094 E1000_RCTL_LBM_NO
| E1000_RCTL_RDMTS_HALF
|
1095 (adapter
->hw
.mc_filter_type
<< E1000_RCTL_MO_SHIFT
);
1096 E1000_WRITE_REG(&adapter
->hw
, RCTL
, rctl
);
1098 for(i
= 0; i
< rxdr
->count
; i
++) {
1099 struct e1000_rx_desc
*rx_desc
= E1000_RX_DESC(*rxdr
, i
);
1100 struct sk_buff
*skb
;
1102 if(!(skb
= alloc_skb(E1000_RXBUFFER_2048
+ NET_IP_ALIGN
,
1107 skb_reserve(skb
, NET_IP_ALIGN
);
1108 rxdr
->buffer_info
[i
].skb
= skb
;
1109 rxdr
->buffer_info
[i
].length
= E1000_RXBUFFER_2048
;
1110 rxdr
->buffer_info
[i
].dma
=
1111 pci_map_single(pdev
, skb
->data
, E1000_RXBUFFER_2048
,
1112 PCI_DMA_FROMDEVICE
);
1113 rx_desc
->buffer_addr
= cpu_to_le64(rxdr
->buffer_info
[i
].dma
);
1114 memset(skb
->data
, 0x00, skb
->len
);
1120 e1000_free_desc_rings(adapter
);
1125 e1000_phy_disable_receiver(struct e1000_adapter
*adapter
)
1127 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1128 e1000_write_phy_reg(&adapter
->hw
, 29, 0x001F);
1129 e1000_write_phy_reg(&adapter
->hw
, 30, 0x8FFC);
1130 e1000_write_phy_reg(&adapter
->hw
, 29, 0x001A);
1131 e1000_write_phy_reg(&adapter
->hw
, 30, 0x8FF0);
1135 e1000_phy_reset_clk_and_crs(struct e1000_adapter
*adapter
)
1139 /* Because we reset the PHY above, we need to re-force TX_CLK in the
1140 * Extended PHY Specific Control Register to 25MHz clock. This
1141 * value defaults back to a 2.5MHz clock when the PHY is reset.
1143 e1000_read_phy_reg(&adapter
->hw
, M88E1000_EXT_PHY_SPEC_CTRL
, &phy_reg
);
1144 phy_reg
|= M88E1000_EPSCR_TX_CLK_25
;
1145 e1000_write_phy_reg(&adapter
->hw
,
1146 M88E1000_EXT_PHY_SPEC_CTRL
, phy_reg
);
1148 /* In addition, because of the s/w reset above, we need to enable
1149 * CRS on TX. This must be set for both full and half duplex
1152 e1000_read_phy_reg(&adapter
->hw
, M88E1000_PHY_SPEC_CTRL
, &phy_reg
);
1153 phy_reg
|= M88E1000_PSCR_ASSERT_CRS_ON_TX
;
1154 e1000_write_phy_reg(&adapter
->hw
,
1155 M88E1000_PHY_SPEC_CTRL
, phy_reg
);
1159 e1000_nonintegrated_phy_loopback(struct e1000_adapter
*adapter
)
1164 /* Setup the Device Control Register for PHY loopback test. */
1166 ctrl_reg
= E1000_READ_REG(&adapter
->hw
, CTRL
);
1167 ctrl_reg
|= (E1000_CTRL_ILOS
| /* Invert Loss-Of-Signal */
1168 E1000_CTRL_FRCSPD
| /* Set the Force Speed Bit */
1169 E1000_CTRL_FRCDPX
| /* Set the Force Duplex Bit */
1170 E1000_CTRL_SPD_1000
| /* Force Speed to 1000 */
1171 E1000_CTRL_FD
); /* Force Duplex to FULL */
1173 E1000_WRITE_REG(&adapter
->hw
, CTRL
, ctrl_reg
);
1175 /* Read the PHY Specific Control Register (0x10) */
1176 e1000_read_phy_reg(&adapter
->hw
, M88E1000_PHY_SPEC_CTRL
, &phy_reg
);
1178 /* Clear Auto-Crossover bits in PHY Specific Control Register
1181 phy_reg
&= ~M88E1000_PSCR_AUTO_X_MODE
;
1182 e1000_write_phy_reg(&adapter
->hw
, M88E1000_PHY_SPEC_CTRL
, phy_reg
);
1184 /* Perform software reset on the PHY */
1185 e1000_phy_reset(&adapter
->hw
);
1187 /* Have to setup TX_CLK and TX_CRS after software reset */
1188 e1000_phy_reset_clk_and_crs(adapter
);
1190 e1000_write_phy_reg(&adapter
->hw
, PHY_CTRL
, 0x8100);
1192 /* Wait for reset to complete. */
1195 /* Have to setup TX_CLK and TX_CRS after software reset */
1196 e1000_phy_reset_clk_and_crs(adapter
);
1198 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1199 e1000_phy_disable_receiver(adapter
);
1201 /* Set the loopback bit in the PHY control register. */
1202 e1000_read_phy_reg(&adapter
->hw
, PHY_CTRL
, &phy_reg
);
1203 phy_reg
|= MII_CR_LOOPBACK
;
1204 e1000_write_phy_reg(&adapter
->hw
, PHY_CTRL
, phy_reg
);
1206 /* Setup TX_CLK and TX_CRS one more time. */
1207 e1000_phy_reset_clk_and_crs(adapter
);
1209 /* Check Phy Configuration */
1210 e1000_read_phy_reg(&adapter
->hw
, PHY_CTRL
, &phy_reg
);
1211 if(phy_reg
!= 0x4100)
1214 e1000_read_phy_reg(&adapter
->hw
, M88E1000_EXT_PHY_SPEC_CTRL
, &phy_reg
);
1215 if(phy_reg
!= 0x0070)
1218 e1000_read_phy_reg(&adapter
->hw
, 29, &phy_reg
);
1219 if(phy_reg
!= 0x001A)
1226 e1000_integrated_phy_loopback(struct e1000_adapter
*adapter
)
1228 uint32_t ctrl_reg
= 0;
1229 uint32_t stat_reg
= 0;
1231 adapter
->hw
.autoneg
= FALSE
;
1233 if(adapter
->hw
.phy_type
== e1000_phy_m88
) {
1234 /* Auto-MDI/MDIX Off */
1235 e1000_write_phy_reg(&adapter
->hw
,
1236 M88E1000_PHY_SPEC_CTRL
, 0x0808);
1237 /* reset to update Auto-MDI/MDIX */
1238 e1000_write_phy_reg(&adapter
->hw
, PHY_CTRL
, 0x9140);
1240 e1000_write_phy_reg(&adapter
->hw
, PHY_CTRL
, 0x8140);
1242 /* force 1000, set loopback */
1243 e1000_write_phy_reg(&adapter
->hw
, PHY_CTRL
, 0x4140);
1245 /* Now set up the MAC to the same speed/duplex as the PHY. */
1246 ctrl_reg
= E1000_READ_REG(&adapter
->hw
, CTRL
);
1247 ctrl_reg
&= ~E1000_CTRL_SPD_SEL
; /* Clear the speed sel bits */
1248 ctrl_reg
|= (E1000_CTRL_FRCSPD
| /* Set the Force Speed Bit */
1249 E1000_CTRL_FRCDPX
| /* Set the Force Duplex Bit */
1250 E1000_CTRL_SPD_1000
|/* Force Speed to 1000 */
1251 E1000_CTRL_FD
); /* Force Duplex to FULL */
1253 if(adapter
->hw
.media_type
== e1000_media_type_copper
&&
1254 adapter
->hw
.phy_type
== e1000_phy_m88
) {
1255 ctrl_reg
|= E1000_CTRL_ILOS
; /* Invert Loss of Signal */
1257 /* Set the ILOS bit on the fiber Nic is half
1258 * duplex link is detected. */
1259 stat_reg
= E1000_READ_REG(&adapter
->hw
, STATUS
);
1260 if((stat_reg
& E1000_STATUS_FD
) == 0)
1261 ctrl_reg
|= (E1000_CTRL_ILOS
| E1000_CTRL_SLU
);
1264 E1000_WRITE_REG(&adapter
->hw
, CTRL
, ctrl_reg
);
1266 /* Disable the receiver on the PHY so when a cable is plugged in, the
1267 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1269 if(adapter
->hw
.phy_type
== e1000_phy_m88
)
1270 e1000_phy_disable_receiver(adapter
);
1278 e1000_set_phy_loopback(struct e1000_adapter
*adapter
)
1280 uint16_t phy_reg
= 0;
1283 switch (adapter
->hw
.mac_type
) {
1285 if(adapter
->hw
.media_type
== e1000_media_type_copper
) {
1286 /* Attempt to setup Loopback mode on Non-integrated PHY.
1287 * Some PHY registers get corrupted at random, so
1288 * attempt this 10 times.
1290 while(e1000_nonintegrated_phy_loopback(adapter
) &&
1300 case e1000_82545_rev_3
:
1302 case e1000_82546_rev_3
:
1304 case e1000_82541_rev_2
:
1306 case e1000_82547_rev_2
:
1310 return e1000_integrated_phy_loopback(adapter
);
1314 /* Default PHY loopback work is to read the MII
1315 * control register and assert bit 14 (loopback mode).
1317 e1000_read_phy_reg(&adapter
->hw
, PHY_CTRL
, &phy_reg
);
1318 phy_reg
|= MII_CR_LOOPBACK
;
1319 e1000_write_phy_reg(&adapter
->hw
, PHY_CTRL
, phy_reg
);
1328 e1000_setup_loopback_test(struct e1000_adapter
*adapter
)
1331 struct e1000_hw
*hw
= &adapter
->hw
;
1333 if (hw
->media_type
== e1000_media_type_fiber
||
1334 hw
->media_type
== e1000_media_type_internal_serdes
) {
1335 switch (hw
->mac_type
) {
1338 case e1000_82545_rev_3
:
1339 case e1000_82546_rev_3
:
1340 return e1000_set_phy_loopback(adapter
);
1344 #define E1000_SERDES_LB_ON 0x410
1345 e1000_set_phy_loopback(adapter
);
1346 E1000_WRITE_REG(hw
, SCTL
, E1000_SERDES_LB_ON
);
1351 rctl
= E1000_READ_REG(hw
, RCTL
);
1352 rctl
|= E1000_RCTL_LBM_TCVR
;
1353 E1000_WRITE_REG(hw
, RCTL
, rctl
);
1356 } else if (hw
->media_type
== e1000_media_type_copper
)
1357 return e1000_set_phy_loopback(adapter
);
1363 e1000_loopback_cleanup(struct e1000_adapter
*adapter
)
1367 struct e1000_hw
*hw
= &adapter
->hw
;
1369 rctl
= E1000_READ_REG(&adapter
->hw
, RCTL
);
1370 rctl
&= ~(E1000_RCTL_LBM_TCVR
| E1000_RCTL_LBM_MAC
);
1371 E1000_WRITE_REG(&adapter
->hw
, RCTL
, rctl
);
1373 switch (hw
->mac_type
) {
1376 if (hw
->media_type
== e1000_media_type_fiber
||
1377 hw
->media_type
== e1000_media_type_internal_serdes
){
1378 #define E1000_SERDES_LB_OFF 0x400
1379 E1000_WRITE_REG(hw
, SCTL
, E1000_SERDES_LB_OFF
);
1383 /* fall thru for Cu adapters */
1386 case e1000_82545_rev_3
:
1387 case e1000_82546_rev_3
:
1390 e1000_read_phy_reg(hw
, PHY_CTRL
, &phy_reg
);
1391 if (phy_reg
& MII_CR_LOOPBACK
) {
1392 phy_reg
&= ~MII_CR_LOOPBACK
;
1393 e1000_write_phy_reg(hw
, PHY_CTRL
, phy_reg
);
1394 e1000_phy_reset(hw
);
1401 e1000_create_lbtest_frame(struct sk_buff
*skb
, unsigned int frame_size
)
1403 memset(skb
->data
, 0xFF, frame_size
);
1404 frame_size
= (frame_size
% 2) ? (frame_size
- 1) : frame_size
;
1405 memset(&skb
->data
[frame_size
/ 2], 0xAA, frame_size
/ 2 - 1);
1406 memset(&skb
->data
[frame_size
/ 2 + 10], 0xBE, 1);
1407 memset(&skb
->data
[frame_size
/ 2 + 12], 0xAF, 1);
1411 e1000_check_lbtest_frame(struct sk_buff
*skb
, unsigned int frame_size
)
1413 frame_size
= (frame_size
% 2) ? (frame_size
- 1) : frame_size
;
1414 if(*(skb
->data
+ 3) == 0xFF) {
1415 if((*(skb
->data
+ frame_size
/ 2 + 10) == 0xBE) &&
1416 (*(skb
->data
+ frame_size
/ 2 + 12) == 0xAF)) {
1424 e1000_run_loopback_test(struct e1000_adapter
*adapter
)
1426 struct e1000_tx_ring
*txdr
= &adapter
->test_tx_ring
;
1427 struct e1000_rx_ring
*rxdr
= &adapter
->test_rx_ring
;
1428 struct pci_dev
*pdev
= adapter
->pdev
;
1429 int i
, j
, k
, l
, lc
, good_cnt
, ret_val
=0;
1432 E1000_WRITE_REG(&adapter
->hw
, RDT
, rxdr
->count
- 1);
1434 /* Calculate the loop count based on the largest descriptor ring
1435 * The idea is to wrap the largest ring a number of times using 64
1436 * send/receive pairs during each loop
1439 if(rxdr
->count
<= txdr
->count
)
1440 lc
= ((txdr
->count
/ 64) * 2) + 1;
1442 lc
= ((rxdr
->count
/ 64) * 2) + 1;
1445 for(j
= 0; j
<= lc
; j
++) { /* loop count loop */
1446 for(i
= 0; i
< 64; i
++) { /* send the packets */
1447 e1000_create_lbtest_frame(txdr
->buffer_info
[i
].skb
,
1449 pci_dma_sync_single_for_device(pdev
,
1450 txdr
->buffer_info
[k
].dma
,
1451 txdr
->buffer_info
[k
].length
,
1453 if(unlikely(++k
== txdr
->count
)) k
= 0;
1455 E1000_WRITE_REG(&adapter
->hw
, TDT
, k
);
1457 time
= jiffies
; /* set the start time for the receive */
1459 do { /* receive the sent packets */
1460 pci_dma_sync_single_for_cpu(pdev
,
1461 rxdr
->buffer_info
[l
].dma
,
1462 rxdr
->buffer_info
[l
].length
,
1463 PCI_DMA_FROMDEVICE
);
1465 ret_val
= e1000_check_lbtest_frame(
1466 rxdr
->buffer_info
[l
].skb
,
1470 if(unlikely(++l
== rxdr
->count
)) l
= 0;
1471 /* time + 20 msecs (200 msecs on 2.4) is more than
1472 * enough time to complete the receives, if it's
1473 * exceeded, break and error off
1475 } while (good_cnt
< 64 && jiffies
< (time
+ 20));
1476 if(good_cnt
!= 64) {
1477 ret_val
= 13; /* ret_val is the same as mis-compare */
1480 if(jiffies
>= (time
+ 2)) {
1481 ret_val
= 14; /* error code for time out error */
1484 } /* end loop count loop */
1489 e1000_loopback_test(struct e1000_adapter
*adapter
, uint64_t *data
)
1491 if((*data
= e1000_setup_desc_rings(adapter
))) goto err_loopback
;
1492 if((*data
= e1000_setup_loopback_test(adapter
)))
1493 goto err_loopback_setup
;
1494 *data
= e1000_run_loopback_test(adapter
);
1495 e1000_loopback_cleanup(adapter
);
1497 e1000_free_desc_rings(adapter
);
1503 e1000_link_test(struct e1000_adapter
*adapter
, uint64_t *data
)
1506 if (adapter
->hw
.media_type
== e1000_media_type_internal_serdes
) {
1508 adapter
->hw
.serdes_link_down
= TRUE
;
1510 /* On some blade server designs, link establishment
1511 * could take as long as 2-3 minutes */
1513 e1000_check_for_link(&adapter
->hw
);
1514 if (adapter
->hw
.serdes_link_down
== FALSE
)
1517 } while (i
++ < 3750);
1521 e1000_check_for_link(&adapter
->hw
);
1522 if(adapter
->hw
.autoneg
) /* if auto_neg is set wait for it */
1525 if(!(E1000_READ_REG(&adapter
->hw
, STATUS
) & E1000_STATUS_LU
)) {
1533 e1000_diag_test_count(struct net_device
*netdev
)
1535 return E1000_TEST_LEN
;
1539 e1000_diag_test(struct net_device
*netdev
,
1540 struct ethtool_test
*eth_test
, uint64_t *data
)
1542 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1543 boolean_t if_running
= netif_running(netdev
);
1545 if(eth_test
->flags
== ETH_TEST_FL_OFFLINE
) {
1548 /* save speed, duplex, autoneg settings */
1549 uint16_t autoneg_advertised
= adapter
->hw
.autoneg_advertised
;
1550 uint8_t forced_speed_duplex
= adapter
->hw
.forced_speed_duplex
;
1551 uint8_t autoneg
= adapter
->hw
.autoneg
;
1553 /* Link test performed before hardware reset so autoneg doesn't
1554 * interfere with test result */
1555 if(e1000_link_test(adapter
, &data
[4]))
1556 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1559 e1000_down(adapter
);
1561 e1000_reset(adapter
);
1563 if(e1000_reg_test(adapter
, &data
[0]))
1564 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1566 e1000_reset(adapter
);
1567 if(e1000_eeprom_test(adapter
, &data
[1]))
1568 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1570 e1000_reset(adapter
);
1571 if(e1000_intr_test(adapter
, &data
[2]))
1572 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1574 e1000_reset(adapter
);
1575 if(e1000_loopback_test(adapter
, &data
[3]))
1576 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1578 /* restore speed, duplex, autoneg settings */
1579 adapter
->hw
.autoneg_advertised
= autoneg_advertised
;
1580 adapter
->hw
.forced_speed_duplex
= forced_speed_duplex
;
1581 adapter
->hw
.autoneg
= autoneg
;
1583 e1000_reset(adapter
);
1588 if(e1000_link_test(adapter
, &data
[4]))
1589 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1591 /* Offline tests aren't run; pass by default */
1597 msleep_interruptible(4 * 1000);
1601 e1000_get_wol(struct net_device
*netdev
, struct ethtool_wolinfo
*wol
)
1603 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1604 struct e1000_hw
*hw
= &adapter
->hw
;
1606 switch(adapter
->hw
.device_id
) {
1607 case E1000_DEV_ID_82542
:
1608 case E1000_DEV_ID_82543GC_FIBER
:
1609 case E1000_DEV_ID_82543GC_COPPER
:
1610 case E1000_DEV_ID_82544EI_FIBER
:
1611 case E1000_DEV_ID_82546EB_QUAD_COPPER
:
1612 case E1000_DEV_ID_82545EM_FIBER
:
1613 case E1000_DEV_ID_82545EM_COPPER
:
1618 case E1000_DEV_ID_82546EB_FIBER
:
1619 case E1000_DEV_ID_82546GB_FIBER
:
1620 /* Wake events only supported on port A for dual fiber */
1621 if(E1000_READ_REG(hw
, STATUS
) & E1000_STATUS_FUNC_1
) {
1629 wol
->supported
= WAKE_UCAST
| WAKE_MCAST
|
1630 WAKE_BCAST
| WAKE_MAGIC
;
1633 if(adapter
->wol
& E1000_WUFC_EX
)
1634 wol
->wolopts
|= WAKE_UCAST
;
1635 if(adapter
->wol
& E1000_WUFC_MC
)
1636 wol
->wolopts
|= WAKE_MCAST
;
1637 if(adapter
->wol
& E1000_WUFC_BC
)
1638 wol
->wolopts
|= WAKE_BCAST
;
1639 if(adapter
->wol
& E1000_WUFC_MAG
)
1640 wol
->wolopts
|= WAKE_MAGIC
;
1646 e1000_set_wol(struct net_device
*netdev
, struct ethtool_wolinfo
*wol
)
1648 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1649 struct e1000_hw
*hw
= &adapter
->hw
;
1651 switch(adapter
->hw
.device_id
) {
1652 case E1000_DEV_ID_82542
:
1653 case E1000_DEV_ID_82543GC_FIBER
:
1654 case E1000_DEV_ID_82543GC_COPPER
:
1655 case E1000_DEV_ID_82544EI_FIBER
:
1656 case E1000_DEV_ID_82546EB_QUAD_COPPER
:
1657 case E1000_DEV_ID_82545EM_FIBER
:
1658 case E1000_DEV_ID_82545EM_COPPER
:
1659 return wol
->wolopts
? -EOPNOTSUPP
: 0;
1661 case E1000_DEV_ID_82546EB_FIBER
:
1662 case E1000_DEV_ID_82546GB_FIBER
:
1663 /* Wake events only supported on port A for dual fiber */
1664 if(E1000_READ_REG(hw
, STATUS
) & E1000_STATUS_FUNC_1
)
1665 return wol
->wolopts
? -EOPNOTSUPP
: 0;
1669 if(wol
->wolopts
& (WAKE_PHY
| WAKE_ARP
| WAKE_MAGICSECURE
))
1674 if(wol
->wolopts
& WAKE_UCAST
)
1675 adapter
->wol
|= E1000_WUFC_EX
;
1676 if(wol
->wolopts
& WAKE_MCAST
)
1677 adapter
->wol
|= E1000_WUFC_MC
;
1678 if(wol
->wolopts
& WAKE_BCAST
)
1679 adapter
->wol
|= E1000_WUFC_BC
;
1680 if(wol
->wolopts
& WAKE_MAGIC
)
1681 adapter
->wol
|= E1000_WUFC_MAG
;
1687 /* toggle LED 4 times per second = 2 "blinks" per second */
1688 #define E1000_ID_INTERVAL (HZ/4)
1690 /* bit defines for adapter->led_status */
1691 #define E1000_LED_ON 0
1694 e1000_led_blink_callback(unsigned long data
)
1696 struct e1000_adapter
*adapter
= (struct e1000_adapter
*) data
;
1698 if(test_and_change_bit(E1000_LED_ON
, &adapter
->led_status
))
1699 e1000_led_off(&adapter
->hw
);
1701 e1000_led_on(&adapter
->hw
);
1703 mod_timer(&adapter
->blink_timer
, jiffies
+ E1000_ID_INTERVAL
);
1707 e1000_phys_id(struct net_device
*netdev
, uint32_t data
)
1709 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1711 if(!data
|| data
> (uint32_t)(MAX_SCHEDULE_TIMEOUT
/ HZ
))
1712 data
= (uint32_t)(MAX_SCHEDULE_TIMEOUT
/ HZ
);
1714 if(adapter
->hw
.mac_type
< e1000_82571
) {
1715 if(!adapter
->blink_timer
.function
) {
1716 init_timer(&adapter
->blink_timer
);
1717 adapter
->blink_timer
.function
= e1000_led_blink_callback
;
1718 adapter
->blink_timer
.data
= (unsigned long) adapter
;
1720 e1000_setup_led(&adapter
->hw
);
1721 mod_timer(&adapter
->blink_timer
, jiffies
);
1722 msleep_interruptible(data
* 1000);
1723 del_timer_sync(&adapter
->blink_timer
);
1725 else if(adapter
->hw
.mac_type
< e1000_82573
) {
1726 E1000_WRITE_REG(&adapter
->hw
, LEDCTL
, (E1000_LEDCTL_LED2_BLINK_RATE
|
1727 E1000_LEDCTL_LED0_BLINK
| E1000_LEDCTL_LED2_BLINK
|
1728 (E1000_LEDCTL_MODE_LED_ON
<< E1000_LEDCTL_LED2_MODE_SHIFT
) |
1729 (E1000_LEDCTL_MODE_LINK_ACTIVITY
<< E1000_LEDCTL_LED0_MODE_SHIFT
) |
1730 (E1000_LEDCTL_MODE_LED_OFF
<< E1000_LEDCTL_LED1_MODE_SHIFT
)));
1731 msleep_interruptible(data
* 1000);
1734 E1000_WRITE_REG(&adapter
->hw
, LEDCTL
, (E1000_LEDCTL_LED2_BLINK_RATE
|
1735 E1000_LEDCTL_LED1_BLINK
| E1000_LEDCTL_LED2_BLINK
|
1736 (E1000_LEDCTL_MODE_LED_ON
<< E1000_LEDCTL_LED2_MODE_SHIFT
) |
1737 (E1000_LEDCTL_MODE_LINK_ACTIVITY
<< E1000_LEDCTL_LED1_MODE_SHIFT
) |
1738 (E1000_LEDCTL_MODE_LED_OFF
<< E1000_LEDCTL_LED0_MODE_SHIFT
)));
1739 msleep_interruptible(data
* 1000);
1742 e1000_led_off(&adapter
->hw
);
1743 clear_bit(E1000_LED_ON
, &adapter
->led_status
);
1744 e1000_cleanup_led(&adapter
->hw
);
1750 e1000_nway_reset(struct net_device
*netdev
)
1752 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1753 if(netif_running(netdev
)) {
1754 e1000_down(adapter
);
1761 e1000_get_stats_count(struct net_device
*netdev
)
1763 return E1000_STATS_LEN
;
1767 e1000_get_ethtool_stats(struct net_device
*netdev
,
1768 struct ethtool_stats
*stats
, uint64_t *data
)
1770 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1773 e1000_update_stats(adapter
);
1774 for(i
= 0; i
< E1000_STATS_LEN
; i
++) {
1775 char *p
= (char *)adapter
+e1000_gstrings_stats
[i
].stat_offset
;
1776 data
[i
] = (e1000_gstrings_stats
[i
].sizeof_stat
==
1777 sizeof(uint64_t)) ? *(uint64_t *)p
: *(uint32_t *)p
;
1782 e1000_get_strings(struct net_device
*netdev
, uint32_t stringset
, uint8_t *data
)
1788 memcpy(data
, *e1000_gstrings_test
,
1789 E1000_TEST_LEN
*ETH_GSTRING_LEN
);
1792 for (i
=0; i
< E1000_STATS_LEN
; i
++) {
1793 memcpy(data
+ i
* ETH_GSTRING_LEN
,
1794 e1000_gstrings_stats
[i
].stat_string
,
1801 static struct ethtool_ops e1000_ethtool_ops
= {
1802 .get_settings
= e1000_get_settings
,
1803 .set_settings
= e1000_set_settings
,
1804 .get_drvinfo
= e1000_get_drvinfo
,
1805 .get_regs_len
= e1000_get_regs_len
,
1806 .get_regs
= e1000_get_regs
,
1807 .get_wol
= e1000_get_wol
,
1808 .set_wol
= e1000_set_wol
,
1809 .get_msglevel
= e1000_get_msglevel
,
1810 .set_msglevel
= e1000_set_msglevel
,
1811 .nway_reset
= e1000_nway_reset
,
1812 .get_link
= ethtool_op_get_link
,
1813 .get_eeprom_len
= e1000_get_eeprom_len
,
1814 .get_eeprom
= e1000_get_eeprom
,
1815 .set_eeprom
= e1000_set_eeprom
,
1816 .get_ringparam
= e1000_get_ringparam
,
1817 .set_ringparam
= e1000_set_ringparam
,
1818 .get_pauseparam
= e1000_get_pauseparam
,
1819 .set_pauseparam
= e1000_set_pauseparam
,
1820 .get_rx_csum
= e1000_get_rx_csum
,
1821 .set_rx_csum
= e1000_set_rx_csum
,
1822 .get_tx_csum
= e1000_get_tx_csum
,
1823 .set_tx_csum
= e1000_set_tx_csum
,
1824 .get_sg
= ethtool_op_get_sg
,
1825 .set_sg
= ethtool_op_set_sg
,
1827 .get_tso
= ethtool_op_get_tso
,
1828 .set_tso
= e1000_set_tso
,
1830 .self_test_count
= e1000_diag_test_count
,
1831 .self_test
= e1000_diag_test
,
1832 .get_strings
= e1000_get_strings
,
1833 .phys_id
= e1000_phys_id
,
1834 .get_stats_count
= e1000_get_stats_count
,
1835 .get_ethtool_stats
= e1000_get_ethtool_stats
,
1836 .get_perm_addr
= ethtool_op_get_perm_addr
,
1839 void e1000_set_ethtool_ops(struct net_device
*netdev
)
1841 SET_ETHTOOL_OPS(netdev
, &e1000_ethtool_ops
);