2 md.c : Multiple Devices driver for Linux
3 Copyright (C) 1998, 1999, 2000 Ingo Molnar
5 completely rewritten, based on the MD driver code from Marc Zyngier
9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13 - kmod support by: Cyrus Durgin
14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
17 - lots of fixes and improvements to the RAID1/RAID5 and generic
18 RAID code (such as request based resynchronization):
20 Neil Brown <neilb@cse.unsw.edu.au>.
22 - persistent bitmap code
23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
25 This program is free software; you can redistribute it and/or modify
26 it under the terms of the GNU General Public License as published by
27 the Free Software Foundation; either version 2, or (at your option)
30 You should have received a copy of the GNU General Public License
31 (for example /usr/src/linux/COPYING); if not, write to the Free
32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
35 #include <linux/module.h>
36 #include <linux/config.h>
37 #include <linux/linkage.h>
38 #include <linux/raid/md.h>
39 #include <linux/raid/bitmap.h>
40 #include <linux/sysctl.h>
41 #include <linux/devfs_fs_kernel.h>
42 #include <linux/buffer_head.h> /* for invalidate_bdev */
43 #include <linux/suspend.h>
45 #include <linux/init.h>
47 #include <linux/file.h>
50 #include <linux/kmod.h>
53 #include <asm/unaligned.h>
55 #define MAJOR_NR MD_MAJOR
58 /* 63 partitions with the alternate major number (mdp) */
59 #define MdpMinorShift 6
62 #define dprintk(x...) ((void)(DEBUG && printk(x)))
66 static void autostart_arrays (int part
);
69 static mdk_personality_t
*pers
[MAX_PERSONALITY
];
70 static DEFINE_SPINLOCK(pers_lock
);
73 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
74 * is 1000 KB/sec, so the extra system load does not show up that much.
75 * Increase it if you want to have more _guaranteed_ speed. Note that
76 * the RAID driver will use the maximum available bandwith if the IO
77 * subsystem is idle. There is also an 'absolute maximum' reconstruction
78 * speed limit - in case reconstruction slows down your system despite
81 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
84 static int sysctl_speed_limit_min
= 1000;
85 static int sysctl_speed_limit_max
= 200000;
87 static struct ctl_table_header
*raid_table_header
;
89 static ctl_table raid_table
[] = {
91 .ctl_name
= DEV_RAID_SPEED_LIMIT_MIN
,
92 .procname
= "speed_limit_min",
93 .data
= &sysctl_speed_limit_min
,
94 .maxlen
= sizeof(int),
96 .proc_handler
= &proc_dointvec
,
99 .ctl_name
= DEV_RAID_SPEED_LIMIT_MAX
,
100 .procname
= "speed_limit_max",
101 .data
= &sysctl_speed_limit_max
,
102 .maxlen
= sizeof(int),
104 .proc_handler
= &proc_dointvec
,
109 static ctl_table raid_dir_table
[] = {
111 .ctl_name
= DEV_RAID
,
120 static ctl_table raid_root_table
[] = {
126 .child
= raid_dir_table
,
131 static struct block_device_operations md_fops
;
134 * Enables to iterate over all existing md arrays
135 * all_mddevs_lock protects this list.
137 static LIST_HEAD(all_mddevs
);
138 static DEFINE_SPINLOCK(all_mddevs_lock
);
142 * iterates through all used mddevs in the system.
143 * We take care to grab the all_mddevs_lock whenever navigating
144 * the list, and to always hold a refcount when unlocked.
145 * Any code which breaks out of this loop while own
146 * a reference to the current mddev and must mddev_put it.
148 #define ITERATE_MDDEV(mddev,tmp) \
150 for (({ spin_lock(&all_mddevs_lock); \
151 tmp = all_mddevs.next; \
153 ({ if (tmp != &all_mddevs) \
154 mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
155 spin_unlock(&all_mddevs_lock); \
156 if (mddev) mddev_put(mddev); \
157 mddev = list_entry(tmp, mddev_t, all_mddevs); \
158 tmp != &all_mddevs;}); \
159 ({ spin_lock(&all_mddevs_lock); \
164 static int md_fail_request (request_queue_t
*q
, struct bio
*bio
)
166 bio_io_error(bio
, bio
->bi_size
);
170 static inline mddev_t
*mddev_get(mddev_t
*mddev
)
172 atomic_inc(&mddev
->active
);
176 static void mddev_put(mddev_t
*mddev
)
178 if (!atomic_dec_and_lock(&mddev
->active
, &all_mddevs_lock
))
180 if (!mddev
->raid_disks
&& list_empty(&mddev
->disks
)) {
181 list_del(&mddev
->all_mddevs
);
182 blk_put_queue(mddev
->queue
);
185 spin_unlock(&all_mddevs_lock
);
188 static mddev_t
* mddev_find(dev_t unit
)
190 mddev_t
*mddev
, *new = NULL
;
193 spin_lock(&all_mddevs_lock
);
194 list_for_each_entry(mddev
, &all_mddevs
, all_mddevs
)
195 if (mddev
->unit
== unit
) {
197 spin_unlock(&all_mddevs_lock
);
203 list_add(&new->all_mddevs
, &all_mddevs
);
204 spin_unlock(&all_mddevs_lock
);
207 spin_unlock(&all_mddevs_lock
);
209 new = (mddev_t
*) kmalloc(sizeof(*new), GFP_KERNEL
);
213 memset(new, 0, sizeof(*new));
216 if (MAJOR(unit
) == MD_MAJOR
)
217 new->md_minor
= MINOR(unit
);
219 new->md_minor
= MINOR(unit
) >> MdpMinorShift
;
221 init_MUTEX(&new->reconfig_sem
);
222 INIT_LIST_HEAD(&new->disks
);
223 INIT_LIST_HEAD(&new->all_mddevs
);
224 init_timer(&new->safemode_timer
);
225 atomic_set(&new->active
, 1);
226 spin_lock_init(&new->write_lock
);
227 init_waitqueue_head(&new->sb_wait
);
229 new->queue
= blk_alloc_queue(GFP_KERNEL
);
235 blk_queue_make_request(new->queue
, md_fail_request
);
240 static inline int mddev_lock(mddev_t
* mddev
)
242 return down_interruptible(&mddev
->reconfig_sem
);
245 static inline void mddev_lock_uninterruptible(mddev_t
* mddev
)
247 down(&mddev
->reconfig_sem
);
250 static inline int mddev_trylock(mddev_t
* mddev
)
252 return down_trylock(&mddev
->reconfig_sem
);
255 static inline void mddev_unlock(mddev_t
* mddev
)
257 up(&mddev
->reconfig_sem
);
260 md_wakeup_thread(mddev
->thread
);
263 mdk_rdev_t
* find_rdev_nr(mddev_t
*mddev
, int nr
)
266 struct list_head
*tmp
;
268 ITERATE_RDEV(mddev
,rdev
,tmp
) {
269 if (rdev
->desc_nr
== nr
)
275 static mdk_rdev_t
* find_rdev(mddev_t
* mddev
, dev_t dev
)
277 struct list_head
*tmp
;
280 ITERATE_RDEV(mddev
,rdev
,tmp
) {
281 if (rdev
->bdev
->bd_dev
== dev
)
287 inline static sector_t
calc_dev_sboffset(struct block_device
*bdev
)
289 sector_t size
= bdev
->bd_inode
->i_size
>> BLOCK_SIZE_BITS
;
290 return MD_NEW_SIZE_BLOCKS(size
);
293 static sector_t
calc_dev_size(mdk_rdev_t
*rdev
, unsigned chunk_size
)
297 size
= rdev
->sb_offset
;
300 size
&= ~((sector_t
)chunk_size
/1024 - 1);
304 static int alloc_disk_sb(mdk_rdev_t
* rdev
)
309 rdev
->sb_page
= alloc_page(GFP_KERNEL
);
310 if (!rdev
->sb_page
) {
311 printk(KERN_ALERT
"md: out of memory.\n");
318 static void free_disk_sb(mdk_rdev_t
* rdev
)
321 page_cache_release(rdev
->sb_page
);
323 rdev
->sb_page
= NULL
;
330 static int super_written(struct bio
*bio
, unsigned int bytes_done
, int error
)
332 mdk_rdev_t
*rdev
= bio
->bi_private
;
336 if (error
|| !test_bit(BIO_UPTODATE
, &bio
->bi_flags
))
337 md_error(rdev
->mddev
, rdev
);
339 if (atomic_dec_and_test(&rdev
->mddev
->pending_writes
))
340 wake_up(&rdev
->mddev
->sb_wait
);
344 void md_super_write(mddev_t
*mddev
, mdk_rdev_t
*rdev
,
345 sector_t sector
, int size
, struct page
*page
)
347 /* write first size bytes of page to sector of rdev
348 * Increment mddev->pending_writes before returning
349 * and decrement it on completion, waking up sb_wait
350 * if zero is reached.
351 * If an error occurred, call md_error
353 struct bio
*bio
= bio_alloc(GFP_NOIO
, 1);
355 bio
->bi_bdev
= rdev
->bdev
;
356 bio
->bi_sector
= sector
;
357 bio_add_page(bio
, page
, size
, 0);
358 bio
->bi_private
= rdev
;
359 bio
->bi_end_io
= super_written
;
360 atomic_inc(&mddev
->pending_writes
);
361 submit_bio((1<<BIO_RW
)|(1<<BIO_RW_SYNC
), bio
);
364 static int bi_complete(struct bio
*bio
, unsigned int bytes_done
, int error
)
369 complete((struct completion
*)bio
->bi_private
);
373 int sync_page_io(struct block_device
*bdev
, sector_t sector
, int size
,
374 struct page
*page
, int rw
)
376 struct bio
*bio
= bio_alloc(GFP_NOIO
, 1);
377 struct completion event
;
380 rw
|= (1 << BIO_RW_SYNC
);
383 bio
->bi_sector
= sector
;
384 bio_add_page(bio
, page
, size
, 0);
385 init_completion(&event
);
386 bio
->bi_private
= &event
;
387 bio
->bi_end_io
= bi_complete
;
389 wait_for_completion(&event
);
391 ret
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
396 static int read_disk_sb(mdk_rdev_t
* rdev
)
398 char b
[BDEVNAME_SIZE
];
399 if (!rdev
->sb_page
) {
407 if (!sync_page_io(rdev
->bdev
, rdev
->sb_offset
<<1, MD_SB_BYTES
, rdev
->sb_page
, READ
))
413 printk(KERN_WARNING
"md: disabled device %s, could not read superblock.\n",
414 bdevname(rdev
->bdev
,b
));
418 static int uuid_equal(mdp_super_t
*sb1
, mdp_super_t
*sb2
)
420 if ( (sb1
->set_uuid0
== sb2
->set_uuid0
) &&
421 (sb1
->set_uuid1
== sb2
->set_uuid1
) &&
422 (sb1
->set_uuid2
== sb2
->set_uuid2
) &&
423 (sb1
->set_uuid3
== sb2
->set_uuid3
))
431 static int sb_equal(mdp_super_t
*sb1
, mdp_super_t
*sb2
)
434 mdp_super_t
*tmp1
, *tmp2
;
436 tmp1
= kmalloc(sizeof(*tmp1
),GFP_KERNEL
);
437 tmp2
= kmalloc(sizeof(*tmp2
),GFP_KERNEL
);
439 if (!tmp1
|| !tmp2
) {
441 printk(KERN_INFO
"md.c: sb1 is not equal to sb2!\n");
449 * nr_disks is not constant
454 if (memcmp(tmp1
, tmp2
, MD_SB_GENERIC_CONSTANT_WORDS
* 4))
465 static unsigned int calc_sb_csum(mdp_super_t
* sb
)
467 unsigned int disk_csum
, csum
;
469 disk_csum
= sb
->sb_csum
;
471 csum
= csum_partial((void *)sb
, MD_SB_BYTES
, 0);
472 sb
->sb_csum
= disk_csum
;
478 * Handle superblock details.
479 * We want to be able to handle multiple superblock formats
480 * so we have a common interface to them all, and an array of
481 * different handlers.
482 * We rely on user-space to write the initial superblock, and support
483 * reading and updating of superblocks.
484 * Interface methods are:
485 * int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
486 * loads and validates a superblock on dev.
487 * if refdev != NULL, compare superblocks on both devices
489 * 0 - dev has a superblock that is compatible with refdev
490 * 1 - dev has a superblock that is compatible and newer than refdev
491 * so dev should be used as the refdev in future
492 * -EINVAL superblock incompatible or invalid
493 * -othererror e.g. -EIO
495 * int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
496 * Verify that dev is acceptable into mddev.
497 * The first time, mddev->raid_disks will be 0, and data from
498 * dev should be merged in. Subsequent calls check that dev
499 * is new enough. Return 0 or -EINVAL
501 * void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
502 * Update the superblock for rdev with data in mddev
503 * This does not write to disc.
509 struct module
*owner
;
510 int (*load_super
)(mdk_rdev_t
*rdev
, mdk_rdev_t
*refdev
, int minor_version
);
511 int (*validate_super
)(mddev_t
*mddev
, mdk_rdev_t
*rdev
);
512 void (*sync_super
)(mddev_t
*mddev
, mdk_rdev_t
*rdev
);
516 * load_super for 0.90.0
518 static int super_90_load(mdk_rdev_t
*rdev
, mdk_rdev_t
*refdev
, int minor_version
)
520 char b
[BDEVNAME_SIZE
], b2
[BDEVNAME_SIZE
];
526 * Calculate the position of the superblock,
527 * it's at the end of the disk.
529 * It also happens to be a multiple of 4Kb.
531 sb_offset
= calc_dev_sboffset(rdev
->bdev
);
532 rdev
->sb_offset
= sb_offset
;
534 ret
= read_disk_sb(rdev
);
539 bdevname(rdev
->bdev
, b
);
540 sb
= (mdp_super_t
*)page_address(rdev
->sb_page
);
542 if (sb
->md_magic
!= MD_SB_MAGIC
) {
543 printk(KERN_ERR
"md: invalid raid superblock magic on %s\n",
548 if (sb
->major_version
!= 0 ||
549 sb
->minor_version
!= 90) {
550 printk(KERN_WARNING
"Bad version number %d.%d on %s\n",
551 sb
->major_version
, sb
->minor_version
,
556 if (sb
->raid_disks
<= 0)
559 if (csum_fold(calc_sb_csum(sb
)) != csum_fold(sb
->sb_csum
)) {
560 printk(KERN_WARNING
"md: invalid superblock checksum on %s\n",
565 rdev
->preferred_minor
= sb
->md_minor
;
566 rdev
->data_offset
= 0;
568 if (sb
->level
== LEVEL_MULTIPATH
)
571 rdev
->desc_nr
= sb
->this_disk
.number
;
577 mdp_super_t
*refsb
= (mdp_super_t
*)page_address(refdev
->sb_page
);
578 if (!uuid_equal(refsb
, sb
)) {
579 printk(KERN_WARNING
"md: %s has different UUID to %s\n",
580 b
, bdevname(refdev
->bdev
,b2
));
583 if (!sb_equal(refsb
, sb
)) {
584 printk(KERN_WARNING
"md: %s has same UUID"
585 " but different superblock to %s\n",
586 b
, bdevname(refdev
->bdev
, b2
));
590 ev2
= md_event(refsb
);
596 rdev
->size
= calc_dev_size(rdev
, sb
->chunk_size
);
603 * validate_super for 0.90.0
605 static int super_90_validate(mddev_t
*mddev
, mdk_rdev_t
*rdev
)
608 mdp_super_t
*sb
= (mdp_super_t
*)page_address(rdev
->sb_page
);
610 rdev
->raid_disk
= -1;
612 if (mddev
->raid_disks
== 0) {
613 mddev
->major_version
= 0;
614 mddev
->minor_version
= sb
->minor_version
;
615 mddev
->patch_version
= sb
->patch_version
;
616 mddev
->persistent
= ! sb
->not_persistent
;
617 mddev
->chunk_size
= sb
->chunk_size
;
618 mddev
->ctime
= sb
->ctime
;
619 mddev
->utime
= sb
->utime
;
620 mddev
->level
= sb
->level
;
621 mddev
->layout
= sb
->layout
;
622 mddev
->raid_disks
= sb
->raid_disks
;
623 mddev
->size
= sb
->size
;
624 mddev
->events
= md_event(sb
);
626 if (sb
->state
& (1<<MD_SB_CLEAN
))
627 mddev
->recovery_cp
= MaxSector
;
629 if (sb
->events_hi
== sb
->cp_events_hi
&&
630 sb
->events_lo
== sb
->cp_events_lo
) {
631 mddev
->recovery_cp
= sb
->recovery_cp
;
633 mddev
->recovery_cp
= 0;
636 memcpy(mddev
->uuid
+0, &sb
->set_uuid0
, 4);
637 memcpy(mddev
->uuid
+4, &sb
->set_uuid1
, 4);
638 memcpy(mddev
->uuid
+8, &sb
->set_uuid2
, 4);
639 memcpy(mddev
->uuid
+12,&sb
->set_uuid3
, 4);
641 mddev
->max_disks
= MD_SB_DISKS
;
643 if (sb
->state
& (1<<MD_SB_BITMAP_PRESENT
) &&
644 mddev
->bitmap_file
== NULL
) {
645 if (mddev
->level
!= 1) {
646 /* FIXME use a better test */
647 printk(KERN_WARNING
"md: bitmaps only support for raid1\n");
650 mddev
->bitmap_offset
= (MD_SB_BYTES
>> 9);
653 } else if (mddev
->pers
== NULL
) {
654 /* Insist on good event counter while assembling */
655 __u64 ev1
= md_event(sb
);
657 if (ev1
< mddev
->events
)
659 } else if (mddev
->bitmap
) {
660 /* if adding to array with a bitmap, then we can accept an
661 * older device ... but not too old.
663 __u64 ev1
= md_event(sb
);
664 if (ev1
< mddev
->bitmap
->events_cleared
)
666 } else /* just a hot-add of a new device, leave raid_disk at -1 */
669 if (mddev
->level
!= LEVEL_MULTIPATH
) {
671 desc
= sb
->disks
+ rdev
->desc_nr
;
673 if (desc
->state
& (1<<MD_DISK_FAULTY
))
675 else if (desc
->state
& (1<<MD_DISK_SYNC
) &&
676 desc
->raid_disk
< mddev
->raid_disks
) {
678 rdev
->raid_disk
= desc
->raid_disk
;
680 } else /* MULTIPATH are always insync */
686 * sync_super for 0.90.0
688 static void super_90_sync(mddev_t
*mddev
, mdk_rdev_t
*rdev
)
691 struct list_head
*tmp
;
693 int next_spare
= mddev
->raid_disks
;
695 /* make rdev->sb match mddev data..
698 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
699 * 3/ any empty disks < next_spare become removed
701 * disks[0] gets initialised to REMOVED because
702 * we cannot be sure from other fields if it has
703 * been initialised or not.
706 int active
=0, working
=0,failed
=0,spare
=0,nr_disks
=0;
708 sb
= (mdp_super_t
*)page_address(rdev
->sb_page
);
710 memset(sb
, 0, sizeof(*sb
));
712 sb
->md_magic
= MD_SB_MAGIC
;
713 sb
->major_version
= mddev
->major_version
;
714 sb
->minor_version
= mddev
->minor_version
;
715 sb
->patch_version
= mddev
->patch_version
;
716 sb
->gvalid_words
= 0; /* ignored */
717 memcpy(&sb
->set_uuid0
, mddev
->uuid
+0, 4);
718 memcpy(&sb
->set_uuid1
, mddev
->uuid
+4, 4);
719 memcpy(&sb
->set_uuid2
, mddev
->uuid
+8, 4);
720 memcpy(&sb
->set_uuid3
, mddev
->uuid
+12,4);
722 sb
->ctime
= mddev
->ctime
;
723 sb
->level
= mddev
->level
;
724 sb
->size
= mddev
->size
;
725 sb
->raid_disks
= mddev
->raid_disks
;
726 sb
->md_minor
= mddev
->md_minor
;
727 sb
->not_persistent
= !mddev
->persistent
;
728 sb
->utime
= mddev
->utime
;
730 sb
->events_hi
= (mddev
->events
>>32);
731 sb
->events_lo
= (u32
)mddev
->events
;
735 sb
->recovery_cp
= mddev
->recovery_cp
;
736 sb
->cp_events_hi
= (mddev
->events
>>32);
737 sb
->cp_events_lo
= (u32
)mddev
->events
;
738 if (mddev
->recovery_cp
== MaxSector
)
739 sb
->state
= (1<< MD_SB_CLEAN
);
743 sb
->layout
= mddev
->layout
;
744 sb
->chunk_size
= mddev
->chunk_size
;
746 if (mddev
->bitmap
&& mddev
->bitmap_file
== NULL
)
747 sb
->state
|= (1<<MD_SB_BITMAP_PRESENT
);
749 sb
->disks
[0].state
= (1<<MD_DISK_REMOVED
);
750 ITERATE_RDEV(mddev
,rdev2
,tmp
) {
752 if (rdev2
->raid_disk
>= 0 && rdev2
->in_sync
&& !rdev2
->faulty
)
753 rdev2
->desc_nr
= rdev2
->raid_disk
;
755 rdev2
->desc_nr
= next_spare
++;
756 d
= &sb
->disks
[rdev2
->desc_nr
];
758 d
->number
= rdev2
->desc_nr
;
759 d
->major
= MAJOR(rdev2
->bdev
->bd_dev
);
760 d
->minor
= MINOR(rdev2
->bdev
->bd_dev
);
761 if (rdev2
->raid_disk
>= 0 && rdev
->in_sync
&& !rdev2
->faulty
)
762 d
->raid_disk
= rdev2
->raid_disk
;
764 d
->raid_disk
= rdev2
->desc_nr
; /* compatibility */
766 d
->state
= (1<<MD_DISK_FAULTY
);
768 } else if (rdev2
->in_sync
) {
769 d
->state
= (1<<MD_DISK_ACTIVE
);
770 d
->state
|= (1<<MD_DISK_SYNC
);
780 /* now set the "removed" and "faulty" bits on any missing devices */
781 for (i
=0 ; i
< mddev
->raid_disks
; i
++) {
782 mdp_disk_t
*d
= &sb
->disks
[i
];
783 if (d
->state
== 0 && d
->number
== 0) {
786 d
->state
= (1<<MD_DISK_REMOVED
);
787 d
->state
|= (1<<MD_DISK_FAULTY
);
791 sb
->nr_disks
= nr_disks
;
792 sb
->active_disks
= active
;
793 sb
->working_disks
= working
;
794 sb
->failed_disks
= failed
;
795 sb
->spare_disks
= spare
;
797 sb
->this_disk
= sb
->disks
[rdev
->desc_nr
];
798 sb
->sb_csum
= calc_sb_csum(sb
);
802 * version 1 superblock
805 static unsigned int calc_sb_1_csum(struct mdp_superblock_1
* sb
)
807 unsigned int disk_csum
, csum
;
808 unsigned long long newcsum
;
809 int size
= 256 + le32_to_cpu(sb
->max_dev
)*2;
810 unsigned int *isuper
= (unsigned int*)sb
;
813 disk_csum
= sb
->sb_csum
;
816 for (i
=0; size
>=4; size
-= 4 )
817 newcsum
+= le32_to_cpu(*isuper
++);
820 newcsum
+= le16_to_cpu(*(unsigned short*) isuper
);
822 csum
= (newcsum
& 0xffffffff) + (newcsum
>> 32);
823 sb
->sb_csum
= disk_csum
;
824 return cpu_to_le32(csum
);
827 static int super_1_load(mdk_rdev_t
*rdev
, mdk_rdev_t
*refdev
, int minor_version
)
829 struct mdp_superblock_1
*sb
;
832 char b
[BDEVNAME_SIZE
], b2
[BDEVNAME_SIZE
];
835 * Calculate the position of the superblock.
836 * It is always aligned to a 4K boundary and
837 * depeding on minor_version, it can be:
838 * 0: At least 8K, but less than 12K, from end of device
839 * 1: At start of device
840 * 2: 4K from start of device.
842 switch(minor_version
) {
844 sb_offset
= rdev
->bdev
->bd_inode
->i_size
>> 9;
846 sb_offset
&= ~(sector_t
)(4*2-1);
847 /* convert from sectors to K */
859 rdev
->sb_offset
= sb_offset
;
861 ret
= read_disk_sb(rdev
);
865 sb
= (struct mdp_superblock_1
*)page_address(rdev
->sb_page
);
867 if (sb
->magic
!= cpu_to_le32(MD_SB_MAGIC
) ||
868 sb
->major_version
!= cpu_to_le32(1) ||
869 le32_to_cpu(sb
->max_dev
) > (4096-256)/2 ||
870 le64_to_cpu(sb
->super_offset
) != (rdev
->sb_offset
<<1) ||
871 sb
->feature_map
!= 0)
874 if (calc_sb_1_csum(sb
) != sb
->sb_csum
) {
875 printk("md: invalid superblock checksum on %s\n",
876 bdevname(rdev
->bdev
,b
));
879 if (le64_to_cpu(sb
->data_size
) < 10) {
880 printk("md: data_size too small on %s\n",
881 bdevname(rdev
->bdev
,b
));
884 rdev
->preferred_minor
= 0xffff;
885 rdev
->data_offset
= le64_to_cpu(sb
->data_offset
);
891 struct mdp_superblock_1
*refsb
=
892 (struct mdp_superblock_1
*)page_address(refdev
->sb_page
);
894 if (memcmp(sb
->set_uuid
, refsb
->set_uuid
, 16) != 0 ||
895 sb
->level
!= refsb
->level
||
896 sb
->layout
!= refsb
->layout
||
897 sb
->chunksize
!= refsb
->chunksize
) {
898 printk(KERN_WARNING
"md: %s has strangely different"
899 " superblock to %s\n",
900 bdevname(rdev
->bdev
,b
),
901 bdevname(refdev
->bdev
,b2
));
904 ev1
= le64_to_cpu(sb
->events
);
905 ev2
= le64_to_cpu(refsb
->events
);
911 rdev
->size
= ((rdev
->bdev
->bd_inode
->i_size
>>9) - le64_to_cpu(sb
->data_offset
)) / 2;
913 rdev
->size
= rdev
->sb_offset
;
914 if (rdev
->size
< le64_to_cpu(sb
->data_size
)/2)
916 rdev
->size
= le64_to_cpu(sb
->data_size
)/2;
917 if (le32_to_cpu(sb
->chunksize
))
918 rdev
->size
&= ~((sector_t
)le32_to_cpu(sb
->chunksize
)/2 - 1);
922 static int super_1_validate(mddev_t
*mddev
, mdk_rdev_t
*rdev
)
924 struct mdp_superblock_1
*sb
= (struct mdp_superblock_1
*)page_address(rdev
->sb_page
);
926 rdev
->raid_disk
= -1;
928 if (mddev
->raid_disks
== 0) {
929 mddev
->major_version
= 1;
930 mddev
->patch_version
= 0;
931 mddev
->persistent
= 1;
932 mddev
->chunk_size
= le32_to_cpu(sb
->chunksize
) << 9;
933 mddev
->ctime
= le64_to_cpu(sb
->ctime
) & ((1ULL << 32)-1);
934 mddev
->utime
= le64_to_cpu(sb
->utime
) & ((1ULL << 32)-1);
935 mddev
->level
= le32_to_cpu(sb
->level
);
936 mddev
->layout
= le32_to_cpu(sb
->layout
);
937 mddev
->raid_disks
= le32_to_cpu(sb
->raid_disks
);
938 mddev
->size
= le64_to_cpu(sb
->size
)/2;
939 mddev
->events
= le64_to_cpu(sb
->events
);
941 mddev
->recovery_cp
= le64_to_cpu(sb
->resync_offset
);
942 memcpy(mddev
->uuid
, sb
->set_uuid
, 16);
944 mddev
->max_disks
= (4096-256)/2;
946 if ((le32_to_cpu(sb
->feature_map
) & 1) &&
947 mddev
->bitmap_file
== NULL
) {
948 if (mddev
->level
!= 1) {
949 printk(KERN_WARNING
"md: bitmaps only supported for raid1\n");
952 mddev
->bitmap_offset
= (__s32
)le32_to_cpu(sb
->bitmap_offset
);
954 } else if (mddev
->pers
== NULL
) {
955 /* Insist of good event counter while assembling */
956 __u64 ev1
= le64_to_cpu(sb
->events
);
958 if (ev1
< mddev
->events
)
960 } else if (mddev
->bitmap
) {
961 /* If adding to array with a bitmap, then we can accept an
962 * older device, but not too old.
964 __u64 ev1
= le64_to_cpu(sb
->events
);
965 if (ev1
< mddev
->bitmap
->events_cleared
)
967 } else /* just a hot-add of a new device, leave raid_disk at -1 */
970 if (mddev
->level
!= LEVEL_MULTIPATH
) {
972 rdev
->desc_nr
= le32_to_cpu(sb
->dev_number
);
973 role
= le16_to_cpu(sb
->dev_roles
[rdev
->desc_nr
]);
975 case 0xffff: /* spare */
978 case 0xfffe: /* faulty */
984 rdev
->raid_disk
= role
;
987 } else /* MULTIPATH are always insync */
993 static void super_1_sync(mddev_t
*mddev
, mdk_rdev_t
*rdev
)
995 struct mdp_superblock_1
*sb
;
996 struct list_head
*tmp
;
999 /* make rdev->sb match mddev and rdev data. */
1001 sb
= (struct mdp_superblock_1
*)page_address(rdev
->sb_page
);
1003 sb
->feature_map
= 0;
1005 memset(sb
->pad1
, 0, sizeof(sb
->pad1
));
1006 memset(sb
->pad2
, 0, sizeof(sb
->pad2
));
1007 memset(sb
->pad3
, 0, sizeof(sb
->pad3
));
1009 sb
->utime
= cpu_to_le64((__u64
)mddev
->utime
);
1010 sb
->events
= cpu_to_le64(mddev
->events
);
1012 sb
->resync_offset
= cpu_to_le64(mddev
->recovery_cp
);
1014 sb
->resync_offset
= cpu_to_le64(0);
1016 if (mddev
->bitmap
&& mddev
->bitmap_file
== NULL
) {
1017 sb
->bitmap_offset
= cpu_to_le32((__u32
)mddev
->bitmap_offset
);
1018 sb
->feature_map
= cpu_to_le32(1);
1022 ITERATE_RDEV(mddev
,rdev2
,tmp
)
1023 if (rdev2
->desc_nr
+1 > max_dev
)
1024 max_dev
= rdev2
->desc_nr
+1;
1026 sb
->max_dev
= cpu_to_le32(max_dev
);
1027 for (i
=0; i
<max_dev
;i
++)
1028 sb
->dev_roles
[i
] = cpu_to_le16(0xfffe);
1030 ITERATE_RDEV(mddev
,rdev2
,tmp
) {
1033 sb
->dev_roles
[i
] = cpu_to_le16(0xfffe);
1034 else if (rdev2
->in_sync
)
1035 sb
->dev_roles
[i
] = cpu_to_le16(rdev2
->raid_disk
);
1037 sb
->dev_roles
[i
] = cpu_to_le16(0xffff);
1040 sb
->recovery_offset
= cpu_to_le64(0); /* not supported yet */
1041 sb
->sb_csum
= calc_sb_1_csum(sb
);
1045 static struct super_type super_types
[] = {
1048 .owner
= THIS_MODULE
,
1049 .load_super
= super_90_load
,
1050 .validate_super
= super_90_validate
,
1051 .sync_super
= super_90_sync
,
1055 .owner
= THIS_MODULE
,
1056 .load_super
= super_1_load
,
1057 .validate_super
= super_1_validate
,
1058 .sync_super
= super_1_sync
,
1062 static mdk_rdev_t
* match_dev_unit(mddev_t
*mddev
, mdk_rdev_t
*dev
)
1064 struct list_head
*tmp
;
1067 ITERATE_RDEV(mddev
,rdev
,tmp
)
1068 if (rdev
->bdev
->bd_contains
== dev
->bdev
->bd_contains
)
1074 static int match_mddev_units(mddev_t
*mddev1
, mddev_t
*mddev2
)
1076 struct list_head
*tmp
;
1079 ITERATE_RDEV(mddev1
,rdev
,tmp
)
1080 if (match_dev_unit(mddev2
, rdev
))
1086 static LIST_HEAD(pending_raid_disks
);
1088 static int bind_rdev_to_array(mdk_rdev_t
* rdev
, mddev_t
* mddev
)
1090 mdk_rdev_t
*same_pdev
;
1091 char b
[BDEVNAME_SIZE
], b2
[BDEVNAME_SIZE
];
1097 same_pdev
= match_dev_unit(mddev
, rdev
);
1100 "%s: WARNING: %s appears to be on the same physical"
1101 " disk as %s. True\n protection against single-disk"
1102 " failure might be compromised.\n",
1103 mdname(mddev
), bdevname(rdev
->bdev
,b
),
1104 bdevname(same_pdev
->bdev
,b2
));
1106 /* Verify rdev->desc_nr is unique.
1107 * If it is -1, assign a free number, else
1108 * check number is not in use
1110 if (rdev
->desc_nr
< 0) {
1112 if (mddev
->pers
) choice
= mddev
->raid_disks
;
1113 while (find_rdev_nr(mddev
, choice
))
1115 rdev
->desc_nr
= choice
;
1117 if (find_rdev_nr(mddev
, rdev
->desc_nr
))
1121 list_add(&rdev
->same_set
, &mddev
->disks
);
1122 rdev
->mddev
= mddev
;
1123 printk(KERN_INFO
"md: bind<%s>\n", bdevname(rdev
->bdev
,b
));
1127 static void unbind_rdev_from_array(mdk_rdev_t
* rdev
)
1129 char b
[BDEVNAME_SIZE
];
1134 list_del_init(&rdev
->same_set
);
1135 printk(KERN_INFO
"md: unbind<%s>\n", bdevname(rdev
->bdev
,b
));
1140 * prevent the device from being mounted, repartitioned or
1141 * otherwise reused by a RAID array (or any other kernel
1142 * subsystem), by bd_claiming the device.
1144 static int lock_rdev(mdk_rdev_t
*rdev
, dev_t dev
)
1147 struct block_device
*bdev
;
1148 char b
[BDEVNAME_SIZE
];
1150 bdev
= open_by_devnum(dev
, FMODE_READ
|FMODE_WRITE
);
1152 printk(KERN_ERR
"md: could not open %s.\n",
1153 __bdevname(dev
, b
));
1154 return PTR_ERR(bdev
);
1156 err
= bd_claim(bdev
, rdev
);
1158 printk(KERN_ERR
"md: could not bd_claim %s.\n",
1167 static void unlock_rdev(mdk_rdev_t
*rdev
)
1169 struct block_device
*bdev
= rdev
->bdev
;
1177 void md_autodetect_dev(dev_t dev
);
1179 static void export_rdev(mdk_rdev_t
* rdev
)
1181 char b
[BDEVNAME_SIZE
];
1182 printk(KERN_INFO
"md: export_rdev(%s)\n",
1183 bdevname(rdev
->bdev
,b
));
1187 list_del_init(&rdev
->same_set
);
1189 md_autodetect_dev(rdev
->bdev
->bd_dev
);
1195 static void kick_rdev_from_array(mdk_rdev_t
* rdev
)
1197 unbind_rdev_from_array(rdev
);
1201 static void export_array(mddev_t
*mddev
)
1203 struct list_head
*tmp
;
1206 ITERATE_RDEV(mddev
,rdev
,tmp
) {
1211 kick_rdev_from_array(rdev
);
1213 if (!list_empty(&mddev
->disks
))
1215 mddev
->raid_disks
= 0;
1216 mddev
->major_version
= 0;
1219 static void print_desc(mdp_disk_t
*desc
)
1221 printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc
->number
,
1222 desc
->major
,desc
->minor
,desc
->raid_disk
,desc
->state
);
1225 static void print_sb(mdp_super_t
*sb
)
1230 "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
1231 sb
->major_version
, sb
->minor_version
, sb
->patch_version
,
1232 sb
->set_uuid0
, sb
->set_uuid1
, sb
->set_uuid2
, sb
->set_uuid3
,
1234 printk(KERN_INFO
"md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
1235 sb
->level
, sb
->size
, sb
->nr_disks
, sb
->raid_disks
,
1236 sb
->md_minor
, sb
->layout
, sb
->chunk_size
);
1237 printk(KERN_INFO
"md: UT:%08x ST:%d AD:%d WD:%d"
1238 " FD:%d SD:%d CSUM:%08x E:%08lx\n",
1239 sb
->utime
, sb
->state
, sb
->active_disks
, sb
->working_disks
,
1240 sb
->failed_disks
, sb
->spare_disks
,
1241 sb
->sb_csum
, (unsigned long)sb
->events_lo
);
1244 for (i
= 0; i
< MD_SB_DISKS
; i
++) {
1247 desc
= sb
->disks
+ i
;
1248 if (desc
->number
|| desc
->major
|| desc
->minor
||
1249 desc
->raid_disk
|| (desc
->state
&& (desc
->state
!= 4))) {
1250 printk(" D %2d: ", i
);
1254 printk(KERN_INFO
"md: THIS: ");
1255 print_desc(&sb
->this_disk
);
1259 static void print_rdev(mdk_rdev_t
*rdev
)
1261 char b
[BDEVNAME_SIZE
];
1262 printk(KERN_INFO
"md: rdev %s, SZ:%08llu F:%d S:%d DN:%u\n",
1263 bdevname(rdev
->bdev
,b
), (unsigned long long)rdev
->size
,
1264 rdev
->faulty
, rdev
->in_sync
, rdev
->desc_nr
);
1265 if (rdev
->sb_loaded
) {
1266 printk(KERN_INFO
"md: rdev superblock:\n");
1267 print_sb((mdp_super_t
*)page_address(rdev
->sb_page
));
1269 printk(KERN_INFO
"md: no rdev superblock!\n");
1272 void md_print_devices(void)
1274 struct list_head
*tmp
, *tmp2
;
1277 char b
[BDEVNAME_SIZE
];
1280 printk("md: **********************************\n");
1281 printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
1282 printk("md: **********************************\n");
1283 ITERATE_MDDEV(mddev
,tmp
) {
1286 bitmap_print_sb(mddev
->bitmap
);
1288 printk("%s: ", mdname(mddev
));
1289 ITERATE_RDEV(mddev
,rdev
,tmp2
)
1290 printk("<%s>", bdevname(rdev
->bdev
,b
));
1293 ITERATE_RDEV(mddev
,rdev
,tmp2
)
1296 printk("md: **********************************\n");
1301 static void sync_sbs(mddev_t
* mddev
)
1304 struct list_head
*tmp
;
1306 ITERATE_RDEV(mddev
,rdev
,tmp
) {
1307 super_types
[mddev
->major_version
].
1308 sync_super(mddev
, rdev
);
1309 rdev
->sb_loaded
= 1;
1313 static void md_update_sb(mddev_t
* mddev
)
1316 struct list_head
*tmp
;
1321 spin_lock(&mddev
->write_lock
);
1322 sync_req
= mddev
->in_sync
;
1323 mddev
->utime
= get_seconds();
1326 if (!mddev
->events
) {
1328 * oops, this 64-bit counter should never wrap.
1329 * Either we are in around ~1 trillion A.C., assuming
1330 * 1 reboot per second, or we have a bug:
1335 mddev
->sb_dirty
= 2;
1339 * do not write anything to disk if using
1340 * nonpersistent superblocks
1342 if (!mddev
->persistent
) {
1343 mddev
->sb_dirty
= 0;
1344 spin_unlock(&mddev
->write_lock
);
1345 wake_up(&mddev
->sb_wait
);
1348 spin_unlock(&mddev
->write_lock
);
1351 "md: updating %s RAID superblock on device (in sync %d)\n",
1352 mdname(mddev
),mddev
->in_sync
);
1354 err
= bitmap_update_sb(mddev
->bitmap
);
1355 ITERATE_RDEV(mddev
,rdev
,tmp
) {
1356 char b
[BDEVNAME_SIZE
];
1357 dprintk(KERN_INFO
"md: ");
1359 dprintk("(skipping faulty ");
1361 dprintk("%s ", bdevname(rdev
->bdev
,b
));
1362 if (!rdev
->faulty
) {
1363 md_super_write(mddev
,rdev
,
1364 rdev
->sb_offset
<<1, MD_SB_BYTES
,
1366 dprintk(KERN_INFO
"(write) %s's sb offset: %llu\n",
1367 bdevname(rdev
->bdev
,b
),
1368 (unsigned long long)rdev
->sb_offset
);
1372 if (mddev
->level
== LEVEL_MULTIPATH
)
1373 /* only need to write one superblock... */
1376 wait_event(mddev
->sb_wait
, atomic_read(&mddev
->pending_writes
)==0);
1377 /* if there was a failure, sb_dirty was set to 1, and we re-write super */
1379 spin_lock(&mddev
->write_lock
);
1380 if (mddev
->in_sync
!= sync_req
|| mddev
->sb_dirty
== 1) {
1381 /* have to write it out again */
1382 spin_unlock(&mddev
->write_lock
);
1385 mddev
->sb_dirty
= 0;
1386 spin_unlock(&mddev
->write_lock
);
1387 wake_up(&mddev
->sb_wait
);
1392 * Import a device. If 'super_format' >= 0, then sanity check the superblock
1394 * mark the device faulty if:
1396 * - the device is nonexistent (zero size)
1397 * - the device has no valid superblock
1399 * a faulty rdev _never_ has rdev->sb set.
1401 static mdk_rdev_t
*md_import_device(dev_t newdev
, int super_format
, int super_minor
)
1403 char b
[BDEVNAME_SIZE
];
1408 rdev
= (mdk_rdev_t
*) kmalloc(sizeof(*rdev
), GFP_KERNEL
);
1410 printk(KERN_ERR
"md: could not alloc mem for new device!\n");
1411 return ERR_PTR(-ENOMEM
);
1413 memset(rdev
, 0, sizeof(*rdev
));
1415 if ((err
= alloc_disk_sb(rdev
)))
1418 err
= lock_rdev(rdev
, newdev
);
1425 rdev
->data_offset
= 0;
1426 atomic_set(&rdev
->nr_pending
, 0);
1428 size
= rdev
->bdev
->bd_inode
->i_size
>> BLOCK_SIZE_BITS
;
1431 "md: %s has zero or unknown size, marking faulty!\n",
1432 bdevname(rdev
->bdev
,b
));
1437 if (super_format
>= 0) {
1438 err
= super_types
[super_format
].
1439 load_super(rdev
, NULL
, super_minor
);
1440 if (err
== -EINVAL
) {
1442 "md: %s has invalid sb, not importing!\n",
1443 bdevname(rdev
->bdev
,b
));
1448 "md: could not read %s's sb, not importing!\n",
1449 bdevname(rdev
->bdev
,b
));
1453 INIT_LIST_HEAD(&rdev
->same_set
);
1458 if (rdev
->sb_page
) {
1464 return ERR_PTR(err
);
1468 * Check a full RAID array for plausibility
1472 static void analyze_sbs(mddev_t
* mddev
)
1475 struct list_head
*tmp
;
1476 mdk_rdev_t
*rdev
, *freshest
;
1477 char b
[BDEVNAME_SIZE
];
1480 ITERATE_RDEV(mddev
,rdev
,tmp
)
1481 switch (super_types
[mddev
->major_version
].
1482 load_super(rdev
, freshest
, mddev
->minor_version
)) {
1490 "md: fatal superblock inconsistency in %s"
1491 " -- removing from array\n",
1492 bdevname(rdev
->bdev
,b
));
1493 kick_rdev_from_array(rdev
);
1497 super_types
[mddev
->major_version
].
1498 validate_super(mddev
, freshest
);
1501 ITERATE_RDEV(mddev
,rdev
,tmp
) {
1502 if (rdev
!= freshest
)
1503 if (super_types
[mddev
->major_version
].
1504 validate_super(mddev
, rdev
)) {
1505 printk(KERN_WARNING
"md: kicking non-fresh %s"
1507 bdevname(rdev
->bdev
,b
));
1508 kick_rdev_from_array(rdev
);
1511 if (mddev
->level
== LEVEL_MULTIPATH
) {
1512 rdev
->desc_nr
= i
++;
1513 rdev
->raid_disk
= rdev
->desc_nr
;
1520 if (mddev
->recovery_cp
!= MaxSector
&&
1522 printk(KERN_ERR
"md: %s: raid array is not clean"
1523 " -- starting background reconstruction\n",
1530 static struct kobject
*md_probe(dev_t dev
, int *part
, void *data
)
1532 static DECLARE_MUTEX(disks_sem
);
1533 mddev_t
*mddev
= mddev_find(dev
);
1534 struct gendisk
*disk
;
1535 int partitioned
= (MAJOR(dev
) != MD_MAJOR
);
1536 int shift
= partitioned
? MdpMinorShift
: 0;
1537 int unit
= MINOR(dev
) >> shift
;
1543 if (mddev
->gendisk
) {
1548 disk
= alloc_disk(1 << shift
);
1554 disk
->major
= MAJOR(dev
);
1555 disk
->first_minor
= unit
<< shift
;
1557 sprintf(disk
->disk_name
, "md_d%d", unit
);
1558 sprintf(disk
->devfs_name
, "md/d%d", unit
);
1560 sprintf(disk
->disk_name
, "md%d", unit
);
1561 sprintf(disk
->devfs_name
, "md/%d", unit
);
1563 disk
->fops
= &md_fops
;
1564 disk
->private_data
= mddev
;
1565 disk
->queue
= mddev
->queue
;
1567 mddev
->gendisk
= disk
;
1572 void md_wakeup_thread(mdk_thread_t
*thread
);
1574 static void md_safemode_timeout(unsigned long data
)
1576 mddev_t
*mddev
= (mddev_t
*) data
;
1578 mddev
->safemode
= 1;
1579 md_wakeup_thread(mddev
->thread
);
1583 static int do_md_run(mddev_t
* mddev
)
1587 struct list_head
*tmp
;
1589 struct gendisk
*disk
;
1590 char b
[BDEVNAME_SIZE
];
1592 if (list_empty(&mddev
->disks
))
1593 /* cannot run an array with no devices.. */
1600 * Analyze all RAID superblock(s)
1602 if (!mddev
->raid_disks
)
1605 chunk_size
= mddev
->chunk_size
;
1606 pnum
= level_to_pers(mddev
->level
);
1608 if ((pnum
!= MULTIPATH
) && (pnum
!= RAID1
)) {
1611 * 'default chunksize' in the old md code used to
1612 * be PAGE_SIZE, baaad.
1613 * we abort here to be on the safe side. We don't
1614 * want to continue the bad practice.
1617 "no chunksize specified, see 'man raidtab'\n");
1620 if (chunk_size
> MAX_CHUNK_SIZE
) {
1621 printk(KERN_ERR
"too big chunk_size: %d > %d\n",
1622 chunk_size
, MAX_CHUNK_SIZE
);
1626 * chunk-size has to be a power of 2 and multiples of PAGE_SIZE
1628 if ( (1 << ffz(~chunk_size
)) != chunk_size
) {
1629 printk(KERN_ERR
"chunk_size of %d not valid\n", chunk_size
);
1632 if (chunk_size
< PAGE_SIZE
) {
1633 printk(KERN_ERR
"too small chunk_size: %d < %ld\n",
1634 chunk_size
, PAGE_SIZE
);
1638 /* devices must have minimum size of one chunk */
1639 ITERATE_RDEV(mddev
,rdev
,tmp
) {
1642 if (rdev
->size
< chunk_size
/ 1024) {
1644 "md: Dev %s smaller than chunk_size:"
1646 bdevname(rdev
->bdev
,b
),
1647 (unsigned long long)rdev
->size
,
1657 request_module("md-personality-%d", pnum
);
1662 * Drop all container device buffers, from now on
1663 * the only valid external interface is through the md
1665 * Also find largest hardsector size
1667 ITERATE_RDEV(mddev
,rdev
,tmp
) {
1670 sync_blockdev(rdev
->bdev
);
1671 invalidate_bdev(rdev
->bdev
, 0);
1674 md_probe(mddev
->unit
, NULL
, NULL
);
1675 disk
= mddev
->gendisk
;
1679 spin_lock(&pers_lock
);
1680 if (!pers
[pnum
] || !try_module_get(pers
[pnum
]->owner
)) {
1681 spin_unlock(&pers_lock
);
1682 printk(KERN_WARNING
"md: personality %d is not loaded!\n",
1687 mddev
->pers
= pers
[pnum
];
1688 spin_unlock(&pers_lock
);
1690 mddev
->resync_max_sectors
= mddev
->size
<< 1; /* may be over-ridden by personality */
1692 /* before we start the array running, initialise the bitmap */
1693 err
= bitmap_create(mddev
);
1695 printk(KERN_ERR
"%s: failed to create bitmap (%d)\n",
1696 mdname(mddev
), err
);
1698 err
= mddev
->pers
->run(mddev
);
1700 printk(KERN_ERR
"md: pers->run() failed ...\n");
1701 module_put(mddev
->pers
->owner
);
1703 bitmap_destroy(mddev
);
1706 atomic_set(&mddev
->writes_pending
,0);
1707 mddev
->safemode
= 0;
1708 mddev
->safemode_timer
.function
= md_safemode_timeout
;
1709 mddev
->safemode_timer
.data
= (unsigned long) mddev
;
1710 mddev
->safemode_delay
= (20 * HZ
)/1000 +1; /* 20 msec delay */
1713 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
1715 if (mddev
->sb_dirty
)
1716 md_update_sb(mddev
);
1718 set_capacity(disk
, mddev
->array_size
<<1);
1720 /* If we call blk_queue_make_request here, it will
1721 * re-initialise max_sectors etc which may have been
1722 * refined inside -> run. So just set the bits we need to set.
1723 * Most initialisation happended when we called
1724 * blk_queue_make_request(..., md_fail_request)
1727 mddev
->queue
->queuedata
= mddev
;
1728 mddev
->queue
->make_request_fn
= mddev
->pers
->make_request
;
1734 static int restart_array(mddev_t
*mddev
)
1736 struct gendisk
*disk
= mddev
->gendisk
;
1740 * Complain if it has no devices
1743 if (list_empty(&mddev
->disks
))
1751 mddev
->safemode
= 0;
1753 set_disk_ro(disk
, 0);
1755 printk(KERN_INFO
"md: %s switched to read-write mode.\n",
1758 * Kick recovery or resync if necessary
1760 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
1761 md_wakeup_thread(mddev
->thread
);
1764 printk(KERN_ERR
"md: %s has no personality assigned.\n",
1773 static int do_md_stop(mddev_t
* mddev
, int ro
)
1776 struct gendisk
*disk
= mddev
->gendisk
;
1779 if (atomic_read(&mddev
->active
)>2) {
1780 printk("md: %s still in use.\n",mdname(mddev
));
1784 if (mddev
->sync_thread
) {
1785 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
1786 md_unregister_thread(mddev
->sync_thread
);
1787 mddev
->sync_thread
= NULL
;
1790 del_timer_sync(&mddev
->safemode_timer
);
1792 invalidate_partition(disk
, 0);
1801 set_disk_ro(disk
, 0);
1802 blk_queue_make_request(mddev
->queue
, md_fail_request
);
1803 mddev
->pers
->stop(mddev
);
1804 module_put(mddev
->pers
->owner
);
1809 if (!mddev
->in_sync
) {
1810 /* mark array as shutdown cleanly */
1812 md_update_sb(mddev
);
1815 set_disk_ro(disk
, 1);
1818 bitmap_destroy(mddev
);
1819 if (mddev
->bitmap_file
) {
1820 atomic_set(&mddev
->bitmap_file
->f_dentry
->d_inode
->i_writecount
, 1);
1821 fput(mddev
->bitmap_file
);
1822 mddev
->bitmap_file
= NULL
;
1826 * Free resources if final stop
1829 struct gendisk
*disk
;
1830 printk(KERN_INFO
"md: %s stopped.\n", mdname(mddev
));
1832 export_array(mddev
);
1834 mddev
->array_size
= 0;
1835 disk
= mddev
->gendisk
;
1837 set_capacity(disk
, 0);
1840 printk(KERN_INFO
"md: %s switched to read-only mode.\n",
1847 static void autorun_array(mddev_t
*mddev
)
1850 struct list_head
*tmp
;
1853 if (list_empty(&mddev
->disks
))
1856 printk(KERN_INFO
"md: running: ");
1858 ITERATE_RDEV(mddev
,rdev
,tmp
) {
1859 char b
[BDEVNAME_SIZE
];
1860 printk("<%s>", bdevname(rdev
->bdev
,b
));
1864 err
= do_md_run (mddev
);
1866 printk(KERN_WARNING
"md: do_md_run() returned %d\n", err
);
1867 do_md_stop (mddev
, 0);
1872 * lets try to run arrays based on all disks that have arrived
1873 * until now. (those are in pending_raid_disks)
1875 * the method: pick the first pending disk, collect all disks with
1876 * the same UUID, remove all from the pending list and put them into
1877 * the 'same_array' list. Then order this list based on superblock
1878 * update time (freshest comes first), kick out 'old' disks and
1879 * compare superblocks. If everything's fine then run it.
1881 * If "unit" is allocated, then bump its reference count
1883 static void autorun_devices(int part
)
1885 struct list_head candidates
;
1886 struct list_head
*tmp
;
1887 mdk_rdev_t
*rdev0
, *rdev
;
1889 char b
[BDEVNAME_SIZE
];
1891 printk(KERN_INFO
"md: autorun ...\n");
1892 while (!list_empty(&pending_raid_disks
)) {
1894 rdev0
= list_entry(pending_raid_disks
.next
,
1895 mdk_rdev_t
, same_set
);
1897 printk(KERN_INFO
"md: considering %s ...\n",
1898 bdevname(rdev0
->bdev
,b
));
1899 INIT_LIST_HEAD(&candidates
);
1900 ITERATE_RDEV_PENDING(rdev
,tmp
)
1901 if (super_90_load(rdev
, rdev0
, 0) >= 0) {
1902 printk(KERN_INFO
"md: adding %s ...\n",
1903 bdevname(rdev
->bdev
,b
));
1904 list_move(&rdev
->same_set
, &candidates
);
1907 * now we have a set of devices, with all of them having
1908 * mostly sane superblocks. It's time to allocate the
1911 if (rdev0
->preferred_minor
< 0 || rdev0
->preferred_minor
>= MAX_MD_DEVS
) {
1912 printk(KERN_INFO
"md: unit number in %s is bad: %d\n",
1913 bdevname(rdev0
->bdev
, b
), rdev0
->preferred_minor
);
1917 dev
= MKDEV(mdp_major
,
1918 rdev0
->preferred_minor
<< MdpMinorShift
);
1920 dev
= MKDEV(MD_MAJOR
, rdev0
->preferred_minor
);
1922 md_probe(dev
, NULL
, NULL
);
1923 mddev
= mddev_find(dev
);
1926 "md: cannot allocate memory for md drive.\n");
1929 if (mddev_lock(mddev
))
1930 printk(KERN_WARNING
"md: %s locked, cannot run\n",
1932 else if (mddev
->raid_disks
|| mddev
->major_version
1933 || !list_empty(&mddev
->disks
)) {
1935 "md: %s already running, cannot run %s\n",
1936 mdname(mddev
), bdevname(rdev0
->bdev
,b
));
1937 mddev_unlock(mddev
);
1939 printk(KERN_INFO
"md: created %s\n", mdname(mddev
));
1940 ITERATE_RDEV_GENERIC(candidates
,rdev
,tmp
) {
1941 list_del_init(&rdev
->same_set
);
1942 if (bind_rdev_to_array(rdev
, mddev
))
1945 autorun_array(mddev
);
1946 mddev_unlock(mddev
);
1948 /* on success, candidates will be empty, on error
1951 ITERATE_RDEV_GENERIC(candidates
,rdev
,tmp
)
1955 printk(KERN_INFO
"md: ... autorun DONE.\n");
1959 * import RAID devices based on one partition
1960 * if possible, the array gets run as well.
1963 static int autostart_array(dev_t startdev
)
1965 char b
[BDEVNAME_SIZE
];
1966 int err
= -EINVAL
, i
;
1967 mdp_super_t
*sb
= NULL
;
1968 mdk_rdev_t
*start_rdev
= NULL
, *rdev
;
1970 start_rdev
= md_import_device(startdev
, 0, 0);
1971 if (IS_ERR(start_rdev
))
1975 /* NOTE: this can only work for 0.90.0 superblocks */
1976 sb
= (mdp_super_t
*)page_address(start_rdev
->sb_page
);
1977 if (sb
->major_version
!= 0 ||
1978 sb
->minor_version
!= 90 ) {
1979 printk(KERN_WARNING
"md: can only autostart 0.90.0 arrays\n");
1980 export_rdev(start_rdev
);
1984 if (start_rdev
->faulty
) {
1986 "md: can not autostart based on faulty %s!\n",
1987 bdevname(start_rdev
->bdev
,b
));
1988 export_rdev(start_rdev
);
1991 list_add(&start_rdev
->same_set
, &pending_raid_disks
);
1993 for (i
= 0; i
< MD_SB_DISKS
; i
++) {
1994 mdp_disk_t
*desc
= sb
->disks
+ i
;
1995 dev_t dev
= MKDEV(desc
->major
, desc
->minor
);
1999 if (dev
== startdev
)
2001 if (MAJOR(dev
) != desc
->major
|| MINOR(dev
) != desc
->minor
)
2003 rdev
= md_import_device(dev
, 0, 0);
2007 list_add(&rdev
->same_set
, &pending_raid_disks
);
2011 * possibly return codes
2019 static int get_version(void __user
* arg
)
2023 ver
.major
= MD_MAJOR_VERSION
;
2024 ver
.minor
= MD_MINOR_VERSION
;
2025 ver
.patchlevel
= MD_PATCHLEVEL_VERSION
;
2027 if (copy_to_user(arg
, &ver
, sizeof(ver
)))
2033 static int get_array_info(mddev_t
* mddev
, void __user
* arg
)
2035 mdu_array_info_t info
;
2036 int nr
,working
,active
,failed
,spare
;
2038 struct list_head
*tmp
;
2040 nr
=working
=active
=failed
=spare
=0;
2041 ITERATE_RDEV(mddev
,rdev
,tmp
) {
2054 info
.major_version
= mddev
->major_version
;
2055 info
.minor_version
= mddev
->minor_version
;
2056 info
.patch_version
= MD_PATCHLEVEL_VERSION
;
2057 info
.ctime
= mddev
->ctime
;
2058 info
.level
= mddev
->level
;
2059 info
.size
= mddev
->size
;
2061 info
.raid_disks
= mddev
->raid_disks
;
2062 info
.md_minor
= mddev
->md_minor
;
2063 info
.not_persistent
= !mddev
->persistent
;
2065 info
.utime
= mddev
->utime
;
2068 info
.state
= (1<<MD_SB_CLEAN
);
2069 info
.active_disks
= active
;
2070 info
.working_disks
= working
;
2071 info
.failed_disks
= failed
;
2072 info
.spare_disks
= spare
;
2074 info
.layout
= mddev
->layout
;
2075 info
.chunk_size
= mddev
->chunk_size
;
2077 if (copy_to_user(arg
, &info
, sizeof(info
)))
2083 static int get_bitmap_file(mddev_t
* mddev
, void * arg
)
2085 mdu_bitmap_file_t
*file
= NULL
; /* too big for stack allocation */
2086 char *ptr
, *buf
= NULL
;
2089 file
= kmalloc(sizeof(*file
), GFP_KERNEL
);
2093 /* bitmap disabled, zero the first byte and copy out */
2094 if (!mddev
->bitmap
|| !mddev
->bitmap
->file
) {
2095 file
->pathname
[0] = '\0';
2099 buf
= kmalloc(sizeof(file
->pathname
), GFP_KERNEL
);
2103 ptr
= file_path(mddev
->bitmap
->file
, buf
, sizeof(file
->pathname
));
2107 strcpy(file
->pathname
, ptr
);
2111 if (copy_to_user(arg
, file
, sizeof(*file
)))
2119 static int get_disk_info(mddev_t
* mddev
, void __user
* arg
)
2121 mdu_disk_info_t info
;
2125 if (copy_from_user(&info
, arg
, sizeof(info
)))
2130 rdev
= find_rdev_nr(mddev
, nr
);
2132 info
.major
= MAJOR(rdev
->bdev
->bd_dev
);
2133 info
.minor
= MINOR(rdev
->bdev
->bd_dev
);
2134 info
.raid_disk
= rdev
->raid_disk
;
2137 info
.state
|= (1<<MD_DISK_FAULTY
);
2138 else if (rdev
->in_sync
) {
2139 info
.state
|= (1<<MD_DISK_ACTIVE
);
2140 info
.state
|= (1<<MD_DISK_SYNC
);
2143 info
.major
= info
.minor
= 0;
2144 info
.raid_disk
= -1;
2145 info
.state
= (1<<MD_DISK_REMOVED
);
2148 if (copy_to_user(arg
, &info
, sizeof(info
)))
2154 static int add_new_disk(mddev_t
* mddev
, mdu_disk_info_t
*info
)
2156 char b
[BDEVNAME_SIZE
], b2
[BDEVNAME_SIZE
];
2158 dev_t dev
= MKDEV(info
->major
,info
->minor
);
2160 if (info
->major
!= MAJOR(dev
) || info
->minor
!= MINOR(dev
))
2163 if (!mddev
->raid_disks
) {
2165 /* expecting a device which has a superblock */
2166 rdev
= md_import_device(dev
, mddev
->major_version
, mddev
->minor_version
);
2169 "md: md_import_device returned %ld\n",
2171 return PTR_ERR(rdev
);
2173 if (!list_empty(&mddev
->disks
)) {
2174 mdk_rdev_t
*rdev0
= list_entry(mddev
->disks
.next
,
2175 mdk_rdev_t
, same_set
);
2176 int err
= super_types
[mddev
->major_version
]
2177 .load_super(rdev
, rdev0
, mddev
->minor_version
);
2180 "md: %s has different UUID to %s\n",
2181 bdevname(rdev
->bdev
,b
),
2182 bdevname(rdev0
->bdev
,b2
));
2187 err
= bind_rdev_to_array(rdev
, mddev
);
2194 * add_new_disk can be used once the array is assembled
2195 * to add "hot spares". They must already have a superblock
2200 if (!mddev
->pers
->hot_add_disk
) {
2202 "%s: personality does not support diskops!\n",
2206 rdev
= md_import_device(dev
, mddev
->major_version
,
2207 mddev
->minor_version
);
2210 "md: md_import_device returned %ld\n",
2212 return PTR_ERR(rdev
);
2214 /* set save_raid_disk if appropriate */
2215 if (!mddev
->persistent
) {
2216 if (info
->state
& (1<<MD_DISK_SYNC
) &&
2217 info
->raid_disk
< mddev
->raid_disks
)
2218 rdev
->raid_disk
= info
->raid_disk
;
2220 rdev
->raid_disk
= -1;
2222 super_types
[mddev
->major_version
].
2223 validate_super(mddev
, rdev
);
2224 rdev
->saved_raid_disk
= rdev
->raid_disk
;
2226 rdev
->in_sync
= 0; /* just to be sure */
2227 rdev
->raid_disk
= -1;
2228 err
= bind_rdev_to_array(rdev
, mddev
);
2232 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
2234 md_wakeup_thread(mddev
->thread
);
2238 /* otherwise, add_new_disk is only allowed
2239 * for major_version==0 superblocks
2241 if (mddev
->major_version
!= 0) {
2242 printk(KERN_WARNING
"%s: ADD_NEW_DISK not supported\n",
2247 if (!(info
->state
& (1<<MD_DISK_FAULTY
))) {
2249 rdev
= md_import_device (dev
, -1, 0);
2252 "md: error, md_import_device() returned %ld\n",
2254 return PTR_ERR(rdev
);
2256 rdev
->desc_nr
= info
->number
;
2257 if (info
->raid_disk
< mddev
->raid_disks
)
2258 rdev
->raid_disk
= info
->raid_disk
;
2260 rdev
->raid_disk
= -1;
2263 if (rdev
->raid_disk
< mddev
->raid_disks
)
2264 rdev
->in_sync
= (info
->state
& (1<<MD_DISK_SYNC
));
2268 err
= bind_rdev_to_array(rdev
, mddev
);
2274 if (!mddev
->persistent
) {
2275 printk(KERN_INFO
"md: nonpersistent superblock ...\n");
2276 rdev
->sb_offset
= rdev
->bdev
->bd_inode
->i_size
>> BLOCK_SIZE_BITS
;
2278 rdev
->sb_offset
= calc_dev_sboffset(rdev
->bdev
);
2279 rdev
->size
= calc_dev_size(rdev
, mddev
->chunk_size
);
2281 if (!mddev
->size
|| (mddev
->size
> rdev
->size
))
2282 mddev
->size
= rdev
->size
;
2288 static int hot_remove_disk(mddev_t
* mddev
, dev_t dev
)
2290 char b
[BDEVNAME_SIZE
];
2296 rdev
= find_rdev(mddev
, dev
);
2300 if (rdev
->raid_disk
>= 0)
2303 kick_rdev_from_array(rdev
);
2304 md_update_sb(mddev
);
2308 printk(KERN_WARNING
"md: cannot remove active disk %s from %s ... \n",
2309 bdevname(rdev
->bdev
,b
), mdname(mddev
));
2313 static int hot_add_disk(mddev_t
* mddev
, dev_t dev
)
2315 char b
[BDEVNAME_SIZE
];
2323 if (mddev
->major_version
!= 0) {
2324 printk(KERN_WARNING
"%s: HOT_ADD may only be used with"
2325 " version-0 superblocks.\n",
2329 if (!mddev
->pers
->hot_add_disk
) {
2331 "%s: personality does not support diskops!\n",
2336 rdev
= md_import_device (dev
, -1, 0);
2339 "md: error, md_import_device() returned %ld\n",
2344 if (mddev
->persistent
)
2345 rdev
->sb_offset
= calc_dev_sboffset(rdev
->bdev
);
2348 rdev
->bdev
->bd_inode
->i_size
>> BLOCK_SIZE_BITS
;
2350 size
= calc_dev_size(rdev
, mddev
->chunk_size
);
2353 if (size
< mddev
->size
) {
2355 "%s: disk size %llu blocks < array size %llu\n",
2356 mdname(mddev
), (unsigned long long)size
,
2357 (unsigned long long)mddev
->size
);
2364 "md: can not hot-add faulty %s disk to %s!\n",
2365 bdevname(rdev
->bdev
,b
), mdname(mddev
));
2371 bind_rdev_to_array(rdev
, mddev
);
2374 * The rest should better be atomic, we can have disk failures
2375 * noticed in interrupt contexts ...
2378 if (rdev
->desc_nr
== mddev
->max_disks
) {
2379 printk(KERN_WARNING
"%s: can not hot-add to full array!\n",
2382 goto abort_unbind_export
;
2385 rdev
->raid_disk
= -1;
2387 md_update_sb(mddev
);
2390 * Kick recovery, maybe this spare has to be added to the
2391 * array immediately.
2393 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
2394 md_wakeup_thread(mddev
->thread
);
2398 abort_unbind_export
:
2399 unbind_rdev_from_array(rdev
);
2406 /* similar to deny_write_access, but accounts for our holding a reference
2407 * to the file ourselves */
2408 static int deny_bitmap_write_access(struct file
* file
)
2410 struct inode
*inode
= file
->f_mapping
->host
;
2412 spin_lock(&inode
->i_lock
);
2413 if (atomic_read(&inode
->i_writecount
) > 1) {
2414 spin_unlock(&inode
->i_lock
);
2417 atomic_set(&inode
->i_writecount
, -1);
2418 spin_unlock(&inode
->i_lock
);
2423 static int set_bitmap_file(mddev_t
*mddev
, int fd
)
2430 mddev
->bitmap_file
= fget(fd
);
2432 if (mddev
->bitmap_file
== NULL
) {
2433 printk(KERN_ERR
"%s: error: failed to get bitmap file\n",
2438 err
= deny_bitmap_write_access(mddev
->bitmap_file
);
2440 printk(KERN_ERR
"%s: error: bitmap file is already in use\n",
2442 fput(mddev
->bitmap_file
);
2443 mddev
->bitmap_file
= NULL
;
2445 mddev
->bitmap_offset
= 0; /* file overrides offset */
2450 * set_array_info is used two different ways
2451 * The original usage is when creating a new array.
2452 * In this usage, raid_disks is > 0 and it together with
2453 * level, size, not_persistent,layout,chunksize determine the
2454 * shape of the array.
2455 * This will always create an array with a type-0.90.0 superblock.
2456 * The newer usage is when assembling an array.
2457 * In this case raid_disks will be 0, and the major_version field is
2458 * use to determine which style super-blocks are to be found on the devices.
2459 * The minor and patch _version numbers are also kept incase the
2460 * super_block handler wishes to interpret them.
2462 static int set_array_info(mddev_t
* mddev
, mdu_array_info_t
*info
)
2465 if (info
->raid_disks
== 0) {
2466 /* just setting version number for superblock loading */
2467 if (info
->major_version
< 0 ||
2468 info
->major_version
>= sizeof(super_types
)/sizeof(super_types
[0]) ||
2469 super_types
[info
->major_version
].name
== NULL
) {
2470 /* maybe try to auto-load a module? */
2472 "md: superblock version %d not known\n",
2473 info
->major_version
);
2476 mddev
->major_version
= info
->major_version
;
2477 mddev
->minor_version
= info
->minor_version
;
2478 mddev
->patch_version
= info
->patch_version
;
2481 mddev
->major_version
= MD_MAJOR_VERSION
;
2482 mddev
->minor_version
= MD_MINOR_VERSION
;
2483 mddev
->patch_version
= MD_PATCHLEVEL_VERSION
;
2484 mddev
->ctime
= get_seconds();
2486 mddev
->level
= info
->level
;
2487 mddev
->size
= info
->size
;
2488 mddev
->raid_disks
= info
->raid_disks
;
2489 /* don't set md_minor, it is determined by which /dev/md* was
2492 if (info
->state
& (1<<MD_SB_CLEAN
))
2493 mddev
->recovery_cp
= MaxSector
;
2495 mddev
->recovery_cp
= 0;
2496 mddev
->persistent
= ! info
->not_persistent
;
2498 mddev
->layout
= info
->layout
;
2499 mddev
->chunk_size
= info
->chunk_size
;
2501 mddev
->max_disks
= MD_SB_DISKS
;
2503 mddev
->sb_dirty
= 1;
2506 * Generate a 128 bit UUID
2508 get_random_bytes(mddev
->uuid
, 16);
2514 * update_array_info is used to change the configuration of an
2516 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
2517 * fields in the info are checked against the array.
2518 * Any differences that cannot be handled will cause an error.
2519 * Normally, only one change can be managed at a time.
2521 static int update_array_info(mddev_t
*mddev
, mdu_array_info_t
*info
)
2526 if (mddev
->major_version
!= info
->major_version
||
2527 mddev
->minor_version
!= info
->minor_version
||
2528 /* mddev->patch_version != info->patch_version || */
2529 mddev
->ctime
!= info
->ctime
||
2530 mddev
->level
!= info
->level
||
2531 /* mddev->layout != info->layout || */
2532 !mddev
->persistent
!= info
->not_persistent
||
2533 mddev
->chunk_size
!= info
->chunk_size
)
2535 /* Check there is only one change */
2536 if (mddev
->size
!= info
->size
) cnt
++;
2537 if (mddev
->raid_disks
!= info
->raid_disks
) cnt
++;
2538 if (mddev
->layout
!= info
->layout
) cnt
++;
2539 if (cnt
== 0) return 0;
2540 if (cnt
> 1) return -EINVAL
;
2542 if (mddev
->layout
!= info
->layout
) {
2544 * we don't need to do anything at the md level, the
2545 * personality will take care of it all.
2547 if (mddev
->pers
->reconfig
== NULL
)
2550 return mddev
->pers
->reconfig(mddev
, info
->layout
, -1);
2552 if (mddev
->size
!= info
->size
) {
2554 struct list_head
*tmp
;
2555 if (mddev
->pers
->resize
== NULL
)
2557 /* The "size" is the amount of each device that is used.
2558 * This can only make sense for arrays with redundancy.
2559 * linear and raid0 always use whatever space is available
2560 * We can only consider changing the size if no resync
2561 * or reconstruction is happening, and if the new size
2562 * is acceptable. It must fit before the sb_offset or,
2563 * if that is <data_offset, it must fit before the
2564 * size of each device.
2565 * If size is zero, we find the largest size that fits.
2567 if (mddev
->sync_thread
)
2569 ITERATE_RDEV(mddev
,rdev
,tmp
) {
2571 int fit
= (info
->size
== 0);
2572 if (rdev
->sb_offset
> rdev
->data_offset
)
2573 avail
= (rdev
->sb_offset
*2) - rdev
->data_offset
;
2575 avail
= get_capacity(rdev
->bdev
->bd_disk
)
2576 - rdev
->data_offset
;
2577 if (fit
&& (info
->size
== 0 || info
->size
> avail
/2))
2578 info
->size
= avail
/2;
2579 if (avail
< ((sector_t
)info
->size
<< 1))
2582 rv
= mddev
->pers
->resize(mddev
, (sector_t
)info
->size
*2);
2584 struct block_device
*bdev
;
2586 bdev
= bdget_disk(mddev
->gendisk
, 0);
2588 down(&bdev
->bd_inode
->i_sem
);
2589 i_size_write(bdev
->bd_inode
, mddev
->array_size
<< 10);
2590 up(&bdev
->bd_inode
->i_sem
);
2595 if (mddev
->raid_disks
!= info
->raid_disks
) {
2596 /* change the number of raid disks */
2597 if (mddev
->pers
->reshape
== NULL
)
2599 if (info
->raid_disks
<= 0 ||
2600 info
->raid_disks
>= mddev
->max_disks
)
2602 if (mddev
->sync_thread
)
2604 rv
= mddev
->pers
->reshape(mddev
, info
->raid_disks
);
2606 struct block_device
*bdev
;
2608 bdev
= bdget_disk(mddev
->gendisk
, 0);
2610 down(&bdev
->bd_inode
->i_sem
);
2611 i_size_write(bdev
->bd_inode
, mddev
->array_size
<< 10);
2612 up(&bdev
->bd_inode
->i_sem
);
2617 md_update_sb(mddev
);
2621 static int set_disk_faulty(mddev_t
*mddev
, dev_t dev
)
2625 if (mddev
->pers
== NULL
)
2628 rdev
= find_rdev(mddev
, dev
);
2632 md_error(mddev
, rdev
);
2636 static int md_ioctl(struct inode
*inode
, struct file
*file
,
2637 unsigned int cmd
, unsigned long arg
)
2640 void __user
*argp
= (void __user
*)arg
;
2641 struct hd_geometry __user
*loc
= argp
;
2642 mddev_t
*mddev
= NULL
;
2644 if (!capable(CAP_SYS_ADMIN
))
2648 * Commands dealing with the RAID driver but not any
2654 err
= get_version(argp
);
2657 case PRINT_RAID_DEBUG
:
2665 autostart_arrays(arg
);
2672 * Commands creating/starting a new array:
2675 mddev
= inode
->i_bdev
->bd_disk
->private_data
;
2683 if (cmd
== START_ARRAY
) {
2684 /* START_ARRAY doesn't need to lock the array as autostart_array
2685 * does the locking, and it could even be a different array
2690 "md: %s(pid %d) used deprecated START_ARRAY ioctl. "
2691 "This will not be supported beyond 2.6\n",
2692 current
->comm
, current
->pid
);
2695 err
= autostart_array(new_decode_dev(arg
));
2697 printk(KERN_WARNING
"md: autostart failed!\n");
2703 err
= mddev_lock(mddev
);
2706 "md: ioctl lock interrupted, reason %d, cmd %d\n",
2713 case SET_ARRAY_INFO
:
2715 mdu_array_info_t info
;
2717 memset(&info
, 0, sizeof(info
));
2718 else if (copy_from_user(&info
, argp
, sizeof(info
))) {
2723 err
= update_array_info(mddev
, &info
);
2725 printk(KERN_WARNING
"md: couldn't update"
2726 " array info. %d\n", err
);
2731 if (!list_empty(&mddev
->disks
)) {
2733 "md: array %s already has disks!\n",
2738 if (mddev
->raid_disks
) {
2740 "md: array %s already initialised!\n",
2745 err
= set_array_info(mddev
, &info
);
2747 printk(KERN_WARNING
"md: couldn't set"
2748 " array info. %d\n", err
);
2758 * Commands querying/configuring an existing array:
2760 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
2761 * RUN_ARRAY, and SET_BITMAP_FILE are allowed */
2762 if (!mddev
->raid_disks
&& cmd
!= ADD_NEW_DISK
&& cmd
!= STOP_ARRAY
2763 && cmd
!= RUN_ARRAY
&& cmd
!= SET_BITMAP_FILE
) {
2769 * Commands even a read-only array can execute:
2773 case GET_ARRAY_INFO
:
2774 err
= get_array_info(mddev
, argp
);
2777 case GET_BITMAP_FILE
:
2778 err
= get_bitmap_file(mddev
, (void *)arg
);
2782 err
= get_disk_info(mddev
, argp
);
2785 case RESTART_ARRAY_RW
:
2786 err
= restart_array(mddev
);
2790 err
= do_md_stop (mddev
, 0);
2794 err
= do_md_stop (mddev
, 1);
2798 * We have a problem here : there is no easy way to give a CHS
2799 * virtual geometry. We currently pretend that we have a 2 heads
2800 * 4 sectors (with a BIG number of cylinders...). This drives
2801 * dosfs just mad... ;-)
2808 err
= put_user (2, (char __user
*) &loc
->heads
);
2811 err
= put_user (4, (char __user
*) &loc
->sectors
);
2814 err
= put_user(get_capacity(mddev
->gendisk
)/8,
2815 (short __user
*) &loc
->cylinders
);
2818 err
= put_user (get_start_sect(inode
->i_bdev
),
2819 (long __user
*) &loc
->start
);
2824 * The remaining ioctls are changing the state of the
2825 * superblock, so we do not allow read-only arrays
2837 mdu_disk_info_t info
;
2838 if (copy_from_user(&info
, argp
, sizeof(info
)))
2841 err
= add_new_disk(mddev
, &info
);
2845 case HOT_REMOVE_DISK
:
2846 err
= hot_remove_disk(mddev
, new_decode_dev(arg
));
2850 err
= hot_add_disk(mddev
, new_decode_dev(arg
));
2853 case SET_DISK_FAULTY
:
2854 err
= set_disk_faulty(mddev
, new_decode_dev(arg
));
2858 err
= do_md_run (mddev
);
2861 case SET_BITMAP_FILE
:
2862 err
= set_bitmap_file(mddev
, (int)arg
);
2866 if (_IOC_TYPE(cmd
) == MD_MAJOR
)
2867 printk(KERN_WARNING
"md: %s(pid %d) used"
2868 " obsolete MD ioctl, upgrade your"
2869 " software to use new ictls.\n",
2870 current
->comm
, current
->pid
);
2877 mddev_unlock(mddev
);
2887 static int md_open(struct inode
*inode
, struct file
*file
)
2890 * Succeed if we can lock the mddev, which confirms that
2891 * it isn't being stopped right now.
2893 mddev_t
*mddev
= inode
->i_bdev
->bd_disk
->private_data
;
2896 if ((err
= mddev_lock(mddev
)))
2901 mddev_unlock(mddev
);
2903 check_disk_change(inode
->i_bdev
);
2908 static int md_release(struct inode
*inode
, struct file
* file
)
2910 mddev_t
*mddev
= inode
->i_bdev
->bd_disk
->private_data
;
2919 static int md_media_changed(struct gendisk
*disk
)
2921 mddev_t
*mddev
= disk
->private_data
;
2923 return mddev
->changed
;
2926 static int md_revalidate(struct gendisk
*disk
)
2928 mddev_t
*mddev
= disk
->private_data
;
2933 static struct block_device_operations md_fops
=
2935 .owner
= THIS_MODULE
,
2937 .release
= md_release
,
2939 .media_changed
= md_media_changed
,
2940 .revalidate_disk
= md_revalidate
,
2943 static int md_thread(void * arg
)
2945 mdk_thread_t
*thread
= arg
;
2953 daemonize(thread
->name
, mdname(thread
->mddev
));
2955 current
->exit_signal
= SIGCHLD
;
2956 allow_signal(SIGKILL
);
2957 thread
->tsk
= current
;
2960 * md_thread is a 'system-thread', it's priority should be very
2961 * high. We avoid resource deadlocks individually in each
2962 * raid personality. (RAID5 does preallocation) We also use RR and
2963 * the very same RT priority as kswapd, thus we will never get
2964 * into a priority inversion deadlock.
2966 * we definitely have to have equal or higher priority than
2967 * bdflush, otherwise bdflush will deadlock if there are too
2968 * many dirty RAID5 blocks.
2972 complete(thread
->event
);
2973 while (thread
->run
) {
2974 void (*run
)(mddev_t
*);
2976 wait_event_interruptible_timeout(thread
->wqueue
,
2977 test_bit(THREAD_WAKEUP
, &thread
->flags
),
2979 if (current
->flags
& PF_FREEZE
)
2980 refrigerator(PF_FREEZE
);
2982 clear_bit(THREAD_WAKEUP
, &thread
->flags
);
2988 if (signal_pending(current
))
2989 flush_signals(current
);
2991 complete(thread
->event
);
2995 void md_wakeup_thread(mdk_thread_t
*thread
)
2998 dprintk("md: waking up MD thread %s.\n", thread
->tsk
->comm
);
2999 set_bit(THREAD_WAKEUP
, &thread
->flags
);
3000 wake_up(&thread
->wqueue
);
3004 mdk_thread_t
*md_register_thread(void (*run
) (mddev_t
*), mddev_t
*mddev
,
3007 mdk_thread_t
*thread
;
3009 struct completion event
;
3011 thread
= (mdk_thread_t
*) kmalloc
3012 (sizeof(mdk_thread_t
), GFP_KERNEL
);
3016 memset(thread
, 0, sizeof(mdk_thread_t
));
3017 init_waitqueue_head(&thread
->wqueue
);
3019 init_completion(&event
);
3020 thread
->event
= &event
;
3022 thread
->mddev
= mddev
;
3023 thread
->name
= name
;
3024 thread
->timeout
= MAX_SCHEDULE_TIMEOUT
;
3025 ret
= kernel_thread(md_thread
, thread
, 0);
3030 wait_for_completion(&event
);
3034 void md_unregister_thread(mdk_thread_t
*thread
)
3036 struct completion event
;
3038 init_completion(&event
);
3040 thread
->event
= &event
;
3042 /* As soon as ->run is set to NULL, the task could disappear,
3043 * so we need to hold tasklist_lock until we have sent the signal
3045 dprintk("interrupting MD-thread pid %d\n", thread
->tsk
->pid
);
3046 read_lock(&tasklist_lock
);
3048 send_sig(SIGKILL
, thread
->tsk
, 1);
3049 read_unlock(&tasklist_lock
);
3050 wait_for_completion(&event
);
3054 void md_error(mddev_t
*mddev
, mdk_rdev_t
*rdev
)
3061 if (!rdev
|| rdev
->faulty
)
3064 dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
3066 MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
3067 __builtin_return_address(0),__builtin_return_address(1),
3068 __builtin_return_address(2),__builtin_return_address(3));
3070 if (!mddev
->pers
->error_handler
)
3072 mddev
->pers
->error_handler(mddev
,rdev
);
3073 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
3074 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
3075 md_wakeup_thread(mddev
->thread
);
3078 /* seq_file implementation /proc/mdstat */
3080 static void status_unused(struct seq_file
*seq
)
3084 struct list_head
*tmp
;
3086 seq_printf(seq
, "unused devices: ");
3088 ITERATE_RDEV_PENDING(rdev
,tmp
) {
3089 char b
[BDEVNAME_SIZE
];
3091 seq_printf(seq
, "%s ",
3092 bdevname(rdev
->bdev
,b
));
3095 seq_printf(seq
, "<none>");
3097 seq_printf(seq
, "\n");
3101 static void status_resync(struct seq_file
*seq
, mddev_t
* mddev
)
3103 unsigned long max_blocks
, resync
, res
, dt
, db
, rt
;
3105 resync
= (mddev
->curr_resync
- atomic_read(&mddev
->recovery_active
))/2;
3107 if (test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
))
3108 max_blocks
= mddev
->resync_max_sectors
>> 1;
3110 max_blocks
= mddev
->size
;
3113 * Should not happen.
3119 res
= (resync
/1024)*1000/(max_blocks
/1024 + 1);
3121 int i
, x
= res
/50, y
= 20-x
;
3122 seq_printf(seq
, "[");
3123 for (i
= 0; i
< x
; i
++)
3124 seq_printf(seq
, "=");
3125 seq_printf(seq
, ">");
3126 for (i
= 0; i
< y
; i
++)
3127 seq_printf(seq
, ".");
3128 seq_printf(seq
, "] ");
3130 seq_printf(seq
, " %s =%3lu.%lu%% (%lu/%lu)",
3131 (test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
) ?
3132 "resync" : "recovery"),
3133 res
/10, res
% 10, resync
, max_blocks
);
3136 * We do not want to overflow, so the order of operands and
3137 * the * 100 / 100 trick are important. We do a +1 to be
3138 * safe against division by zero. We only estimate anyway.
3140 * dt: time from mark until now
3141 * db: blocks written from mark until now
3142 * rt: remaining time
3144 dt
= ((jiffies
- mddev
->resync_mark
) / HZ
);
3146 db
= resync
- (mddev
->resync_mark_cnt
/2);
3147 rt
= (dt
* ((max_blocks
-resync
) / (db
/100+1)))/100;
3149 seq_printf(seq
, " finish=%lu.%lumin", rt
/ 60, (rt
% 60)/6);
3151 seq_printf(seq
, " speed=%ldK/sec", db
/dt
);
3154 static void *md_seq_start(struct seq_file
*seq
, loff_t
*pos
)
3156 struct list_head
*tmp
;
3166 spin_lock(&all_mddevs_lock
);
3167 list_for_each(tmp
,&all_mddevs
)
3169 mddev
= list_entry(tmp
, mddev_t
, all_mddevs
);
3171 spin_unlock(&all_mddevs_lock
);
3174 spin_unlock(&all_mddevs_lock
);
3176 return (void*)2;/* tail */
3180 static void *md_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
3182 struct list_head
*tmp
;
3183 mddev_t
*next_mddev
, *mddev
= v
;
3189 spin_lock(&all_mddevs_lock
);
3191 tmp
= all_mddevs
.next
;
3193 tmp
= mddev
->all_mddevs
.next
;
3194 if (tmp
!= &all_mddevs
)
3195 next_mddev
= mddev_get(list_entry(tmp
,mddev_t
,all_mddevs
));
3197 next_mddev
= (void*)2;
3200 spin_unlock(&all_mddevs_lock
);
3208 static void md_seq_stop(struct seq_file
*seq
, void *v
)
3212 if (mddev
&& v
!= (void*)1 && v
!= (void*)2)
3216 static int md_seq_show(struct seq_file
*seq
, void *v
)
3220 struct list_head
*tmp2
;
3223 struct bitmap
*bitmap
;
3225 if (v
== (void*)1) {
3226 seq_printf(seq
, "Personalities : ");
3227 spin_lock(&pers_lock
);
3228 for (i
= 0; i
< MAX_PERSONALITY
; i
++)
3230 seq_printf(seq
, "[%s] ", pers
[i
]->name
);
3232 spin_unlock(&pers_lock
);
3233 seq_printf(seq
, "\n");
3236 if (v
== (void*)2) {
3241 if (mddev_lock(mddev
)!=0)
3243 if (mddev
->pers
|| mddev
->raid_disks
|| !list_empty(&mddev
->disks
)) {
3244 seq_printf(seq
, "%s : %sactive", mdname(mddev
),
3245 mddev
->pers
? "" : "in");
3248 seq_printf(seq
, " (read-only)");
3249 seq_printf(seq
, " %s", mddev
->pers
->name
);
3253 ITERATE_RDEV(mddev
,rdev
,tmp2
) {
3254 char b
[BDEVNAME_SIZE
];
3255 seq_printf(seq
, " %s[%d]",
3256 bdevname(rdev
->bdev
,b
), rdev
->desc_nr
);
3258 seq_printf(seq
, "(F)");
3264 if (!list_empty(&mddev
->disks
)) {
3266 seq_printf(seq
, "\n %llu blocks",
3267 (unsigned long long)mddev
->array_size
);
3269 seq_printf(seq
, "\n %llu blocks",
3270 (unsigned long long)size
);
3274 mddev
->pers
->status (seq
, mddev
);
3275 seq_printf(seq
, "\n ");
3276 if (mddev
->curr_resync
> 2) {
3277 status_resync (seq
, mddev
);
3278 seq_printf(seq
, "\n ");
3279 } else if (mddev
->curr_resync
== 1 || mddev
->curr_resync
== 2)
3280 seq_printf(seq
, " resync=DELAYED\n ");
3282 seq_printf(seq
, "\n ");
3284 if ((bitmap
= mddev
->bitmap
)) {
3285 unsigned long chunk_kb
;
3286 unsigned long flags
;
3287 spin_lock_irqsave(&bitmap
->lock
, flags
);
3288 chunk_kb
= bitmap
->chunksize
>> 10;
3289 seq_printf(seq
, "bitmap: %lu/%lu pages [%luKB], "
3291 bitmap
->pages
- bitmap
->missing_pages
,
3293 (bitmap
->pages
- bitmap
->missing_pages
)
3294 << (PAGE_SHIFT
- 10),
3295 chunk_kb
? chunk_kb
: bitmap
->chunksize
,
3296 chunk_kb
? "KB" : "B");
3298 seq_printf(seq
, ", file: ");
3299 seq_path(seq
, bitmap
->file
->f_vfsmnt
,
3300 bitmap
->file
->f_dentry
," \t\n");
3303 seq_printf(seq
, "\n");
3304 spin_unlock_irqrestore(&bitmap
->lock
, flags
);
3307 seq_printf(seq
, "\n");
3309 mddev_unlock(mddev
);
3314 static struct seq_operations md_seq_ops
= {
3315 .start
= md_seq_start
,
3316 .next
= md_seq_next
,
3317 .stop
= md_seq_stop
,
3318 .show
= md_seq_show
,
3321 static int md_seq_open(struct inode
*inode
, struct file
*file
)
3325 error
= seq_open(file
, &md_seq_ops
);
3329 static struct file_operations md_seq_fops
= {
3330 .open
= md_seq_open
,
3332 .llseek
= seq_lseek
,
3333 .release
= seq_release
,
3336 int register_md_personality(int pnum
, mdk_personality_t
*p
)
3338 if (pnum
>= MAX_PERSONALITY
) {
3340 "md: tried to install personality %s as nr %d, but max is %lu\n",
3341 p
->name
, pnum
, MAX_PERSONALITY
-1);
3345 spin_lock(&pers_lock
);
3347 spin_unlock(&pers_lock
);
3352 printk(KERN_INFO
"md: %s personality registered as nr %d\n", p
->name
, pnum
);
3353 spin_unlock(&pers_lock
);
3357 int unregister_md_personality(int pnum
)
3359 if (pnum
>= MAX_PERSONALITY
)
3362 printk(KERN_INFO
"md: %s personality unregistered\n", pers
[pnum
]->name
);
3363 spin_lock(&pers_lock
);
3365 spin_unlock(&pers_lock
);
3369 static int is_mddev_idle(mddev_t
*mddev
)
3372 struct list_head
*tmp
;
3374 unsigned long curr_events
;
3377 ITERATE_RDEV(mddev
,rdev
,tmp
) {
3378 struct gendisk
*disk
= rdev
->bdev
->bd_contains
->bd_disk
;
3379 curr_events
= disk_stat_read(disk
, read_sectors
) +
3380 disk_stat_read(disk
, write_sectors
) -
3381 atomic_read(&disk
->sync_io
);
3382 /* Allow some slack between valud of curr_events and last_events,
3383 * as there are some uninteresting races.
3384 * Note: the following is an unsigned comparison.
3386 if ((curr_events
- rdev
->last_events
+ 32) > 64) {
3387 rdev
->last_events
= curr_events
;
3394 void md_done_sync(mddev_t
*mddev
, int blocks
, int ok
)
3396 /* another "blocks" (512byte) blocks have been synced */
3397 atomic_sub(blocks
, &mddev
->recovery_active
);
3398 wake_up(&mddev
->recovery_wait
);
3400 set_bit(MD_RECOVERY_ERR
, &mddev
->recovery
);
3401 md_wakeup_thread(mddev
->thread
);
3402 // stop recovery, signal do_sync ....
3407 /* md_write_start(mddev, bi)
3408 * If we need to update some array metadata (e.g. 'active' flag
3409 * in superblock) before writing, schedule a superblock update
3410 * and wait for it to complete.
3412 void md_write_start(mddev_t
*mddev
, struct bio
*bi
)
3415 if (bio_data_dir(bi
) != WRITE
)
3418 atomic_inc(&mddev
->writes_pending
);
3419 if (mddev
->in_sync
) {
3420 spin_lock(&mddev
->write_lock
);
3421 if (mddev
->in_sync
) {
3423 mddev
->sb_dirty
= 1;
3424 md_wakeup_thread(mddev
->thread
);
3426 spin_unlock(&mddev
->write_lock
);
3428 wait_event(mddev
->sb_wait
, mddev
->sb_dirty
==0);
3431 void md_write_end(mddev_t
*mddev
)
3433 if (atomic_dec_and_test(&mddev
->writes_pending
)) {
3434 if (mddev
->safemode
== 2)
3435 md_wakeup_thread(mddev
->thread
);
3437 mod_timer(&mddev
->safemode_timer
, jiffies
+ mddev
->safemode_delay
);
3441 static DECLARE_WAIT_QUEUE_HEAD(resync_wait
);
3443 #define SYNC_MARKS 10
3444 #define SYNC_MARK_STEP (3*HZ)
3445 static void md_do_sync(mddev_t
*mddev
)
3448 unsigned int currspeed
= 0,
3450 sector_t max_sectors
,j
, io_sectors
;
3451 unsigned long mark
[SYNC_MARKS
];
3452 sector_t mark_cnt
[SYNC_MARKS
];
3454 struct list_head
*tmp
;
3455 sector_t last_check
;
3458 /* just incase thread restarts... */
3459 if (test_bit(MD_RECOVERY_DONE
, &mddev
->recovery
))
3462 /* we overload curr_resync somewhat here.
3463 * 0 == not engaged in resync at all
3464 * 2 == checking that there is no conflict with another sync
3465 * 1 == like 2, but have yielded to allow conflicting resync to
3467 * other == active in resync - this many blocks
3469 * Before starting a resync we must have set curr_resync to
3470 * 2, and then checked that every "conflicting" array has curr_resync
3471 * less than ours. When we find one that is the same or higher
3472 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
3473 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
3474 * This will mean we have to start checking from the beginning again.
3479 mddev
->curr_resync
= 2;
3482 if (signal_pending(current
)) {
3483 flush_signals(current
);
3486 ITERATE_MDDEV(mddev2
,tmp
) {
3488 if (mddev2
== mddev
)
3490 if (mddev2
->curr_resync
&&
3491 match_mddev_units(mddev
,mddev2
)) {
3493 if (mddev
< mddev2
&& mddev
->curr_resync
== 2) {
3494 /* arbitrarily yield */
3495 mddev
->curr_resync
= 1;
3496 wake_up(&resync_wait
);
3498 if (mddev
> mddev2
&& mddev
->curr_resync
== 1)
3499 /* no need to wait here, we can wait the next
3500 * time 'round when curr_resync == 2
3503 prepare_to_wait(&resync_wait
, &wq
, TASK_INTERRUPTIBLE
);
3504 if (!signal_pending(current
)
3505 && mddev2
->curr_resync
>= mddev
->curr_resync
) {
3506 printk(KERN_INFO
"md: delaying resync of %s"
3507 " until %s has finished resync (they"
3508 " share one or more physical units)\n",
3509 mdname(mddev
), mdname(mddev2
));
3512 finish_wait(&resync_wait
, &wq
);
3515 finish_wait(&resync_wait
, &wq
);
3518 } while (mddev
->curr_resync
< 2);
3520 if (test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
))
3521 /* resync follows the size requested by the personality,
3522 * which defaults to physical size, but can be virtual size
3524 max_sectors
= mddev
->resync_max_sectors
;
3526 /* recovery follows the physical size of devices */
3527 max_sectors
= mddev
->size
<< 1;
3529 printk(KERN_INFO
"md: syncing RAID array %s\n", mdname(mddev
));
3530 printk(KERN_INFO
"md: minimum _guaranteed_ reconstruction speed:"
3531 " %d KB/sec/disc.\n", sysctl_speed_limit_min
);
3532 printk(KERN_INFO
"md: using maximum available idle IO bandwith "
3533 "(but not more than %d KB/sec) for reconstruction.\n",
3534 sysctl_speed_limit_max
);
3536 is_mddev_idle(mddev
); /* this also initializes IO event counters */
3537 /* we don't use the checkpoint if there's a bitmap */
3538 if (test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
) && !mddev
->bitmap
)
3539 j
= mddev
->recovery_cp
;
3543 for (m
= 0; m
< SYNC_MARKS
; m
++) {
3545 mark_cnt
[m
] = io_sectors
;
3548 mddev
->resync_mark
= mark
[last_mark
];
3549 mddev
->resync_mark_cnt
= mark_cnt
[last_mark
];
3552 * Tune reconstruction:
3554 window
= 32*(PAGE_SIZE
/512);
3555 printk(KERN_INFO
"md: using %dk window, over a total of %llu blocks.\n",
3556 window
/2,(unsigned long long) max_sectors
/2);
3558 atomic_set(&mddev
->recovery_active
, 0);
3559 init_waitqueue_head(&mddev
->recovery_wait
);
3564 "md: resuming recovery of %s from checkpoint.\n",
3566 mddev
->curr_resync
= j
;
3569 while (j
< max_sectors
) {
3573 sectors
= mddev
->pers
->sync_request(mddev
, j
, &skipped
,
3574 currspeed
< sysctl_speed_limit_min
);
3576 set_bit(MD_RECOVERY_ERR
, &mddev
->recovery
);
3580 if (!skipped
) { /* actual IO requested */
3581 io_sectors
+= sectors
;
3582 atomic_add(sectors
, &mddev
->recovery_active
);
3586 if (j
>1) mddev
->curr_resync
= j
;
3589 if (last_check
+ window
> io_sectors
|| j
== max_sectors
)
3592 last_check
= io_sectors
;
3594 if (test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
) ||
3595 test_bit(MD_RECOVERY_ERR
, &mddev
->recovery
))
3599 if (time_after_eq(jiffies
, mark
[last_mark
] + SYNC_MARK_STEP
)) {
3601 int next
= (last_mark
+1) % SYNC_MARKS
;
3603 mddev
->resync_mark
= mark
[next
];
3604 mddev
->resync_mark_cnt
= mark_cnt
[next
];
3605 mark
[next
] = jiffies
;
3606 mark_cnt
[next
] = io_sectors
- atomic_read(&mddev
->recovery_active
);
3611 if (signal_pending(current
)) {
3613 * got a signal, exit.
3616 "md: md_do_sync() got signal ... exiting\n");
3617 flush_signals(current
);
3618 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
3623 * this loop exits only if either when we are slower than
3624 * the 'hard' speed limit, or the system was IO-idle for
3626 * the system might be non-idle CPU-wise, but we only care
3627 * about not overloading the IO subsystem. (things like an
3628 * e2fsck being done on the RAID array should execute fast)
3630 mddev
->queue
->unplug_fn(mddev
->queue
);
3633 currspeed
= ((unsigned long)(io_sectors
-mddev
->resync_mark_cnt
))/2
3634 /((jiffies
-mddev
->resync_mark
)/HZ
+1) +1;
3636 if (currspeed
> sysctl_speed_limit_min
) {
3637 if ((currspeed
> sysctl_speed_limit_max
) ||
3638 !is_mddev_idle(mddev
)) {
3639 msleep_interruptible(250);
3644 printk(KERN_INFO
"md: %s: sync done.\n",mdname(mddev
));
3646 * this also signals 'finished resyncing' to md_stop
3649 mddev
->queue
->unplug_fn(mddev
->queue
);
3651 wait_event(mddev
->recovery_wait
, !atomic_read(&mddev
->recovery_active
));
3653 /* tell personality that we are finished */
3654 mddev
->pers
->sync_request(mddev
, max_sectors
, &skipped
, 1);
3656 if (!test_bit(MD_RECOVERY_ERR
, &mddev
->recovery
) &&
3657 mddev
->curr_resync
> 2 &&
3658 mddev
->curr_resync
>= mddev
->recovery_cp
) {
3659 if (test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
)) {
3661 "md: checkpointing recovery of %s.\n",
3663 mddev
->recovery_cp
= mddev
->curr_resync
;
3665 mddev
->recovery_cp
= MaxSector
;
3669 mddev
->curr_resync
= 0;
3670 wake_up(&resync_wait
);
3671 set_bit(MD_RECOVERY_DONE
, &mddev
->recovery
);
3672 md_wakeup_thread(mddev
->thread
);
3677 * This routine is regularly called by all per-raid-array threads to
3678 * deal with generic issues like resync and super-block update.
3679 * Raid personalities that don't have a thread (linear/raid0) do not
3680 * need this as they never do any recovery or update the superblock.
3682 * It does not do any resync itself, but rather "forks" off other threads
3683 * to do that as needed.
3684 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
3685 * "->recovery" and create a thread at ->sync_thread.
3686 * When the thread finishes it sets MD_RECOVERY_DONE (and might set MD_RECOVERY_ERR)
3687 * and wakeups up this thread which will reap the thread and finish up.
3688 * This thread also removes any faulty devices (with nr_pending == 0).
3690 * The overall approach is:
3691 * 1/ if the superblock needs updating, update it.
3692 * 2/ If a recovery thread is running, don't do anything else.
3693 * 3/ If recovery has finished, clean up, possibly marking spares active.
3694 * 4/ If there are any faulty devices, remove them.
3695 * 5/ If array is degraded, try to add spares devices
3696 * 6/ If array has spares or is not in-sync, start a resync thread.
3698 void md_check_recovery(mddev_t
*mddev
)
3701 struct list_head
*rtmp
;
3705 bitmap_daemon_work(mddev
->bitmap
);
3710 if (signal_pending(current
)) {
3711 if (mddev
->pers
->sync_request
) {
3712 printk(KERN_INFO
"md: %s in immediate safe mode\n",
3714 mddev
->safemode
= 2;
3716 flush_signals(current
);
3721 test_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
) ||
3722 test_bit(MD_RECOVERY_DONE
, &mddev
->recovery
) ||
3723 (mddev
->safemode
== 1) ||
3724 (mddev
->safemode
== 2 && ! atomic_read(&mddev
->writes_pending
)
3725 && !mddev
->in_sync
&& mddev
->recovery_cp
== MaxSector
)
3729 if (mddev_trylock(mddev
)==0) {
3732 spin_lock(&mddev
->write_lock
);
3733 if (mddev
->safemode
&& !atomic_read(&mddev
->writes_pending
) &&
3734 !mddev
->in_sync
&& mddev
->recovery_cp
== MaxSector
) {
3736 mddev
->sb_dirty
= 1;
3738 if (mddev
->safemode
== 1)
3739 mddev
->safemode
= 0;
3740 spin_unlock(&mddev
->write_lock
);
3742 if (mddev
->sb_dirty
)
3743 md_update_sb(mddev
);
3746 if (test_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
) &&
3747 !test_bit(MD_RECOVERY_DONE
, &mddev
->recovery
)) {
3748 /* resync/recovery still happening */
3749 clear_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
3752 if (mddev
->sync_thread
) {
3753 /* resync has finished, collect result */
3754 md_unregister_thread(mddev
->sync_thread
);
3755 mddev
->sync_thread
= NULL
;
3756 if (!test_bit(MD_RECOVERY_ERR
, &mddev
->recovery
) &&
3757 !test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
)) {
3759 /* activate any spares */
3760 mddev
->pers
->spare_active(mddev
);
3762 md_update_sb(mddev
);
3764 /* if array is no-longer degraded, then any saved_raid_disk
3765 * information must be scrapped
3767 if (!mddev
->degraded
)
3768 ITERATE_RDEV(mddev
,rdev
,rtmp
)
3769 rdev
->saved_raid_disk
= -1;
3771 mddev
->recovery
= 0;
3772 /* flag recovery needed just to double check */
3773 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
3776 if (mddev
->recovery
)
3777 /* probably just the RECOVERY_NEEDED flag */
3778 mddev
->recovery
= 0;
3780 /* no recovery is running.
3781 * remove any failed drives, then
3782 * add spares if possible.
3783 * Spare are also removed and re-added, to allow
3784 * the personality to fail the re-add.
3786 ITERATE_RDEV(mddev
,rdev
,rtmp
)
3787 if (rdev
->raid_disk
>= 0 &&
3788 (rdev
->faulty
|| ! rdev
->in_sync
) &&
3789 atomic_read(&rdev
->nr_pending
)==0) {
3790 if (mddev
->pers
->hot_remove_disk(mddev
, rdev
->raid_disk
)==0)
3791 rdev
->raid_disk
= -1;
3794 if (mddev
->degraded
) {
3795 ITERATE_RDEV(mddev
,rdev
,rtmp
)
3796 if (rdev
->raid_disk
< 0
3798 if (mddev
->pers
->hot_add_disk(mddev
,rdev
))
3805 if (!spares
&& (mddev
->recovery_cp
== MaxSector
)) {
3806 /* nothing we can do ... */
3809 if (mddev
->pers
->sync_request
) {
3810 set_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
);
3812 set_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
);
3813 if (spares
&& mddev
->bitmap
&& ! mddev
->bitmap
->file
) {
3814 /* We are adding a device or devices to an array
3815 * which has the bitmap stored on all devices.
3816 * So make sure all bitmap pages get written
3818 bitmap_write_all(mddev
->bitmap
);
3820 mddev
->sync_thread
= md_register_thread(md_do_sync
,
3823 if (!mddev
->sync_thread
) {
3824 printk(KERN_ERR
"%s: could not start resync"
3827 /* leave the spares where they are, it shouldn't hurt */
3828 mddev
->recovery
= 0;
3830 md_wakeup_thread(mddev
->sync_thread
);
3834 mddev_unlock(mddev
);
3838 static int md_notify_reboot(struct notifier_block
*this,
3839 unsigned long code
, void *x
)
3841 struct list_head
*tmp
;
3844 if ((code
== SYS_DOWN
) || (code
== SYS_HALT
) || (code
== SYS_POWER_OFF
)) {
3846 printk(KERN_INFO
"md: stopping all md devices.\n");
3848 ITERATE_MDDEV(mddev
,tmp
)
3849 if (mddev_trylock(mddev
)==0)
3850 do_md_stop (mddev
, 1);
3852 * certain more exotic SCSI devices are known to be
3853 * volatile wrt too early system reboots. While the
3854 * right place to handle this issue is the given
3855 * driver, we do want to have a safe RAID driver ...
3862 static struct notifier_block md_notifier
= {
3863 .notifier_call
= md_notify_reboot
,
3865 .priority
= INT_MAX
, /* before any real devices */
3868 static void md_geninit(void)
3870 struct proc_dir_entry
*p
;
3872 dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t
));
3874 p
= create_proc_entry("mdstat", S_IRUGO
, NULL
);
3876 p
->proc_fops
= &md_seq_fops
;
3879 static int __init
md_init(void)
3883 printk(KERN_INFO
"md: md driver %d.%d.%d MAX_MD_DEVS=%d,"
3884 " MD_SB_DISKS=%d\n",
3885 MD_MAJOR_VERSION
, MD_MINOR_VERSION
,
3886 MD_PATCHLEVEL_VERSION
, MAX_MD_DEVS
, MD_SB_DISKS
);
3887 printk(KERN_INFO
"md: bitmap version %d.%d\n", BITMAP_MAJOR
,
3890 if (register_blkdev(MAJOR_NR
, "md"))
3892 if ((mdp_major
=register_blkdev(0, "mdp"))<=0) {
3893 unregister_blkdev(MAJOR_NR
, "md");
3897 blk_register_region(MKDEV(MAJOR_NR
, 0), MAX_MD_DEVS
, THIS_MODULE
,
3898 md_probe
, NULL
, NULL
);
3899 blk_register_region(MKDEV(mdp_major
, 0), MAX_MD_DEVS
<<MdpMinorShift
, THIS_MODULE
,
3900 md_probe
, NULL
, NULL
);
3902 for (minor
=0; minor
< MAX_MD_DEVS
; ++minor
)
3903 devfs_mk_bdev(MKDEV(MAJOR_NR
, minor
),
3904 S_IFBLK
|S_IRUSR
|S_IWUSR
,
3907 for (minor
=0; minor
< MAX_MD_DEVS
; ++minor
)
3908 devfs_mk_bdev(MKDEV(mdp_major
, minor
<<MdpMinorShift
),
3909 S_IFBLK
|S_IRUSR
|S_IWUSR
,
3913 register_reboot_notifier(&md_notifier
);
3914 raid_table_header
= register_sysctl_table(raid_root_table
, 1);
3924 * Searches all registered partitions for autorun RAID arrays
3927 static dev_t detected_devices
[128];
3930 void md_autodetect_dev(dev_t dev
)
3932 if (dev_cnt
>= 0 && dev_cnt
< 127)
3933 detected_devices
[dev_cnt
++] = dev
;
3937 static void autostart_arrays(int part
)
3942 printk(KERN_INFO
"md: Autodetecting RAID arrays.\n");
3944 for (i
= 0; i
< dev_cnt
; i
++) {
3945 dev_t dev
= detected_devices
[i
];
3947 rdev
= md_import_device(dev
,0, 0);
3955 list_add(&rdev
->same_set
, &pending_raid_disks
);
3959 autorun_devices(part
);
3964 static __exit
void md_exit(void)
3967 struct list_head
*tmp
;
3969 blk_unregister_region(MKDEV(MAJOR_NR
,0), MAX_MD_DEVS
);
3970 blk_unregister_region(MKDEV(mdp_major
,0), MAX_MD_DEVS
<< MdpMinorShift
);
3971 for (i
=0; i
< MAX_MD_DEVS
; i
++)
3972 devfs_remove("md/%d", i
);
3973 for (i
=0; i
< MAX_MD_DEVS
; i
++)
3974 devfs_remove("md/d%d", i
);
3978 unregister_blkdev(MAJOR_NR
,"md");
3979 unregister_blkdev(mdp_major
, "mdp");
3980 unregister_reboot_notifier(&md_notifier
);
3981 unregister_sysctl_table(raid_table_header
);
3982 remove_proc_entry("mdstat", NULL
);
3983 ITERATE_MDDEV(mddev
,tmp
) {
3984 struct gendisk
*disk
= mddev
->gendisk
;
3987 export_array(mddev
);
3990 mddev
->gendisk
= NULL
;
3995 module_init(md_init
)
3996 module_exit(md_exit
)
3998 EXPORT_SYMBOL(register_md_personality
);
3999 EXPORT_SYMBOL(unregister_md_personality
);
4000 EXPORT_SYMBOL(md_error
);
4001 EXPORT_SYMBOL(md_done_sync
);
4002 EXPORT_SYMBOL(md_write_start
);
4003 EXPORT_SYMBOL(md_write_end
);
4004 EXPORT_SYMBOL(md_register_thread
);
4005 EXPORT_SYMBOL(md_unregister_thread
);
4006 EXPORT_SYMBOL(md_wakeup_thread
);
4007 EXPORT_SYMBOL(md_print_devices
);
4008 EXPORT_SYMBOL(md_check_recovery
);
4009 MODULE_LICENSE("GPL");