4 * @remark Copyright 2002 OProfile authors
5 * @remark Read the file COPYING
7 * @author John Levon <levon@movementarian.org>
9 * This is the core of the buffer management. Each
10 * CPU buffer is processed and entered into the
11 * global event buffer. Such processing is necessary
12 * in several circumstances, mentioned below.
14 * The processing does the job of converting the
15 * transitory EIP value into a persistent dentry/offset
16 * value that the profiler can record at its leisure.
18 * See fs/dcookies.c for a description of the dentry/offset
23 #include <linux/workqueue.h>
24 #include <linux/notifier.h>
25 #include <linux/dcookies.h>
26 #include <linux/profile.h>
27 #include <linux/module.h>
30 #include "oprofile_stats.h"
31 #include "event_buffer.h"
32 #include "cpu_buffer.h"
33 #include "buffer_sync.h"
35 static LIST_HEAD(dying_tasks
);
36 static LIST_HEAD(dead_tasks
);
37 static cpumask_t marked_cpus
= CPU_MASK_NONE
;
38 static DEFINE_SPINLOCK(task_mortuary
);
39 static void process_task_mortuary(void);
42 /* Take ownership of the task struct and place it on the
43 * list for processing. Only after two full buffer syncs
44 * does the task eventually get freed, because by then
45 * we are sure we will not reference it again.
47 static int task_free_notify(struct notifier_block
* self
, unsigned long val
, void * data
)
49 struct task_struct
* task
= data
;
50 spin_lock(&task_mortuary
);
51 list_add(&task
->tasks
, &dying_tasks
);
52 spin_unlock(&task_mortuary
);
57 /* The task is on its way out. A sync of the buffer means we can catch
58 * any remaining samples for this task.
60 static int task_exit_notify(struct notifier_block
* self
, unsigned long val
, void * data
)
62 /* To avoid latency problems, we only process the current CPU,
63 * hoping that most samples for the task are on this CPU
65 sync_buffer(raw_smp_processor_id());
70 /* The task is about to try a do_munmap(). We peek at what it's going to
71 * do, and if it's an executable region, process the samples first, so
72 * we don't lose any. This does not have to be exact, it's a QoI issue
75 static int munmap_notify(struct notifier_block
* self
, unsigned long val
, void * data
)
77 unsigned long addr
= (unsigned long)data
;
78 struct mm_struct
* mm
= current
->mm
;
79 struct vm_area_struct
* mpnt
;
81 down_read(&mm
->mmap_sem
);
83 mpnt
= find_vma(mm
, addr
);
84 if (mpnt
&& mpnt
->vm_file
&& (mpnt
->vm_flags
& VM_EXEC
)) {
85 up_read(&mm
->mmap_sem
);
86 /* To avoid latency problems, we only process the current CPU,
87 * hoping that most samples for the task are on this CPU
89 sync_buffer(raw_smp_processor_id());
93 up_read(&mm
->mmap_sem
);
98 /* We need to be told about new modules so we don't attribute to a previously
99 * loaded module, or drop the samples on the floor.
101 static int module_load_notify(struct notifier_block
* self
, unsigned long val
, void * data
)
103 #ifdef CONFIG_MODULES
104 if (val
!= MODULE_STATE_COMING
)
107 /* FIXME: should we process all CPU buffers ? */
109 add_event_entry(ESCAPE_CODE
);
110 add_event_entry(MODULE_LOADED_CODE
);
117 static struct notifier_block task_free_nb
= {
118 .notifier_call
= task_free_notify
,
121 static struct notifier_block task_exit_nb
= {
122 .notifier_call
= task_exit_notify
,
125 static struct notifier_block munmap_nb
= {
126 .notifier_call
= munmap_notify
,
129 static struct notifier_block module_load_nb
= {
130 .notifier_call
= module_load_notify
,
134 static void end_sync(void)
137 /* make sure we don't leak task structs */
138 process_task_mortuary();
139 process_task_mortuary();
149 err
= task_handoff_register(&task_free_nb
);
152 err
= profile_event_register(PROFILE_TASK_EXIT
, &task_exit_nb
);
155 err
= profile_event_register(PROFILE_MUNMAP
, &munmap_nb
);
158 err
= register_module_notifier(&module_load_nb
);
165 profile_event_unregister(PROFILE_MUNMAP
, &munmap_nb
);
167 profile_event_unregister(PROFILE_TASK_EXIT
, &task_exit_nb
);
169 task_handoff_unregister(&task_free_nb
);
178 unregister_module_notifier(&module_load_nb
);
179 profile_event_unregister(PROFILE_MUNMAP
, &munmap_nb
);
180 profile_event_unregister(PROFILE_TASK_EXIT
, &task_exit_nb
);
181 task_handoff_unregister(&task_free_nb
);
186 /* Optimisation. We can manage without taking the dcookie sem
187 * because we cannot reach this code without at least one
188 * dcookie user still being registered (namely, the reader
189 * of the event buffer). */
190 static inline unsigned long fast_get_dcookie(struct dentry
* dentry
,
191 struct vfsmount
* vfsmnt
)
193 unsigned long cookie
;
195 if (dentry
->d_cookie
)
196 return (unsigned long)dentry
;
197 get_dcookie(dentry
, vfsmnt
, &cookie
);
202 /* Look up the dcookie for the task's first VM_EXECUTABLE mapping,
203 * which corresponds loosely to "application name". This is
204 * not strictly necessary but allows oprofile to associate
205 * shared-library samples with particular applications
207 static unsigned long get_exec_dcookie(struct mm_struct
* mm
)
209 unsigned long cookie
= 0;
210 struct vm_area_struct
* vma
;
215 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
218 if (!(vma
->vm_flags
& VM_EXECUTABLE
))
220 cookie
= fast_get_dcookie(vma
->vm_file
->f_dentry
,
221 vma
->vm_file
->f_vfsmnt
);
230 /* Convert the EIP value of a sample into a persistent dentry/offset
231 * pair that can then be added to the global event buffer. We make
232 * sure to do this lookup before a mm->mmap modification happens so
233 * we don't lose track.
235 static unsigned long lookup_dcookie(struct mm_struct
* mm
, unsigned long addr
, off_t
* offset
)
237 unsigned long cookie
= 0;
238 struct vm_area_struct
* vma
;
240 for (vma
= find_vma(mm
, addr
); vma
; vma
= vma
->vm_next
) {
245 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
248 cookie
= fast_get_dcookie(vma
->vm_file
->f_dentry
,
249 vma
->vm_file
->f_vfsmnt
);
250 *offset
= (vma
->vm_pgoff
<< PAGE_SHIFT
) + addr
- vma
->vm_start
;
258 static unsigned long last_cookie
= ~0UL;
260 static void add_cpu_switch(int i
)
262 add_event_entry(ESCAPE_CODE
);
263 add_event_entry(CPU_SWITCH_CODE
);
268 static void add_kernel_ctx_switch(unsigned int in_kernel
)
270 add_event_entry(ESCAPE_CODE
);
272 add_event_entry(KERNEL_ENTER_SWITCH_CODE
);
274 add_event_entry(KERNEL_EXIT_SWITCH_CODE
);
278 add_user_ctx_switch(struct task_struct
const * task
, unsigned long cookie
)
280 add_event_entry(ESCAPE_CODE
);
281 add_event_entry(CTX_SWITCH_CODE
);
282 add_event_entry(task
->pid
);
283 add_event_entry(cookie
);
284 /* Another code for daemon back-compat */
285 add_event_entry(ESCAPE_CODE
);
286 add_event_entry(CTX_TGID_CODE
);
287 add_event_entry(task
->tgid
);
291 static void add_cookie_switch(unsigned long cookie
)
293 add_event_entry(ESCAPE_CODE
);
294 add_event_entry(COOKIE_SWITCH_CODE
);
295 add_event_entry(cookie
);
299 static void add_trace_begin(void)
301 add_event_entry(ESCAPE_CODE
);
302 add_event_entry(TRACE_BEGIN_CODE
);
306 static void add_sample_entry(unsigned long offset
, unsigned long event
)
308 add_event_entry(offset
);
309 add_event_entry(event
);
313 static int add_us_sample(struct mm_struct
* mm
, struct op_sample
* s
)
315 unsigned long cookie
;
318 cookie
= lookup_dcookie(mm
, s
->eip
, &offset
);
321 atomic_inc(&oprofile_stats
.sample_lost_no_mapping
);
325 if (cookie
!= last_cookie
) {
326 add_cookie_switch(cookie
);
327 last_cookie
= cookie
;
330 add_sample_entry(offset
, s
->event
);
336 /* Add a sample to the global event buffer. If possible the
337 * sample is converted into a persistent dentry/offset pair
338 * for later lookup from userspace.
341 add_sample(struct mm_struct
* mm
, struct op_sample
* s
, int in_kernel
)
344 add_sample_entry(s
->eip
, s
->event
);
347 return add_us_sample(mm
, s
);
349 atomic_inc(&oprofile_stats
.sample_lost_no_mm
);
355 static void release_mm(struct mm_struct
* mm
)
359 up_read(&mm
->mmap_sem
);
364 static struct mm_struct
* take_tasks_mm(struct task_struct
* task
)
366 struct mm_struct
* mm
= get_task_mm(task
);
368 down_read(&mm
->mmap_sem
);
373 static inline int is_code(unsigned long val
)
375 return val
== ESCAPE_CODE
;
379 /* "acquire" as many cpu buffer slots as we can */
380 static unsigned long get_slots(struct oprofile_cpu_buffer
* b
)
382 unsigned long head
= b
->head_pos
;
383 unsigned long tail
= b
->tail_pos
;
386 * Subtle. This resets the persistent last_task
387 * and in_kernel values used for switching notes.
388 * BUT, there is a small window between reading
389 * head_pos, and this call, that means samples
390 * can appear at the new head position, but not
391 * be prefixed with the notes for switching
392 * kernel mode or a task switch. This small hole
393 * can lead to mis-attribution or samples where
394 * we don't know if it's in the kernel or not,
395 * at the start of an event buffer.
402 return head
+ (b
->buffer_size
- tail
);
406 static void increment_tail(struct oprofile_cpu_buffer
* b
)
408 unsigned long new_tail
= b
->tail_pos
+ 1;
412 if (new_tail
< b
->buffer_size
)
413 b
->tail_pos
= new_tail
;
419 /* Move tasks along towards death. Any tasks on dead_tasks
420 * will definitely have no remaining references in any
421 * CPU buffers at this point, because we use two lists,
422 * and to have reached the list, it must have gone through
423 * one full sync already.
425 static void process_task_mortuary(void)
427 struct list_head
* pos
;
428 struct list_head
* pos2
;
429 struct task_struct
* task
;
431 spin_lock(&task_mortuary
);
433 list_for_each_safe(pos
, pos2
, &dead_tasks
) {
434 task
= list_entry(pos
, struct task_struct
, tasks
);
435 list_del(&task
->tasks
);
439 list_for_each_safe(pos
, pos2
, &dying_tasks
) {
440 task
= list_entry(pos
, struct task_struct
, tasks
);
441 list_del(&task
->tasks
);
442 list_add_tail(&task
->tasks
, &dead_tasks
);
445 spin_unlock(&task_mortuary
);
449 static void mark_done(int cpu
)
453 cpu_set(cpu
, marked_cpus
);
455 for_each_online_cpu(i
) {
456 if (!cpu_isset(i
, marked_cpus
))
460 /* All CPUs have been processed at least once,
461 * we can process the mortuary once
463 process_task_mortuary();
465 cpus_clear(marked_cpus
);
469 /* FIXME: this is not sufficient if we implement syscall barrier backtrace
470 * traversal, the code switch to sb_sample_start at first kernel enter/exit
471 * switch so we need a fifth state and some special handling in sync_buffer()
480 /* Sync one of the CPU's buffers into the global event buffer.
481 * Here we need to go through each batch of samples punctuated
482 * by context switch notes, taking the task's mmap_sem and doing
483 * lookup in task->mm->mmap to convert EIP into dcookie/offset
486 void sync_buffer(int cpu
)
488 struct oprofile_cpu_buffer
* cpu_buf
= &cpu_buffer
[cpu
];
489 struct mm_struct
*mm
= NULL
;
490 struct task_struct
* new;
491 unsigned long cookie
= 0;
494 sync_buffer_state state
= sb_buffer_start
;
495 unsigned long available
;
501 /* Remember, only we can modify tail_pos */
503 available
= get_slots(cpu_buf
);
505 for (i
= 0; i
< available
; ++i
) {
506 struct op_sample
* s
= &cpu_buf
->buffer
[cpu_buf
->tail_pos
];
508 if (is_code(s
->eip
)) {
509 if (s
->event
<= CPU_IS_KERNEL
) {
510 /* kernel/userspace switch */
511 in_kernel
= s
->event
;
512 if (state
== sb_buffer_start
)
513 state
= sb_sample_start
;
514 add_kernel_ctx_switch(s
->event
);
515 } else if (s
->event
== CPU_TRACE_BEGIN
) {
519 struct mm_struct
* oldmm
= mm
;
521 /* userspace context switch */
522 new = (struct task_struct
*)s
->event
;
525 mm
= take_tasks_mm(new);
527 cookie
= get_exec_dcookie(mm
);
528 add_user_ctx_switch(new, cookie
);
531 if (state
>= sb_bt_start
&&
532 !add_sample(mm
, s
, in_kernel
)) {
533 if (state
== sb_bt_start
) {
534 state
= sb_bt_ignore
;
535 atomic_inc(&oprofile_stats
.bt_lost_no_mapping
);
540 increment_tail(cpu_buf
);