[PATCH] w1: Adds a sysfs entry (w1_master_search) that allows you to disable/enable...
[linux-2.6/verdex.git] / include / asm-ppc64 / bitops.h
bloba0f831224f96d176336e19ab26e1094891e7aee5
1 /*
2 * PowerPC64 atomic bit operations.
3 * Dave Engebretsen, Todd Inglett, Don Reed, Pat McCarthy, Peter Bergner,
4 * Anton Blanchard
6 * Originally taken from the 32b PPC code. Modified to use 64b values for
7 * the various counters & memory references.
9 * Bitops are odd when viewed on big-endian systems. They were designed
10 * on little endian so the size of the bitset doesn't matter (low order bytes
11 * come first) as long as the bit in question is valid.
13 * Bits are "tested" often using the C expression (val & (1<<nr)) so we do
14 * our best to stay compatible with that. The assumption is that val will
15 * be unsigned long for such tests. As such, we assume the bits are stored
16 * as an array of unsigned long (the usual case is a single unsigned long,
17 * of course). Here's an example bitset with bit numbering:
19 * |63..........0|127........64|195.......128|255.......196|
21 * This leads to a problem. If an int, short or char is passed as a bitset
22 * it will be a bad memory reference since we want to store in chunks
23 * of unsigned long (64 bits here) size.
25 * There are a few little-endian macros used mostly for filesystem bitmaps,
26 * these work on similar bit arrays layouts, but byte-oriented:
28 * |7...0|15...8|23...16|31...24|39...32|47...40|55...48|63...56|
30 * The main difference is that bit 3-5 in the bit number field needs to be
31 * reversed compared to the big-endian bit fields. This can be achieved
32 * by XOR with 0b111000 (0x38).
34 * This program is free software; you can redistribute it and/or
35 * modify it under the terms of the GNU General Public License
36 * as published by the Free Software Foundation; either version
37 * 2 of the License, or (at your option) any later version.
40 #ifndef _PPC64_BITOPS_H
41 #define _PPC64_BITOPS_H
43 #ifdef __KERNEL__
45 #include <asm/memory.h>
48 * clear_bit doesn't imply a memory barrier
50 #define smp_mb__before_clear_bit() smp_mb()
51 #define smp_mb__after_clear_bit() smp_mb()
53 static __inline__ int test_bit(unsigned long nr, __const__ volatile unsigned long *addr)
55 return (1UL & (addr[nr >> 6] >> (nr & 63)));
58 static __inline__ void set_bit(unsigned long nr, volatile unsigned long *addr)
60 unsigned long old;
61 unsigned long mask = 1UL << (nr & 0x3f);
62 unsigned long *p = ((unsigned long *)addr) + (nr >> 6);
64 __asm__ __volatile__(
65 "1: ldarx %0,0,%3 # set_bit\n\
66 or %0,%0,%2\n\
67 stdcx. %0,0,%3\n\
68 bne- 1b"
69 : "=&r" (old), "=m" (*p)
70 : "r" (mask), "r" (p), "m" (*p)
71 : "cc");
74 static __inline__ void clear_bit(unsigned long nr, volatile unsigned long *addr)
76 unsigned long old;
77 unsigned long mask = 1UL << (nr & 0x3f);
78 unsigned long *p = ((unsigned long *)addr) + (nr >> 6);
80 __asm__ __volatile__(
81 "1: ldarx %0,0,%3 # clear_bit\n\
82 andc %0,%0,%2\n\
83 stdcx. %0,0,%3\n\
84 bne- 1b"
85 : "=&r" (old), "=m" (*p)
86 : "r" (mask), "r" (p), "m" (*p)
87 : "cc");
90 static __inline__ void change_bit(unsigned long nr, volatile unsigned long *addr)
92 unsigned long old;
93 unsigned long mask = 1UL << (nr & 0x3f);
94 unsigned long *p = ((unsigned long *)addr) + (nr >> 6);
96 __asm__ __volatile__(
97 "1: ldarx %0,0,%3 # change_bit\n\
98 xor %0,%0,%2\n\
99 stdcx. %0,0,%3\n\
100 bne- 1b"
101 : "=&r" (old), "=m" (*p)
102 : "r" (mask), "r" (p), "m" (*p)
103 : "cc");
106 static __inline__ int test_and_set_bit(unsigned long nr, volatile unsigned long *addr)
108 unsigned long old, t;
109 unsigned long mask = 1UL << (nr & 0x3f);
110 unsigned long *p = ((unsigned long *)addr) + (nr >> 6);
112 __asm__ __volatile__(
113 EIEIO_ON_SMP
114 "1: ldarx %0,0,%3 # test_and_set_bit\n\
115 or %1,%0,%2 \n\
116 stdcx. %1,0,%3 \n\
117 bne- 1b"
118 ISYNC_ON_SMP
119 : "=&r" (old), "=&r" (t)
120 : "r" (mask), "r" (p)
121 : "cc", "memory");
123 return (old & mask) != 0;
126 static __inline__ int test_and_clear_bit(unsigned long nr, volatile unsigned long *addr)
128 unsigned long old, t;
129 unsigned long mask = 1UL << (nr & 0x3f);
130 unsigned long *p = ((unsigned long *)addr) + (nr >> 6);
132 __asm__ __volatile__(
133 EIEIO_ON_SMP
134 "1: ldarx %0,0,%3 # test_and_clear_bit\n\
135 andc %1,%0,%2\n\
136 stdcx. %1,0,%3\n\
137 bne- 1b"
138 ISYNC_ON_SMP
139 : "=&r" (old), "=&r" (t)
140 : "r" (mask), "r" (p)
141 : "cc", "memory");
143 return (old & mask) != 0;
146 static __inline__ int test_and_change_bit(unsigned long nr, volatile unsigned long *addr)
148 unsigned long old, t;
149 unsigned long mask = 1UL << (nr & 0x3f);
150 unsigned long *p = ((unsigned long *)addr) + (nr >> 6);
152 __asm__ __volatile__(
153 EIEIO_ON_SMP
154 "1: ldarx %0,0,%3 # test_and_change_bit\n\
155 xor %1,%0,%2\n\
156 stdcx. %1,0,%3\n\
157 bne- 1b"
158 ISYNC_ON_SMP
159 : "=&r" (old), "=&r" (t)
160 : "r" (mask), "r" (p)
161 : "cc", "memory");
163 return (old & mask) != 0;
166 static __inline__ void set_bits(unsigned long mask, unsigned long *addr)
168 unsigned long old;
170 __asm__ __volatile__(
171 "1: ldarx %0,0,%3 # set_bit\n\
172 or %0,%0,%2\n\
173 stdcx. %0,0,%3\n\
174 bne- 1b"
175 : "=&r" (old), "=m" (*addr)
176 : "r" (mask), "r" (addr), "m" (*addr)
177 : "cc");
181 * non-atomic versions
183 static __inline__ void __set_bit(unsigned long nr, volatile unsigned long *addr)
185 unsigned long mask = 1UL << (nr & 0x3f);
186 unsigned long *p = ((unsigned long *)addr) + (nr >> 6);
188 *p |= mask;
191 static __inline__ void __clear_bit(unsigned long nr, volatile unsigned long *addr)
193 unsigned long mask = 1UL << (nr & 0x3f);
194 unsigned long *p = ((unsigned long *)addr) + (nr >> 6);
196 *p &= ~mask;
199 static __inline__ void __change_bit(unsigned long nr, volatile unsigned long *addr)
201 unsigned long mask = 1UL << (nr & 0x3f);
202 unsigned long *p = ((unsigned long *)addr) + (nr >> 6);
204 *p ^= mask;
207 static __inline__ int __test_and_set_bit(unsigned long nr, volatile unsigned long *addr)
209 unsigned long mask = 1UL << (nr & 0x3f);
210 unsigned long *p = ((unsigned long *)addr) + (nr >> 6);
211 unsigned long old = *p;
213 *p = old | mask;
214 return (old & mask) != 0;
217 static __inline__ int __test_and_clear_bit(unsigned long nr, volatile unsigned long *addr)
219 unsigned long mask = 1UL << (nr & 0x3f);
220 unsigned long *p = ((unsigned long *)addr) + (nr >> 6);
221 unsigned long old = *p;
223 *p = old & ~mask;
224 return (old & mask) != 0;
227 static __inline__ int __test_and_change_bit(unsigned long nr, volatile unsigned long *addr)
229 unsigned long mask = 1UL << (nr & 0x3f);
230 unsigned long *p = ((unsigned long *)addr) + (nr >> 6);
231 unsigned long old = *p;
233 *p = old ^ mask;
234 return (old & mask) != 0;
238 * Return the zero-based bit position (from RIGHT TO LEFT, 63 -> 0) of the
239 * most significant (left-most) 1-bit in a double word.
241 static __inline__ int __ilog2(unsigned long x)
243 int lz;
245 asm ("cntlzd %0,%1" : "=r" (lz) : "r" (x));
246 return 63 - lz;
250 * Determines the bit position of the least significant (rightmost) 0 bit
251 * in the specified double word. The returned bit position will be zero-based,
252 * starting from the right side (63 - 0).
254 static __inline__ unsigned long ffz(unsigned long x)
256 /* no zero exists anywhere in the 8 byte area. */
257 if ((x = ~x) == 0)
258 return 64;
261 * Calculate the bit position of the least signficant '1' bit in x
262 * (since x has been changed this will actually be the least signficant
263 * '0' bit in * the original x). Note: (x & -x) gives us a mask that
264 * is the least significant * (RIGHT-most) 1-bit of the value in x.
266 return __ilog2(x & -x);
269 static __inline__ int __ffs(unsigned long x)
271 return __ilog2(x & -x);
275 * ffs: find first bit set. This is defined the same way as
276 * the libc and compiler builtin ffs routines, therefore
277 * differs in spirit from the above ffz (man ffs).
279 static __inline__ int ffs(int x)
281 unsigned long i = (unsigned long)x;
282 return __ilog2(i & -i) + 1;
286 * fls: find last (most-significant) bit set.
287 * Note fls(0) = 0, fls(1) = 1, fls(0x80000000) = 32.
289 #define fls(x) generic_fls(x)
292 * hweightN: returns the hamming weight (i.e. the number
293 * of bits set) of a N-bit word
295 #define hweight64(x) generic_hweight64(x)
296 #define hweight32(x) generic_hweight32(x)
297 #define hweight16(x) generic_hweight16(x)
298 #define hweight8(x) generic_hweight8(x)
300 extern unsigned long find_next_zero_bit(const unsigned long *addr, unsigned long size, unsigned long offset);
301 #define find_first_zero_bit(addr, size) \
302 find_next_zero_bit((addr), (size), 0)
304 extern unsigned long find_next_bit(const unsigned long *addr, unsigned long size, unsigned long offset);
305 #define find_first_bit(addr, size) \
306 find_next_bit((addr), (size), 0)
308 extern unsigned long find_next_zero_le_bit(const unsigned long *addr, unsigned long size, unsigned long offset);
309 #define find_first_zero_le_bit(addr, size) \
310 find_next_zero_le_bit((addr), (size), 0)
312 static __inline__ int test_le_bit(unsigned long nr, __const__ unsigned long * addr)
314 __const__ unsigned char *ADDR = (__const__ unsigned char *) addr;
315 return (ADDR[nr >> 3] >> (nr & 7)) & 1;
318 #define test_and_clear_le_bit(nr, addr) \
319 test_and_clear_bit((nr) ^ 0x38, (addr))
320 #define test_and_set_le_bit(nr, addr) \
321 test_and_set_bit((nr) ^ 0x38, (addr))
324 * non-atomic versions
327 #define __set_le_bit(nr, addr) \
328 __set_bit((nr) ^ 0x38, (addr))
329 #define __clear_le_bit(nr, addr) \
330 __clear_bit((nr) ^ 0x38, (addr))
331 #define __test_and_clear_le_bit(nr, addr) \
332 __test_and_clear_bit((nr) ^ 0x38, (addr))
333 #define __test_and_set_le_bit(nr, addr) \
334 __test_and_set_bit((nr) ^ 0x38, (addr))
336 #define ext2_set_bit(nr,addr) \
337 __test_and_set_le_bit((nr), (unsigned long*)addr)
338 #define ext2_clear_bit(nr, addr) \
339 __test_and_clear_le_bit((nr), (unsigned long*)addr)
341 #define ext2_set_bit_atomic(lock, nr, addr) \
342 test_and_set_le_bit((nr), (unsigned long*)addr)
343 #define ext2_clear_bit_atomic(lock, nr, addr) \
344 test_and_clear_le_bit((nr), (unsigned long*)addr)
347 #define ext2_test_bit(nr, addr) test_le_bit((nr),(unsigned long*)addr)
348 #define ext2_find_first_zero_bit(addr, size) \
349 find_first_zero_le_bit((unsigned long*)addr, size)
350 #define ext2_find_next_zero_bit(addr, size, off) \
351 find_next_zero_le_bit((unsigned long*)addr, size, off)
353 #define minix_test_and_set_bit(nr,addr) test_and_set_bit(nr,addr)
354 #define minix_set_bit(nr,addr) set_bit(nr,addr)
355 #define minix_test_and_clear_bit(nr,addr) test_and_clear_bit(nr,addr)
356 #define minix_test_bit(nr,addr) test_bit(nr,addr)
357 #define minix_find_first_zero_bit(addr,size) find_first_zero_bit(addr,size)
359 #endif /* __KERNEL__ */
360 #endif /* _PPC64_BITOPS_H */