1 #ifndef _LINUX_MMZONE_H
2 #define _LINUX_MMZONE_H
7 #include <linux/config.h>
8 #include <linux/spinlock.h>
9 #include <linux/list.h>
10 #include <linux/wait.h>
11 #include <linux/cache.h>
12 #include <linux/threads.h>
13 #include <linux/numa.h>
14 #include <linux/init.h>
15 #include <asm/atomic.h>
17 /* Free memory management - zoned buddy allocator. */
18 #ifndef CONFIG_FORCE_MAX_ZONEORDER
21 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
25 struct list_head free_list
;
26 unsigned long nr_free
;
32 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
33 * So add a wild amount of padding here to ensure that they fall into separate
34 * cachelines. There are very few zone structures in the machine, so space
35 * consumption is not a concern here.
37 #if defined(CONFIG_SMP)
40 } ____cacheline_maxaligned_in_smp
;
41 #define ZONE_PADDING(name) struct zone_padding name;
43 #define ZONE_PADDING(name)
46 struct per_cpu_pages
{
47 int count
; /* number of pages in the list */
48 int low
; /* low watermark, refill needed */
49 int high
; /* high watermark, emptying needed */
50 int batch
; /* chunk size for buddy add/remove */
51 struct list_head list
; /* the list of pages */
54 struct per_cpu_pageset
{
55 struct per_cpu_pages pcp
[2]; /* 0: hot. 1: cold */
57 unsigned long numa_hit
; /* allocated in intended node */
58 unsigned long numa_miss
; /* allocated in non intended node */
59 unsigned long numa_foreign
; /* was intended here, hit elsewhere */
60 unsigned long interleave_hit
; /* interleaver prefered this zone */
61 unsigned long local_node
; /* allocation from local node */
62 unsigned long other_node
; /* allocation from other node */
64 } ____cacheline_aligned_in_smp
;
67 #define zone_pcp(__z, __cpu) ((__z)->pageset[(__cpu)])
69 #define zone_pcp(__z, __cpu) (&(__z)->pageset[(__cpu)])
74 #define ZONE_HIGHMEM 2
76 #define MAX_NR_ZONES 3 /* Sync this with ZONES_SHIFT */
77 #define ZONES_SHIFT 2 /* ceil(log2(MAX_NR_ZONES)) */
81 * When a memory allocation must conform to specific limitations (such
82 * as being suitable for DMA) the caller will pass in hints to the
83 * allocator in the gfp_mask, in the zone modifier bits. These bits
84 * are used to select a priority ordered list of memory zones which
85 * match the requested limits. GFP_ZONEMASK defines which bits within
86 * the gfp_mask should be considered as zone modifiers. Each valid
87 * combination of the zone modifier bits has a corresponding list
88 * of zones (in node_zonelists). Thus for two zone modifiers there
89 * will be a maximum of 4 (2 ** 2) zonelists, for 3 modifiers there will
90 * be 8 (2 ** 3) zonelists. GFP_ZONETYPES defines the number of possible
91 * combinations of zone modifiers in "zone modifier space".
93 #define GFP_ZONEMASK 0x03
95 * As an optimisation any zone modifier bits which are only valid when
96 * no other zone modifier bits are set (loners) should be placed in
97 * the highest order bits of this field. This allows us to reduce the
98 * extent of the zonelists thus saving space. For example in the case
99 * of three zone modifier bits, we could require up to eight zonelists.
100 * If the left most zone modifier is a "loner" then the highest valid
101 * zonelist would be four allowing us to allocate only five zonelists.
102 * Use the first form when the left most bit is not a "loner", otherwise
105 /* #define GFP_ZONETYPES (GFP_ZONEMASK + 1) */ /* Non-loner */
106 #define GFP_ZONETYPES ((GFP_ZONEMASK + 1) / 2 + 1) /* Loner */
109 * On machines where it is needed (eg PCs) we divide physical memory
110 * into multiple physical zones. On a PC we have 3 zones:
112 * ZONE_DMA < 16 MB ISA DMA capable memory
113 * ZONE_NORMAL 16-896 MB direct mapped by the kernel
114 * ZONE_HIGHMEM > 896 MB only page cache and user processes
118 /* Fields commonly accessed by the page allocator */
119 unsigned long free_pages
;
120 unsigned long pages_min
, pages_low
, pages_high
;
122 * We don't know if the memory that we're going to allocate will be freeable
123 * or/and it will be released eventually, so to avoid totally wasting several
124 * GB of ram we must reserve some of the lower zone memory (otherwise we risk
125 * to run OOM on the lower zones despite there's tons of freeable ram
126 * on the higher zones). This array is recalculated at runtime if the
127 * sysctl_lowmem_reserve_ratio sysctl changes.
129 unsigned long lowmem_reserve
[MAX_NR_ZONES
];
132 struct per_cpu_pageset
*pageset
[NR_CPUS
];
134 struct per_cpu_pageset pageset
[NR_CPUS
];
137 * free areas of different sizes
140 struct free_area free_area
[MAX_ORDER
];
145 /* Fields commonly accessed by the page reclaim scanner */
147 struct list_head active_list
;
148 struct list_head inactive_list
;
149 unsigned long nr_scan_active
;
150 unsigned long nr_scan_inactive
;
151 unsigned long nr_active
;
152 unsigned long nr_inactive
;
153 unsigned long pages_scanned
; /* since last reclaim */
154 int all_unreclaimable
; /* All pages pinned */
157 * Does the allocator try to reclaim pages from the zone as soon
158 * as it fails a watermark_ok() in __alloc_pages?
161 /* A count of how many reclaimers are scanning this zone */
162 atomic_t reclaim_in_progress
;
165 * prev_priority holds the scanning priority for this zone. It is
166 * defined as the scanning priority at which we achieved our reclaim
167 * target at the previous try_to_free_pages() or balance_pgdat()
170 * We use prev_priority as a measure of how much stress page reclaim is
171 * under - it drives the swappiness decision: whether to unmap mapped
174 * temp_priority is used to remember the scanning priority at which
175 * this zone was successfully refilled to free_pages == pages_high.
177 * Access to both these fields is quite racy even on uniprocessor. But
178 * it is expected to average out OK.
185 /* Rarely used or read-mostly fields */
188 * wait_table -- the array holding the hash table
189 * wait_table_size -- the size of the hash table array
190 * wait_table_bits -- wait_table_size == (1 << wait_table_bits)
192 * The purpose of all these is to keep track of the people
193 * waiting for a page to become available and make them
194 * runnable again when possible. The trouble is that this
195 * consumes a lot of space, especially when so few things
196 * wait on pages at a given time. So instead of using
197 * per-page waitqueues, we use a waitqueue hash table.
199 * The bucket discipline is to sleep on the same queue when
200 * colliding and wake all in that wait queue when removing.
201 * When something wakes, it must check to be sure its page is
202 * truly available, a la thundering herd. The cost of a
203 * collision is great, but given the expected load of the
204 * table, they should be so rare as to be outweighed by the
205 * benefits from the saved space.
207 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
208 * primary users of these fields, and in mm/page_alloc.c
209 * free_area_init_core() performs the initialization of them.
211 wait_queue_head_t
* wait_table
;
212 unsigned long wait_table_size
;
213 unsigned long wait_table_bits
;
216 * Discontig memory support fields.
218 struct pglist_data
*zone_pgdat
;
219 struct page
*zone_mem_map
;
220 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
221 unsigned long zone_start_pfn
;
223 unsigned long spanned_pages
; /* total size, including holes */
224 unsigned long present_pages
; /* amount of memory (excluding holes) */
227 * rarely used fields:
230 } ____cacheline_maxaligned_in_smp
;
234 * The "priority" of VM scanning is how much of the queues we will scan in one
235 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
236 * queues ("queue_length >> 12") during an aging round.
238 #define DEF_PRIORITY 12
241 * One allocation request operates on a zonelist. A zonelist
242 * is a list of zones, the first one is the 'goal' of the
243 * allocation, the other zones are fallback zones, in decreasing
246 * Right now a zonelist takes up less than a cacheline. We never
247 * modify it apart from boot-up, and only a few indices are used,
248 * so despite the zonelist table being relatively big, the cache
249 * footprint of this construct is very small.
252 struct zone
*zones
[MAX_NUMNODES
* MAX_NR_ZONES
+ 1]; // NULL delimited
257 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
258 * (mostly NUMA machines?) to denote a higher-level memory zone than the
261 * On NUMA machines, each NUMA node would have a pg_data_t to describe
262 * it's memory layout.
264 * Memory statistics and page replacement data structures are maintained on a
268 typedef struct pglist_data
{
269 struct zone node_zones
[MAX_NR_ZONES
];
270 struct zonelist node_zonelists
[GFP_ZONETYPES
];
272 struct page
*node_mem_map
;
273 struct bootmem_data
*bdata
;
274 unsigned long node_start_pfn
;
275 unsigned long node_present_pages
; /* total number of physical pages */
276 unsigned long node_spanned_pages
; /* total size of physical page
277 range, including holes */
279 struct pglist_data
*pgdat_next
;
280 wait_queue_head_t kswapd_wait
;
281 struct task_struct
*kswapd
;
282 int kswapd_max_order
;
285 #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
286 #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
288 extern struct pglist_data
*pgdat_list
;
290 void __get_zone_counts(unsigned long *active
, unsigned long *inactive
,
291 unsigned long *free
, struct pglist_data
*pgdat
);
292 void get_zone_counts(unsigned long *active
, unsigned long *inactive
,
293 unsigned long *free
);
294 void build_all_zonelists(void);
295 void wakeup_kswapd(struct zone
*zone
, int order
);
296 int zone_watermark_ok(struct zone
*z
, int order
, unsigned long mark
,
297 int alloc_type
, int can_try_harder
, int gfp_high
);
299 #ifdef CONFIG_HAVE_MEMORY_PRESENT
300 void memory_present(int nid
, unsigned long start
, unsigned long end
);
302 static inline void memory_present(int nid
, unsigned long start
, unsigned long end
) {}
305 #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
306 unsigned long __init
node_memmap_size_bytes(int, unsigned long, unsigned long);
310 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
312 #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
315 * for_each_pgdat - helper macro to iterate over all nodes
316 * @pgdat - pointer to a pg_data_t variable
318 * Meant to help with common loops of the form
319 * pgdat = pgdat_list;
322 * pgdat = pgdat->pgdat_next;
325 #define for_each_pgdat(pgdat) \
326 for (pgdat = pgdat_list; pgdat; pgdat = pgdat->pgdat_next)
329 * next_zone - helper magic for for_each_zone()
330 * Thanks to William Lee Irwin III for this piece of ingenuity.
332 static inline struct zone
*next_zone(struct zone
*zone
)
334 pg_data_t
*pgdat
= zone
->zone_pgdat
;
336 if (zone
< pgdat
->node_zones
+ MAX_NR_ZONES
- 1)
338 else if (pgdat
->pgdat_next
) {
339 pgdat
= pgdat
->pgdat_next
;
340 zone
= pgdat
->node_zones
;
348 * for_each_zone - helper macro to iterate over all memory zones
349 * @zone - pointer to struct zone variable
351 * The user only needs to declare the zone variable, for_each_zone
352 * fills it in. This basically means for_each_zone() is an
353 * easier to read version of this piece of code:
355 * for (pgdat = pgdat_list; pgdat; pgdat = pgdat->node_next)
356 * for (i = 0; i < MAX_NR_ZONES; ++i) {
357 * struct zone * z = pgdat->node_zones + i;
362 #define for_each_zone(zone) \
363 for (zone = pgdat_list->node_zones; zone; zone = next_zone(zone))
365 static inline int is_highmem_idx(int idx
)
367 return (idx
== ZONE_HIGHMEM
);
370 static inline int is_normal_idx(int idx
)
372 return (idx
== ZONE_NORMAL
);
375 * is_highmem - helper function to quickly check if a struct zone is a
376 * highmem zone or not. This is an attempt to keep references
377 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
378 * @zone - pointer to struct zone variable
380 static inline int is_highmem(struct zone
*zone
)
382 return zone
== zone
->zone_pgdat
->node_zones
+ ZONE_HIGHMEM
;
385 static inline int is_normal(struct zone
*zone
)
387 return zone
== zone
->zone_pgdat
->node_zones
+ ZONE_NORMAL
;
390 /* These two functions are used to setup the per zone pages min values */
393 int min_free_kbytes_sysctl_handler(struct ctl_table
*, int, struct file
*,
394 void __user
*, size_t *, loff_t
*);
395 extern int sysctl_lowmem_reserve_ratio
[MAX_NR_ZONES
-1];
396 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table
*, int, struct file
*,
397 void __user
*, size_t *, loff_t
*);
399 #include <linux/topology.h>
400 /* Returns the number of the current Node. */
401 #define numa_node_id() (cpu_to_node(raw_smp_processor_id()))
403 #ifndef CONFIG_DISCONTIGMEM
405 extern struct pglist_data contig_page_data
;
406 #define NODE_DATA(nid) (&contig_page_data)
407 #define NODE_MEM_MAP(nid) mem_map
408 #define MAX_NODES_SHIFT 1
409 #define pfn_to_nid(pfn) (0)
411 #else /* CONFIG_DISCONTIGMEM */
413 #include <asm/mmzone.h>
415 #if BITS_PER_LONG == 32 || defined(ARCH_HAS_ATOMIC_UNSIGNED)
417 * with 32 bit page->flags field, we reserve 8 bits for node/zone info.
418 * there are 3 zones (2 bits) and this leaves 8-2=6 bits for nodes.
420 #define MAX_NODES_SHIFT 6
421 #elif BITS_PER_LONG == 64
423 * with 64 bit flags field, there's plenty of room.
425 #define MAX_NODES_SHIFT 10
428 #endif /* !CONFIG_DISCONTIGMEM */
430 #if NODES_SHIFT > MAX_NODES_SHIFT
431 #error NODES_SHIFT > MAX_NODES_SHIFT
434 /* There are currently 3 zones: DMA, Normal & Highmem, thus we need 2 bits */
435 #define MAX_ZONES_SHIFT 2
437 #if ZONES_SHIFT > MAX_ZONES_SHIFT
438 #error ZONES_SHIFT > MAX_ZONES_SHIFT
441 #endif /* !__ASSEMBLY__ */
442 #endif /* __KERNEL__ */
443 #endif /* _LINUX_MMZONE_H */