[PATCH] W1: cleanups
[linux-2.6/verdex.git] / mm / page-writeback.c
blob75d7f48b79bba537d522cbd709138d48196d6782
1 /*
2 * mm/page-writeback.c.
4 * Copyright (C) 2002, Linus Torvalds.
6 * Contains functions related to writing back dirty pages at the
7 * address_space level.
9 * 10Apr2002 akpm@zip.com.au
10 * Initial version
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/spinlock.h>
16 #include <linux/fs.h>
17 #include <linux/mm.h>
18 #include <linux/swap.h>
19 #include <linux/slab.h>
20 #include <linux/pagemap.h>
21 #include <linux/writeback.h>
22 #include <linux/init.h>
23 #include <linux/backing-dev.h>
24 #include <linux/blkdev.h>
25 #include <linux/mpage.h>
26 #include <linux/percpu.h>
27 #include <linux/notifier.h>
28 #include <linux/smp.h>
29 #include <linux/sysctl.h>
30 #include <linux/cpu.h>
31 #include <linux/syscalls.h>
34 * The maximum number of pages to writeout in a single bdflush/kupdate
35 * operation. We do this so we don't hold I_LOCK against an inode for
36 * enormous amounts of time, which would block a userspace task which has
37 * been forced to throttle against that inode. Also, the code reevaluates
38 * the dirty each time it has written this many pages.
40 #define MAX_WRITEBACK_PAGES 1024
43 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
44 * will look to see if it needs to force writeback or throttling.
46 static long ratelimit_pages = 32;
48 static long total_pages; /* The total number of pages in the machine. */
49 static int dirty_exceeded __cacheline_aligned_in_smp; /* Dirty mem may be over limit */
52 * When balance_dirty_pages decides that the caller needs to perform some
53 * non-background writeback, this is how many pages it will attempt to write.
54 * It should be somewhat larger than RATELIMIT_PAGES to ensure that reasonably
55 * large amounts of I/O are submitted.
57 static inline long sync_writeback_pages(void)
59 return ratelimit_pages + ratelimit_pages / 2;
62 /* The following parameters are exported via /proc/sys/vm */
65 * Start background writeback (via pdflush) at this percentage
67 int dirty_background_ratio = 10;
70 * The generator of dirty data starts writeback at this percentage
72 int vm_dirty_ratio = 40;
75 * The interval between `kupdate'-style writebacks, in jiffies
77 int dirty_writeback_interval = 5 * HZ;
80 * The longest number of jiffies for which data is allowed to remain dirty
82 int dirty_expire_interval = 30 * HZ;
85 * Flag that makes the machine dump writes/reads and block dirtyings.
87 int block_dump;
90 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
91 * a full sync is triggered after this time elapses without any disk activity.
93 int laptop_mode;
95 EXPORT_SYMBOL(laptop_mode);
97 /* End of sysctl-exported parameters */
100 static void background_writeout(unsigned long _min_pages);
102 struct writeback_state
104 unsigned long nr_dirty;
105 unsigned long nr_unstable;
106 unsigned long nr_mapped;
107 unsigned long nr_writeback;
110 static void get_writeback_state(struct writeback_state *wbs)
112 wbs->nr_dirty = read_page_state(nr_dirty);
113 wbs->nr_unstable = read_page_state(nr_unstable);
114 wbs->nr_mapped = read_page_state(nr_mapped);
115 wbs->nr_writeback = read_page_state(nr_writeback);
119 * Work out the current dirty-memory clamping and background writeout
120 * thresholds.
122 * The main aim here is to lower them aggressively if there is a lot of mapped
123 * memory around. To avoid stressing page reclaim with lots of unreclaimable
124 * pages. It is better to clamp down on writers than to start swapping, and
125 * performing lots of scanning.
127 * We only allow 1/2 of the currently-unmapped memory to be dirtied.
129 * We don't permit the clamping level to fall below 5% - that is getting rather
130 * excessive.
132 * We make sure that the background writeout level is below the adjusted
133 * clamping level.
135 static void
136 get_dirty_limits(struct writeback_state *wbs, long *pbackground, long *pdirty,
137 struct address_space *mapping)
139 int background_ratio; /* Percentages */
140 int dirty_ratio;
141 int unmapped_ratio;
142 long background;
143 long dirty;
144 unsigned long available_memory = total_pages;
145 struct task_struct *tsk;
147 get_writeback_state(wbs);
149 #ifdef CONFIG_HIGHMEM
151 * If this mapping can only allocate from low memory,
152 * we exclude high memory from our count.
154 if (mapping && !(mapping_gfp_mask(mapping) & __GFP_HIGHMEM))
155 available_memory -= totalhigh_pages;
156 #endif
159 unmapped_ratio = 100 - (wbs->nr_mapped * 100) / total_pages;
161 dirty_ratio = vm_dirty_ratio;
162 if (dirty_ratio > unmapped_ratio / 2)
163 dirty_ratio = unmapped_ratio / 2;
165 if (dirty_ratio < 5)
166 dirty_ratio = 5;
168 background_ratio = dirty_background_ratio;
169 if (background_ratio >= dirty_ratio)
170 background_ratio = dirty_ratio / 2;
172 background = (background_ratio * available_memory) / 100;
173 dirty = (dirty_ratio * available_memory) / 100;
174 tsk = current;
175 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
176 background += background / 4;
177 dirty += dirty / 4;
179 *pbackground = background;
180 *pdirty = dirty;
184 * balance_dirty_pages() must be called by processes which are generating dirty
185 * data. It looks at the number of dirty pages in the machine and will force
186 * the caller to perform writeback if the system is over `vm_dirty_ratio'.
187 * If we're over `background_thresh' then pdflush is woken to perform some
188 * writeout.
190 static void balance_dirty_pages(struct address_space *mapping)
192 struct writeback_state wbs;
193 long nr_reclaimable;
194 long background_thresh;
195 long dirty_thresh;
196 unsigned long pages_written = 0;
197 unsigned long write_chunk = sync_writeback_pages();
199 struct backing_dev_info *bdi = mapping->backing_dev_info;
201 for (;;) {
202 struct writeback_control wbc = {
203 .bdi = bdi,
204 .sync_mode = WB_SYNC_NONE,
205 .older_than_this = NULL,
206 .nr_to_write = write_chunk,
209 get_dirty_limits(&wbs, &background_thresh,
210 &dirty_thresh, mapping);
211 nr_reclaimable = wbs.nr_dirty + wbs.nr_unstable;
212 if (nr_reclaimable + wbs.nr_writeback <= dirty_thresh)
213 break;
215 if (!dirty_exceeded)
216 dirty_exceeded = 1;
218 /* Note: nr_reclaimable denotes nr_dirty + nr_unstable.
219 * Unstable writes are a feature of certain networked
220 * filesystems (i.e. NFS) in which data may have been
221 * written to the server's write cache, but has not yet
222 * been flushed to permanent storage.
224 if (nr_reclaimable) {
225 writeback_inodes(&wbc);
226 get_dirty_limits(&wbs, &background_thresh,
227 &dirty_thresh, mapping);
228 nr_reclaimable = wbs.nr_dirty + wbs.nr_unstable;
229 if (nr_reclaimable + wbs.nr_writeback <= dirty_thresh)
230 break;
231 pages_written += write_chunk - wbc.nr_to_write;
232 if (pages_written >= write_chunk)
233 break; /* We've done our duty */
235 blk_congestion_wait(WRITE, HZ/10);
238 if (nr_reclaimable + wbs.nr_writeback <= dirty_thresh && dirty_exceeded)
239 dirty_exceeded = 0;
241 if (writeback_in_progress(bdi))
242 return; /* pdflush is already working this queue */
245 * In laptop mode, we wait until hitting the higher threshold before
246 * starting background writeout, and then write out all the way down
247 * to the lower threshold. So slow writers cause minimal disk activity.
249 * In normal mode, we start background writeout at the lower
250 * background_thresh, to keep the amount of dirty memory low.
252 if ((laptop_mode && pages_written) ||
253 (!laptop_mode && (nr_reclaimable > background_thresh)))
254 pdflush_operation(background_writeout, 0);
258 * balance_dirty_pages_ratelimited_nr - balance dirty memory state
259 * @mapping: address_space which was dirtied
260 * @nr_pages_dirtied: number of pages which the caller has just dirtied
262 * Processes which are dirtying memory should call in here once for each page
263 * which was newly dirtied. The function will periodically check the system's
264 * dirty state and will initiate writeback if needed.
266 * On really big machines, get_writeback_state is expensive, so try to avoid
267 * calling it too often (ratelimiting). But once we're over the dirty memory
268 * limit we decrease the ratelimiting by a lot, to prevent individual processes
269 * from overshooting the limit by (ratelimit_pages) each.
271 void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
272 unsigned long nr_pages_dirtied)
274 static DEFINE_PER_CPU(unsigned long, ratelimits) = 0;
275 unsigned long ratelimit;
276 unsigned long *p;
278 ratelimit = ratelimit_pages;
279 if (dirty_exceeded)
280 ratelimit = 8;
283 * Check the rate limiting. Also, we do not want to throttle real-time
284 * tasks in balance_dirty_pages(). Period.
286 preempt_disable();
287 p = &__get_cpu_var(ratelimits);
288 *p += nr_pages_dirtied;
289 if (unlikely(*p >= ratelimit)) {
290 *p = 0;
291 preempt_enable();
292 balance_dirty_pages(mapping);
293 return;
295 preempt_enable();
297 EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);
299 void throttle_vm_writeout(void)
301 struct writeback_state wbs;
302 long background_thresh;
303 long dirty_thresh;
305 for ( ; ; ) {
306 get_dirty_limits(&wbs, &background_thresh, &dirty_thresh, NULL);
309 * Boost the allowable dirty threshold a bit for page
310 * allocators so they don't get DoS'ed by heavy writers
312 dirty_thresh += dirty_thresh / 10; /* wheeee... */
314 if (wbs.nr_unstable + wbs.nr_writeback <= dirty_thresh)
315 break;
316 blk_congestion_wait(WRITE, HZ/10);
322 * writeback at least _min_pages, and keep writing until the amount of dirty
323 * memory is less than the background threshold, or until we're all clean.
325 static void background_writeout(unsigned long _min_pages)
327 long min_pages = _min_pages;
328 struct writeback_control wbc = {
329 .bdi = NULL,
330 .sync_mode = WB_SYNC_NONE,
331 .older_than_this = NULL,
332 .nr_to_write = 0,
333 .nonblocking = 1,
336 for ( ; ; ) {
337 struct writeback_state wbs;
338 long background_thresh;
339 long dirty_thresh;
341 get_dirty_limits(&wbs, &background_thresh, &dirty_thresh, NULL);
342 if (wbs.nr_dirty + wbs.nr_unstable < background_thresh
343 && min_pages <= 0)
344 break;
345 wbc.encountered_congestion = 0;
346 wbc.nr_to_write = MAX_WRITEBACK_PAGES;
347 wbc.pages_skipped = 0;
348 writeback_inodes(&wbc);
349 min_pages -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
350 if (wbc.nr_to_write > 0 || wbc.pages_skipped > 0) {
351 /* Wrote less than expected */
352 blk_congestion_wait(WRITE, HZ/10);
353 if (!wbc.encountered_congestion)
354 break;
360 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
361 * the whole world. Returns 0 if a pdflush thread was dispatched. Returns
362 * -1 if all pdflush threads were busy.
364 int wakeup_pdflush(long nr_pages)
366 if (nr_pages == 0) {
367 struct writeback_state wbs;
369 get_writeback_state(&wbs);
370 nr_pages = wbs.nr_dirty + wbs.nr_unstable;
372 return pdflush_operation(background_writeout, nr_pages);
375 static void wb_timer_fn(unsigned long unused);
376 static void laptop_timer_fn(unsigned long unused);
378 static DEFINE_TIMER(wb_timer, wb_timer_fn, 0, 0);
379 static DEFINE_TIMER(laptop_mode_wb_timer, laptop_timer_fn, 0, 0);
382 * Periodic writeback of "old" data.
384 * Define "old": the first time one of an inode's pages is dirtied, we mark the
385 * dirtying-time in the inode's address_space. So this periodic writeback code
386 * just walks the superblock inode list, writing back any inodes which are
387 * older than a specific point in time.
389 * Try to run once per dirty_writeback_interval. But if a writeback event
390 * takes longer than a dirty_writeback_interval interval, then leave a
391 * one-second gap.
393 * older_than_this takes precedence over nr_to_write. So we'll only write back
394 * all dirty pages if they are all attached to "old" mappings.
396 static void wb_kupdate(unsigned long arg)
398 unsigned long oldest_jif;
399 unsigned long start_jif;
400 unsigned long next_jif;
401 long nr_to_write;
402 struct writeback_state wbs;
403 struct writeback_control wbc = {
404 .bdi = NULL,
405 .sync_mode = WB_SYNC_NONE,
406 .older_than_this = &oldest_jif,
407 .nr_to_write = 0,
408 .nonblocking = 1,
409 .for_kupdate = 1,
412 sync_supers();
414 get_writeback_state(&wbs);
415 oldest_jif = jiffies - dirty_expire_interval;
416 start_jif = jiffies;
417 next_jif = start_jif + dirty_writeback_interval;
418 nr_to_write = wbs.nr_dirty + wbs.nr_unstable +
419 (inodes_stat.nr_inodes - inodes_stat.nr_unused);
420 while (nr_to_write > 0) {
421 wbc.encountered_congestion = 0;
422 wbc.nr_to_write = MAX_WRITEBACK_PAGES;
423 writeback_inodes(&wbc);
424 if (wbc.nr_to_write > 0) {
425 if (wbc.encountered_congestion)
426 blk_congestion_wait(WRITE, HZ/10);
427 else
428 break; /* All the old data is written */
430 nr_to_write -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
432 if (time_before(next_jif, jiffies + HZ))
433 next_jif = jiffies + HZ;
434 if (dirty_writeback_interval)
435 mod_timer(&wb_timer, next_jif);
439 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
441 int dirty_writeback_centisecs_handler(ctl_table *table, int write,
442 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
444 proc_dointvec_userhz_jiffies(table, write, file, buffer, length, ppos);
445 if (dirty_writeback_interval) {
446 mod_timer(&wb_timer,
447 jiffies + dirty_writeback_interval);
448 } else {
449 del_timer(&wb_timer);
451 return 0;
454 static void wb_timer_fn(unsigned long unused)
456 if (pdflush_operation(wb_kupdate, 0) < 0)
457 mod_timer(&wb_timer, jiffies + HZ); /* delay 1 second */
460 static void laptop_flush(unsigned long unused)
462 sys_sync();
465 static void laptop_timer_fn(unsigned long unused)
467 pdflush_operation(laptop_flush, 0);
471 * We've spun up the disk and we're in laptop mode: schedule writeback
472 * of all dirty data a few seconds from now. If the flush is already scheduled
473 * then push it back - the user is still using the disk.
475 void laptop_io_completion(void)
477 mod_timer(&laptop_mode_wb_timer, jiffies + laptop_mode);
481 * We're in laptop mode and we've just synced. The sync's writes will have
482 * caused another writeback to be scheduled by laptop_io_completion.
483 * Nothing needs to be written back anymore, so we unschedule the writeback.
485 void laptop_sync_completion(void)
487 del_timer(&laptop_mode_wb_timer);
491 * If ratelimit_pages is too high then we can get into dirty-data overload
492 * if a large number of processes all perform writes at the same time.
493 * If it is too low then SMP machines will call the (expensive)
494 * get_writeback_state too often.
496 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
497 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
498 * thresholds before writeback cuts in.
500 * But the limit should not be set too high. Because it also controls the
501 * amount of memory which the balance_dirty_pages() caller has to write back.
502 * If this is too large then the caller will block on the IO queue all the
503 * time. So limit it to four megabytes - the balance_dirty_pages() caller
504 * will write six megabyte chunks, max.
507 static void set_ratelimit(void)
509 ratelimit_pages = total_pages / (num_online_cpus() * 32);
510 if (ratelimit_pages < 16)
511 ratelimit_pages = 16;
512 if (ratelimit_pages * PAGE_CACHE_SIZE > 4096 * 1024)
513 ratelimit_pages = (4096 * 1024) / PAGE_CACHE_SIZE;
516 static int
517 ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
519 set_ratelimit();
520 return 0;
523 static struct notifier_block ratelimit_nb = {
524 .notifier_call = ratelimit_handler,
525 .next = NULL,
529 * If the machine has a large highmem:lowmem ratio then scale back the default
530 * dirty memory thresholds: allowing too much dirty highmem pins an excessive
531 * number of buffer_heads.
533 void __init page_writeback_init(void)
535 long buffer_pages = nr_free_buffer_pages();
536 long correction;
538 total_pages = nr_free_pagecache_pages();
540 correction = (100 * 4 * buffer_pages) / total_pages;
542 if (correction < 100) {
543 dirty_background_ratio *= correction;
544 dirty_background_ratio /= 100;
545 vm_dirty_ratio *= correction;
546 vm_dirty_ratio /= 100;
548 if (dirty_background_ratio <= 0)
549 dirty_background_ratio = 1;
550 if (vm_dirty_ratio <= 0)
551 vm_dirty_ratio = 1;
553 mod_timer(&wb_timer, jiffies + dirty_writeback_interval);
554 set_ratelimit();
555 register_cpu_notifier(&ratelimit_nb);
558 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
560 int ret;
562 if (wbc->nr_to_write <= 0)
563 return 0;
564 wbc->for_writepages = 1;
565 if (mapping->a_ops->writepages)
566 ret = mapping->a_ops->writepages(mapping, wbc);
567 else
568 ret = generic_writepages(mapping, wbc);
569 wbc->for_writepages = 0;
570 return ret;
574 * write_one_page - write out a single page and optionally wait on I/O
576 * @page: the page to write
577 * @wait: if true, wait on writeout
579 * The page must be locked by the caller and will be unlocked upon return.
581 * write_one_page() returns a negative error code if I/O failed.
583 int write_one_page(struct page *page, int wait)
585 struct address_space *mapping = page->mapping;
586 int ret = 0;
587 struct writeback_control wbc = {
588 .sync_mode = WB_SYNC_ALL,
589 .nr_to_write = 1,
592 BUG_ON(!PageLocked(page));
594 if (wait)
595 wait_on_page_writeback(page);
597 if (clear_page_dirty_for_io(page)) {
598 page_cache_get(page);
599 ret = mapping->a_ops->writepage(page, &wbc);
600 if (ret == 0 && wait) {
601 wait_on_page_writeback(page);
602 if (PageError(page))
603 ret = -EIO;
605 page_cache_release(page);
606 } else {
607 unlock_page(page);
609 return ret;
611 EXPORT_SYMBOL(write_one_page);
614 * For address_spaces which do not use buffers. Just tag the page as dirty in
615 * its radix tree.
617 * This is also used when a single buffer is being dirtied: we want to set the
618 * page dirty in that case, but not all the buffers. This is a "bottom-up"
619 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
621 * Most callers have locked the page, which pins the address_space in memory.
622 * But zap_pte_range() does not lock the page, however in that case the
623 * mapping is pinned by the vma's ->vm_file reference.
625 * We take care to handle the case where the page was truncated from the
626 * mapping by re-checking page_mapping() insode tree_lock.
628 int __set_page_dirty_nobuffers(struct page *page)
630 if (!TestSetPageDirty(page)) {
631 struct address_space *mapping = page_mapping(page);
632 struct address_space *mapping2;
634 if (mapping) {
635 write_lock_irq(&mapping->tree_lock);
636 mapping2 = page_mapping(page);
637 if (mapping2) { /* Race with truncate? */
638 BUG_ON(mapping2 != mapping);
639 if (mapping_cap_account_dirty(mapping))
640 inc_page_state(nr_dirty);
641 radix_tree_tag_set(&mapping->page_tree,
642 page_index(page), PAGECACHE_TAG_DIRTY);
644 write_unlock_irq(&mapping->tree_lock);
645 if (mapping->host) {
646 /* !PageAnon && !swapper_space */
647 __mark_inode_dirty(mapping->host,
648 I_DIRTY_PAGES);
651 return 1;
653 return 0;
655 EXPORT_SYMBOL(__set_page_dirty_nobuffers);
658 * When a writepage implementation decides that it doesn't want to write this
659 * page for some reason, it should redirty the locked page via
660 * redirty_page_for_writepage() and it should then unlock the page and return 0
662 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
664 wbc->pages_skipped++;
665 return __set_page_dirty_nobuffers(page);
667 EXPORT_SYMBOL(redirty_page_for_writepage);
670 * If the mapping doesn't provide a set_page_dirty a_op, then
671 * just fall through and assume that it wants buffer_heads.
673 int fastcall set_page_dirty(struct page *page)
675 struct address_space *mapping = page_mapping(page);
677 if (likely(mapping)) {
678 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
679 if (spd)
680 return (*spd)(page);
681 return __set_page_dirty_buffers(page);
683 if (!PageDirty(page)) {
684 if (!TestSetPageDirty(page))
685 return 1;
687 return 0;
689 EXPORT_SYMBOL(set_page_dirty);
692 * set_page_dirty() is racy if the caller has no reference against
693 * page->mapping->host, and if the page is unlocked. This is because another
694 * CPU could truncate the page off the mapping and then free the mapping.
696 * Usually, the page _is_ locked, or the caller is a user-space process which
697 * holds a reference on the inode by having an open file.
699 * In other cases, the page should be locked before running set_page_dirty().
701 int set_page_dirty_lock(struct page *page)
703 int ret;
705 lock_page(page);
706 ret = set_page_dirty(page);
707 unlock_page(page);
708 return ret;
710 EXPORT_SYMBOL(set_page_dirty_lock);
713 * Clear a page's dirty flag, while caring for dirty memory accounting.
714 * Returns true if the page was previously dirty.
716 int test_clear_page_dirty(struct page *page)
718 struct address_space *mapping = page_mapping(page);
719 unsigned long flags;
721 if (mapping) {
722 write_lock_irqsave(&mapping->tree_lock, flags);
723 if (TestClearPageDirty(page)) {
724 radix_tree_tag_clear(&mapping->page_tree,
725 page_index(page),
726 PAGECACHE_TAG_DIRTY);
727 write_unlock_irqrestore(&mapping->tree_lock, flags);
728 if (mapping_cap_account_dirty(mapping))
729 dec_page_state(nr_dirty);
730 return 1;
732 write_unlock_irqrestore(&mapping->tree_lock, flags);
733 return 0;
735 return TestClearPageDirty(page);
737 EXPORT_SYMBOL(test_clear_page_dirty);
740 * Clear a page's dirty flag, while caring for dirty memory accounting.
741 * Returns true if the page was previously dirty.
743 * This is for preparing to put the page under writeout. We leave the page
744 * tagged as dirty in the radix tree so that a concurrent write-for-sync
745 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
746 * implementation will run either set_page_writeback() or set_page_dirty(),
747 * at which stage we bring the page's dirty flag and radix-tree dirty tag
748 * back into sync.
750 * This incoherency between the page's dirty flag and radix-tree tag is
751 * unfortunate, but it only exists while the page is locked.
753 int clear_page_dirty_for_io(struct page *page)
755 struct address_space *mapping = page_mapping(page);
757 if (mapping) {
758 if (TestClearPageDirty(page)) {
759 if (mapping_cap_account_dirty(mapping))
760 dec_page_state(nr_dirty);
761 return 1;
763 return 0;
765 return TestClearPageDirty(page);
767 EXPORT_SYMBOL(clear_page_dirty_for_io);
769 int test_clear_page_writeback(struct page *page)
771 struct address_space *mapping = page_mapping(page);
772 int ret;
774 if (mapping) {
775 unsigned long flags;
777 write_lock_irqsave(&mapping->tree_lock, flags);
778 ret = TestClearPageWriteback(page);
779 if (ret)
780 radix_tree_tag_clear(&mapping->page_tree,
781 page_index(page),
782 PAGECACHE_TAG_WRITEBACK);
783 write_unlock_irqrestore(&mapping->tree_lock, flags);
784 } else {
785 ret = TestClearPageWriteback(page);
787 return ret;
790 int test_set_page_writeback(struct page *page)
792 struct address_space *mapping = page_mapping(page);
793 int ret;
795 if (mapping) {
796 unsigned long flags;
798 write_lock_irqsave(&mapping->tree_lock, flags);
799 ret = TestSetPageWriteback(page);
800 if (!ret)
801 radix_tree_tag_set(&mapping->page_tree,
802 page_index(page),
803 PAGECACHE_TAG_WRITEBACK);
804 if (!PageDirty(page))
805 radix_tree_tag_clear(&mapping->page_tree,
806 page_index(page),
807 PAGECACHE_TAG_DIRTY);
808 write_unlock_irqrestore(&mapping->tree_lock, flags);
809 } else {
810 ret = TestSetPageWriteback(page);
812 return ret;
815 EXPORT_SYMBOL(test_set_page_writeback);
818 * Return true if any of the pages in the mapping are marged with the
819 * passed tag.
821 int mapping_tagged(struct address_space *mapping, int tag)
823 unsigned long flags;
824 int ret;
826 read_lock_irqsave(&mapping->tree_lock, flags);
827 ret = radix_tree_tagged(&mapping->page_tree, tag);
828 read_unlock_irqrestore(&mapping->tree_lock, flags);
829 return ret;
831 EXPORT_SYMBOL(mapping_tagged);