2 * Copyright (C) 2001 Sistina Software (UK) Limited.
3 * Copyright (C) 2004 Red Hat, Inc. All rights reserved.
5 * This file is released under the GPL.
10 #include <linux/module.h>
11 #include <linux/vmalloc.h>
12 #include <linux/blkdev.h>
13 #include <linux/namei.h>
14 #include <linux/ctype.h>
15 #include <linux/slab.h>
16 #include <linux/interrupt.h>
17 #include <asm/atomic.h>
20 #define NODE_SIZE L1_CACHE_BYTES
21 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
22 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
29 unsigned int counts
[MAX_DEPTH
]; /* in nodes */
30 sector_t
*index
[MAX_DEPTH
];
32 unsigned int num_targets
;
33 unsigned int num_allocated
;
35 struct dm_target
*targets
;
38 * Indicates the rw permissions for the new logical
39 * device. This should be a combination of FMODE_READ
44 /* a list of devices used by this table */
45 struct list_head devices
;
48 * These are optimistic limits taken from all the
49 * targets, some targets will need smaller limits.
51 struct io_restrictions limits
;
53 /* events get handed up using this callback */
54 void (*event_fn
)(void *);
59 * Similar to ceiling(log_size(n))
61 static unsigned int int_log(unsigned int n
, unsigned int base
)
66 n
= dm_div_up(n
, base
);
74 * Returns the minimum that is _not_ zero, unless both are zero.
76 #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
79 * Combine two io_restrictions, always taking the lower value.
81 static void combine_restrictions_low(struct io_restrictions
*lhs
,
82 struct io_restrictions
*rhs
)
85 min_not_zero(lhs
->max_sectors
, rhs
->max_sectors
);
87 lhs
->max_phys_segments
=
88 min_not_zero(lhs
->max_phys_segments
, rhs
->max_phys_segments
);
90 lhs
->max_hw_segments
=
91 min_not_zero(lhs
->max_hw_segments
, rhs
->max_hw_segments
);
93 lhs
->hardsect_size
= max(lhs
->hardsect_size
, rhs
->hardsect_size
);
95 lhs
->max_segment_size
=
96 min_not_zero(lhs
->max_segment_size
, rhs
->max_segment_size
);
98 lhs
->seg_boundary_mask
=
99 min_not_zero(lhs
->seg_boundary_mask
, rhs
->seg_boundary_mask
);
103 * Calculate the index of the child node of the n'th node k'th key.
105 static inline unsigned int get_child(unsigned int n
, unsigned int k
)
107 return (n
* CHILDREN_PER_NODE
) + k
;
111 * Return the n'th node of level l from table t.
113 static inline sector_t
*get_node(struct dm_table
*t
,
114 unsigned int l
, unsigned int n
)
116 return t
->index
[l
] + (n
* KEYS_PER_NODE
);
120 * Return the highest key that you could lookup from the n'th
121 * node on level l of the btree.
123 static sector_t
high(struct dm_table
*t
, unsigned int l
, unsigned int n
)
125 for (; l
< t
->depth
- 1; l
++)
126 n
= get_child(n
, CHILDREN_PER_NODE
- 1);
128 if (n
>= t
->counts
[l
])
129 return (sector_t
) - 1;
131 return get_node(t
, l
, n
)[KEYS_PER_NODE
- 1];
135 * Fills in a level of the btree based on the highs of the level
138 static int setup_btree_index(unsigned int l
, struct dm_table
*t
)
143 for (n
= 0U; n
< t
->counts
[l
]; n
++) {
144 node
= get_node(t
, l
, n
);
146 for (k
= 0U; k
< KEYS_PER_NODE
; k
++)
147 node
[k
] = high(t
, l
+ 1, get_child(n
, k
));
153 void *dm_vcalloc(unsigned long nmemb
, unsigned long elem_size
)
159 * Check that we're not going to overflow.
161 if (nmemb
> (ULONG_MAX
/ elem_size
))
164 size
= nmemb
* elem_size
;
165 addr
= vmalloc(size
);
167 memset(addr
, 0, size
);
173 * highs, and targets are managed as dynamic arrays during a
176 static int alloc_targets(struct dm_table
*t
, unsigned int num
)
179 struct dm_target
*n_targets
;
180 int n
= t
->num_targets
;
183 * Allocate both the target array and offset array at once.
185 n_highs
= (sector_t
*) dm_vcalloc(num
, sizeof(struct dm_target
) +
190 n_targets
= (struct dm_target
*) (n_highs
+ num
);
193 memcpy(n_highs
, t
->highs
, sizeof(*n_highs
) * n
);
194 memcpy(n_targets
, t
->targets
, sizeof(*n_targets
) * n
);
197 memset(n_highs
+ n
, -1, sizeof(*n_highs
) * (num
- n
));
200 t
->num_allocated
= num
;
202 t
->targets
= n_targets
;
207 int dm_table_create(struct dm_table
**result
, int mode
, unsigned num_targets
)
209 struct dm_table
*t
= kmalloc(sizeof(*t
), GFP_KERNEL
);
214 memset(t
, 0, sizeof(*t
));
215 INIT_LIST_HEAD(&t
->devices
);
216 atomic_set(&t
->holders
, 1);
219 num_targets
= KEYS_PER_NODE
;
221 num_targets
= dm_round_up(num_targets
, KEYS_PER_NODE
);
223 if (alloc_targets(t
, num_targets
)) {
234 static void free_devices(struct list_head
*devices
)
236 struct list_head
*tmp
, *next
;
238 for (tmp
= devices
->next
; tmp
!= devices
; tmp
= next
) {
239 struct dm_dev
*dd
= list_entry(tmp
, struct dm_dev
, list
);
245 static void table_destroy(struct dm_table
*t
)
249 /* free the indexes (see dm_table_complete) */
251 vfree(t
->index
[t
->depth
- 2]);
253 /* free the targets */
254 for (i
= 0; i
< t
->num_targets
; i
++) {
255 struct dm_target
*tgt
= t
->targets
+ i
;
260 dm_put_target_type(tgt
->type
);
265 /* free the device list */
266 if (t
->devices
.next
!= &t
->devices
) {
267 DMWARN("devices still present during destroy: "
268 "dm_table_remove_device calls missing");
270 free_devices(&t
->devices
);
276 void dm_table_get(struct dm_table
*t
)
278 atomic_inc(&t
->holders
);
281 void dm_table_put(struct dm_table
*t
)
286 if (atomic_dec_and_test(&t
->holders
))
291 * Checks to see if we need to extend highs or targets.
293 static inline int check_space(struct dm_table
*t
)
295 if (t
->num_targets
>= t
->num_allocated
)
296 return alloc_targets(t
, t
->num_allocated
* 2);
302 * Convert a device path to a dev_t.
304 static int lookup_device(const char *path
, dev_t
*dev
)
310 if ((r
= path_lookup(path
, LOOKUP_FOLLOW
, &nd
)))
313 inode
= nd
.dentry
->d_inode
;
319 if (!S_ISBLK(inode
->i_mode
)) {
324 *dev
= inode
->i_rdev
;
332 * See if we've already got a device in the list.
334 static struct dm_dev
*find_device(struct list_head
*l
, dev_t dev
)
338 list_for_each_entry (dd
, l
, list
)
339 if (dd
->bdev
->bd_dev
== dev
)
346 * Open a device so we can use it as a map destination.
348 static int open_dev(struct dm_dev
*d
, dev_t dev
)
350 static char *_claim_ptr
= "I belong to device-mapper";
351 struct block_device
*bdev
;
358 bdev
= open_by_devnum(dev
, d
->mode
);
360 return PTR_ERR(bdev
);
361 r
= bd_claim(bdev
, _claim_ptr
);
370 * Close a device that we've been using.
372 static void close_dev(struct dm_dev
*d
)
383 * If possible (ie. blk_size[major] is set), this checks an area
384 * of a destination device is valid.
386 static int check_device_area(struct dm_dev
*dd
, sector_t start
, sector_t len
)
389 dev_size
= dd
->bdev
->bd_inode
->i_size
>> SECTOR_SHIFT
;
390 return ((start
< dev_size
) && (len
<= (dev_size
- start
)));
394 * This upgrades the mode on an already open dm_dev. Being
395 * careful to leave things as they were if we fail to reopen the
398 static int upgrade_mode(struct dm_dev
*dd
, int new_mode
)
401 struct dm_dev dd_copy
;
402 dev_t dev
= dd
->bdev
->bd_dev
;
406 dd
->mode
|= new_mode
;
408 r
= open_dev(dd
, dev
);
418 * Add a device to the list, or just increment the usage count if
419 * it's already present.
421 static int __table_get_device(struct dm_table
*t
, struct dm_target
*ti
,
422 const char *path
, sector_t start
, sector_t len
,
423 int mode
, struct dm_dev
**result
)
428 unsigned int major
, minor
;
433 if (sscanf(path
, "%u:%u", &major
, &minor
) == 2) {
434 /* Extract the major/minor numbers */
435 dev
= MKDEV(major
, minor
);
436 if (MAJOR(dev
) != major
|| MINOR(dev
) != minor
)
439 /* convert the path to a device */
440 if ((r
= lookup_device(path
, &dev
)))
444 dd
= find_device(&t
->devices
, dev
);
446 dd
= kmalloc(sizeof(*dd
), GFP_KERNEL
);
453 if ((r
= open_dev(dd
, dev
))) {
458 format_dev_t(dd
->name
, dev
);
460 atomic_set(&dd
->count
, 0);
461 list_add(&dd
->list
, &t
->devices
);
463 } else if (dd
->mode
!= (mode
| dd
->mode
)) {
464 r
= upgrade_mode(dd
, mode
);
468 atomic_inc(&dd
->count
);
470 if (!check_device_area(dd
, start
, len
)) {
471 DMWARN("device %s too small for target", path
);
472 dm_put_device(ti
, dd
);
482 int dm_get_device(struct dm_target
*ti
, const char *path
, sector_t start
,
483 sector_t len
, int mode
, struct dm_dev
**result
)
485 int r
= __table_get_device(ti
->table
, ti
, path
,
486 start
, len
, mode
, result
);
488 request_queue_t
*q
= bdev_get_queue((*result
)->bdev
);
489 struct io_restrictions
*rs
= &ti
->limits
;
492 * Combine the device limits low.
494 * FIXME: if we move an io_restriction struct
495 * into q this would just be a call to
496 * combine_restrictions_low()
499 min_not_zero(rs
->max_sectors
, q
->max_sectors
);
501 /* FIXME: Device-Mapper on top of RAID-0 breaks because DM
502 * currently doesn't honor MD's merge_bvec_fn routine.
503 * In this case, we'll force DM to use PAGE_SIZE or
504 * smaller I/O, just to be safe. A better fix is in the
505 * works, but add this for the time being so it will at
506 * least operate correctly.
508 if (q
->merge_bvec_fn
)
510 min_not_zero(rs
->max_sectors
,
511 (unsigned short)(PAGE_SIZE
>> 9));
513 rs
->max_phys_segments
=
514 min_not_zero(rs
->max_phys_segments
,
515 q
->max_phys_segments
);
517 rs
->max_hw_segments
=
518 min_not_zero(rs
->max_hw_segments
, q
->max_hw_segments
);
520 rs
->hardsect_size
= max(rs
->hardsect_size
, q
->hardsect_size
);
522 rs
->max_segment_size
=
523 min_not_zero(rs
->max_segment_size
, q
->max_segment_size
);
525 rs
->seg_boundary_mask
=
526 min_not_zero(rs
->seg_boundary_mask
,
527 q
->seg_boundary_mask
);
534 * Decrement a devices use count and remove it if necessary.
536 void dm_put_device(struct dm_target
*ti
, struct dm_dev
*dd
)
538 if (atomic_dec_and_test(&dd
->count
)) {
546 * Checks to see if the target joins onto the end of the table.
548 static int adjoin(struct dm_table
*table
, struct dm_target
*ti
)
550 struct dm_target
*prev
;
552 if (!table
->num_targets
)
555 prev
= &table
->targets
[table
->num_targets
- 1];
556 return (ti
->begin
== (prev
->begin
+ prev
->len
));
560 * Used to dynamically allocate the arg array.
562 static char **realloc_argv(unsigned *array_size
, char **old_argv
)
567 new_size
= *array_size
? *array_size
* 2 : 64;
568 argv
= kmalloc(new_size
* sizeof(*argv
), GFP_KERNEL
);
570 memcpy(argv
, old_argv
, *array_size
* sizeof(*argv
));
571 *array_size
= new_size
;
579 * Destructively splits up the argument list to pass to ctr.
581 int dm_split_args(int *argc
, char ***argvp
, char *input
)
583 char *start
, *end
= input
, *out
, **argv
= NULL
;
584 unsigned array_size
= 0;
587 argv
= realloc_argv(&array_size
, argv
);
594 /* Skip whitespace */
595 while (*start
&& isspace(*start
))
599 break; /* success, we hit the end */
601 /* 'out' is used to remove any back-quotes */
604 /* Everything apart from '\0' can be quoted */
605 if (*end
== '\\' && *(end
+ 1)) {
612 break; /* end of token */
617 /* have we already filled the array ? */
618 if ((*argc
+ 1) > array_size
) {
619 argv
= realloc_argv(&array_size
, argv
);
624 /* we know this is whitespace */
628 /* terminate the string and put it in the array */
638 static void check_for_valid_limits(struct io_restrictions
*rs
)
640 if (!rs
->max_sectors
)
641 rs
->max_sectors
= MAX_SECTORS
;
642 if (!rs
->max_phys_segments
)
643 rs
->max_phys_segments
= MAX_PHYS_SEGMENTS
;
644 if (!rs
->max_hw_segments
)
645 rs
->max_hw_segments
= MAX_HW_SEGMENTS
;
646 if (!rs
->hardsect_size
)
647 rs
->hardsect_size
= 1 << SECTOR_SHIFT
;
648 if (!rs
->max_segment_size
)
649 rs
->max_segment_size
= MAX_SEGMENT_SIZE
;
650 if (!rs
->seg_boundary_mask
)
651 rs
->seg_boundary_mask
= -1;
654 int dm_table_add_target(struct dm_table
*t
, const char *type
,
655 sector_t start
, sector_t len
, char *params
)
657 int r
= -EINVAL
, argc
;
659 struct dm_target
*tgt
;
661 if ((r
= check_space(t
)))
664 tgt
= t
->targets
+ t
->num_targets
;
665 memset(tgt
, 0, sizeof(*tgt
));
668 tgt
->error
= "zero-length target";
669 DMERR("%s", tgt
->error
);
673 tgt
->type
= dm_get_target_type(type
);
675 tgt
->error
= "unknown target type";
676 DMERR("%s", tgt
->error
);
683 tgt
->error
= "Unknown error";
686 * Does this target adjoin the previous one ?
688 if (!adjoin(t
, tgt
)) {
689 tgt
->error
= "Gap in table";
694 r
= dm_split_args(&argc
, &argv
, params
);
696 tgt
->error
= "couldn't split parameters (insufficient memory)";
700 r
= tgt
->type
->ctr(tgt
, argc
, argv
);
705 t
->highs
[t
->num_targets
++] = tgt
->begin
+ tgt
->len
- 1;
707 /* FIXME: the plan is to combine high here and then have
708 * the merge fn apply the target level restrictions. */
709 combine_restrictions_low(&t
->limits
, &tgt
->limits
);
713 DMERR("%s", tgt
->error
);
714 dm_put_target_type(tgt
->type
);
718 static int setup_indexes(struct dm_table
*t
)
721 unsigned int total
= 0;
724 /* allocate the space for *all* the indexes */
725 for (i
= t
->depth
- 2; i
>= 0; i
--) {
726 t
->counts
[i
] = dm_div_up(t
->counts
[i
+ 1], CHILDREN_PER_NODE
);
727 total
+= t
->counts
[i
];
730 indexes
= (sector_t
*) dm_vcalloc(total
, (unsigned long) NODE_SIZE
);
734 /* set up internal nodes, bottom-up */
735 for (i
= t
->depth
- 2, total
= 0; i
>= 0; i
--) {
736 t
->index
[i
] = indexes
;
737 indexes
+= (KEYS_PER_NODE
* t
->counts
[i
]);
738 setup_btree_index(i
, t
);
745 * Builds the btree to index the map.
747 int dm_table_complete(struct dm_table
*t
)
750 unsigned int leaf_nodes
;
752 check_for_valid_limits(&t
->limits
);
754 /* how many indexes will the btree have ? */
755 leaf_nodes
= dm_div_up(t
->num_targets
, KEYS_PER_NODE
);
756 t
->depth
= 1 + int_log(leaf_nodes
, CHILDREN_PER_NODE
);
758 /* leaf layer has already been set up */
759 t
->counts
[t
->depth
- 1] = leaf_nodes
;
760 t
->index
[t
->depth
- 1] = t
->highs
;
763 r
= setup_indexes(t
);
768 static DECLARE_MUTEX(_event_lock
);
769 void dm_table_event_callback(struct dm_table
*t
,
770 void (*fn
)(void *), void *context
)
774 t
->event_context
= context
;
778 void dm_table_event(struct dm_table
*t
)
781 * You can no longer call dm_table_event() from interrupt
782 * context, use a bottom half instead.
784 BUG_ON(in_interrupt());
788 t
->event_fn(t
->event_context
);
792 sector_t
dm_table_get_size(struct dm_table
*t
)
794 return t
->num_targets
? (t
->highs
[t
->num_targets
- 1] + 1) : 0;
797 struct dm_target
*dm_table_get_target(struct dm_table
*t
, unsigned int index
)
799 if (index
> t
->num_targets
)
802 return t
->targets
+ index
;
806 * Search the btree for the correct target.
808 struct dm_target
*dm_table_find_target(struct dm_table
*t
, sector_t sector
)
810 unsigned int l
, n
= 0, k
= 0;
813 for (l
= 0; l
< t
->depth
; l
++) {
815 node
= get_node(t
, l
, n
);
817 for (k
= 0; k
< KEYS_PER_NODE
; k
++)
818 if (node
[k
] >= sector
)
822 return &t
->targets
[(KEYS_PER_NODE
* n
) + k
];
825 void dm_table_set_restrictions(struct dm_table
*t
, struct request_queue
*q
)
828 * Make sure we obey the optimistic sub devices
831 blk_queue_max_sectors(q
, t
->limits
.max_sectors
);
832 q
->max_phys_segments
= t
->limits
.max_phys_segments
;
833 q
->max_hw_segments
= t
->limits
.max_hw_segments
;
834 q
->hardsect_size
= t
->limits
.hardsect_size
;
835 q
->max_segment_size
= t
->limits
.max_segment_size
;
836 q
->seg_boundary_mask
= t
->limits
.seg_boundary_mask
;
839 unsigned int dm_table_get_num_targets(struct dm_table
*t
)
841 return t
->num_targets
;
844 struct list_head
*dm_table_get_devices(struct dm_table
*t
)
849 int dm_table_get_mode(struct dm_table
*t
)
854 static void suspend_targets(struct dm_table
*t
, unsigned postsuspend
)
856 int i
= t
->num_targets
;
857 struct dm_target
*ti
= t
->targets
;
861 if (ti
->type
->postsuspend
)
862 ti
->type
->postsuspend(ti
);
863 } else if (ti
->type
->presuspend
)
864 ti
->type
->presuspend(ti
);
870 void dm_table_presuspend_targets(struct dm_table
*t
)
875 return suspend_targets(t
, 0);
878 void dm_table_postsuspend_targets(struct dm_table
*t
)
883 return suspend_targets(t
, 1);
886 void dm_table_resume_targets(struct dm_table
*t
)
890 for (i
= 0; i
< t
->num_targets
; i
++) {
891 struct dm_target
*ti
= t
->targets
+ i
;
893 if (ti
->type
->resume
)
894 ti
->type
->resume(ti
);
898 int dm_table_any_congested(struct dm_table
*t
, int bdi_bits
)
900 struct list_head
*d
, *devices
;
903 devices
= dm_table_get_devices(t
);
904 for (d
= devices
->next
; d
!= devices
; d
= d
->next
) {
905 struct dm_dev
*dd
= list_entry(d
, struct dm_dev
, list
);
906 request_queue_t
*q
= bdev_get_queue(dd
->bdev
);
907 r
|= bdi_congested(&q
->backing_dev_info
, bdi_bits
);
913 void dm_table_unplug_all(struct dm_table
*t
)
915 struct list_head
*d
, *devices
= dm_table_get_devices(t
);
917 for (d
= devices
->next
; d
!= devices
; d
= d
->next
) {
918 struct dm_dev
*dd
= list_entry(d
, struct dm_dev
, list
);
919 request_queue_t
*q
= bdev_get_queue(dd
->bdev
);
926 int dm_table_flush_all(struct dm_table
*t
)
928 struct list_head
*d
, *devices
= dm_table_get_devices(t
);
931 for (d
= devices
->next
; d
!= devices
; d
= d
->next
) {
932 struct dm_dev
*dd
= list_entry(d
, struct dm_dev
, list
);
933 request_queue_t
*q
= bdev_get_queue(dd
->bdev
);
936 if (!q
->issue_flush_fn
)
939 err
= q
->issue_flush_fn(q
, dd
->bdev
->bd_disk
, NULL
);
948 EXPORT_SYMBOL(dm_vcalloc
);
949 EXPORT_SYMBOL(dm_get_device
);
950 EXPORT_SYMBOL(dm_put_device
);
951 EXPORT_SYMBOL(dm_table_event
);
952 EXPORT_SYMBOL(dm_table_get_size
);
953 EXPORT_SYMBOL(dm_table_get_mode
);
954 EXPORT_SYMBOL(dm_table_put
);
955 EXPORT_SYMBOL(dm_table_get
);
956 EXPORT_SYMBOL(dm_table_unplug_all
);
957 EXPORT_SYMBOL(dm_table_flush_all
);