2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004 Red Hat, Inc. All rights reserved.
5 * This file is released under the GPL.
9 #include "dm-bio-list.h"
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/moduleparam.h>
14 #include <linux/blkpg.h>
15 #include <linux/bio.h>
16 #include <linux/buffer_head.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/idr.h>
21 static const char *_name
= DM_NAME
;
23 static unsigned int major
= 0;
24 static unsigned int _major
= 0;
27 * One of these is allocated per bio.
30 struct mapped_device
*md
;
37 * One of these is allocated per target within a bio. Hopefully
38 * this will be simplified out one day.
46 union map_info
*dm_get_mapinfo(struct bio
*bio
)
48 if (bio
&& bio
->bi_private
)
49 return &((struct target_io
*)bio
->bi_private
)->info
;
54 * Bits for the md->flags field.
56 #define DMF_BLOCK_IO 0
57 #define DMF_SUSPENDED 1
59 struct mapped_device
{
60 struct rw_semaphore io_lock
;
61 struct semaphore suspend_lock
;
67 request_queue_t
*queue
;
73 * A list of ios that arrived while we were suspended.
76 wait_queue_head_t wait
;
77 struct bio_list deferred
;
80 * The current mapping.
85 * io objects are allocated from here.
94 wait_queue_head_t eventq
;
97 * freeze/thaw support require holding onto a super block
99 struct super_block
*frozen_sb
;
100 struct block_device
*frozen_bdev
;
104 static kmem_cache_t
*_io_cache
;
105 static kmem_cache_t
*_tio_cache
;
107 static struct bio_set
*dm_set
;
109 static int __init
local_init(void)
113 dm_set
= bioset_create(16, 16, 4);
117 /* allocate a slab for the dm_ios */
118 _io_cache
= kmem_cache_create("dm_io",
119 sizeof(struct dm_io
), 0, 0, NULL
, NULL
);
123 /* allocate a slab for the target ios */
124 _tio_cache
= kmem_cache_create("dm_tio", sizeof(struct target_io
),
127 kmem_cache_destroy(_io_cache
);
132 r
= register_blkdev(_major
, _name
);
134 kmem_cache_destroy(_tio_cache
);
135 kmem_cache_destroy(_io_cache
);
145 static void local_exit(void)
147 kmem_cache_destroy(_tio_cache
);
148 kmem_cache_destroy(_io_cache
);
152 if (unregister_blkdev(_major
, _name
) < 0)
153 DMERR("devfs_unregister_blkdev failed");
157 DMINFO("cleaned up");
160 int (*_inits
[])(void) __initdata
= {
168 void (*_exits
[])(void) = {
176 static int __init
dm_init(void)
178 const int count
= ARRAY_SIZE(_inits
);
182 for (i
= 0; i
< count
; i
++) {
197 static void __exit
dm_exit(void)
199 int i
= ARRAY_SIZE(_exits
);
206 * Block device functions
208 static int dm_blk_open(struct inode
*inode
, struct file
*file
)
210 struct mapped_device
*md
;
212 md
= inode
->i_bdev
->bd_disk
->private_data
;
217 static int dm_blk_close(struct inode
*inode
, struct file
*file
)
219 struct mapped_device
*md
;
221 md
= inode
->i_bdev
->bd_disk
->private_data
;
226 static inline struct dm_io
*alloc_io(struct mapped_device
*md
)
228 return mempool_alloc(md
->io_pool
, GFP_NOIO
);
231 static inline void free_io(struct mapped_device
*md
, struct dm_io
*io
)
233 mempool_free(io
, md
->io_pool
);
236 static inline struct target_io
*alloc_tio(struct mapped_device
*md
)
238 return mempool_alloc(md
->tio_pool
, GFP_NOIO
);
241 static inline void free_tio(struct mapped_device
*md
, struct target_io
*tio
)
243 mempool_free(tio
, md
->tio_pool
);
247 * Add the bio to the list of deferred io.
249 static int queue_io(struct mapped_device
*md
, struct bio
*bio
)
251 down_write(&md
->io_lock
);
253 if (!test_bit(DMF_BLOCK_IO
, &md
->flags
)) {
254 up_write(&md
->io_lock
);
258 bio_list_add(&md
->deferred
, bio
);
260 up_write(&md
->io_lock
);
261 return 0; /* deferred successfully */
265 * Everyone (including functions in this file), should use this
266 * function to access the md->map field, and make sure they call
267 * dm_table_put() when finished.
269 struct dm_table
*dm_get_table(struct mapped_device
*md
)
273 read_lock(&md
->map_lock
);
277 read_unlock(&md
->map_lock
);
282 /*-----------------------------------------------------------------
284 * A more elegant soln is in the works that uses the queue
285 * merge fn, unfortunately there are a couple of changes to
286 * the block layer that I want to make for this. So in the
287 * interests of getting something for people to use I give
288 * you this clearly demarcated crap.
289 *---------------------------------------------------------------*/
292 * Decrements the number of outstanding ios that a bio has been
293 * cloned into, completing the original io if necc.
295 static inline void dec_pending(struct dm_io
*io
, int error
)
300 if (atomic_dec_and_test(&io
->io_count
)) {
301 if (atomic_dec_and_test(&io
->md
->pending
))
302 /* nudge anyone waiting on suspend queue */
303 wake_up(&io
->md
->wait
);
305 bio_endio(io
->bio
, io
->bio
->bi_size
, io
->error
);
310 static int clone_endio(struct bio
*bio
, unsigned int done
, int error
)
313 struct target_io
*tio
= bio
->bi_private
;
314 struct dm_io
*io
= tio
->io
;
315 dm_endio_fn endio
= tio
->ti
->type
->end_io
;
320 if (!bio_flagged(bio
, BIO_UPTODATE
) && !error
)
324 r
= endio(tio
->ti
, bio
, error
, &tio
->info
);
329 /* the target wants another shot at the io */
333 free_tio(io
->md
, tio
);
334 dec_pending(io
, error
);
339 static sector_t
max_io_len(struct mapped_device
*md
,
340 sector_t sector
, struct dm_target
*ti
)
342 sector_t offset
= sector
- ti
->begin
;
343 sector_t len
= ti
->len
- offset
;
346 * Does the target need to split even further ?
350 boundary
= ((offset
+ ti
->split_io
) & ~(ti
->split_io
- 1))
359 static void __map_bio(struct dm_target
*ti
, struct bio
*clone
,
360 struct target_io
*tio
)
367 BUG_ON(!clone
->bi_size
);
369 clone
->bi_end_io
= clone_endio
;
370 clone
->bi_private
= tio
;
373 * Map the clone. If r == 0 we don't need to do
374 * anything, the target has assumed ownership of
377 atomic_inc(&tio
->io
->io_count
);
378 r
= ti
->type
->map(ti
, clone
, &tio
->info
);
380 /* the bio has been remapped so dispatch it */
381 generic_make_request(clone
);
384 /* error the io and bail out */
385 struct dm_io
*io
= tio
->io
;
386 free_tio(tio
->io
->md
, tio
);
393 struct mapped_device
*md
;
394 struct dm_table
*map
;
398 sector_t sector_count
;
402 static void dm_bio_destructor(struct bio
*bio
)
404 bio_free(bio
, dm_set
);
408 * Creates a little bio that is just does part of a bvec.
410 static struct bio
*split_bvec(struct bio
*bio
, sector_t sector
,
411 unsigned short idx
, unsigned int offset
,
415 struct bio_vec
*bv
= bio
->bi_io_vec
+ idx
;
417 clone
= bio_alloc_bioset(GFP_NOIO
, 1, dm_set
);
418 clone
->bi_destructor
= dm_bio_destructor
;
419 *clone
->bi_io_vec
= *bv
;
421 clone
->bi_sector
= sector
;
422 clone
->bi_bdev
= bio
->bi_bdev
;
423 clone
->bi_rw
= bio
->bi_rw
;
425 clone
->bi_size
= to_bytes(len
);
426 clone
->bi_io_vec
->bv_offset
= offset
;
427 clone
->bi_io_vec
->bv_len
= clone
->bi_size
;
433 * Creates a bio that consists of range of complete bvecs.
435 static struct bio
*clone_bio(struct bio
*bio
, sector_t sector
,
436 unsigned short idx
, unsigned short bv_count
,
441 clone
= bio_clone(bio
, GFP_NOIO
);
442 clone
->bi_sector
= sector
;
444 clone
->bi_vcnt
= idx
+ bv_count
;
445 clone
->bi_size
= to_bytes(len
);
446 clone
->bi_flags
&= ~(1 << BIO_SEG_VALID
);
451 static void __clone_and_map(struct clone_info
*ci
)
453 struct bio
*clone
, *bio
= ci
->bio
;
454 struct dm_target
*ti
= dm_table_find_target(ci
->map
, ci
->sector
);
455 sector_t len
= 0, max
= max_io_len(ci
->md
, ci
->sector
, ti
);
456 struct target_io
*tio
;
459 * Allocate a target io object.
461 tio
= alloc_tio(ci
->md
);
464 memset(&tio
->info
, 0, sizeof(tio
->info
));
466 if (ci
->sector_count
<= max
) {
468 * Optimise for the simple case where we can do all of
469 * the remaining io with a single clone.
471 clone
= clone_bio(bio
, ci
->sector
, ci
->idx
,
472 bio
->bi_vcnt
- ci
->idx
, ci
->sector_count
);
473 __map_bio(ti
, clone
, tio
);
474 ci
->sector_count
= 0;
476 } else if (to_sector(bio
->bi_io_vec
[ci
->idx
].bv_len
) <= max
) {
478 * There are some bvecs that don't span targets.
479 * Do as many of these as possible.
482 sector_t remaining
= max
;
485 for (i
= ci
->idx
; remaining
&& (i
< bio
->bi_vcnt
); i
++) {
486 bv_len
= to_sector(bio
->bi_io_vec
[i
].bv_len
);
488 if (bv_len
> remaining
)
495 clone
= clone_bio(bio
, ci
->sector
, ci
->idx
, i
- ci
->idx
, len
);
496 __map_bio(ti
, clone
, tio
);
499 ci
->sector_count
-= len
;
504 * Create two copy bios to deal with io that has
505 * been split across a target.
507 struct bio_vec
*bv
= bio
->bi_io_vec
+ ci
->idx
;
509 clone
= split_bvec(bio
, ci
->sector
, ci
->idx
,
511 __map_bio(ti
, clone
, tio
);
514 ci
->sector_count
-= max
;
515 ti
= dm_table_find_target(ci
->map
, ci
->sector
);
517 len
= to_sector(bv
->bv_len
) - max
;
518 clone
= split_bvec(bio
, ci
->sector
, ci
->idx
,
519 bv
->bv_offset
+ to_bytes(max
), len
);
520 tio
= alloc_tio(ci
->md
);
523 memset(&tio
->info
, 0, sizeof(tio
->info
));
524 __map_bio(ti
, clone
, tio
);
527 ci
->sector_count
-= len
;
533 * Split the bio into several clones.
535 static void __split_bio(struct mapped_device
*md
, struct bio
*bio
)
537 struct clone_info ci
;
539 ci
.map
= dm_get_table(md
);
541 bio_io_error(bio
, bio
->bi_size
);
547 ci
.io
= alloc_io(md
);
549 atomic_set(&ci
.io
->io_count
, 1);
552 ci
.sector
= bio
->bi_sector
;
553 ci
.sector_count
= bio_sectors(bio
);
554 ci
.idx
= bio
->bi_idx
;
556 atomic_inc(&md
->pending
);
557 while (ci
.sector_count
)
558 __clone_and_map(&ci
);
560 /* drop the extra reference count */
561 dec_pending(ci
.io
, 0);
562 dm_table_put(ci
.map
);
564 /*-----------------------------------------------------------------
566 *---------------------------------------------------------------*/
569 * The request function that just remaps the bio built up by
572 static int dm_request(request_queue_t
*q
, struct bio
*bio
)
575 struct mapped_device
*md
= q
->queuedata
;
577 down_read(&md
->io_lock
);
580 * If we're suspended we have to queue
583 while (test_bit(DMF_BLOCK_IO
, &md
->flags
)) {
584 up_read(&md
->io_lock
);
586 if (bio_rw(bio
) == READA
) {
587 bio_io_error(bio
, bio
->bi_size
);
591 r
= queue_io(md
, bio
);
593 bio_io_error(bio
, bio
->bi_size
);
597 return 0; /* deferred successfully */
600 * We're in a while loop, because someone could suspend
601 * before we get to the following read lock.
603 down_read(&md
->io_lock
);
606 __split_bio(md
, bio
);
607 up_read(&md
->io_lock
);
611 static int dm_flush_all(request_queue_t
*q
, struct gendisk
*disk
,
612 sector_t
*error_sector
)
614 struct mapped_device
*md
= q
->queuedata
;
615 struct dm_table
*map
= dm_get_table(md
);
619 ret
= dm_table_flush_all(map
);
626 static void dm_unplug_all(request_queue_t
*q
)
628 struct mapped_device
*md
= q
->queuedata
;
629 struct dm_table
*map
= dm_get_table(md
);
632 dm_table_unplug_all(map
);
637 static int dm_any_congested(void *congested_data
, int bdi_bits
)
640 struct mapped_device
*md
= (struct mapped_device
*) congested_data
;
641 struct dm_table
*map
= dm_get_table(md
);
643 if (!map
|| test_bit(DMF_BLOCK_IO
, &md
->flags
))
646 r
= dm_table_any_congested(map
, bdi_bits
);
652 /*-----------------------------------------------------------------
653 * An IDR is used to keep track of allocated minor numbers.
654 *---------------------------------------------------------------*/
655 static DECLARE_MUTEX(_minor_lock
);
656 static DEFINE_IDR(_minor_idr
);
658 static void free_minor(unsigned int minor
)
661 idr_remove(&_minor_idr
, minor
);
666 * See if the device with a specific minor # is free.
668 static int specific_minor(struct mapped_device
*md
, unsigned int minor
)
672 if (minor
>= (1 << MINORBITS
))
677 if (idr_find(&_minor_idr
, minor
)) {
682 r
= idr_pre_get(&_minor_idr
, GFP_KERNEL
);
688 r
= idr_get_new_above(&_minor_idr
, md
, minor
, &m
);
694 idr_remove(&_minor_idr
, m
);
704 static int next_free_minor(struct mapped_device
*md
, unsigned int *minor
)
711 r
= idr_pre_get(&_minor_idr
, GFP_KERNEL
);
717 r
= idr_get_new(&_minor_idr
, md
, &m
);
722 if (m
>= (1 << MINORBITS
)) {
723 idr_remove(&_minor_idr
, m
);
735 static struct block_device_operations dm_blk_dops
;
738 * Allocate and initialise a blank device with a given minor.
740 static struct mapped_device
*alloc_dev(unsigned int minor
, int persistent
)
743 struct mapped_device
*md
= kmalloc(sizeof(*md
), GFP_KERNEL
);
746 DMWARN("unable to allocate device, out of memory.");
750 /* get a minor number for the dev */
751 r
= persistent
? specific_minor(md
, minor
) : next_free_minor(md
, &minor
);
755 memset(md
, 0, sizeof(*md
));
756 init_rwsem(&md
->io_lock
);
757 init_MUTEX(&md
->suspend_lock
);
758 rwlock_init(&md
->map_lock
);
759 atomic_set(&md
->holders
, 1);
760 atomic_set(&md
->event_nr
, 0);
762 md
->queue
= blk_alloc_queue(GFP_KERNEL
);
766 md
->queue
->queuedata
= md
;
767 md
->queue
->backing_dev_info
.congested_fn
= dm_any_congested
;
768 md
->queue
->backing_dev_info
.congested_data
= md
;
769 blk_queue_make_request(md
->queue
, dm_request
);
770 md
->queue
->unplug_fn
= dm_unplug_all
;
771 md
->queue
->issue_flush_fn
= dm_flush_all
;
773 md
->io_pool
= mempool_create(MIN_IOS
, mempool_alloc_slab
,
774 mempool_free_slab
, _io_cache
);
778 md
->tio_pool
= mempool_create(MIN_IOS
, mempool_alloc_slab
,
779 mempool_free_slab
, _tio_cache
);
783 md
->disk
= alloc_disk(1);
787 md
->disk
->major
= _major
;
788 md
->disk
->first_minor
= minor
;
789 md
->disk
->fops
= &dm_blk_dops
;
790 md
->disk
->queue
= md
->queue
;
791 md
->disk
->private_data
= md
;
792 sprintf(md
->disk
->disk_name
, "dm-%d", minor
);
795 atomic_set(&md
->pending
, 0);
796 init_waitqueue_head(&md
->wait
);
797 init_waitqueue_head(&md
->eventq
);
802 mempool_destroy(md
->tio_pool
);
804 mempool_destroy(md
->io_pool
);
806 blk_put_queue(md
->queue
);
813 static void free_dev(struct mapped_device
*md
)
815 free_minor(md
->disk
->first_minor
);
816 mempool_destroy(md
->tio_pool
);
817 mempool_destroy(md
->io_pool
);
818 del_gendisk(md
->disk
);
820 blk_put_queue(md
->queue
);
825 * Bind a table to the device.
827 static void event_callback(void *context
)
829 struct mapped_device
*md
= (struct mapped_device
*) context
;
831 atomic_inc(&md
->event_nr
);
832 wake_up(&md
->eventq
);
835 static void __set_size(struct mapped_device
*md
, sector_t size
)
837 set_capacity(md
->disk
, size
);
839 down(&md
->frozen_bdev
->bd_inode
->i_sem
);
840 i_size_write(md
->frozen_bdev
->bd_inode
, (loff_t
)size
<< SECTOR_SHIFT
);
841 up(&md
->frozen_bdev
->bd_inode
->i_sem
);
844 static int __bind(struct mapped_device
*md
, struct dm_table
*t
)
846 request_queue_t
*q
= md
->queue
;
849 size
= dm_table_get_size(t
);
850 __set_size(md
, size
);
855 dm_table_event_callback(t
, event_callback
, md
);
857 write_lock(&md
->map_lock
);
859 dm_table_set_restrictions(t
, q
);
860 write_unlock(&md
->map_lock
);
865 static void __unbind(struct mapped_device
*md
)
867 struct dm_table
*map
= md
->map
;
872 dm_table_event_callback(map
, NULL
, NULL
);
873 write_lock(&md
->map_lock
);
875 write_unlock(&md
->map_lock
);
880 * Constructor for a new device.
882 static int create_aux(unsigned int minor
, int persistent
,
883 struct mapped_device
**result
)
885 struct mapped_device
*md
;
887 md
= alloc_dev(minor
, persistent
);
895 int dm_create(struct mapped_device
**result
)
897 return create_aux(0, 0, result
);
900 int dm_create_with_minor(unsigned int minor
, struct mapped_device
**result
)
902 return create_aux(minor
, 1, result
);
905 void *dm_get_mdptr(dev_t dev
)
907 struct mapped_device
*md
;
909 unsigned minor
= MINOR(dev
);
911 if (MAJOR(dev
) != _major
|| minor
>= (1 << MINORBITS
))
916 md
= idr_find(&_minor_idr
, minor
);
918 if (md
&& (dm_disk(md
)->first_minor
== minor
))
919 mdptr
= md
->interface_ptr
;
926 void dm_set_mdptr(struct mapped_device
*md
, void *ptr
)
928 md
->interface_ptr
= ptr
;
931 void dm_get(struct mapped_device
*md
)
933 atomic_inc(&md
->holders
);
936 void dm_put(struct mapped_device
*md
)
938 struct dm_table
*map
= dm_get_table(md
);
940 if (atomic_dec_and_test(&md
->holders
)) {
941 if (!dm_suspended(md
)) {
942 dm_table_presuspend_targets(map
);
943 dm_table_postsuspend_targets(map
);
953 * Process the deferred bios
955 static void __flush_deferred_io(struct mapped_device
*md
, struct bio
*c
)
968 * Swap in a new table (destroying old one).
970 int dm_swap_table(struct mapped_device
*md
, struct dm_table
*table
)
974 down(&md
->suspend_lock
);
976 /* device must be suspended */
977 if (!dm_suspended(md
))
981 r
= __bind(md
, table
);
984 up(&md
->suspend_lock
);
989 * Functions to lock and unlock any filesystem running on the
992 static int lock_fs(struct mapped_device
*md
)
996 md
->frozen_bdev
= bdget_disk(md
->disk
, 0);
997 if (!md
->frozen_bdev
) {
998 DMWARN("bdget failed in lock_fs");
1002 WARN_ON(md
->frozen_sb
);
1004 md
->frozen_sb
= freeze_bdev(md
->frozen_bdev
);
1005 if (IS_ERR(md
->frozen_sb
)) {
1006 r
= PTR_ERR(md
->frozen_sb
);
1010 /* don't bdput right now, we don't want the bdev
1011 * to go away while it is locked. We'll bdput
1017 bdput(md
->frozen_bdev
);
1018 md
->frozen_sb
= NULL
;
1019 md
->frozen_bdev
= NULL
;
1024 static void unlock_fs(struct mapped_device
*md
)
1026 thaw_bdev(md
->frozen_bdev
, md
->frozen_sb
);
1027 bdput(md
->frozen_bdev
);
1029 md
->frozen_sb
= NULL
;
1030 md
->frozen_bdev
= NULL
;
1034 * We need to be able to change a mapping table under a mounted
1035 * filesystem. For example we might want to move some data in
1036 * the background. Before the table can be swapped with
1037 * dm_bind_table, dm_suspend must be called to flush any in
1038 * flight bios and ensure that any further io gets deferred.
1040 int dm_suspend(struct mapped_device
*md
)
1042 struct dm_table
*map
= NULL
;
1043 DECLARE_WAITQUEUE(wait
, current
);
1046 down(&md
->suspend_lock
);
1048 if (dm_suspended(md
))
1051 map
= dm_get_table(md
);
1053 /* This does not get reverted if there's an error later. */
1054 dm_table_presuspend_targets(map
);
1056 /* Flush I/O to the device. */
1062 * First we set the BLOCK_IO flag so no more ios will be mapped.
1064 down_write(&md
->io_lock
);
1065 set_bit(DMF_BLOCK_IO
, &md
->flags
);
1067 add_wait_queue(&md
->wait
, &wait
);
1068 up_write(&md
->io_lock
);
1072 dm_table_unplug_all(map
);
1075 * Then we wait for the already mapped ios to
1079 set_current_state(TASK_INTERRUPTIBLE
);
1081 if (!atomic_read(&md
->pending
) || signal_pending(current
))
1086 set_current_state(TASK_RUNNING
);
1088 down_write(&md
->io_lock
);
1089 remove_wait_queue(&md
->wait
, &wait
);
1091 /* were we interrupted ? */
1093 if (atomic_read(&md
->pending
)) {
1094 up_write(&md
->io_lock
);
1096 clear_bit(DMF_BLOCK_IO
, &md
->flags
);
1099 up_write(&md
->io_lock
);
1101 dm_table_postsuspend_targets(map
);
1103 set_bit(DMF_SUSPENDED
, &md
->flags
);
1109 up(&md
->suspend_lock
);
1113 int dm_resume(struct mapped_device
*md
)
1117 struct dm_table
*map
= NULL
;
1119 down(&md
->suspend_lock
);
1120 if (!dm_suspended(md
))
1123 map
= dm_get_table(md
);
1124 if (!map
|| !dm_table_get_size(map
))
1127 dm_table_resume_targets(map
);
1129 down_write(&md
->io_lock
);
1130 clear_bit(DMF_BLOCK_IO
, &md
->flags
);
1132 def
= bio_list_get(&md
->deferred
);
1133 __flush_deferred_io(md
, def
);
1134 up_write(&md
->io_lock
);
1138 clear_bit(DMF_SUSPENDED
, &md
->flags
);
1140 dm_table_unplug_all(map
);
1146 up(&md
->suspend_lock
);
1151 /*-----------------------------------------------------------------
1152 * Event notification.
1153 *---------------------------------------------------------------*/
1154 uint32_t dm_get_event_nr(struct mapped_device
*md
)
1156 return atomic_read(&md
->event_nr
);
1159 int dm_wait_event(struct mapped_device
*md
, int event_nr
)
1161 return wait_event_interruptible(md
->eventq
,
1162 (event_nr
!= atomic_read(&md
->event_nr
)));
1166 * The gendisk is only valid as long as you have a reference
1169 struct gendisk
*dm_disk(struct mapped_device
*md
)
1174 int dm_suspended(struct mapped_device
*md
)
1176 return test_bit(DMF_SUSPENDED
, &md
->flags
);
1179 static struct block_device_operations dm_blk_dops
= {
1180 .open
= dm_blk_open
,
1181 .release
= dm_blk_close
,
1182 .owner
= THIS_MODULE
1185 EXPORT_SYMBOL(dm_get_mapinfo
);
1190 module_init(dm_init
);
1191 module_exit(dm_exit
);
1193 module_param(major
, uint
, 0);
1194 MODULE_PARM_DESC(major
, "The major number of the device mapper");
1195 MODULE_DESCRIPTION(DM_NAME
" driver");
1196 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
1197 MODULE_LICENSE("GPL");