2 * drivers/mtd/nand/diskonchip.c
4 * (C) 2003 Red Hat, Inc.
5 * (C) 2004 Dan Brown <dan_brown@ieee.org>
6 * (C) 2004 Kalev Lember <kalev@smartlink.ee>
8 * Author: David Woodhouse <dwmw2@infradead.org>
9 * Additional Diskonchip 2000 and Millennium support by Dan Brown <dan_brown@ieee.org>
10 * Diskonchip Millennium Plus support by Kalev Lember <kalev@smartlink.ee>
12 * Error correction code lifted from the old docecc code
13 * Author: Fabrice Bellard (fabrice.bellard@netgem.com)
14 * Copyright (C) 2000 Netgem S.A.
15 * converted to the generic Reed-Solomon library by Thomas Gleixner <tglx@linutronix.de>
17 * Interface to generic NAND code for M-Systems DiskOnChip devices
19 * $Id: diskonchip.c,v 1.54 2005/04/07 14:22:55 dbrown Exp $
22 #include <linux/kernel.h>
23 #include <linux/init.h>
24 #include <linux/sched.h>
25 #include <linux/delay.h>
26 #include <linux/rslib.h>
27 #include <linux/moduleparam.h>
30 #include <linux/mtd/mtd.h>
31 #include <linux/mtd/nand.h>
32 #include <linux/mtd/doc2000.h>
33 #include <linux/mtd/compatmac.h>
34 #include <linux/mtd/partitions.h>
35 #include <linux/mtd/inftl.h>
37 /* Where to look for the devices? */
38 #ifndef CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS
39 #define CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS 0
42 static unsigned long __initdata doc_locations
[] = {
43 #if defined (__alpha__) || defined(__i386__) || defined(__x86_64__)
44 #ifdef CONFIG_MTD_NAND_DISKONCHIP_PROBE_HIGH
45 0xfffc8000, 0xfffca000, 0xfffcc000, 0xfffce000,
46 0xfffd0000, 0xfffd2000, 0xfffd4000, 0xfffd6000,
47 0xfffd8000, 0xfffda000, 0xfffdc000, 0xfffde000,
48 0xfffe0000, 0xfffe2000, 0xfffe4000, 0xfffe6000,
49 0xfffe8000, 0xfffea000, 0xfffec000, 0xfffee000,
50 #else /* CONFIG_MTD_DOCPROBE_HIGH */
51 0xc8000, 0xca000, 0xcc000, 0xce000,
52 0xd0000, 0xd2000, 0xd4000, 0xd6000,
53 0xd8000, 0xda000, 0xdc000, 0xde000,
54 0xe0000, 0xe2000, 0xe4000, 0xe6000,
55 0xe8000, 0xea000, 0xec000, 0xee000,
56 #endif /* CONFIG_MTD_DOCPROBE_HIGH */
57 #elif defined(__PPC__)
59 #elif defined(CONFIG_MOMENCO_OCELOT)
62 #elif defined(CONFIG_MOMENCO_OCELOT_G) || defined (CONFIG_MOMENCO_OCELOT_C)
65 #warning Unknown architecture for DiskOnChip. No default probe locations defined
69 static struct mtd_info
*doclist
= NULL
;
72 void __iomem
*virtadr
;
73 unsigned long physadr
;
76 int chips_per_floor
; /* The number of chips detected on each floor */
81 struct mtd_info
*nextdoc
;
84 /* This is the syndrome computed by the HW ecc generator upon reading an empty
85 page, one with all 0xff for data and stored ecc code. */
86 static u_char empty_read_syndrome
[6] = { 0x26, 0xff, 0x6d, 0x47, 0x73, 0x7a };
87 /* This is the ecc value computed by the HW ecc generator upon writing an empty
88 page, one with all 0xff for data. */
89 static u_char empty_write_ecc
[6] = { 0x4b, 0x00, 0xe2, 0x0e, 0x93, 0xf7 };
91 #define INFTL_BBT_RESERVED_BLOCKS 4
93 #define DoC_is_MillenniumPlus(doc) ((doc)->ChipID == DOC_ChipID_DocMilPlus16 || (doc)->ChipID == DOC_ChipID_DocMilPlus32)
94 #define DoC_is_Millennium(doc) ((doc)->ChipID == DOC_ChipID_DocMil)
95 #define DoC_is_2000(doc) ((doc)->ChipID == DOC_ChipID_Doc2k)
97 static void doc200x_hwcontrol(struct mtd_info
*mtd
, int cmd
);
98 static void doc200x_select_chip(struct mtd_info
*mtd
, int chip
);
101 module_param(debug
, int, 0);
103 static int try_dword
=1;
104 module_param(try_dword
, int, 0);
106 static int no_ecc_failures
=0;
107 module_param(no_ecc_failures
, int, 0);
109 static int no_autopart
=0;
110 module_param(no_autopart
, int, 0);
112 static int show_firmware_partition
=0;
113 module_param(show_firmware_partition
, int, 0);
115 #ifdef MTD_NAND_DISKONCHIP_BBTWRITE
116 static int inftl_bbt_write
=1;
118 static int inftl_bbt_write
=0;
120 module_param(inftl_bbt_write
, int, 0);
122 static unsigned long doc_config_location
= CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS
;
123 module_param(doc_config_location
, ulong
, 0);
124 MODULE_PARM_DESC(doc_config_location
, "Physical memory address at which to probe for DiskOnChip");
127 /* Sector size for HW ECC */
128 #define SECTOR_SIZE 512
129 /* The sector bytes are packed into NB_DATA 10 bit words */
130 #define NB_DATA (((SECTOR_SIZE + 1) * 8 + 6) / 10)
131 /* Number of roots */
133 /* First consective root */
135 /* Number of symbols */
138 /* the Reed Solomon control structure */
139 static struct rs_control
*rs_decoder
;
142 * The HW decoder in the DoC ASIC's provides us a error syndrome,
143 * which we must convert to a standard syndrom usable by the generic
144 * Reed-Solomon library code.
146 * Fabrice Bellard figured this out in the old docecc code. I added
147 * some comments, improved a minor bit and converted it to make use
148 * of the generic Reed-Solomon libary. tglx
150 static int doc_ecc_decode (struct rs_control
*rs
, uint8_t *data
, uint8_t *ecc
)
152 int i
, j
, nerr
, errpos
[8];
154 uint16_t ds
[4], s
[5], tmp
, errval
[8], syn
[4];
156 /* Convert the ecc bytes into words */
157 ds
[0] = ((ecc
[4] & 0xff) >> 0) | ((ecc
[5] & 0x03) << 8);
158 ds
[1] = ((ecc
[5] & 0xfc) >> 2) | ((ecc
[2] & 0x0f) << 6);
159 ds
[2] = ((ecc
[2] & 0xf0) >> 4) | ((ecc
[3] & 0x3f) << 4);
160 ds
[3] = ((ecc
[3] & 0xc0) >> 6) | ((ecc
[0] & 0xff) << 2);
163 /* Initialize the syndrom buffer */
164 for (i
= 0; i
< NROOTS
; i
++)
168 * s[i] = ds[3]x^3 + ds[2]x^2 + ds[1]x^1 + ds[0]
169 * where x = alpha^(FCR + i)
171 for(j
= 1; j
< NROOTS
; j
++) {
174 tmp
= rs
->index_of
[ds
[j
]];
175 for(i
= 0; i
< NROOTS
; i
++)
176 s
[i
] ^= rs
->alpha_to
[rs_modnn(rs
, tmp
+ (FCR
+ i
) * j
)];
179 /* Calc s[i] = s[i] / alpha^(v + i) */
180 for (i
= 0; i
< NROOTS
; i
++) {
182 syn
[i
] = rs_modnn(rs
, rs
->index_of
[s
[i
]] + (NN
- FCR
- i
));
184 /* Call the decoder library */
185 nerr
= decode_rs16(rs
, NULL
, NULL
, 1019, syn
, 0, errpos
, 0, errval
);
187 /* Incorrectable errors ? */
192 * Correct the errors. The bitpositions are a bit of magic,
193 * but they are given by the design of the de/encoder circuit
196 for(i
= 0;i
< nerr
; i
++) {
197 int index
, bitpos
, pos
= 1015 - errpos
[i
];
199 if (pos
>= NB_DATA
&& pos
< 1019)
202 /* extract bit position (MSB first) */
203 pos
= 10 * (NB_DATA
- 1 - pos
) - 6;
204 /* now correct the following 10 bits. At most two bytes
205 can be modified since pos is even */
206 index
= (pos
>> 3) ^ 1;
208 if ((index
>= 0 && index
< SECTOR_SIZE
) ||
209 index
== (SECTOR_SIZE
+ 1)) {
210 val
= (uint8_t) (errval
[i
] >> (2 + bitpos
));
212 if (index
< SECTOR_SIZE
)
215 index
= ((pos
>> 3) + 1) ^ 1;
216 bitpos
= (bitpos
+ 10) & 7;
219 if ((index
>= 0 && index
< SECTOR_SIZE
) ||
220 index
== (SECTOR_SIZE
+ 1)) {
221 val
= (uint8_t)(errval
[i
] << (8 - bitpos
));
223 if (index
< SECTOR_SIZE
)
228 /* If the parity is wrong, no rescue possible */
229 return parity
? -1 : nerr
;
232 static void DoC_Delay(struct doc_priv
*doc
, unsigned short cycles
)
237 for (i
= 0; i
< cycles
; i
++) {
238 if (DoC_is_Millennium(doc
))
239 dummy
= ReadDOC(doc
->virtadr
, NOP
);
240 else if (DoC_is_MillenniumPlus(doc
))
241 dummy
= ReadDOC(doc
->virtadr
, Mplus_NOP
);
243 dummy
= ReadDOC(doc
->virtadr
, DOCStatus
);
248 #define CDSN_CTRL_FR_B_MASK (CDSN_CTRL_FR_B0 | CDSN_CTRL_FR_B1)
250 /* DOC_WaitReady: Wait for RDY line to be asserted by the flash chip */
251 static int _DoC_WaitReady(struct doc_priv
*doc
)
253 void __iomem
*docptr
= doc
->virtadr
;
254 unsigned long timeo
= jiffies
+ (HZ
* 10);
256 if(debug
) printk("_DoC_WaitReady...\n");
257 /* Out-of-line routine to wait for chip response */
258 if (DoC_is_MillenniumPlus(doc
)) {
259 while ((ReadDOC(docptr
, Mplus_FlashControl
) & CDSN_CTRL_FR_B_MASK
) != CDSN_CTRL_FR_B_MASK
) {
260 if (time_after(jiffies
, timeo
)) {
261 printk("_DoC_WaitReady timed out.\n");
268 while (!(ReadDOC(docptr
, CDSNControl
) & CDSN_CTRL_FR_B
)) {
269 if (time_after(jiffies
, timeo
)) {
270 printk("_DoC_WaitReady timed out.\n");
281 static inline int DoC_WaitReady(struct doc_priv
*doc
)
283 void __iomem
*docptr
= doc
->virtadr
;
286 if (DoC_is_MillenniumPlus(doc
)) {
289 if ((ReadDOC(docptr
, Mplus_FlashControl
) & CDSN_CTRL_FR_B_MASK
) != CDSN_CTRL_FR_B_MASK
)
290 /* Call the out-of-line routine to wait */
291 ret
= _DoC_WaitReady(doc
);
295 if (!(ReadDOC(docptr
, CDSNControl
) & CDSN_CTRL_FR_B
))
296 /* Call the out-of-line routine to wait */
297 ret
= _DoC_WaitReady(doc
);
301 if(debug
) printk("DoC_WaitReady OK\n");
305 static void doc2000_write_byte(struct mtd_info
*mtd
, u_char datum
)
307 struct nand_chip
*this = mtd
->priv
;
308 struct doc_priv
*doc
= this->priv
;
309 void __iomem
*docptr
= doc
->virtadr
;
311 if(debug
)printk("write_byte %02x\n", datum
);
312 WriteDOC(datum
, docptr
, CDSNSlowIO
);
313 WriteDOC(datum
, docptr
, 2k_CDSN_IO
);
316 static u_char
doc2000_read_byte(struct mtd_info
*mtd
)
318 struct nand_chip
*this = mtd
->priv
;
319 struct doc_priv
*doc
= this->priv
;
320 void __iomem
*docptr
= doc
->virtadr
;
323 ReadDOC(docptr
, CDSNSlowIO
);
325 ret
= ReadDOC(docptr
, 2k_CDSN_IO
);
326 if (debug
) printk("read_byte returns %02x\n", ret
);
330 static void doc2000_writebuf(struct mtd_info
*mtd
,
331 const u_char
*buf
, int len
)
333 struct nand_chip
*this = mtd
->priv
;
334 struct doc_priv
*doc
= this->priv
;
335 void __iomem
*docptr
= doc
->virtadr
;
337 if (debug
)printk("writebuf of %d bytes: ", len
);
338 for (i
=0; i
< len
; i
++) {
339 WriteDOC_(buf
[i
], docptr
, DoC_2k_CDSN_IO
+ i
);
341 printk("%02x ", buf
[i
]);
343 if (debug
) printk("\n");
346 static void doc2000_readbuf(struct mtd_info
*mtd
,
347 u_char
*buf
, int len
)
349 struct nand_chip
*this = mtd
->priv
;
350 struct doc_priv
*doc
= this->priv
;
351 void __iomem
*docptr
= doc
->virtadr
;
354 if (debug
)printk("readbuf of %d bytes: ", len
);
356 for (i
=0; i
< len
; i
++) {
357 buf
[i
] = ReadDOC(docptr
, 2k_CDSN_IO
+ i
);
361 static void doc2000_readbuf_dword(struct mtd_info
*mtd
,
362 u_char
*buf
, int len
)
364 struct nand_chip
*this = mtd
->priv
;
365 struct doc_priv
*doc
= this->priv
;
366 void __iomem
*docptr
= doc
->virtadr
;
369 if (debug
) printk("readbuf_dword of %d bytes: ", len
);
371 if (unlikely((((unsigned long)buf
)|len
) & 3)) {
372 for (i
=0; i
< len
; i
++) {
373 *(uint8_t *)(&buf
[i
]) = ReadDOC(docptr
, 2k_CDSN_IO
+ i
);
376 for (i
=0; i
< len
; i
+=4) {
377 *(uint32_t*)(&buf
[i
]) = readl(docptr
+ DoC_2k_CDSN_IO
+ i
);
382 static int doc2000_verifybuf(struct mtd_info
*mtd
,
383 const u_char
*buf
, int len
)
385 struct nand_chip
*this = mtd
->priv
;
386 struct doc_priv
*doc
= this->priv
;
387 void __iomem
*docptr
= doc
->virtadr
;
390 for (i
=0; i
< len
; i
++)
391 if (buf
[i
] != ReadDOC(docptr
, 2k_CDSN_IO
))
396 static uint16_t __init
doc200x_ident_chip(struct mtd_info
*mtd
, int nr
)
398 struct nand_chip
*this = mtd
->priv
;
399 struct doc_priv
*doc
= this->priv
;
402 doc200x_select_chip(mtd
, nr
);
403 doc200x_hwcontrol(mtd
, NAND_CTL_SETCLE
);
404 this->write_byte(mtd
, NAND_CMD_READID
);
405 doc200x_hwcontrol(mtd
, NAND_CTL_CLRCLE
);
406 doc200x_hwcontrol(mtd
, NAND_CTL_SETALE
);
407 this->write_byte(mtd
, 0);
408 doc200x_hwcontrol(mtd
, NAND_CTL_CLRALE
);
410 /* We cant' use dev_ready here, but at least we wait for the
411 * command to complete
415 ret
= this->read_byte(mtd
) << 8;
416 ret
|= this->read_byte(mtd
);
418 if (doc
->ChipID
== DOC_ChipID_Doc2k
&& try_dword
&& !nr
) {
419 /* First chip probe. See if we get same results by 32-bit access */
424 void __iomem
*docptr
= doc
->virtadr
;
426 doc200x_hwcontrol(mtd
, NAND_CTL_SETCLE
);
427 doc2000_write_byte(mtd
, NAND_CMD_READID
);
428 doc200x_hwcontrol(mtd
, NAND_CTL_CLRCLE
);
429 doc200x_hwcontrol(mtd
, NAND_CTL_SETALE
);
430 doc2000_write_byte(mtd
, 0);
431 doc200x_hwcontrol(mtd
, NAND_CTL_CLRALE
);
435 ident
.dword
= readl(docptr
+ DoC_2k_CDSN_IO
);
436 if (((ident
.byte
[0] << 8) | ident
.byte
[1]) == ret
) {
437 printk(KERN_INFO
"DiskOnChip 2000 responds to DWORD access\n");
438 this->read_buf
= &doc2000_readbuf_dword
;
445 static void __init
doc2000_count_chips(struct mtd_info
*mtd
)
447 struct nand_chip
*this = mtd
->priv
;
448 struct doc_priv
*doc
= this->priv
;
452 /* Max 4 chips per floor on DiskOnChip 2000 */
453 doc
->chips_per_floor
= 4;
455 /* Find out what the first chip is */
456 mfrid
= doc200x_ident_chip(mtd
, 0);
458 /* Find how many chips in each floor. */
459 for (i
= 1; i
< 4; i
++) {
460 if (doc200x_ident_chip(mtd
, i
) != mfrid
)
463 doc
->chips_per_floor
= i
;
464 printk(KERN_DEBUG
"Detected %d chips per floor.\n", i
);
467 static int doc200x_wait(struct mtd_info
*mtd
, struct nand_chip
*this, int state
)
469 struct doc_priv
*doc
= this->priv
;
474 this->cmdfunc(mtd
, NAND_CMD_STATUS
, -1, -1);
476 status
= (int)this->read_byte(mtd
);
481 static void doc2001_write_byte(struct mtd_info
*mtd
, u_char datum
)
483 struct nand_chip
*this = mtd
->priv
;
484 struct doc_priv
*doc
= this->priv
;
485 void __iomem
*docptr
= doc
->virtadr
;
487 WriteDOC(datum
, docptr
, CDSNSlowIO
);
488 WriteDOC(datum
, docptr
, Mil_CDSN_IO
);
489 WriteDOC(datum
, docptr
, WritePipeTerm
);
492 static u_char
doc2001_read_byte(struct mtd_info
*mtd
)
494 struct nand_chip
*this = mtd
->priv
;
495 struct doc_priv
*doc
= this->priv
;
496 void __iomem
*docptr
= doc
->virtadr
;
498 //ReadDOC(docptr, CDSNSlowIO);
499 /* 11.4.5 -- delay twice to allow extended length cycle */
501 ReadDOC(docptr
, ReadPipeInit
);
502 //return ReadDOC(docptr, Mil_CDSN_IO);
503 return ReadDOC(docptr
, LastDataRead
);
506 static void doc2001_writebuf(struct mtd_info
*mtd
,
507 const u_char
*buf
, int len
)
509 struct nand_chip
*this = mtd
->priv
;
510 struct doc_priv
*doc
= this->priv
;
511 void __iomem
*docptr
= doc
->virtadr
;
514 for (i
=0; i
< len
; i
++)
515 WriteDOC_(buf
[i
], docptr
, DoC_Mil_CDSN_IO
+ i
);
516 /* Terminate write pipeline */
517 WriteDOC(0x00, docptr
, WritePipeTerm
);
520 static void doc2001_readbuf(struct mtd_info
*mtd
,
521 u_char
*buf
, int len
)
523 struct nand_chip
*this = mtd
->priv
;
524 struct doc_priv
*doc
= this->priv
;
525 void __iomem
*docptr
= doc
->virtadr
;
528 /* Start read pipeline */
529 ReadDOC(docptr
, ReadPipeInit
);
531 for (i
=0; i
< len
-1; i
++)
532 buf
[i
] = ReadDOC(docptr
, Mil_CDSN_IO
+ (i
& 0xff));
534 /* Terminate read pipeline */
535 buf
[i
] = ReadDOC(docptr
, LastDataRead
);
538 static int doc2001_verifybuf(struct mtd_info
*mtd
,
539 const u_char
*buf
, int len
)
541 struct nand_chip
*this = mtd
->priv
;
542 struct doc_priv
*doc
= this->priv
;
543 void __iomem
*docptr
= doc
->virtadr
;
546 /* Start read pipeline */
547 ReadDOC(docptr
, ReadPipeInit
);
549 for (i
=0; i
< len
-1; i
++)
550 if (buf
[i
] != ReadDOC(docptr
, Mil_CDSN_IO
)) {
551 ReadDOC(docptr
, LastDataRead
);
554 if (buf
[i
] != ReadDOC(docptr
, LastDataRead
))
559 static u_char
doc2001plus_read_byte(struct mtd_info
*mtd
)
561 struct nand_chip
*this = mtd
->priv
;
562 struct doc_priv
*doc
= this->priv
;
563 void __iomem
*docptr
= doc
->virtadr
;
566 ReadDOC(docptr
, Mplus_ReadPipeInit
);
567 ReadDOC(docptr
, Mplus_ReadPipeInit
);
568 ret
= ReadDOC(docptr
, Mplus_LastDataRead
);
569 if (debug
) printk("read_byte returns %02x\n", ret
);
573 static void doc2001plus_writebuf(struct mtd_info
*mtd
,
574 const u_char
*buf
, int len
)
576 struct nand_chip
*this = mtd
->priv
;
577 struct doc_priv
*doc
= this->priv
;
578 void __iomem
*docptr
= doc
->virtadr
;
581 if (debug
)printk("writebuf of %d bytes: ", len
);
582 for (i
=0; i
< len
; i
++) {
583 WriteDOC_(buf
[i
], docptr
, DoC_Mil_CDSN_IO
+ i
);
585 printk("%02x ", buf
[i
]);
587 if (debug
) printk("\n");
590 static void doc2001plus_readbuf(struct mtd_info
*mtd
,
591 u_char
*buf
, int len
)
593 struct nand_chip
*this = mtd
->priv
;
594 struct doc_priv
*doc
= this->priv
;
595 void __iomem
*docptr
= doc
->virtadr
;
598 if (debug
)printk("readbuf of %d bytes: ", len
);
600 /* Start read pipeline */
601 ReadDOC(docptr
, Mplus_ReadPipeInit
);
602 ReadDOC(docptr
, Mplus_ReadPipeInit
);
604 for (i
=0; i
< len
-2; i
++) {
605 buf
[i
] = ReadDOC(docptr
, Mil_CDSN_IO
);
607 printk("%02x ", buf
[i
]);
610 /* Terminate read pipeline */
611 buf
[len
-2] = ReadDOC(docptr
, Mplus_LastDataRead
);
613 printk("%02x ", buf
[len
-2]);
614 buf
[len
-1] = ReadDOC(docptr
, Mplus_LastDataRead
);
616 printk("%02x ", buf
[len
-1]);
617 if (debug
) printk("\n");
620 static int doc2001plus_verifybuf(struct mtd_info
*mtd
,
621 const u_char
*buf
, int len
)
623 struct nand_chip
*this = mtd
->priv
;
624 struct doc_priv
*doc
= this->priv
;
625 void __iomem
*docptr
= doc
->virtadr
;
628 if (debug
)printk("verifybuf of %d bytes: ", len
);
630 /* Start read pipeline */
631 ReadDOC(docptr
, Mplus_ReadPipeInit
);
632 ReadDOC(docptr
, Mplus_ReadPipeInit
);
634 for (i
=0; i
< len
-2; i
++)
635 if (buf
[i
] != ReadDOC(docptr
, Mil_CDSN_IO
)) {
636 ReadDOC(docptr
, Mplus_LastDataRead
);
637 ReadDOC(docptr
, Mplus_LastDataRead
);
640 if (buf
[len
-2] != ReadDOC(docptr
, Mplus_LastDataRead
))
642 if (buf
[len
-1] != ReadDOC(docptr
, Mplus_LastDataRead
))
647 static void doc2001plus_select_chip(struct mtd_info
*mtd
, int chip
)
649 struct nand_chip
*this = mtd
->priv
;
650 struct doc_priv
*doc
= this->priv
;
651 void __iomem
*docptr
= doc
->virtadr
;
654 if(debug
)printk("select chip (%d)\n", chip
);
657 /* Disable flash internally */
658 WriteDOC(0, docptr
, Mplus_FlashSelect
);
662 floor
= chip
/ doc
->chips_per_floor
;
663 chip
-= (floor
* doc
->chips_per_floor
);
665 /* Assert ChipEnable and deassert WriteProtect */
666 WriteDOC((DOC_FLASH_CE
), docptr
, Mplus_FlashSelect
);
667 this->cmdfunc(mtd
, NAND_CMD_RESET
, -1, -1);
670 doc
->curfloor
= floor
;
673 static void doc200x_select_chip(struct mtd_info
*mtd
, int chip
)
675 struct nand_chip
*this = mtd
->priv
;
676 struct doc_priv
*doc
= this->priv
;
677 void __iomem
*docptr
= doc
->virtadr
;
680 if(debug
)printk("select chip (%d)\n", chip
);
685 floor
= chip
/ doc
->chips_per_floor
;
686 chip
-= (floor
* doc
->chips_per_floor
);
688 /* 11.4.4 -- deassert CE before changing chip */
689 doc200x_hwcontrol(mtd
, NAND_CTL_CLRNCE
);
691 WriteDOC(floor
, docptr
, FloorSelect
);
692 WriteDOC(chip
, docptr
, CDSNDeviceSelect
);
694 doc200x_hwcontrol(mtd
, NAND_CTL_SETNCE
);
697 doc
->curfloor
= floor
;
700 static void doc200x_hwcontrol(struct mtd_info
*mtd
, int cmd
)
702 struct nand_chip
*this = mtd
->priv
;
703 struct doc_priv
*doc
= this->priv
;
704 void __iomem
*docptr
= doc
->virtadr
;
707 case NAND_CTL_SETNCE
:
708 doc
->CDSNControl
|= CDSN_CTRL_CE
;
710 case NAND_CTL_CLRNCE
:
711 doc
->CDSNControl
&= ~CDSN_CTRL_CE
;
713 case NAND_CTL_SETCLE
:
714 doc
->CDSNControl
|= CDSN_CTRL_CLE
;
716 case NAND_CTL_CLRCLE
:
717 doc
->CDSNControl
&= ~CDSN_CTRL_CLE
;
719 case NAND_CTL_SETALE
:
720 doc
->CDSNControl
|= CDSN_CTRL_ALE
;
722 case NAND_CTL_CLRALE
:
723 doc
->CDSNControl
&= ~CDSN_CTRL_ALE
;
726 doc
->CDSNControl
|= CDSN_CTRL_WP
;
729 doc
->CDSNControl
&= ~CDSN_CTRL_WP
;
732 if (debug
)printk("hwcontrol(%d): %02x\n", cmd
, doc
->CDSNControl
);
733 WriteDOC(doc
->CDSNControl
, docptr
, CDSNControl
);
734 /* 11.4.3 -- 4 NOPs after CSDNControl write */
738 static void doc2001plus_command (struct mtd_info
*mtd
, unsigned command
, int column
, int page_addr
)
740 struct nand_chip
*this = mtd
->priv
;
741 struct doc_priv
*doc
= this->priv
;
742 void __iomem
*docptr
= doc
->virtadr
;
745 * Must terminate write pipeline before sending any commands
748 if (command
== NAND_CMD_PAGEPROG
) {
749 WriteDOC(0x00, docptr
, Mplus_WritePipeTerm
);
750 WriteDOC(0x00, docptr
, Mplus_WritePipeTerm
);
754 * Write out the command to the device.
756 if (command
== NAND_CMD_SEQIN
) {
759 if (column
>= mtd
->oobblock
) {
761 column
-= mtd
->oobblock
;
762 readcmd
= NAND_CMD_READOOB
;
763 } else if (column
< 256) {
764 /* First 256 bytes --> READ0 */
765 readcmd
= NAND_CMD_READ0
;
768 readcmd
= NAND_CMD_READ1
;
770 WriteDOC(readcmd
, docptr
, Mplus_FlashCmd
);
772 WriteDOC(command
, docptr
, Mplus_FlashCmd
);
773 WriteDOC(0, docptr
, Mplus_WritePipeTerm
);
774 WriteDOC(0, docptr
, Mplus_WritePipeTerm
);
776 if (column
!= -1 || page_addr
!= -1) {
777 /* Serially input address */
779 /* Adjust columns for 16 bit buswidth */
780 if (this->options
& NAND_BUSWIDTH_16
)
782 WriteDOC(column
, docptr
, Mplus_FlashAddress
);
784 if (page_addr
!= -1) {
785 WriteDOC((unsigned char) (page_addr
& 0xff), docptr
, Mplus_FlashAddress
);
786 WriteDOC((unsigned char) ((page_addr
>> 8) & 0xff), docptr
, Mplus_FlashAddress
);
787 /* One more address cycle for higher density devices */
788 if (this->chipsize
& 0x0c000000) {
789 WriteDOC((unsigned char) ((page_addr
>> 16) & 0x0f), docptr
, Mplus_FlashAddress
);
790 printk("high density\n");
793 WriteDOC(0, docptr
, Mplus_WritePipeTerm
);
794 WriteDOC(0, docptr
, Mplus_WritePipeTerm
);
796 if (command
== NAND_CMD_READ0
|| command
== NAND_CMD_READ1
|| command
== NAND_CMD_READOOB
|| command
== NAND_CMD_READID
)
797 WriteDOC(0, docptr
, Mplus_FlashControl
);
801 * program and erase have their own busy handlers
802 * status and sequential in needs no delay
806 case NAND_CMD_PAGEPROG
:
807 case NAND_CMD_ERASE1
:
808 case NAND_CMD_ERASE2
:
810 case NAND_CMD_STATUS
:
816 udelay(this->chip_delay
);
817 WriteDOC(NAND_CMD_STATUS
, docptr
, Mplus_FlashCmd
);
818 WriteDOC(0, docptr
, Mplus_WritePipeTerm
);
819 WriteDOC(0, docptr
, Mplus_WritePipeTerm
);
820 while ( !(this->read_byte(mtd
) & 0x40));
823 /* This applies to read commands */
826 * If we don't have access to the busy pin, we apply the given
829 if (!this->dev_ready
) {
830 udelay (this->chip_delay
);
835 /* Apply this short delay always to ensure that we do wait tWB in
836 * any case on any machine. */
838 /* wait until command is processed */
839 while (!this->dev_ready(mtd
));
842 static int doc200x_dev_ready(struct mtd_info
*mtd
)
844 struct nand_chip
*this = mtd
->priv
;
845 struct doc_priv
*doc
= this->priv
;
846 void __iomem
*docptr
= doc
->virtadr
;
848 if (DoC_is_MillenniumPlus(doc
)) {
849 /* 11.4.2 -- must NOP four times before checking FR/B# */
851 if ((ReadDOC(docptr
, Mplus_FlashControl
) & CDSN_CTRL_FR_B_MASK
) != CDSN_CTRL_FR_B_MASK
) {
853 printk("not ready\n");
856 if (debug
)printk("was ready\n");
859 /* 11.4.2 -- must NOP four times before checking FR/B# */
861 if (!(ReadDOC(docptr
, CDSNControl
) & CDSN_CTRL_FR_B
)) {
863 printk("not ready\n");
866 /* 11.4.2 -- Must NOP twice if it's ready */
868 if (debug
)printk("was ready\n");
873 static int doc200x_block_bad(struct mtd_info
*mtd
, loff_t ofs
, int getchip
)
875 /* This is our last resort if we couldn't find or create a BBT. Just
876 pretend all blocks are good. */
880 static void doc200x_enable_hwecc(struct mtd_info
*mtd
, int mode
)
882 struct nand_chip
*this = mtd
->priv
;
883 struct doc_priv
*doc
= this->priv
;
884 void __iomem
*docptr
= doc
->virtadr
;
886 /* Prime the ECC engine */
889 WriteDOC(DOC_ECC_RESET
, docptr
, ECCConf
);
890 WriteDOC(DOC_ECC_EN
, docptr
, ECCConf
);
893 WriteDOC(DOC_ECC_RESET
, docptr
, ECCConf
);
894 WriteDOC(DOC_ECC_EN
| DOC_ECC_RW
, docptr
, ECCConf
);
899 static void doc2001plus_enable_hwecc(struct mtd_info
*mtd
, int mode
)
901 struct nand_chip
*this = mtd
->priv
;
902 struct doc_priv
*doc
= this->priv
;
903 void __iomem
*docptr
= doc
->virtadr
;
905 /* Prime the ECC engine */
908 WriteDOC(DOC_ECC_RESET
, docptr
, Mplus_ECCConf
);
909 WriteDOC(DOC_ECC_EN
, docptr
, Mplus_ECCConf
);
912 WriteDOC(DOC_ECC_RESET
, docptr
, Mplus_ECCConf
);
913 WriteDOC(DOC_ECC_EN
| DOC_ECC_RW
, docptr
, Mplus_ECCConf
);
918 /* This code is only called on write */
919 static int doc200x_calculate_ecc(struct mtd_info
*mtd
, const u_char
*dat
,
920 unsigned char *ecc_code
)
922 struct nand_chip
*this = mtd
->priv
;
923 struct doc_priv
*doc
= this->priv
;
924 void __iomem
*docptr
= doc
->virtadr
;
928 /* flush the pipeline */
929 if (DoC_is_2000(doc
)) {
930 WriteDOC(doc
->CDSNControl
& ~CDSN_CTRL_FLASH_IO
, docptr
, CDSNControl
);
931 WriteDOC(0, docptr
, 2k_CDSN_IO
);
932 WriteDOC(0, docptr
, 2k_CDSN_IO
);
933 WriteDOC(0, docptr
, 2k_CDSN_IO
);
934 WriteDOC(doc
->CDSNControl
, docptr
, CDSNControl
);
935 } else if (DoC_is_MillenniumPlus(doc
)) {
936 WriteDOC(0, docptr
, Mplus_NOP
);
937 WriteDOC(0, docptr
, Mplus_NOP
);
938 WriteDOC(0, docptr
, Mplus_NOP
);
940 WriteDOC(0, docptr
, NOP
);
941 WriteDOC(0, docptr
, NOP
);
942 WriteDOC(0, docptr
, NOP
);
945 for (i
= 0; i
< 6; i
++) {
946 if (DoC_is_MillenniumPlus(doc
))
947 ecc_code
[i
] = ReadDOC_(docptr
, DoC_Mplus_ECCSyndrome0
+ i
);
949 ecc_code
[i
] = ReadDOC_(docptr
, DoC_ECCSyndrome0
+ i
);
950 if (ecc_code
[i
] != empty_write_ecc
[i
])
953 if (DoC_is_MillenniumPlus(doc
))
954 WriteDOC(DOC_ECC_DIS
, docptr
, Mplus_ECCConf
);
956 WriteDOC(DOC_ECC_DIS
, docptr
, ECCConf
);
958 /* If emptymatch=1, we might have an all-0xff data buffer. Check. */
960 /* Note: this somewhat expensive test should not be triggered
961 often. It could be optimized away by examining the data in
962 the writebuf routine, and remembering the result. */
963 for (i
= 0; i
< 512; i
++) {
964 if (dat
[i
] == 0xff) continue;
969 /* If emptymatch still =1, we do have an all-0xff data buffer.
970 Return all-0xff ecc value instead of the computed one, so
971 it'll look just like a freshly-erased page. */
972 if (emptymatch
) memset(ecc_code
, 0xff, 6);
977 static int doc200x_correct_data(struct mtd_info
*mtd
, u_char
*dat
, u_char
*read_ecc
, u_char
*calc_ecc
)
980 struct nand_chip
*this = mtd
->priv
;
981 struct doc_priv
*doc
= this->priv
;
982 void __iomem
*docptr
= doc
->virtadr
;
983 volatile u_char dummy
;
986 /* flush the pipeline */
987 if (DoC_is_2000(doc
)) {
988 dummy
= ReadDOC(docptr
, 2k_ECCStatus
);
989 dummy
= ReadDOC(docptr
, 2k_ECCStatus
);
990 dummy
= ReadDOC(docptr
, 2k_ECCStatus
);
991 } else if (DoC_is_MillenniumPlus(doc
)) {
992 dummy
= ReadDOC(docptr
, Mplus_ECCConf
);
993 dummy
= ReadDOC(docptr
, Mplus_ECCConf
);
994 dummy
= ReadDOC(docptr
, Mplus_ECCConf
);
996 dummy
= ReadDOC(docptr
, ECCConf
);
997 dummy
= ReadDOC(docptr
, ECCConf
);
998 dummy
= ReadDOC(docptr
, ECCConf
);
1001 /* Error occured ? */
1003 for (i
= 0; i
< 6; i
++) {
1004 if (DoC_is_MillenniumPlus(doc
))
1005 calc_ecc
[i
] = ReadDOC_(docptr
, DoC_Mplus_ECCSyndrome0
+ i
);
1007 calc_ecc
[i
] = ReadDOC_(docptr
, DoC_ECCSyndrome0
+ i
);
1008 if (calc_ecc
[i
] != empty_read_syndrome
[i
])
1011 /* If emptymatch=1, the read syndrome is consistent with an
1012 all-0xff data and stored ecc block. Check the stored ecc. */
1014 for (i
= 0; i
< 6; i
++) {
1015 if (read_ecc
[i
] == 0xff) continue;
1020 /* If emptymatch still =1, check the data block. */
1022 /* Note: this somewhat expensive test should not be triggered
1023 often. It could be optimized away by examining the data in
1024 the readbuf routine, and remembering the result. */
1025 for (i
= 0; i
< 512; i
++) {
1026 if (dat
[i
] == 0xff) continue;
1031 /* If emptymatch still =1, this is almost certainly a freshly-
1032 erased block, in which case the ECC will not come out right.
1033 We'll suppress the error and tell the caller everything's
1034 OK. Because it is. */
1035 if (!emptymatch
) ret
= doc_ecc_decode (rs_decoder
, dat
, calc_ecc
);
1037 printk(KERN_ERR
"doc200x_correct_data corrected %d errors\n", ret
);
1039 if (DoC_is_MillenniumPlus(doc
))
1040 WriteDOC(DOC_ECC_DIS
, docptr
, Mplus_ECCConf
);
1042 WriteDOC(DOC_ECC_DIS
, docptr
, ECCConf
);
1043 if (no_ecc_failures
&& (ret
== -1)) {
1044 printk(KERN_ERR
"suppressing ECC failure\n");
1050 //u_char mydatabuf[528];
1052 /* The strange out-of-order .oobfree list below is a (possibly unneeded)
1053 * attempt to retain compatibility. It used to read:
1054 * .oobfree = { {8, 8} }
1055 * Since that leaves two bytes unusable, it was changed. But the following
1056 * scheme might affect existing jffs2 installs by moving the cleanmarker:
1057 * .oobfree = { {6, 10} }
1058 * jffs2 seems to handle the above gracefully, but the current scheme seems
1059 * safer. The only problem with it is that any code that parses oobfree must
1060 * be able to handle out-of-order segments.
1062 static struct nand_oobinfo doc200x_oobinfo
= {
1063 .useecc
= MTD_NANDECC_AUTOPLACE
,
1065 .eccpos
= {0, 1, 2, 3, 4, 5},
1066 .oobfree
= { {8, 8}, {6, 2} }
1069 /* Find the (I)NFTL Media Header, and optionally also the mirror media header.
1070 On sucessful return, buf will contain a copy of the media header for
1071 further processing. id is the string to scan for, and will presumably be
1072 either "ANAND" or "BNAND". If findmirror=1, also look for the mirror media
1073 header. The page #s of the found media headers are placed in mh0_page and
1074 mh1_page in the DOC private structure. */
1075 static int __init
find_media_headers(struct mtd_info
*mtd
, u_char
*buf
,
1076 const char *id
, int findmirror
)
1078 struct nand_chip
*this = mtd
->priv
;
1079 struct doc_priv
*doc
= this->priv
;
1084 for (offs
= 0; offs
< mtd
->size
; offs
+= mtd
->erasesize
) {
1085 ret
= mtd
->read(mtd
, offs
, mtd
->oobblock
, &retlen
, buf
);
1086 if (retlen
!= mtd
->oobblock
) continue;
1088 printk(KERN_WARNING
"ECC error scanning DOC at 0x%x\n",
1091 if (memcmp(buf
, id
, 6)) continue;
1092 printk(KERN_INFO
"Found DiskOnChip %s Media Header at 0x%x\n", id
, offs
);
1093 if (doc
->mh0_page
== -1) {
1094 doc
->mh0_page
= offs
>> this->page_shift
;
1095 if (!findmirror
) return 1;
1098 doc
->mh1_page
= offs
>> this->page_shift
;
1101 if (doc
->mh0_page
== -1) {
1102 printk(KERN_WARNING
"DiskOnChip %s Media Header not found.\n", id
);
1105 /* Only one mediaheader was found. We want buf to contain a
1106 mediaheader on return, so we'll have to re-read the one we found. */
1107 offs
= doc
->mh0_page
<< this->page_shift
;
1108 ret
= mtd
->read(mtd
, offs
, mtd
->oobblock
, &retlen
, buf
);
1109 if (retlen
!= mtd
->oobblock
) {
1110 /* Insanity. Give up. */
1111 printk(KERN_ERR
"Read DiskOnChip Media Header once, but can't reread it???\n");
1117 static inline int __init
nftl_partscan(struct mtd_info
*mtd
,
1118 struct mtd_partition
*parts
)
1120 struct nand_chip
*this = mtd
->priv
;
1121 struct doc_priv
*doc
= this->priv
;
1124 struct NFTLMediaHeader
*mh
;
1125 const unsigned psize
= 1 << this->page_shift
;
1127 unsigned blocks
, maxblocks
;
1128 int offs
, numheaders
;
1130 buf
= kmalloc(mtd
->oobblock
, GFP_KERNEL
);
1132 printk(KERN_ERR
"DiskOnChip mediaheader kmalloc failed!\n");
1135 if (!(numheaders
=find_media_headers(mtd
, buf
, "ANAND", 1))) goto out
;
1136 mh
= (struct NFTLMediaHeader
*) buf
;
1138 mh
->NumEraseUnits
= le16_to_cpu(mh
->NumEraseUnits
);
1139 mh
->FirstPhysicalEUN
= le16_to_cpu(mh
->FirstPhysicalEUN
);
1140 mh
->FormattedSize
= le32_to_cpu(mh
->FormattedSize
);
1142 printk(KERN_INFO
" DataOrgID = %s\n"
1143 " NumEraseUnits = %d\n"
1144 " FirstPhysicalEUN = %d\n"
1145 " FormattedSize = %d\n"
1146 " UnitSizeFactor = %d\n",
1147 mh
->DataOrgID
, mh
->NumEraseUnits
,
1148 mh
->FirstPhysicalEUN
, mh
->FormattedSize
,
1149 mh
->UnitSizeFactor
);
1151 blocks
= mtd
->size
>> this->phys_erase_shift
;
1152 maxblocks
= min(32768U, mtd
->erasesize
- psize
);
1154 if (mh
->UnitSizeFactor
== 0x00) {
1155 /* Auto-determine UnitSizeFactor. The constraints are:
1156 - There can be at most 32768 virtual blocks.
1157 - There can be at most (virtual block size - page size)
1158 virtual blocks (because MediaHeader+BBT must fit in 1).
1160 mh
->UnitSizeFactor
= 0xff;
1161 while (blocks
> maxblocks
) {
1163 maxblocks
= min(32768U, (maxblocks
<< 1) + psize
);
1164 mh
->UnitSizeFactor
--;
1166 printk(KERN_WARNING
"UnitSizeFactor=0x00 detected. Correct value is assumed to be 0x%02x.\n", mh
->UnitSizeFactor
);
1169 /* NOTE: The lines below modify internal variables of the NAND and MTD
1170 layers; variables with have already been configured by nand_scan.
1171 Unfortunately, we didn't know before this point what these values
1172 should be. Thus, this code is somewhat dependant on the exact
1173 implementation of the NAND layer. */
1174 if (mh
->UnitSizeFactor
!= 0xff) {
1175 this->bbt_erase_shift
+= (0xff - mh
->UnitSizeFactor
);
1176 mtd
->erasesize
<<= (0xff - mh
->UnitSizeFactor
);
1177 printk(KERN_INFO
"Setting virtual erase size to %d\n", mtd
->erasesize
);
1178 blocks
= mtd
->size
>> this->bbt_erase_shift
;
1179 maxblocks
= min(32768U, mtd
->erasesize
- psize
);
1182 if (blocks
> maxblocks
) {
1183 printk(KERN_ERR
"UnitSizeFactor of 0x%02x is inconsistent with device size. Aborting.\n", mh
->UnitSizeFactor
);
1187 /* Skip past the media headers. */
1188 offs
= max(doc
->mh0_page
, doc
->mh1_page
);
1189 offs
<<= this->page_shift
;
1190 offs
+= mtd
->erasesize
;
1192 if (show_firmware_partition
== 1) {
1193 parts
[0].name
= " DiskOnChip Firmware / Media Header partition";
1194 parts
[0].offset
= 0;
1195 parts
[0].size
= offs
;
1199 parts
[numparts
].name
= " DiskOnChip BDTL partition";
1200 parts
[numparts
].offset
= offs
;
1201 parts
[numparts
].size
= (mh
->NumEraseUnits
- numheaders
) << this->bbt_erase_shift
;
1203 offs
+= parts
[numparts
].size
;
1206 if (offs
< mtd
->size
) {
1207 parts
[numparts
].name
= " DiskOnChip Remainder partition";
1208 parts
[numparts
].offset
= offs
;
1209 parts
[numparts
].size
= mtd
->size
- offs
;
1219 /* This is a stripped-down copy of the code in inftlmount.c */
1220 static inline int __init
inftl_partscan(struct mtd_info
*mtd
,
1221 struct mtd_partition
*parts
)
1223 struct nand_chip
*this = mtd
->priv
;
1224 struct doc_priv
*doc
= this->priv
;
1227 struct INFTLMediaHeader
*mh
;
1228 struct INFTLPartition
*ip
;
1231 int vshift
, lastvunit
= 0;
1233 int end
= mtd
->size
;
1235 if (inftl_bbt_write
)
1236 end
-= (INFTL_BBT_RESERVED_BLOCKS
<< this->phys_erase_shift
);
1238 buf
= kmalloc(mtd
->oobblock
, GFP_KERNEL
);
1240 printk(KERN_ERR
"DiskOnChip mediaheader kmalloc failed!\n");
1244 if (!find_media_headers(mtd
, buf
, "BNAND", 0)) goto out
;
1245 doc
->mh1_page
= doc
->mh0_page
+ (4096 >> this->page_shift
);
1246 mh
= (struct INFTLMediaHeader
*) buf
;
1248 mh
->NoOfBootImageBlocks
= le32_to_cpu(mh
->NoOfBootImageBlocks
);
1249 mh
->NoOfBinaryPartitions
= le32_to_cpu(mh
->NoOfBinaryPartitions
);
1250 mh
->NoOfBDTLPartitions
= le32_to_cpu(mh
->NoOfBDTLPartitions
);
1251 mh
->BlockMultiplierBits
= le32_to_cpu(mh
->BlockMultiplierBits
);
1252 mh
->FormatFlags
= le32_to_cpu(mh
->FormatFlags
);
1253 mh
->PercentUsed
= le32_to_cpu(mh
->PercentUsed
);
1255 printk(KERN_INFO
" bootRecordID = %s\n"
1256 " NoOfBootImageBlocks = %d\n"
1257 " NoOfBinaryPartitions = %d\n"
1258 " NoOfBDTLPartitions = %d\n"
1259 " BlockMultiplerBits = %d\n"
1260 " FormatFlgs = %d\n"
1261 " OsakVersion = %d.%d.%d.%d\n"
1262 " PercentUsed = %d\n",
1263 mh
->bootRecordID
, mh
->NoOfBootImageBlocks
,
1264 mh
->NoOfBinaryPartitions
,
1265 mh
->NoOfBDTLPartitions
,
1266 mh
->BlockMultiplierBits
, mh
->FormatFlags
,
1267 ((unsigned char *) &mh
->OsakVersion
)[0] & 0xf,
1268 ((unsigned char *) &mh
->OsakVersion
)[1] & 0xf,
1269 ((unsigned char *) &mh
->OsakVersion
)[2] & 0xf,
1270 ((unsigned char *) &mh
->OsakVersion
)[3] & 0xf,
1273 vshift
= this->phys_erase_shift
+ mh
->BlockMultiplierBits
;
1275 blocks
= mtd
->size
>> vshift
;
1276 if (blocks
> 32768) {
1277 printk(KERN_ERR
"BlockMultiplierBits=%d is inconsistent with device size. Aborting.\n", mh
->BlockMultiplierBits
);
1281 blocks
= doc
->chips_per_floor
<< (this->chip_shift
- this->phys_erase_shift
);
1282 if (inftl_bbt_write
&& (blocks
> mtd
->erasesize
)) {
1283 printk(KERN_ERR
"Writeable BBTs spanning more than one erase block are not yet supported. FIX ME!\n");
1287 /* Scan the partitions */
1288 for (i
= 0; (i
< 4); i
++) {
1289 ip
= &(mh
->Partitions
[i
]);
1290 ip
->virtualUnits
= le32_to_cpu(ip
->virtualUnits
);
1291 ip
->firstUnit
= le32_to_cpu(ip
->firstUnit
);
1292 ip
->lastUnit
= le32_to_cpu(ip
->lastUnit
);
1293 ip
->flags
= le32_to_cpu(ip
->flags
);
1294 ip
->spareUnits
= le32_to_cpu(ip
->spareUnits
);
1295 ip
->Reserved0
= le32_to_cpu(ip
->Reserved0
);
1297 printk(KERN_INFO
" PARTITION[%d] ->\n"
1298 " virtualUnits = %d\n"
1302 " spareUnits = %d\n",
1303 i
, ip
->virtualUnits
, ip
->firstUnit
,
1304 ip
->lastUnit
, ip
->flags
,
1307 if ((show_firmware_partition
== 1) &&
1308 (i
== 0) && (ip
->firstUnit
> 0)) {
1309 parts
[0].name
= " DiskOnChip IPL / Media Header partition";
1310 parts
[0].offset
= 0;
1311 parts
[0].size
= mtd
->erasesize
* ip
->firstUnit
;
1315 if (ip
->flags
& INFTL_BINARY
)
1316 parts
[numparts
].name
= " DiskOnChip BDK partition";
1318 parts
[numparts
].name
= " DiskOnChip BDTL partition";
1319 parts
[numparts
].offset
= ip
->firstUnit
<< vshift
;
1320 parts
[numparts
].size
= (1 + ip
->lastUnit
- ip
->firstUnit
) << vshift
;
1322 if (ip
->lastUnit
> lastvunit
) lastvunit
= ip
->lastUnit
;
1323 if (ip
->flags
& INFTL_LAST
) break;
1326 if ((lastvunit
<< vshift
) < end
) {
1327 parts
[numparts
].name
= " DiskOnChip Remainder partition";
1328 parts
[numparts
].offset
= lastvunit
<< vshift
;
1329 parts
[numparts
].size
= end
- parts
[numparts
].offset
;
1338 static int __init
nftl_scan_bbt(struct mtd_info
*mtd
)
1341 struct nand_chip
*this = mtd
->priv
;
1342 struct doc_priv
*doc
= this->priv
;
1343 struct mtd_partition parts
[2];
1345 memset((char *) parts
, 0, sizeof(parts
));
1346 /* On NFTL, we have to find the media headers before we can read the
1347 BBTs, since they're stored in the media header eraseblocks. */
1348 numparts
= nftl_partscan(mtd
, parts
);
1349 if (!numparts
) return -EIO
;
1350 this->bbt_td
->options
= NAND_BBT_ABSPAGE
| NAND_BBT_8BIT
|
1351 NAND_BBT_SAVECONTENT
| NAND_BBT_WRITE
|
1353 this->bbt_td
->veroffs
= 7;
1354 this->bbt_td
->pages
[0] = doc
->mh0_page
+ 1;
1355 if (doc
->mh1_page
!= -1) {
1356 this->bbt_md
->options
= NAND_BBT_ABSPAGE
| NAND_BBT_8BIT
|
1357 NAND_BBT_SAVECONTENT
| NAND_BBT_WRITE
|
1359 this->bbt_md
->veroffs
= 7;
1360 this->bbt_md
->pages
[0] = doc
->mh1_page
+ 1;
1362 this->bbt_md
= NULL
;
1365 /* It's safe to set bd=NULL below because NAND_BBT_CREATE is not set.
1366 At least as nand_bbt.c is currently written. */
1367 if ((ret
= nand_scan_bbt(mtd
, NULL
)))
1369 add_mtd_device(mtd
);
1370 #ifdef CONFIG_MTD_PARTITIONS
1372 add_mtd_partitions(mtd
, parts
, numparts
);
1377 static int __init
inftl_scan_bbt(struct mtd_info
*mtd
)
1380 struct nand_chip
*this = mtd
->priv
;
1381 struct doc_priv
*doc
= this->priv
;
1382 struct mtd_partition parts
[5];
1384 if (this->numchips
> doc
->chips_per_floor
) {
1385 printk(KERN_ERR
"Multi-floor INFTL devices not yet supported.\n");
1389 if (DoC_is_MillenniumPlus(doc
)) {
1390 this->bbt_td
->options
= NAND_BBT_2BIT
| NAND_BBT_ABSPAGE
;
1391 if (inftl_bbt_write
)
1392 this->bbt_td
->options
|= NAND_BBT_WRITE
;
1393 this->bbt_td
->pages
[0] = 2;
1394 this->bbt_md
= NULL
;
1396 this->bbt_td
->options
= NAND_BBT_LASTBLOCK
| NAND_BBT_8BIT
|
1398 if (inftl_bbt_write
)
1399 this->bbt_td
->options
|= NAND_BBT_WRITE
;
1400 this->bbt_td
->offs
= 8;
1401 this->bbt_td
->len
= 8;
1402 this->bbt_td
->veroffs
= 7;
1403 this->bbt_td
->maxblocks
= INFTL_BBT_RESERVED_BLOCKS
;
1404 this->bbt_td
->reserved_block_code
= 0x01;
1405 this->bbt_td
->pattern
= "MSYS_BBT";
1407 this->bbt_md
->options
= NAND_BBT_LASTBLOCK
| NAND_BBT_8BIT
|
1409 if (inftl_bbt_write
)
1410 this->bbt_md
->options
|= NAND_BBT_WRITE
;
1411 this->bbt_md
->offs
= 8;
1412 this->bbt_md
->len
= 8;
1413 this->bbt_md
->veroffs
= 7;
1414 this->bbt_md
->maxblocks
= INFTL_BBT_RESERVED_BLOCKS
;
1415 this->bbt_md
->reserved_block_code
= 0x01;
1416 this->bbt_md
->pattern
= "TBB_SYSM";
1419 /* It's safe to set bd=NULL below because NAND_BBT_CREATE is not set.
1420 At least as nand_bbt.c is currently written. */
1421 if ((ret
= nand_scan_bbt(mtd
, NULL
)))
1423 memset((char *) parts
, 0, sizeof(parts
));
1424 numparts
= inftl_partscan(mtd
, parts
);
1425 /* At least for now, require the INFTL Media Header. We could probably
1426 do without it for non-INFTL use, since all it gives us is
1427 autopartitioning, but I want to give it more thought. */
1428 if (!numparts
) return -EIO
;
1429 add_mtd_device(mtd
);
1430 #ifdef CONFIG_MTD_PARTITIONS
1432 add_mtd_partitions(mtd
, parts
, numparts
);
1437 static inline int __init
doc2000_init(struct mtd_info
*mtd
)
1439 struct nand_chip
*this = mtd
->priv
;
1440 struct doc_priv
*doc
= this->priv
;
1442 this->write_byte
= doc2000_write_byte
;
1443 this->read_byte
= doc2000_read_byte
;
1444 this->write_buf
= doc2000_writebuf
;
1445 this->read_buf
= doc2000_readbuf
;
1446 this->verify_buf
= doc2000_verifybuf
;
1447 this->scan_bbt
= nftl_scan_bbt
;
1449 doc
->CDSNControl
= CDSN_CTRL_FLASH_IO
| CDSN_CTRL_ECC_IO
;
1450 doc2000_count_chips(mtd
);
1451 mtd
->name
= "DiskOnChip 2000 (NFTL Model)";
1452 return (4 * doc
->chips_per_floor
);
1455 static inline int __init
doc2001_init(struct mtd_info
*mtd
)
1457 struct nand_chip
*this = mtd
->priv
;
1458 struct doc_priv
*doc
= this->priv
;
1460 this->write_byte
= doc2001_write_byte
;
1461 this->read_byte
= doc2001_read_byte
;
1462 this->write_buf
= doc2001_writebuf
;
1463 this->read_buf
= doc2001_readbuf
;
1464 this->verify_buf
= doc2001_verifybuf
;
1466 ReadDOC(doc
->virtadr
, ChipID
);
1467 ReadDOC(doc
->virtadr
, ChipID
);
1468 ReadDOC(doc
->virtadr
, ChipID
);
1469 if (ReadDOC(doc
->virtadr
, ChipID
) != DOC_ChipID_DocMil
) {
1470 /* It's not a Millennium; it's one of the newer
1471 DiskOnChip 2000 units with a similar ASIC.
1472 Treat it like a Millennium, except that it
1473 can have multiple chips. */
1474 doc2000_count_chips(mtd
);
1475 mtd
->name
= "DiskOnChip 2000 (INFTL Model)";
1476 this->scan_bbt
= inftl_scan_bbt
;
1477 return (4 * doc
->chips_per_floor
);
1479 /* Bog-standard Millennium */
1480 doc
->chips_per_floor
= 1;
1481 mtd
->name
= "DiskOnChip Millennium";
1482 this->scan_bbt
= nftl_scan_bbt
;
1487 static inline int __init
doc2001plus_init(struct mtd_info
*mtd
)
1489 struct nand_chip
*this = mtd
->priv
;
1490 struct doc_priv
*doc
= this->priv
;
1492 this->write_byte
= NULL
;
1493 this->read_byte
= doc2001plus_read_byte
;
1494 this->write_buf
= doc2001plus_writebuf
;
1495 this->read_buf
= doc2001plus_readbuf
;
1496 this->verify_buf
= doc2001plus_verifybuf
;
1497 this->scan_bbt
= inftl_scan_bbt
;
1498 this->hwcontrol
= NULL
;
1499 this->select_chip
= doc2001plus_select_chip
;
1500 this->cmdfunc
= doc2001plus_command
;
1501 this->enable_hwecc
= doc2001plus_enable_hwecc
;
1503 doc
->chips_per_floor
= 1;
1504 mtd
->name
= "DiskOnChip Millennium Plus";
1509 static inline int __init
doc_probe(unsigned long physadr
)
1511 unsigned char ChipID
;
1512 struct mtd_info
*mtd
;
1513 struct nand_chip
*nand
;
1514 struct doc_priv
*doc
;
1515 void __iomem
*virtadr
;
1516 unsigned char save_control
;
1517 unsigned char tmp
, tmpb
, tmpc
;
1518 int reg
, len
, numchips
;
1521 virtadr
= ioremap(physadr
, DOC_IOREMAP_LEN
);
1523 printk(KERN_ERR
"Diskonchip ioremap failed: 0x%x bytes at 0x%lx\n", DOC_IOREMAP_LEN
, physadr
);
1527 /* It's not possible to cleanly detect the DiskOnChip - the
1528 * bootup procedure will put the device into reset mode, and
1529 * it's not possible to talk to it without actually writing
1530 * to the DOCControl register. So we store the current contents
1531 * of the DOCControl register's location, in case we later decide
1532 * that it's not a DiskOnChip, and want to put it back how we
1535 save_control
= ReadDOC(virtadr
, DOCControl
);
1537 /* Reset the DiskOnChip ASIC */
1538 WriteDOC(DOC_MODE_CLR_ERR
| DOC_MODE_MDWREN
| DOC_MODE_RESET
,
1539 virtadr
, DOCControl
);
1540 WriteDOC(DOC_MODE_CLR_ERR
| DOC_MODE_MDWREN
| DOC_MODE_RESET
,
1541 virtadr
, DOCControl
);
1543 /* Enable the DiskOnChip ASIC */
1544 WriteDOC(DOC_MODE_CLR_ERR
| DOC_MODE_MDWREN
| DOC_MODE_NORMAL
,
1545 virtadr
, DOCControl
);
1546 WriteDOC(DOC_MODE_CLR_ERR
| DOC_MODE_MDWREN
| DOC_MODE_NORMAL
,
1547 virtadr
, DOCControl
);
1549 ChipID
= ReadDOC(virtadr
, ChipID
);
1552 case DOC_ChipID_Doc2k
:
1553 reg
= DoC_2k_ECCStatus
;
1555 case DOC_ChipID_DocMil
:
1558 case DOC_ChipID_DocMilPlus16
:
1559 case DOC_ChipID_DocMilPlus32
:
1561 /* Possible Millennium Plus, need to do more checks */
1562 /* Possibly release from power down mode */
1563 for (tmp
= 0; (tmp
< 4); tmp
++)
1564 ReadDOC(virtadr
, Mplus_Power
);
1566 /* Reset the Millennium Plus ASIC */
1567 tmp
= DOC_MODE_RESET
| DOC_MODE_MDWREN
| DOC_MODE_RST_LAT
|
1569 WriteDOC(tmp
, virtadr
, Mplus_DOCControl
);
1570 WriteDOC(~tmp
, virtadr
, Mplus_CtrlConfirm
);
1573 /* Enable the Millennium Plus ASIC */
1574 tmp
= DOC_MODE_NORMAL
| DOC_MODE_MDWREN
| DOC_MODE_RST_LAT
|
1576 WriteDOC(tmp
, virtadr
, Mplus_DOCControl
);
1577 WriteDOC(~tmp
, virtadr
, Mplus_CtrlConfirm
);
1580 ChipID
= ReadDOC(virtadr
, ChipID
);
1583 case DOC_ChipID_DocMilPlus16
:
1584 reg
= DoC_Mplus_Toggle
;
1586 case DOC_ChipID_DocMilPlus32
:
1587 printk(KERN_ERR
"DiskOnChip Millennium Plus 32MB is not supported, ignoring.\n");
1598 /* Check the TOGGLE bit in the ECC register */
1599 tmp
= ReadDOC_(virtadr
, reg
) & DOC_TOGGLE_BIT
;
1600 tmpb
= ReadDOC_(virtadr
, reg
) & DOC_TOGGLE_BIT
;
1601 tmpc
= ReadDOC_(virtadr
, reg
) & DOC_TOGGLE_BIT
;
1602 if ((tmp
== tmpb
) || (tmp
!= tmpc
)) {
1603 printk(KERN_WARNING
"Possible DiskOnChip at 0x%lx failed TOGGLE test, dropping.\n", physadr
);
1608 for (mtd
= doclist
; mtd
; mtd
= doc
->nextdoc
) {
1609 unsigned char oldval
;
1610 unsigned char newval
;
1613 /* Use the alias resolution register to determine if this is
1614 in fact the same DOC aliased to a new address. If writes
1615 to one chip's alias resolution register change the value on
1616 the other chip, they're the same chip. */
1617 if (ChipID
== DOC_ChipID_DocMilPlus16
) {
1618 oldval
= ReadDOC(doc
->virtadr
, Mplus_AliasResolution
);
1619 newval
= ReadDOC(virtadr
, Mplus_AliasResolution
);
1621 oldval
= ReadDOC(doc
->virtadr
, AliasResolution
);
1622 newval
= ReadDOC(virtadr
, AliasResolution
);
1624 if (oldval
!= newval
)
1626 if (ChipID
== DOC_ChipID_DocMilPlus16
) {
1627 WriteDOC(~newval
, virtadr
, Mplus_AliasResolution
);
1628 oldval
= ReadDOC(doc
->virtadr
, Mplus_AliasResolution
);
1629 WriteDOC(newval
, virtadr
, Mplus_AliasResolution
); // restore it
1631 WriteDOC(~newval
, virtadr
, AliasResolution
);
1632 oldval
= ReadDOC(doc
->virtadr
, AliasResolution
);
1633 WriteDOC(newval
, virtadr
, AliasResolution
); // restore it
1636 if (oldval
== newval
) {
1637 printk(KERN_DEBUG
"Found alias of DOC at 0x%lx to 0x%lx\n", doc
->physadr
, physadr
);
1642 printk(KERN_NOTICE
"DiskOnChip found at 0x%lx\n", physadr
);
1644 len
= sizeof(struct mtd_info
) +
1645 sizeof(struct nand_chip
) +
1646 sizeof(struct doc_priv
) +
1647 (2 * sizeof(struct nand_bbt_descr
));
1648 mtd
= kmalloc(len
, GFP_KERNEL
);
1650 printk(KERN_ERR
"DiskOnChip kmalloc (%d bytes) failed!\n", len
);
1654 memset(mtd
, 0, len
);
1656 nand
= (struct nand_chip
*) (mtd
+ 1);
1657 doc
= (struct doc_priv
*) (nand
+ 1);
1658 nand
->bbt_td
= (struct nand_bbt_descr
*) (doc
+ 1);
1659 nand
->bbt_md
= nand
->bbt_td
+ 1;
1662 mtd
->owner
= THIS_MODULE
;
1665 nand
->select_chip
= doc200x_select_chip
;
1666 nand
->hwcontrol
= doc200x_hwcontrol
;
1667 nand
->dev_ready
= doc200x_dev_ready
;
1668 nand
->waitfunc
= doc200x_wait
;
1669 nand
->block_bad
= doc200x_block_bad
;
1670 nand
->enable_hwecc
= doc200x_enable_hwecc
;
1671 nand
->calculate_ecc
= doc200x_calculate_ecc
;
1672 nand
->correct_data
= doc200x_correct_data
;
1674 nand
->autooob
= &doc200x_oobinfo
;
1675 nand
->eccmode
= NAND_ECC_HW6_512
;
1676 nand
->options
= NAND_USE_FLASH_BBT
| NAND_HWECC_SYNDROME
;
1678 doc
->physadr
= physadr
;
1679 doc
->virtadr
= virtadr
;
1680 doc
->ChipID
= ChipID
;
1685 doc
->nextdoc
= doclist
;
1687 if (ChipID
== DOC_ChipID_Doc2k
)
1688 numchips
= doc2000_init(mtd
);
1689 else if (ChipID
== DOC_ChipID_DocMilPlus16
)
1690 numchips
= doc2001plus_init(mtd
);
1692 numchips
= doc2001_init(mtd
);
1694 if ((ret
= nand_scan(mtd
, numchips
))) {
1695 /* DBB note: i believe nand_release is necessary here, as
1696 buffers may have been allocated in nand_base. Check with
1698 /* nand_release will call del_mtd_device, but we haven't yet
1699 added it. This is handled without incident by
1700 del_mtd_device, as far as I can tell. */
1711 /* Put back the contents of the DOCControl register, in case it's not
1712 actually a DiskOnChip. */
1713 WriteDOC(save_control
, virtadr
, DOCControl
);
1719 static void release_nanddoc(void)
1721 struct mtd_info
*mtd
, *nextmtd
;
1722 struct nand_chip
*nand
;
1723 struct doc_priv
*doc
;
1725 for (mtd
= doclist
; mtd
; mtd
= nextmtd
) {
1729 nextmtd
= doc
->nextdoc
;
1731 iounmap(doc
->virtadr
);
1736 static int __init
init_nanddoc(void)
1740 /* We could create the decoder on demand, if memory is a concern.
1741 * This way we have it handy, if an error happens
1743 * Symbolsize is 10 (bits)
1744 * Primitve polynomial is x^10+x^3+1
1745 * first consecutive root is 510
1746 * primitve element to generate roots = 1
1747 * generator polinomial degree = 4
1749 rs_decoder
= init_rs(10, 0x409, FCR
, 1, NROOTS
);
1751 printk (KERN_ERR
"DiskOnChip: Could not create a RS decoder\n");
1755 if (doc_config_location
) {
1756 printk(KERN_INFO
"Using configured DiskOnChip probe address 0x%lx\n", doc_config_location
);
1757 ret
= doc_probe(doc_config_location
);
1761 for (i
=0; (doc_locations
[i
] != 0xffffffff); i
++) {
1762 doc_probe(doc_locations
[i
]);
1765 /* No banner message any more. Print a message if no DiskOnChip
1766 found, so the user knows we at least tried. */
1768 printk(KERN_INFO
"No valid DiskOnChip devices found\n");
1774 free_rs(rs_decoder
);
1778 static void __exit
cleanup_nanddoc(void)
1780 /* Cleanup the nand/DoC resources */
1783 /* Free the reed solomon resources */
1785 free_rs(rs_decoder
);
1789 module_init(init_nanddoc
);
1790 module_exit(cleanup_nanddoc
);
1792 MODULE_LICENSE("GPL");
1793 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
1794 MODULE_DESCRIPTION("M-Systems DiskOnChip 2000, Millennium and Millennium Plus device driver\n");