5 * This is the generic MTD driver for NAND flash devices. It should be
6 * capable of working with almost all NAND chips currently available.
7 * Basic support for AG-AND chips is provided.
9 * Additional technical information is available on
10 * http://www.linux-mtd.infradead.org/tech/nand.html
12 * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
13 * 2002 Thomas Gleixner (tglx@linutronix.de)
15 * 02-08-2004 tglx: support for strange chips, which cannot auto increment
16 * pages on read / read_oob
18 * 03-17-2004 tglx: Check ready before auto increment check. Simon Bayes
19 * pointed this out, as he marked an auto increment capable chip
20 * as NOAUTOINCR in the board driver.
21 * Make reads over block boundaries work too
23 * 04-14-2004 tglx: first working version for 2k page size chips
25 * 05-19-2004 tglx: Basic support for Renesas AG-AND chips
27 * 09-24-2004 tglx: add support for hardware controllers (e.g. ECC) shared
28 * among multiple independend devices. Suggestions and initial patch
29 * from Ben Dooks <ben-mtd@fluff.org>
31 * 12-05-2004 dmarlin: add workaround for Renesas AG-AND chips "disturb" issue.
32 * Basically, any block not rewritten may lose data when surrounding blocks
33 * are rewritten many times. JFFS2 ensures this doesn't happen for blocks
34 * it uses, but the Bad Block Table(s) may not be rewritten. To ensure they
35 * do not lose data, force them to be rewritten when some of the surrounding
36 * blocks are erased. Rather than tracking a specific nearby block (which
37 * could itself go bad), use a page address 'mask' to select several blocks
38 * in the same area, and rewrite the BBT when any of them are erased.
40 * 01-03-2005 dmarlin: added support for the device recovery command sequence for Renesas
41 * AG-AND chips. If there was a sudden loss of power during an erase operation,
42 * a "device recovery" operation must be performed when power is restored
43 * to ensure correct operation.
45 * 01-20-2005 dmarlin: added support for optional hardware specific callback routine to
46 * perform extra error status checks on erase and write failures. This required
47 * adding a wrapper function for nand_read_ecc.
50 * David Woodhouse for adding multichip support
52 * Aleph One Ltd. and Toby Churchill Ltd. for supporting the
53 * rework for 2K page size chips
56 * Enable cached programming for 2k page size chips
57 * Check, if mtd->ecctype should be set to MTD_ECC_HW
58 * if we have HW ecc support.
59 * The AG-AND chips have nice features for speed improvement,
60 * which are not supported yet. Read / program 4 pages in one go.
62 * $Id: nand_base.c,v 1.147 2005/07/15 07:18:06 gleixner Exp $
64 * This program is free software; you can redistribute it and/or modify
65 * it under the terms of the GNU General Public License version 2 as
66 * published by the Free Software Foundation.
70 #include <linux/delay.h>
71 #include <linux/errno.h>
72 #include <linux/sched.h>
73 #include <linux/slab.h>
74 #include <linux/types.h>
75 #include <linux/mtd/mtd.h>
76 #include <linux/mtd/nand.h>
77 #include <linux/mtd/nand_ecc.h>
78 #include <linux/mtd/compatmac.h>
79 #include <linux/interrupt.h>
80 #include <linux/bitops.h>
83 #ifdef CONFIG_MTD_PARTITIONS
84 #include <linux/mtd/partitions.h>
87 /* Define default oob placement schemes for large and small page devices */
88 static struct nand_oobinfo nand_oob_8
= {
89 .useecc
= MTD_NANDECC_AUTOPLACE
,
92 .oobfree
= { {3, 2}, {6, 2} }
95 static struct nand_oobinfo nand_oob_16
= {
96 .useecc
= MTD_NANDECC_AUTOPLACE
,
98 .eccpos
= {0, 1, 2, 3, 6, 7},
102 static struct nand_oobinfo nand_oob_64
= {
103 .useecc
= MTD_NANDECC_AUTOPLACE
,
106 40, 41, 42, 43, 44, 45, 46, 47,
107 48, 49, 50, 51, 52, 53, 54, 55,
108 56, 57, 58, 59, 60, 61, 62, 63},
109 .oobfree
= { {2, 38} }
112 /* This is used for padding purposes in nand_write_oob */
113 static u_char ffchars
[] = {
114 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
115 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
116 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
117 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
118 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
119 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
120 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
121 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
125 * NAND low-level MTD interface functions
127 static void nand_write_buf(struct mtd_info
*mtd
, const u_char
*buf
, int len
);
128 static void nand_read_buf(struct mtd_info
*mtd
, u_char
*buf
, int len
);
129 static int nand_verify_buf(struct mtd_info
*mtd
, const u_char
*buf
, int len
);
131 static int nand_read (struct mtd_info
*mtd
, loff_t from
, size_t len
, size_t * retlen
, u_char
* buf
);
132 static int nand_read_ecc (struct mtd_info
*mtd
, loff_t from
, size_t len
,
133 size_t * retlen
, u_char
* buf
, u_char
* eccbuf
, struct nand_oobinfo
*oobsel
);
134 static int nand_read_oob (struct mtd_info
*mtd
, loff_t from
, size_t len
, size_t * retlen
, u_char
* buf
);
135 static int nand_write (struct mtd_info
*mtd
, loff_t to
, size_t len
, size_t * retlen
, const u_char
* buf
);
136 static int nand_write_ecc (struct mtd_info
*mtd
, loff_t to
, size_t len
,
137 size_t * retlen
, const u_char
* buf
, u_char
* eccbuf
, struct nand_oobinfo
*oobsel
);
138 static int nand_write_oob (struct mtd_info
*mtd
, loff_t to
, size_t len
, size_t * retlen
, const u_char
*buf
);
139 static int nand_writev (struct mtd_info
*mtd
, const struct kvec
*vecs
,
140 unsigned long count
, loff_t to
, size_t * retlen
);
141 static int nand_writev_ecc (struct mtd_info
*mtd
, const struct kvec
*vecs
,
142 unsigned long count
, loff_t to
, size_t * retlen
, u_char
*eccbuf
, struct nand_oobinfo
*oobsel
);
143 static int nand_erase (struct mtd_info
*mtd
, struct erase_info
*instr
);
144 static void nand_sync (struct mtd_info
*mtd
);
146 /* Some internal functions */
147 static int nand_write_page (struct mtd_info
*mtd
, struct nand_chip
*this, int page
, u_char
*oob_buf
,
148 struct nand_oobinfo
*oobsel
, int mode
);
149 #ifdef CONFIG_MTD_NAND_VERIFY_WRITE
150 static int nand_verify_pages (struct mtd_info
*mtd
, struct nand_chip
*this, int page
, int numpages
,
151 u_char
*oob_buf
, struct nand_oobinfo
*oobsel
, int chipnr
, int oobmode
);
153 #define nand_verify_pages(...) (0)
156 static void nand_get_device (struct nand_chip
*this, struct mtd_info
*mtd
, int new_state
);
159 * nand_release_device - [GENERIC] release chip
160 * @mtd: MTD device structure
162 * Deselect, release chip lock and wake up anyone waiting on the device
164 static void nand_release_device (struct mtd_info
*mtd
)
166 struct nand_chip
*this = mtd
->priv
;
168 /* De-select the NAND device */
169 this->select_chip(mtd
, -1);
171 if (this->controller
) {
172 /* Release the controller and the chip */
173 spin_lock(&this->controller
->lock
);
174 this->controller
->active
= NULL
;
175 this->state
= FL_READY
;
176 wake_up(&this->controller
->wq
);
177 spin_unlock(&this->controller
->lock
);
179 /* Release the chip */
180 spin_lock(&this->chip_lock
);
181 this->state
= FL_READY
;
183 spin_unlock(&this->chip_lock
);
188 * nand_read_byte - [DEFAULT] read one byte from the chip
189 * @mtd: MTD device structure
191 * Default read function for 8bit buswith
193 static u_char
nand_read_byte(struct mtd_info
*mtd
)
195 struct nand_chip
*this = mtd
->priv
;
196 return readb(this->IO_ADDR_R
);
200 * nand_write_byte - [DEFAULT] write one byte to the chip
201 * @mtd: MTD device structure
202 * @byte: pointer to data byte to write
204 * Default write function for 8it buswith
206 static void nand_write_byte(struct mtd_info
*mtd
, u_char byte
)
208 struct nand_chip
*this = mtd
->priv
;
209 writeb(byte
, this->IO_ADDR_W
);
213 * nand_read_byte16 - [DEFAULT] read one byte endianess aware from the chip
214 * @mtd: MTD device structure
216 * Default read function for 16bit buswith with
217 * endianess conversion
219 static u_char
nand_read_byte16(struct mtd_info
*mtd
)
221 struct nand_chip
*this = mtd
->priv
;
222 return (u_char
) cpu_to_le16(readw(this->IO_ADDR_R
));
226 * nand_write_byte16 - [DEFAULT] write one byte endianess aware to the chip
227 * @mtd: MTD device structure
228 * @byte: pointer to data byte to write
230 * Default write function for 16bit buswith with
231 * endianess conversion
233 static void nand_write_byte16(struct mtd_info
*mtd
, u_char byte
)
235 struct nand_chip
*this = mtd
->priv
;
236 writew(le16_to_cpu((u16
) byte
), this->IO_ADDR_W
);
240 * nand_read_word - [DEFAULT] read one word from the chip
241 * @mtd: MTD device structure
243 * Default read function for 16bit buswith without
244 * endianess conversion
246 static u16
nand_read_word(struct mtd_info
*mtd
)
248 struct nand_chip
*this = mtd
->priv
;
249 return readw(this->IO_ADDR_R
);
253 * nand_write_word - [DEFAULT] write one word to the chip
254 * @mtd: MTD device structure
255 * @word: data word to write
257 * Default write function for 16bit buswith without
258 * endianess conversion
260 static void nand_write_word(struct mtd_info
*mtd
, u16 word
)
262 struct nand_chip
*this = mtd
->priv
;
263 writew(word
, this->IO_ADDR_W
);
267 * nand_select_chip - [DEFAULT] control CE line
268 * @mtd: MTD device structure
269 * @chip: chipnumber to select, -1 for deselect
271 * Default select function for 1 chip devices.
273 static void nand_select_chip(struct mtd_info
*mtd
, int chip
)
275 struct nand_chip
*this = mtd
->priv
;
278 this->hwcontrol(mtd
, NAND_CTL_CLRNCE
);
281 this->hwcontrol(mtd
, NAND_CTL_SETNCE
);
290 * nand_write_buf - [DEFAULT] write buffer to chip
291 * @mtd: MTD device structure
293 * @len: number of bytes to write
295 * Default write function for 8bit buswith
297 static void nand_write_buf(struct mtd_info
*mtd
, const u_char
*buf
, int len
)
300 struct nand_chip
*this = mtd
->priv
;
302 for (i
=0; i
<len
; i
++)
303 writeb(buf
[i
], this->IO_ADDR_W
);
307 * nand_read_buf - [DEFAULT] read chip data into buffer
308 * @mtd: MTD device structure
309 * @buf: buffer to store date
310 * @len: number of bytes to read
312 * Default read function for 8bit buswith
314 static void nand_read_buf(struct mtd_info
*mtd
, u_char
*buf
, int len
)
317 struct nand_chip
*this = mtd
->priv
;
319 for (i
=0; i
<len
; i
++)
320 buf
[i
] = readb(this->IO_ADDR_R
);
324 * nand_verify_buf - [DEFAULT] Verify chip data against buffer
325 * @mtd: MTD device structure
326 * @buf: buffer containing the data to compare
327 * @len: number of bytes to compare
329 * Default verify function for 8bit buswith
331 static int nand_verify_buf(struct mtd_info
*mtd
, const u_char
*buf
, int len
)
334 struct nand_chip
*this = mtd
->priv
;
336 for (i
=0; i
<len
; i
++)
337 if (buf
[i
] != readb(this->IO_ADDR_R
))
344 * nand_write_buf16 - [DEFAULT] write buffer to chip
345 * @mtd: MTD device structure
347 * @len: number of bytes to write
349 * Default write function for 16bit buswith
351 static void nand_write_buf16(struct mtd_info
*mtd
, const u_char
*buf
, int len
)
354 struct nand_chip
*this = mtd
->priv
;
355 u16
*p
= (u16
*) buf
;
358 for (i
=0; i
<len
; i
++)
359 writew(p
[i
], this->IO_ADDR_W
);
364 * nand_read_buf16 - [DEFAULT] read chip data into buffer
365 * @mtd: MTD device structure
366 * @buf: buffer to store date
367 * @len: number of bytes to read
369 * Default read function for 16bit buswith
371 static void nand_read_buf16(struct mtd_info
*mtd
, u_char
*buf
, int len
)
374 struct nand_chip
*this = mtd
->priv
;
375 u16
*p
= (u16
*) buf
;
378 for (i
=0; i
<len
; i
++)
379 p
[i
] = readw(this->IO_ADDR_R
);
383 * nand_verify_buf16 - [DEFAULT] Verify chip data against buffer
384 * @mtd: MTD device structure
385 * @buf: buffer containing the data to compare
386 * @len: number of bytes to compare
388 * Default verify function for 16bit buswith
390 static int nand_verify_buf16(struct mtd_info
*mtd
, const u_char
*buf
, int len
)
393 struct nand_chip
*this = mtd
->priv
;
394 u16
*p
= (u16
*) buf
;
397 for (i
=0; i
<len
; i
++)
398 if (p
[i
] != readw(this->IO_ADDR_R
))
405 * nand_block_bad - [DEFAULT] Read bad block marker from the chip
406 * @mtd: MTD device structure
407 * @ofs: offset from device start
408 * @getchip: 0, if the chip is already selected
410 * Check, if the block is bad.
412 static int nand_block_bad(struct mtd_info
*mtd
, loff_t ofs
, int getchip
)
414 int page
, chipnr
, res
= 0;
415 struct nand_chip
*this = mtd
->priv
;
419 page
= (int)(ofs
>> this->page_shift
);
420 chipnr
= (int)(ofs
>> this->chip_shift
);
422 /* Grab the lock and see if the device is available */
423 nand_get_device (this, mtd
, FL_READING
);
425 /* Select the NAND device */
426 this->select_chip(mtd
, chipnr
);
430 if (this->options
& NAND_BUSWIDTH_16
) {
431 this->cmdfunc (mtd
, NAND_CMD_READOOB
, this->badblockpos
& 0xFE, page
& this->pagemask
);
432 bad
= cpu_to_le16(this->read_word(mtd
));
433 if (this->badblockpos
& 0x1)
435 if ((bad
& 0xFF) != 0xff)
438 this->cmdfunc (mtd
, NAND_CMD_READOOB
, this->badblockpos
, page
& this->pagemask
);
439 if (this->read_byte(mtd
) != 0xff)
444 /* Deselect and wake up anyone waiting on the device */
445 nand_release_device(mtd
);
452 * nand_default_block_markbad - [DEFAULT] mark a block bad
453 * @mtd: MTD device structure
454 * @ofs: offset from device start
456 * This is the default implementation, which can be overridden by
457 * a hardware specific driver.
459 static int nand_default_block_markbad(struct mtd_info
*mtd
, loff_t ofs
)
461 struct nand_chip
*this = mtd
->priv
;
462 u_char buf
[2] = {0, 0};
466 /* Get block number */
467 block
= ((int) ofs
) >> this->bbt_erase_shift
;
469 this->bbt
[block
>> 2] |= 0x01 << ((block
& 0x03) << 1);
471 /* Do we have a flash based bad block table ? */
472 if (this->options
& NAND_USE_FLASH_BBT
)
473 return nand_update_bbt (mtd
, ofs
);
475 /* We write two bytes, so we dont have to mess with 16 bit access */
476 ofs
+= mtd
->oobsize
+ (this->badblockpos
& ~0x01);
477 return nand_write_oob (mtd
, ofs
, 2, &retlen
, buf
);
481 * nand_check_wp - [GENERIC] check if the chip is write protected
482 * @mtd: MTD device structure
483 * Check, if the device is write protected
485 * The function expects, that the device is already selected
487 static int nand_check_wp (struct mtd_info
*mtd
)
489 struct nand_chip
*this = mtd
->priv
;
490 /* Check the WP bit */
491 this->cmdfunc (mtd
, NAND_CMD_STATUS
, -1, -1);
492 return (this->read_byte(mtd
) & NAND_STATUS_WP
) ? 0 : 1;
496 * nand_block_checkbad - [GENERIC] Check if a block is marked bad
497 * @mtd: MTD device structure
498 * @ofs: offset from device start
499 * @getchip: 0, if the chip is already selected
500 * @allowbbt: 1, if its allowed to access the bbt area
502 * Check, if the block is bad. Either by reading the bad block table or
503 * calling of the scan function.
505 static int nand_block_checkbad (struct mtd_info
*mtd
, loff_t ofs
, int getchip
, int allowbbt
)
507 struct nand_chip
*this = mtd
->priv
;
510 return this->block_bad(mtd
, ofs
, getchip
);
512 /* Return info from the table */
513 return nand_isbad_bbt (mtd
, ofs
, allowbbt
);
517 * Wait for the ready pin, after a command
518 * The timeout is catched later.
520 static void nand_wait_ready(struct mtd_info
*mtd
)
522 struct nand_chip
*this = mtd
->priv
;
523 unsigned long timeo
= jiffies
+ 2;
525 /* wait until command is processed or timeout occures */
527 if (this->dev_ready(mtd
))
529 touch_softlockup_watchdog();
530 } while (time_before(jiffies
, timeo
));
534 * nand_command - [DEFAULT] Send command to NAND device
535 * @mtd: MTD device structure
536 * @command: the command to be sent
537 * @column: the column address for this command, -1 if none
538 * @page_addr: the page address for this command, -1 if none
540 * Send command to NAND device. This function is used for small page
541 * devices (256/512 Bytes per page)
543 static void nand_command (struct mtd_info
*mtd
, unsigned command
, int column
, int page_addr
)
545 register struct nand_chip
*this = mtd
->priv
;
547 /* Begin command latch cycle */
548 this->hwcontrol(mtd
, NAND_CTL_SETCLE
);
550 * Write out the command to the device.
552 if (command
== NAND_CMD_SEQIN
) {
555 if (column
>= mtd
->oobblock
) {
557 column
-= mtd
->oobblock
;
558 readcmd
= NAND_CMD_READOOB
;
559 } else if (column
< 256) {
560 /* First 256 bytes --> READ0 */
561 readcmd
= NAND_CMD_READ0
;
564 readcmd
= NAND_CMD_READ1
;
566 this->write_byte(mtd
, readcmd
);
568 this->write_byte(mtd
, command
);
570 /* Set ALE and clear CLE to start address cycle */
571 this->hwcontrol(mtd
, NAND_CTL_CLRCLE
);
573 if (column
!= -1 || page_addr
!= -1) {
574 this->hwcontrol(mtd
, NAND_CTL_SETALE
);
576 /* Serially input address */
578 /* Adjust columns for 16 bit buswidth */
579 if (this->options
& NAND_BUSWIDTH_16
)
581 this->write_byte(mtd
, column
);
583 if (page_addr
!= -1) {
584 this->write_byte(mtd
, (unsigned char) (page_addr
& 0xff));
585 this->write_byte(mtd
, (unsigned char) ((page_addr
>> 8) & 0xff));
586 /* One more address cycle for devices > 32MiB */
587 if (this->chipsize
> (32 << 20))
588 this->write_byte(mtd
, (unsigned char) ((page_addr
>> 16) & 0x0f));
590 /* Latch in address */
591 this->hwcontrol(mtd
, NAND_CTL_CLRALE
);
595 * program and erase have their own busy handlers
596 * status and sequential in needs no delay
600 case NAND_CMD_PAGEPROG
:
601 case NAND_CMD_ERASE1
:
602 case NAND_CMD_ERASE2
:
604 case NAND_CMD_STATUS
:
610 udelay(this->chip_delay
);
611 this->hwcontrol(mtd
, NAND_CTL_SETCLE
);
612 this->write_byte(mtd
, NAND_CMD_STATUS
);
613 this->hwcontrol(mtd
, NAND_CTL_CLRCLE
);
614 while ( !(this->read_byte(mtd
) & NAND_STATUS_READY
));
617 /* This applies to read commands */
620 * If we don't have access to the busy pin, we apply the given
623 if (!this->dev_ready
) {
624 udelay (this->chip_delay
);
628 /* Apply this short delay always to ensure that we do wait tWB in
629 * any case on any machine. */
632 nand_wait_ready(mtd
);
636 * nand_command_lp - [DEFAULT] Send command to NAND large page device
637 * @mtd: MTD device structure
638 * @command: the command to be sent
639 * @column: the column address for this command, -1 if none
640 * @page_addr: the page address for this command, -1 if none
642 * Send command to NAND device. This is the version for the new large page devices
643 * We dont have the seperate regions as we have in the small page devices.
644 * We must emulate NAND_CMD_READOOB to keep the code compatible.
647 static void nand_command_lp (struct mtd_info
*mtd
, unsigned command
, int column
, int page_addr
)
649 register struct nand_chip
*this = mtd
->priv
;
651 /* Emulate NAND_CMD_READOOB */
652 if (command
== NAND_CMD_READOOB
) {
653 column
+= mtd
->oobblock
;
654 command
= NAND_CMD_READ0
;
658 /* Begin command latch cycle */
659 this->hwcontrol(mtd
, NAND_CTL_SETCLE
);
660 /* Write out the command to the device. */
661 this->write_byte(mtd
, (command
& 0xff));
662 /* End command latch cycle */
663 this->hwcontrol(mtd
, NAND_CTL_CLRCLE
);
665 if (column
!= -1 || page_addr
!= -1) {
666 this->hwcontrol(mtd
, NAND_CTL_SETALE
);
668 /* Serially input address */
670 /* Adjust columns for 16 bit buswidth */
671 if (this->options
& NAND_BUSWIDTH_16
)
673 this->write_byte(mtd
, column
& 0xff);
674 this->write_byte(mtd
, column
>> 8);
676 if (page_addr
!= -1) {
677 this->write_byte(mtd
, (unsigned char) (page_addr
& 0xff));
678 this->write_byte(mtd
, (unsigned char) ((page_addr
>> 8) & 0xff));
679 /* One more address cycle for devices > 128MiB */
680 if (this->chipsize
> (128 << 20))
681 this->write_byte(mtd
, (unsigned char) ((page_addr
>> 16) & 0xff));
683 /* Latch in address */
684 this->hwcontrol(mtd
, NAND_CTL_CLRALE
);
688 * program and erase have their own busy handlers
689 * status, sequential in, and deplete1 need no delay
693 case NAND_CMD_CACHEDPROG
:
694 case NAND_CMD_PAGEPROG
:
695 case NAND_CMD_ERASE1
:
696 case NAND_CMD_ERASE2
:
698 case NAND_CMD_STATUS
:
699 case NAND_CMD_DEPLETE1
:
703 * read error status commands require only a short delay
705 case NAND_CMD_STATUS_ERROR
:
706 case NAND_CMD_STATUS_ERROR0
:
707 case NAND_CMD_STATUS_ERROR1
:
708 case NAND_CMD_STATUS_ERROR2
:
709 case NAND_CMD_STATUS_ERROR3
:
710 udelay(this->chip_delay
);
716 udelay(this->chip_delay
);
717 this->hwcontrol(mtd
, NAND_CTL_SETCLE
);
718 this->write_byte(mtd
, NAND_CMD_STATUS
);
719 this->hwcontrol(mtd
, NAND_CTL_CLRCLE
);
720 while ( !(this->read_byte(mtd
) & NAND_STATUS_READY
));
724 /* Begin command latch cycle */
725 this->hwcontrol(mtd
, NAND_CTL_SETCLE
);
726 /* Write out the start read command */
727 this->write_byte(mtd
, NAND_CMD_READSTART
);
728 /* End command latch cycle */
729 this->hwcontrol(mtd
, NAND_CTL_CLRCLE
);
730 /* Fall through into ready check */
732 /* This applies to read commands */
735 * If we don't have access to the busy pin, we apply the given
738 if (!this->dev_ready
) {
739 udelay (this->chip_delay
);
744 /* Apply this short delay always to ensure that we do wait tWB in
745 * any case on any machine. */
748 nand_wait_ready(mtd
);
752 * nand_get_device - [GENERIC] Get chip for selected access
753 * @this: the nand chip descriptor
754 * @mtd: MTD device structure
755 * @new_state: the state which is requested
757 * Get the device and lock it for exclusive access
759 static void nand_get_device (struct nand_chip
*this, struct mtd_info
*mtd
, int new_state
)
761 struct nand_chip
*active
;
763 wait_queue_head_t
*wq
;
764 DECLARE_WAITQUEUE (wait
, current
);
766 lock
= (this->controller
) ? &this->controller
->lock
: &this->chip_lock
;
767 wq
= (this->controller
) ? &this->controller
->wq
: &this->wq
;
772 /* Hardware controller shared among independend devices */
773 if (this->controller
) {
774 if (this->controller
->active
)
775 active
= this->controller
->active
;
777 this->controller
->active
= this;
779 if (active
== this && this->state
== FL_READY
) {
780 this->state
= new_state
;
784 set_current_state(TASK_UNINTERRUPTIBLE
);
785 add_wait_queue(wq
, &wait
);
788 remove_wait_queue(wq
, &wait
);
793 * nand_wait - [DEFAULT] wait until the command is done
794 * @mtd: MTD device structure
795 * @this: NAND chip structure
796 * @state: state to select the max. timeout value
798 * Wait for command done. This applies to erase and program only
799 * Erase can take up to 400ms and program up to 20ms according to
800 * general NAND and SmartMedia specs
803 static int nand_wait(struct mtd_info
*mtd
, struct nand_chip
*this, int state
)
806 unsigned long timeo
= jiffies
;
809 if (state
== FL_ERASING
)
810 timeo
+= (HZ
* 400) / 1000;
812 timeo
+= (HZ
* 20) / 1000;
814 /* Apply this short delay always to ensure that we do wait tWB in
815 * any case on any machine. */
818 if ((state
== FL_ERASING
) && (this->options
& NAND_IS_AND
))
819 this->cmdfunc (mtd
, NAND_CMD_STATUS_MULTI
, -1, -1);
821 this->cmdfunc (mtd
, NAND_CMD_STATUS
, -1, -1);
823 while (time_before(jiffies
, timeo
)) {
824 /* Check, if we were interrupted */
825 if (this->state
!= state
)
828 if (this->dev_ready
) {
829 if (this->dev_ready(mtd
))
832 if (this->read_byte(mtd
) & NAND_STATUS_READY
)
837 status
= (int) this->read_byte(mtd
);
842 * nand_write_page - [GENERIC] write one page
843 * @mtd: MTD device structure
844 * @this: NAND chip structure
845 * @page: startpage inside the chip, must be called with (page & this->pagemask)
846 * @oob_buf: out of band data buffer
847 * @oobsel: out of band selecttion structre
848 * @cached: 1 = enable cached programming if supported by chip
850 * Nand_page_program function is used for write and writev !
851 * This function will always program a full page of data
852 * If you call it with a non page aligned buffer, you're lost :)
854 * Cached programming is not supported yet.
856 static int nand_write_page (struct mtd_info
*mtd
, struct nand_chip
*this, int page
,
857 u_char
*oob_buf
, struct nand_oobinfo
*oobsel
, int cached
)
861 int eccmode
= oobsel
->useecc
? this->eccmode
: NAND_ECC_NONE
;
862 int *oob_config
= oobsel
->eccpos
;
863 int datidx
= 0, eccidx
= 0, eccsteps
= this->eccsteps
;
866 /* FIXME: Enable cached programming */
869 /* Send command to begin auto page programming */
870 this->cmdfunc (mtd
, NAND_CMD_SEQIN
, 0x00, page
);
872 /* Write out complete page of data, take care of eccmode */
874 /* No ecc, write all */
876 printk (KERN_WARNING
"Writing data without ECC to NAND-FLASH is not recommended\n");
877 this->write_buf(mtd
, this->data_poi
, mtd
->oobblock
);
880 /* Software ecc 3/256, write all */
882 for (; eccsteps
; eccsteps
--) {
883 this->calculate_ecc(mtd
, &this->data_poi
[datidx
], ecc_code
);
884 for (i
= 0; i
< 3; i
++, eccidx
++)
885 oob_buf
[oob_config
[eccidx
]] = ecc_code
[i
];
886 datidx
+= this->eccsize
;
888 this->write_buf(mtd
, this->data_poi
, mtd
->oobblock
);
891 eccbytes
= this->eccbytes
;
892 for (; eccsteps
; eccsteps
--) {
893 /* enable hardware ecc logic for write */
894 this->enable_hwecc(mtd
, NAND_ECC_WRITE
);
895 this->write_buf(mtd
, &this->data_poi
[datidx
], this->eccsize
);
896 this->calculate_ecc(mtd
, &this->data_poi
[datidx
], ecc_code
);
897 for (i
= 0; i
< eccbytes
; i
++, eccidx
++)
898 oob_buf
[oob_config
[eccidx
]] = ecc_code
[i
];
899 /* If the hardware ecc provides syndromes then
900 * the ecc code must be written immidiately after
901 * the data bytes (words) */
902 if (this->options
& NAND_HWECC_SYNDROME
)
903 this->write_buf(mtd
, ecc_code
, eccbytes
);
904 datidx
+= this->eccsize
;
909 /* Write out OOB data */
910 if (this->options
& NAND_HWECC_SYNDROME
)
911 this->write_buf(mtd
, &oob_buf
[oobsel
->eccbytes
], mtd
->oobsize
- oobsel
->eccbytes
);
913 this->write_buf(mtd
, oob_buf
, mtd
->oobsize
);
915 /* Send command to actually program the data */
916 this->cmdfunc (mtd
, cached
? NAND_CMD_CACHEDPROG
: NAND_CMD_PAGEPROG
, -1, -1);
919 /* call wait ready function */
920 status
= this->waitfunc (mtd
, this, FL_WRITING
);
922 /* See if operation failed and additional status checks are available */
923 if ((status
& NAND_STATUS_FAIL
) && (this->errstat
)) {
924 status
= this->errstat(mtd
, this, FL_WRITING
, status
, page
);
927 /* See if device thinks it succeeded */
928 if (status
& NAND_STATUS_FAIL
) {
929 DEBUG (MTD_DEBUG_LEVEL0
, "%s: " "Failed write, page 0x%08x, ", __FUNCTION__
, page
);
933 /* FIXME: Implement cached programming ! */
934 /* wait until cache is ready*/
935 // status = this->waitfunc (mtd, this, FL_CACHEDRPG);
940 #ifdef CONFIG_MTD_NAND_VERIFY_WRITE
942 * nand_verify_pages - [GENERIC] verify the chip contents after a write
943 * @mtd: MTD device structure
944 * @this: NAND chip structure
945 * @page: startpage inside the chip, must be called with (page & this->pagemask)
946 * @numpages: number of pages to verify
947 * @oob_buf: out of band data buffer
948 * @oobsel: out of band selecttion structre
949 * @chipnr: number of the current chip
950 * @oobmode: 1 = full buffer verify, 0 = ecc only
952 * The NAND device assumes that it is always writing to a cleanly erased page.
953 * Hence, it performs its internal write verification only on bits that
954 * transitioned from 1 to 0. The device does NOT verify the whole page on a
955 * byte by byte basis. It is possible that the page was not completely erased
956 * or the page is becoming unusable due to wear. The read with ECC would catch
957 * the error later when the ECC page check fails, but we would rather catch
958 * it early in the page write stage. Better to write no data than invalid data.
960 static int nand_verify_pages (struct mtd_info
*mtd
, struct nand_chip
*this, int page
, int numpages
,
961 u_char
*oob_buf
, struct nand_oobinfo
*oobsel
, int chipnr
, int oobmode
)
963 int i
, j
, datidx
= 0, oobofs
= 0, res
= -EIO
;
964 int eccsteps
= this->eccsteps
;
968 hweccbytes
= (this->options
& NAND_HWECC_SYNDROME
) ? (oobsel
->eccbytes
/ eccsteps
) : 0;
970 /* Send command to read back the first page */
971 this->cmdfunc (mtd
, NAND_CMD_READ0
, 0, page
);
974 for (j
= 0; j
< eccsteps
; j
++) {
975 /* Loop through and verify the data */
976 if (this->verify_buf(mtd
, &this->data_poi
[datidx
], mtd
->eccsize
)) {
977 DEBUG (MTD_DEBUG_LEVEL0
, "%s: " "Failed write verify, page 0x%08x ", __FUNCTION__
, page
);
980 datidx
+= mtd
->eccsize
;
981 /* Have we a hw generator layout ? */
984 if (this->verify_buf(mtd
, &this->oob_buf
[oobofs
], hweccbytes
)) {
985 DEBUG (MTD_DEBUG_LEVEL0
, "%s: " "Failed write verify, page 0x%08x ", __FUNCTION__
, page
);
988 oobofs
+= hweccbytes
;
991 /* check, if we must compare all data or if we just have to
992 * compare the ecc bytes
995 if (this->verify_buf(mtd
, &oob_buf
[oobofs
], mtd
->oobsize
- hweccbytes
* eccsteps
)) {
996 DEBUG (MTD_DEBUG_LEVEL0
, "%s: " "Failed write verify, page 0x%08x ", __FUNCTION__
, page
);
1000 /* Read always, else autoincrement fails */
1001 this->read_buf(mtd
, oobdata
, mtd
->oobsize
- hweccbytes
* eccsteps
);
1003 if (oobsel
->useecc
!= MTD_NANDECC_OFF
&& !hweccbytes
) {
1004 int ecccnt
= oobsel
->eccbytes
;
1006 for (i
= 0; i
< ecccnt
; i
++) {
1007 int idx
= oobsel
->eccpos
[i
];
1008 if (oobdata
[idx
] != oob_buf
[oobofs
+ idx
] ) {
1009 DEBUG (MTD_DEBUG_LEVEL0
,
1010 "%s: Failed ECC write "
1011 "verify, page 0x%08x, " "%6i bytes were succesful\n", __FUNCTION__
, page
, i
);
1017 oobofs
+= mtd
->oobsize
- hweccbytes
* eccsteps
;
1021 /* Apply delay or wait for ready/busy pin
1022 * Do this before the AUTOINCR check, so no problems
1023 * arise if a chip which does auto increment
1024 * is marked as NOAUTOINCR by the board driver.
1025 * Do this also before returning, so the chip is
1026 * ready for the next command.
1028 if (!this->dev_ready
)
1029 udelay (this->chip_delay
);
1031 nand_wait_ready(mtd
);
1033 /* All done, return happy */
1038 /* Check, if the chip supports auto page increment */
1039 if (!NAND_CANAUTOINCR(this))
1040 this->cmdfunc (mtd
, NAND_CMD_READ0
, 0x00, page
);
1043 * Terminate the read command. We come here in case of an error
1044 * So we must issue a reset command.
1047 this->cmdfunc (mtd
, NAND_CMD_RESET
, -1, -1);
1053 * nand_read - [MTD Interface] MTD compability function for nand_do_read_ecc
1054 * @mtd: MTD device structure
1055 * @from: offset to read from
1056 * @len: number of bytes to read
1057 * @retlen: pointer to variable to store the number of read bytes
1058 * @buf: the databuffer to put data
1060 * This function simply calls nand_do_read_ecc with oob buffer and oobsel = NULL
1063 static int nand_read (struct mtd_info
*mtd
, loff_t from
, size_t len
, size_t * retlen
, u_char
* buf
)
1065 return nand_do_read_ecc (mtd
, from
, len
, retlen
, buf
, NULL
, &mtd
->oobinfo
, 0xff);
1070 * nand_read_ecc - [MTD Interface] MTD compability function for nand_do_read_ecc
1071 * @mtd: MTD device structure
1072 * @from: offset to read from
1073 * @len: number of bytes to read
1074 * @retlen: pointer to variable to store the number of read bytes
1075 * @buf: the databuffer to put data
1076 * @oob_buf: filesystem supplied oob data buffer
1077 * @oobsel: oob selection structure
1079 * This function simply calls nand_do_read_ecc with flags = 0xff
1081 static int nand_read_ecc (struct mtd_info
*mtd
, loff_t from
, size_t len
,
1082 size_t * retlen
, u_char
* buf
, u_char
* oob_buf
, struct nand_oobinfo
*oobsel
)
1084 /* use userspace supplied oobinfo, if zero */
1086 oobsel
= &mtd
->oobinfo
;
1087 return nand_do_read_ecc(mtd
, from
, len
, retlen
, buf
, oob_buf
, oobsel
, 0xff);
1092 * nand_do_read_ecc - [MTD Interface] Read data with ECC
1093 * @mtd: MTD device structure
1094 * @from: offset to read from
1095 * @len: number of bytes to read
1096 * @retlen: pointer to variable to store the number of read bytes
1097 * @buf: the databuffer to put data
1098 * @oob_buf: filesystem supplied oob data buffer (can be NULL)
1099 * @oobsel: oob selection structure
1100 * @flags: flag to indicate if nand_get_device/nand_release_device should be preformed
1101 * and how many corrected error bits are acceptable:
1102 * bits 0..7 - number of tolerable errors
1103 * bit 8 - 0 == do not get/release chip, 1 == get/release chip
1105 * NAND read with ECC
1107 int nand_do_read_ecc (struct mtd_info
*mtd
, loff_t from
, size_t len
,
1108 size_t * retlen
, u_char
* buf
, u_char
* oob_buf
,
1109 struct nand_oobinfo
*oobsel
, int flags
)
1112 int i
, j
, col
, realpage
, page
, end
, ecc
, chipnr
, sndcmd
= 1;
1113 int read
= 0, oob
= 0, ecc_status
= 0, ecc_failed
= 0;
1114 struct nand_chip
*this = mtd
->priv
;
1115 u_char
*data_poi
, *oob_data
= oob_buf
;
1116 u_char ecc_calc
[32];
1117 u_char ecc_code
[32];
1118 int eccmode
, eccsteps
;
1119 int *oob_config
, datidx
;
1120 int blockcheck
= (1 << (this->phys_erase_shift
- this->page_shift
)) - 1;
1126 DEBUG (MTD_DEBUG_LEVEL3
, "nand_read_ecc: from = 0x%08x, len = %i\n", (unsigned int) from
, (int) len
);
1128 /* Do not allow reads past end of device */
1129 if ((from
+ len
) > mtd
->size
) {
1130 DEBUG (MTD_DEBUG_LEVEL0
, "nand_read_ecc: Attempt read beyond end of device\n");
1135 /* Grab the lock and see if the device is available */
1136 if (flags
& NAND_GET_DEVICE
)
1137 nand_get_device (this, mtd
, FL_READING
);
1139 /* Autoplace of oob data ? Use the default placement scheme */
1140 if (oobsel
->useecc
== MTD_NANDECC_AUTOPLACE
)
1141 oobsel
= this->autooob
;
1143 eccmode
= oobsel
->useecc
? this->eccmode
: NAND_ECC_NONE
;
1144 oob_config
= oobsel
->eccpos
;
1146 /* Select the NAND device */
1147 chipnr
= (int)(from
>> this->chip_shift
);
1148 this->select_chip(mtd
, chipnr
);
1150 /* First we calculate the starting page */
1151 realpage
= (int) (from
>> this->page_shift
);
1152 page
= realpage
& this->pagemask
;
1154 /* Get raw starting column */
1155 col
= from
& (mtd
->oobblock
- 1);
1157 end
= mtd
->oobblock
;
1158 ecc
= this->eccsize
;
1159 eccbytes
= this->eccbytes
;
1161 if ((eccmode
== NAND_ECC_NONE
) || (this->options
& NAND_HWECC_SYNDROME
))
1164 oobreadlen
= mtd
->oobsize
;
1165 if (this->options
& NAND_HWECC_SYNDROME
)
1166 oobreadlen
-= oobsel
->eccbytes
;
1168 /* Loop until all data read */
1169 while (read
< len
) {
1171 int aligned
= (!col
&& (len
- read
) >= end
);
1173 * If the read is not page aligned, we have to read into data buffer
1174 * due to ecc, else we read into return buffer direct
1177 data_poi
= &buf
[read
];
1179 data_poi
= this->data_buf
;
1181 /* Check, if we have this page in the buffer
1183 * FIXME: Make it work when we must provide oob data too,
1184 * check the usage of data_buf oob field
1186 if (realpage
== this->pagebuf
&& !oob_buf
) {
1187 /* aligned read ? */
1189 memcpy (data_poi
, this->data_buf
, end
);
1193 /* Check, if we must send the read command */
1195 this->cmdfunc (mtd
, NAND_CMD_READ0
, 0x00, page
);
1199 /* get oob area, if we have no oob buffer from fs-driver */
1200 if (!oob_buf
|| oobsel
->useecc
== MTD_NANDECC_AUTOPLACE
||
1201 oobsel
->useecc
== MTD_NANDECC_AUTOPL_USR
)
1202 oob_data
= &this->data_buf
[end
];
1204 eccsteps
= this->eccsteps
;
1207 case NAND_ECC_NONE
: { /* No ECC, Read in a page */
1208 static unsigned long lastwhinge
= 0;
1209 if ((lastwhinge
/ HZ
) != (jiffies
/ HZ
)) {
1210 printk (KERN_WARNING
"Reading data from NAND FLASH without ECC is not recommended\n");
1211 lastwhinge
= jiffies
;
1213 this->read_buf(mtd
, data_poi
, end
);
1217 case NAND_ECC_SOFT
: /* Software ECC 3/256: Read in a page + oob data */
1218 this->read_buf(mtd
, data_poi
, end
);
1219 for (i
= 0, datidx
= 0; eccsteps
; eccsteps
--, i
+=3, datidx
+= ecc
)
1220 this->calculate_ecc(mtd
, &data_poi
[datidx
], &ecc_calc
[i
]);
1224 for (i
= 0, datidx
= 0; eccsteps
; eccsteps
--, i
+=eccbytes
, datidx
+= ecc
) {
1225 this->enable_hwecc(mtd
, NAND_ECC_READ
);
1226 this->read_buf(mtd
, &data_poi
[datidx
], ecc
);
1228 /* HW ecc with syndrome calculation must read the
1229 * syndrome from flash immidiately after the data */
1231 /* Some hw ecc generators need to know when the
1232 * syndrome is read from flash */
1233 this->enable_hwecc(mtd
, NAND_ECC_READSYN
);
1234 this->read_buf(mtd
, &oob_data
[i
], eccbytes
);
1235 /* We calc error correction directly, it checks the hw
1236 * generator for an error, reads back the syndrome and
1237 * does the error correction on the fly */
1238 ecc_status
= this->correct_data(mtd
, &data_poi
[datidx
], &oob_data
[i
], &ecc_code
[i
]);
1239 if ((ecc_status
== -1) || (ecc_status
> (flags
&& 0xff))) {
1240 DEBUG (MTD_DEBUG_LEVEL0
, "nand_read_ecc: "
1241 "Failed ECC read, page 0x%08x on chip %d\n", page
, chipnr
);
1245 this->calculate_ecc(mtd
, &data_poi
[datidx
], &ecc_calc
[i
]);
1252 this->read_buf(mtd
, &oob_data
[mtd
->oobsize
- oobreadlen
], oobreadlen
);
1254 /* Skip ECC check, if not requested (ECC_NONE or HW_ECC with syndromes) */
1258 /* Pick the ECC bytes out of the oob data */
1259 for (j
= 0; j
< oobsel
->eccbytes
; j
++)
1260 ecc_code
[j
] = oob_data
[oob_config
[j
]];
1262 /* correct data, if neccecary */
1263 for (i
= 0, j
= 0, datidx
= 0; i
< this->eccsteps
; i
++, datidx
+= ecc
) {
1264 ecc_status
= this->correct_data(mtd
, &data_poi
[datidx
], &ecc_code
[j
], &ecc_calc
[j
]);
1266 /* Get next chunk of ecc bytes */
1269 /* Check, if we have a fs supplied oob-buffer,
1270 * This is the legacy mode. Used by YAFFS1
1271 * Should go away some day
1273 if (oob_buf
&& oobsel
->useecc
== MTD_NANDECC_PLACE
) {
1274 int *p
= (int *)(&oob_data
[mtd
->oobsize
]);
1278 if ((ecc_status
== -1) || (ecc_status
> (flags
&& 0xff))) {
1279 DEBUG (MTD_DEBUG_LEVEL0
, "nand_read_ecc: " "Failed ECC read, page 0x%08x\n", page
);
1285 /* check, if we have a fs supplied oob-buffer */
1287 /* without autoplace. Legacy mode used by YAFFS1 */
1288 switch(oobsel
->useecc
) {
1289 case MTD_NANDECC_AUTOPLACE
:
1290 case MTD_NANDECC_AUTOPL_USR
:
1291 /* Walk through the autoplace chunks */
1292 for (i
= 0; oobsel
->oobfree
[i
][1]; i
++) {
1293 int from
= oobsel
->oobfree
[i
][0];
1294 int num
= oobsel
->oobfree
[i
][1];
1295 memcpy(&oob_buf
[oob
], &oob_data
[from
], num
);
1299 case MTD_NANDECC_PLACE
:
1300 /* YAFFS1 legacy mode */
1301 oob_data
+= this->eccsteps
* sizeof (int);
1303 oob_data
+= mtd
->oobsize
;
1307 /* Partial page read, transfer data into fs buffer */
1309 for (j
= col
; j
< end
&& read
< len
; j
++)
1310 buf
[read
++] = data_poi
[j
];
1311 this->pagebuf
= realpage
;
1313 read
+= mtd
->oobblock
;
1315 /* Apply delay or wait for ready/busy pin
1316 * Do this before the AUTOINCR check, so no problems
1317 * arise if a chip which does auto increment
1318 * is marked as NOAUTOINCR by the board driver.
1320 if (!this->dev_ready
)
1321 udelay (this->chip_delay
);
1323 nand_wait_ready(mtd
);
1328 /* For subsequent reads align to page boundary. */
1330 /* Increment page address */
1333 page
= realpage
& this->pagemask
;
1334 /* Check, if we cross a chip boundary */
1337 this->select_chip(mtd
, -1);
1338 this->select_chip(mtd
, chipnr
);
1340 /* Check, if the chip supports auto page increment
1341 * or if we have hit a block boundary.
1343 if (!NAND_CANAUTOINCR(this) || !(page
& blockcheck
))
1347 /* Deselect and wake up anyone waiting on the device */
1348 if (flags
& NAND_GET_DEVICE
)
1349 nand_release_device(mtd
);
1352 * Return success, if no ECC failures, else -EBADMSG
1353 * fs driver will take care of that, because
1354 * retlen == desired len and result == -EBADMSG
1357 return ecc_failed
? -EBADMSG
: 0;
1361 * nand_read_oob - [MTD Interface] NAND read out-of-band
1362 * @mtd: MTD device structure
1363 * @from: offset to read from
1364 * @len: number of bytes to read
1365 * @retlen: pointer to variable to store the number of read bytes
1366 * @buf: the databuffer to put data
1368 * NAND read out-of-band data from the spare area
1370 static int nand_read_oob (struct mtd_info
*mtd
, loff_t from
, size_t len
, size_t * retlen
, u_char
* buf
)
1372 int i
, col
, page
, chipnr
;
1373 struct nand_chip
*this = mtd
->priv
;
1374 int blockcheck
= (1 << (this->phys_erase_shift
- this->page_shift
)) - 1;
1376 DEBUG (MTD_DEBUG_LEVEL3
, "nand_read_oob: from = 0x%08x, len = %i\n", (unsigned int) from
, (int) len
);
1378 /* Shift to get page */
1379 page
= (int)(from
>> this->page_shift
);
1380 chipnr
= (int)(from
>> this->chip_shift
);
1382 /* Mask to get column */
1383 col
= from
& (mtd
->oobsize
- 1);
1385 /* Initialize return length value */
1388 /* Do not allow reads past end of device */
1389 if ((from
+ len
) > mtd
->size
) {
1390 DEBUG (MTD_DEBUG_LEVEL0
, "nand_read_oob: Attempt read beyond end of device\n");
1395 /* Grab the lock and see if the device is available */
1396 nand_get_device (this, mtd
, FL_READING
);
1398 /* Select the NAND device */
1399 this->select_chip(mtd
, chipnr
);
1401 /* Send the read command */
1402 this->cmdfunc (mtd
, NAND_CMD_READOOB
, col
, page
& this->pagemask
);
1404 * Read the data, if we read more than one page
1405 * oob data, let the device transfer the data !
1409 int thislen
= mtd
->oobsize
- col
;
1410 thislen
= min_t(int, thislen
, len
);
1411 this->read_buf(mtd
, &buf
[i
], thislen
);
1419 /* Check, if we cross a chip boundary */
1420 if (!(page
& this->pagemask
)) {
1422 this->select_chip(mtd
, -1);
1423 this->select_chip(mtd
, chipnr
);
1426 /* Apply delay or wait for ready/busy pin
1427 * Do this before the AUTOINCR check, so no problems
1428 * arise if a chip which does auto increment
1429 * is marked as NOAUTOINCR by the board driver.
1431 if (!this->dev_ready
)
1432 udelay (this->chip_delay
);
1434 nand_wait_ready(mtd
);
1436 /* Check, if the chip supports auto page increment
1437 * or if we have hit a block boundary.
1439 if (!NAND_CANAUTOINCR(this) || !(page
& blockcheck
)) {
1440 /* For subsequent page reads set offset to 0 */
1441 this->cmdfunc (mtd
, NAND_CMD_READOOB
, 0x0, page
& this->pagemask
);
1446 /* Deselect and wake up anyone waiting on the device */
1447 nand_release_device(mtd
);
1455 * nand_read_raw - [GENERIC] Read raw data including oob into buffer
1456 * @mtd: MTD device structure
1457 * @buf: temporary buffer
1458 * @from: offset to read from
1459 * @len: number of bytes to read
1460 * @ooblen: number of oob data bytes to read
1462 * Read raw data including oob into buffer
1464 int nand_read_raw (struct mtd_info
*mtd
, uint8_t *buf
, loff_t from
, size_t len
, size_t ooblen
)
1466 struct nand_chip
*this = mtd
->priv
;
1467 int page
= (int) (from
>> this->page_shift
);
1468 int chip
= (int) (from
>> this->chip_shift
);
1471 int pagesize
= mtd
->oobblock
+ mtd
->oobsize
;
1472 int blockcheck
= (1 << (this->phys_erase_shift
- this->page_shift
)) - 1;
1474 /* Do not allow reads past end of device */
1475 if ((from
+ len
) > mtd
->size
) {
1476 DEBUG (MTD_DEBUG_LEVEL0
, "nand_read_raw: Attempt read beyond end of device\n");
1480 /* Grab the lock and see if the device is available */
1481 nand_get_device (this, mtd
, FL_READING
);
1483 this->select_chip (mtd
, chip
);
1485 /* Add requested oob length */
1490 this->cmdfunc (mtd
, NAND_CMD_READ0
, 0, page
& this->pagemask
);
1493 this->read_buf (mtd
, &buf
[cnt
], pagesize
);
1499 if (!this->dev_ready
)
1500 udelay (this->chip_delay
);
1502 nand_wait_ready(mtd
);
1504 /* Check, if the chip supports auto page increment */
1505 if (!NAND_CANAUTOINCR(this) || !(page
& blockcheck
))
1509 /* Deselect and wake up anyone waiting on the device */
1510 nand_release_device(mtd
);
1516 * nand_prepare_oobbuf - [GENERIC] Prepare the out of band buffer
1517 * @mtd: MTD device structure
1518 * @fsbuf: buffer given by fs driver
1519 * @oobsel: out of band selection structre
1520 * @autoplace: 1 = place given buffer into the oob bytes
1521 * @numpages: number of pages to prepare
1524 * 1. Filesystem buffer available and autoplacement is off,
1525 * return filesystem buffer
1526 * 2. No filesystem buffer or autoplace is off, return internal
1528 * 3. Filesystem buffer is given and autoplace selected
1529 * put data from fs buffer into internal buffer and
1530 * retrun internal buffer
1532 * Note: The internal buffer is filled with 0xff. This must
1533 * be done only once, when no autoplacement happens
1534 * Autoplacement sets the buffer dirty flag, which
1535 * forces the 0xff fill before using the buffer again.
1538 static u_char
* nand_prepare_oobbuf (struct mtd_info
*mtd
, u_char
*fsbuf
, struct nand_oobinfo
*oobsel
,
1539 int autoplace
, int numpages
)
1541 struct nand_chip
*this = mtd
->priv
;
1544 /* Zero copy fs supplied buffer */
1545 if (fsbuf
&& !autoplace
)
1548 /* Check, if the buffer must be filled with ff again */
1549 if (this->oobdirty
) {
1550 memset (this->oob_buf
, 0xff,
1551 mtd
->oobsize
<< (this->phys_erase_shift
- this->page_shift
));
1555 /* If we have no autoplacement or no fs buffer use the internal one */
1556 if (!autoplace
|| !fsbuf
)
1557 return this->oob_buf
;
1559 /* Walk through the pages and place the data */
1562 while (numpages
--) {
1563 for (i
= 0, len
= 0; len
< mtd
->oobavail
; i
++) {
1564 int to
= ofs
+ oobsel
->oobfree
[i
][0];
1565 int num
= oobsel
->oobfree
[i
][1];
1566 memcpy (&this->oob_buf
[to
], fsbuf
, num
);
1570 ofs
+= mtd
->oobavail
;
1572 return this->oob_buf
;
1575 #define NOTALIGNED(x) (x & (mtd->oobblock-1)) != 0
1578 * nand_write - [MTD Interface] compability function for nand_write_ecc
1579 * @mtd: MTD device structure
1580 * @to: offset to write to
1581 * @len: number of bytes to write
1582 * @retlen: pointer to variable to store the number of written bytes
1583 * @buf: the data to write
1585 * This function simply calls nand_write_ecc with oob buffer and oobsel = NULL
1588 static int nand_write (struct mtd_info
*mtd
, loff_t to
, size_t len
, size_t * retlen
, const u_char
* buf
)
1590 return (nand_write_ecc (mtd
, to
, len
, retlen
, buf
, NULL
, NULL
));
1594 * nand_write_ecc - [MTD Interface] NAND write with ECC
1595 * @mtd: MTD device structure
1596 * @to: offset to write to
1597 * @len: number of bytes to write
1598 * @retlen: pointer to variable to store the number of written bytes
1599 * @buf: the data to write
1600 * @eccbuf: filesystem supplied oob data buffer
1601 * @oobsel: oob selection structure
1603 * NAND write with ECC
1605 static int nand_write_ecc (struct mtd_info
*mtd
, loff_t to
, size_t len
,
1606 size_t * retlen
, const u_char
* buf
, u_char
* eccbuf
, struct nand_oobinfo
*oobsel
)
1608 int startpage
, page
, ret
= -EIO
, oob
= 0, written
= 0, chipnr
;
1609 int autoplace
= 0, numpages
, totalpages
;
1610 struct nand_chip
*this = mtd
->priv
;
1611 u_char
*oobbuf
, *bufstart
;
1612 int ppblock
= (1 << (this->phys_erase_shift
- this->page_shift
));
1614 DEBUG (MTD_DEBUG_LEVEL3
, "nand_write_ecc: to = 0x%08x, len = %i\n", (unsigned int) to
, (int) len
);
1616 /* Initialize retlen, in case of early exit */
1619 /* Do not allow write past end of device */
1620 if ((to
+ len
) > mtd
->size
) {
1621 DEBUG (MTD_DEBUG_LEVEL0
, "nand_write_ecc: Attempt to write past end of page\n");
1625 /* reject writes, which are not page aligned */
1626 if (NOTALIGNED (to
) || NOTALIGNED(len
)) {
1627 printk (KERN_NOTICE
"nand_write_ecc: Attempt to write not page aligned data\n");
1631 /* Grab the lock and see if the device is available */
1632 nand_get_device (this, mtd
, FL_WRITING
);
1634 /* Calculate chipnr */
1635 chipnr
= (int)(to
>> this->chip_shift
);
1636 /* Select the NAND device */
1637 this->select_chip(mtd
, chipnr
);
1639 /* Check, if it is write protected */
1640 if (nand_check_wp(mtd
))
1643 /* if oobsel is NULL, use chip defaults */
1645 oobsel
= &mtd
->oobinfo
;
1647 /* Autoplace of oob data ? Use the default placement scheme */
1648 if (oobsel
->useecc
== MTD_NANDECC_AUTOPLACE
) {
1649 oobsel
= this->autooob
;
1652 if (oobsel
->useecc
== MTD_NANDECC_AUTOPL_USR
)
1655 /* Setup variables and oob buffer */
1656 totalpages
= len
>> this->page_shift
;
1657 page
= (int) (to
>> this->page_shift
);
1658 /* Invalidate the page cache, if we write to the cached page */
1659 if (page
<= this->pagebuf
&& this->pagebuf
< (page
+ totalpages
))
1662 /* Set it relative to chip */
1663 page
&= this->pagemask
;
1665 /* Calc number of pages we can write in one go */
1666 numpages
= min (ppblock
- (startpage
& (ppblock
- 1)), totalpages
);
1667 oobbuf
= nand_prepare_oobbuf (mtd
, eccbuf
, oobsel
, autoplace
, numpages
);
1668 bufstart
= (u_char
*)buf
;
1670 /* Loop until all data is written */
1671 while (written
< len
) {
1673 this->data_poi
= (u_char
*) &buf
[written
];
1674 /* Write one page. If this is the last page to write
1675 * or the last page in this block, then use the
1676 * real pageprogram command, else select cached programming
1677 * if supported by the chip.
1679 ret
= nand_write_page (mtd
, this, page
, &oobbuf
[oob
], oobsel
, (--numpages
> 0));
1681 DEBUG (MTD_DEBUG_LEVEL0
, "nand_write_ecc: write_page failed %d\n", ret
);
1685 oob
+= mtd
->oobsize
;
1686 /* Update written bytes count */
1687 written
+= mtd
->oobblock
;
1691 /* Increment page address */
1694 /* Have we hit a block boundary ? Then we have to verify and
1695 * if verify is ok, we have to setup the oob buffer for
1698 if (!(page
& (ppblock
- 1))){
1700 this->data_poi
= bufstart
;
1701 ret
= nand_verify_pages (mtd
, this, startpage
,
1703 oobbuf
, oobsel
, chipnr
, (eccbuf
!= NULL
));
1705 DEBUG (MTD_DEBUG_LEVEL0
, "nand_write_ecc: verify_pages failed %d\n", ret
);
1710 ofs
= autoplace
? mtd
->oobavail
: mtd
->oobsize
;
1712 eccbuf
+= (page
- startpage
) * ofs
;
1713 totalpages
-= page
- startpage
;
1714 numpages
= min (totalpages
, ppblock
);
1715 page
&= this->pagemask
;
1717 oobbuf
= nand_prepare_oobbuf (mtd
, eccbuf
, oobsel
,
1718 autoplace
, numpages
);
1719 /* Check, if we cross a chip boundary */
1722 this->select_chip(mtd
, -1);
1723 this->select_chip(mtd
, chipnr
);
1727 /* Verify the remaining pages */
1729 this->data_poi
= bufstart
;
1730 ret
= nand_verify_pages (mtd
, this, startpage
, totalpages
,
1731 oobbuf
, oobsel
, chipnr
, (eccbuf
!= NULL
));
1735 DEBUG (MTD_DEBUG_LEVEL0
, "nand_write_ecc: verify_pages failed %d\n", ret
);
1738 /* Deselect and wake up anyone waiting on the device */
1739 nand_release_device(mtd
);
1746 * nand_write_oob - [MTD Interface] NAND write out-of-band
1747 * @mtd: MTD device structure
1748 * @to: offset to write to
1749 * @len: number of bytes to write
1750 * @retlen: pointer to variable to store the number of written bytes
1751 * @buf: the data to write
1753 * NAND write out-of-band
1755 static int nand_write_oob (struct mtd_info
*mtd
, loff_t to
, size_t len
, size_t * retlen
, const u_char
* buf
)
1757 int column
, page
, status
, ret
= -EIO
, chipnr
;
1758 struct nand_chip
*this = mtd
->priv
;
1760 DEBUG (MTD_DEBUG_LEVEL3
, "nand_write_oob: to = 0x%08x, len = %i\n", (unsigned int) to
, (int) len
);
1762 /* Shift to get page */
1763 page
= (int) (to
>> this->page_shift
);
1764 chipnr
= (int) (to
>> this->chip_shift
);
1766 /* Mask to get column */
1767 column
= to
& (mtd
->oobsize
- 1);
1769 /* Initialize return length value */
1772 /* Do not allow write past end of page */
1773 if ((column
+ len
) > mtd
->oobsize
) {
1774 DEBUG (MTD_DEBUG_LEVEL0
, "nand_write_oob: Attempt to write past end of page\n");
1778 /* Grab the lock and see if the device is available */
1779 nand_get_device (this, mtd
, FL_WRITING
);
1781 /* Select the NAND device */
1782 this->select_chip(mtd
, chipnr
);
1784 /* Reset the chip. Some chips (like the Toshiba TC5832DC found
1785 in one of my DiskOnChip 2000 test units) will clear the whole
1786 data page too if we don't do this. I have no clue why, but
1787 I seem to have 'fixed' it in the doc2000 driver in
1788 August 1999. dwmw2. */
1789 this->cmdfunc(mtd
, NAND_CMD_RESET
, -1, -1);
1791 /* Check, if it is write protected */
1792 if (nand_check_wp(mtd
))
1795 /* Invalidate the page cache, if we write to the cached page */
1796 if (page
== this->pagebuf
)
1799 if (NAND_MUST_PAD(this)) {
1800 /* Write out desired data */
1801 this->cmdfunc (mtd
, NAND_CMD_SEQIN
, mtd
->oobblock
, page
& this->pagemask
);
1802 /* prepad 0xff for partial programming */
1803 this->write_buf(mtd
, ffchars
, column
);
1805 this->write_buf(mtd
, buf
, len
);
1806 /* postpad 0xff for partial programming */
1807 this->write_buf(mtd
, ffchars
, mtd
->oobsize
- (len
+column
));
1809 /* Write out desired data */
1810 this->cmdfunc (mtd
, NAND_CMD_SEQIN
, mtd
->oobblock
+ column
, page
& this->pagemask
);
1812 this->write_buf(mtd
, buf
, len
);
1814 /* Send command to program the OOB data */
1815 this->cmdfunc (mtd
, NAND_CMD_PAGEPROG
, -1, -1);
1817 status
= this->waitfunc (mtd
, this, FL_WRITING
);
1819 /* See if device thinks it succeeded */
1820 if (status
& NAND_STATUS_FAIL
) {
1821 DEBUG (MTD_DEBUG_LEVEL0
, "nand_write_oob: " "Failed write, page 0x%08x\n", page
);
1828 #ifdef CONFIG_MTD_NAND_VERIFY_WRITE
1829 /* Send command to read back the data */
1830 this->cmdfunc (mtd
, NAND_CMD_READOOB
, column
, page
& this->pagemask
);
1832 if (this->verify_buf(mtd
, buf
, len
)) {
1833 DEBUG (MTD_DEBUG_LEVEL0
, "nand_write_oob: " "Failed write verify, page 0x%08x\n", page
);
1840 /* Deselect and wake up anyone waiting on the device */
1841 nand_release_device(mtd
);
1848 * nand_writev - [MTD Interface] compabilty function for nand_writev_ecc
1849 * @mtd: MTD device structure
1850 * @vecs: the iovectors to write
1851 * @count: number of vectors
1852 * @to: offset to write to
1853 * @retlen: pointer to variable to store the number of written bytes
1855 * NAND write with kvec. This just calls the ecc function
1857 static int nand_writev (struct mtd_info
*mtd
, const struct kvec
*vecs
, unsigned long count
,
1858 loff_t to
, size_t * retlen
)
1860 return (nand_writev_ecc (mtd
, vecs
, count
, to
, retlen
, NULL
, NULL
));
1864 * nand_writev_ecc - [MTD Interface] write with iovec with ecc
1865 * @mtd: MTD device structure
1866 * @vecs: the iovectors to write
1867 * @count: number of vectors
1868 * @to: offset to write to
1869 * @retlen: pointer to variable to store the number of written bytes
1870 * @eccbuf: filesystem supplied oob data buffer
1871 * @oobsel: oob selection structure
1873 * NAND write with iovec with ecc
1875 static int nand_writev_ecc (struct mtd_info
*mtd
, const struct kvec
*vecs
, unsigned long count
,
1876 loff_t to
, size_t * retlen
, u_char
*eccbuf
, struct nand_oobinfo
*oobsel
)
1878 int i
, page
, len
, total_len
, ret
= -EIO
, written
= 0, chipnr
;
1879 int oob
, numpages
, autoplace
= 0, startpage
;
1880 struct nand_chip
*this = mtd
->priv
;
1881 int ppblock
= (1 << (this->phys_erase_shift
- this->page_shift
));
1882 u_char
*oobbuf
, *bufstart
;
1884 /* Preset written len for early exit */
1887 /* Calculate total length of data */
1889 for (i
= 0; i
< count
; i
++)
1890 total_len
+= (int) vecs
[i
].iov_len
;
1892 DEBUG (MTD_DEBUG_LEVEL3
,
1893 "nand_writev: to = 0x%08x, len = %i, count = %ld\n", (unsigned int) to
, (unsigned int) total_len
, count
);
1895 /* Do not allow write past end of page */
1896 if ((to
+ total_len
) > mtd
->size
) {
1897 DEBUG (MTD_DEBUG_LEVEL0
, "nand_writev: Attempted write past end of device\n");
1901 /* reject writes, which are not page aligned */
1902 if (NOTALIGNED (to
) || NOTALIGNED(total_len
)) {
1903 printk (KERN_NOTICE
"nand_write_ecc: Attempt to write not page aligned data\n");
1907 /* Grab the lock and see if the device is available */
1908 nand_get_device (this, mtd
, FL_WRITING
);
1910 /* Get the current chip-nr */
1911 chipnr
= (int) (to
>> this->chip_shift
);
1912 /* Select the NAND device */
1913 this->select_chip(mtd
, chipnr
);
1915 /* Check, if it is write protected */
1916 if (nand_check_wp(mtd
))
1919 /* if oobsel is NULL, use chip defaults */
1921 oobsel
= &mtd
->oobinfo
;
1923 /* Autoplace of oob data ? Use the default placement scheme */
1924 if (oobsel
->useecc
== MTD_NANDECC_AUTOPLACE
) {
1925 oobsel
= this->autooob
;
1928 if (oobsel
->useecc
== MTD_NANDECC_AUTOPL_USR
)
1931 /* Setup start page */
1932 page
= (int) (to
>> this->page_shift
);
1933 /* Invalidate the page cache, if we write to the cached page */
1934 if (page
<= this->pagebuf
&& this->pagebuf
< ((to
+ total_len
) >> this->page_shift
))
1937 startpage
= page
& this->pagemask
;
1939 /* Loop until all kvec' data has been written */
1942 /* If the given tuple is >= pagesize then
1943 * write it out from the iov
1945 if ((vecs
->iov_len
- len
) >= mtd
->oobblock
) {
1946 /* Calc number of pages we can write
1947 * out of this iov in one go */
1948 numpages
= (vecs
->iov_len
- len
) >> this->page_shift
;
1949 /* Do not cross block boundaries */
1950 numpages
= min (ppblock
- (startpage
& (ppblock
- 1)), numpages
);
1951 oobbuf
= nand_prepare_oobbuf (mtd
, NULL
, oobsel
, autoplace
, numpages
);
1952 bufstart
= (u_char
*)vecs
->iov_base
;
1954 this->data_poi
= bufstart
;
1956 for (i
= 1; i
<= numpages
; i
++) {
1957 /* Write one page. If this is the last page to write
1958 * then use the real pageprogram command, else select
1959 * cached programming if supported by the chip.
1961 ret
= nand_write_page (mtd
, this, page
& this->pagemask
,
1962 &oobbuf
[oob
], oobsel
, i
!= numpages
);
1965 this->data_poi
+= mtd
->oobblock
;
1966 len
+= mtd
->oobblock
;
1967 oob
+= mtd
->oobsize
;
1970 /* Check, if we have to switch to the next tuple */
1971 if (len
>= (int) vecs
->iov_len
) {
1977 /* We must use the internal buffer, read data out of each
1978 * tuple until we have a full page to write
1981 while (cnt
< mtd
->oobblock
) {
1982 if (vecs
->iov_base
!= NULL
&& vecs
->iov_len
)
1983 this->data_buf
[cnt
++] = ((u_char
*) vecs
->iov_base
)[len
++];
1984 /* Check, if we have to switch to the next tuple */
1985 if (len
>= (int) vecs
->iov_len
) {
1991 this->pagebuf
= page
;
1992 this->data_poi
= this->data_buf
;
1993 bufstart
= this->data_poi
;
1995 oobbuf
= nand_prepare_oobbuf (mtd
, NULL
, oobsel
, autoplace
, numpages
);
1996 ret
= nand_write_page (mtd
, this, page
& this->pagemask
,
2003 this->data_poi
= bufstart
;
2004 ret
= nand_verify_pages (mtd
, this, startpage
, numpages
, oobbuf
, oobsel
, chipnr
, 0);
2008 written
+= mtd
->oobblock
* numpages
;
2013 startpage
= page
& this->pagemask
;
2014 /* Check, if we cross a chip boundary */
2017 this->select_chip(mtd
, -1);
2018 this->select_chip(mtd
, chipnr
);
2023 /* Deselect and wake up anyone waiting on the device */
2024 nand_release_device(mtd
);
2031 * single_erease_cmd - [GENERIC] NAND standard block erase command function
2032 * @mtd: MTD device structure
2033 * @page: the page address of the block which will be erased
2035 * Standard erase command for NAND chips
2037 static void single_erase_cmd (struct mtd_info
*mtd
, int page
)
2039 struct nand_chip
*this = mtd
->priv
;
2040 /* Send commands to erase a block */
2041 this->cmdfunc (mtd
, NAND_CMD_ERASE1
, -1, page
);
2042 this->cmdfunc (mtd
, NAND_CMD_ERASE2
, -1, -1);
2046 * multi_erease_cmd - [GENERIC] AND specific block erase command function
2047 * @mtd: MTD device structure
2048 * @page: the page address of the block which will be erased
2050 * AND multi block erase command function
2051 * Erase 4 consecutive blocks
2053 static void multi_erase_cmd (struct mtd_info
*mtd
, int page
)
2055 struct nand_chip
*this = mtd
->priv
;
2056 /* Send commands to erase a block */
2057 this->cmdfunc (mtd
, NAND_CMD_ERASE1
, -1, page
++);
2058 this->cmdfunc (mtd
, NAND_CMD_ERASE1
, -1, page
++);
2059 this->cmdfunc (mtd
, NAND_CMD_ERASE1
, -1, page
++);
2060 this->cmdfunc (mtd
, NAND_CMD_ERASE1
, -1, page
);
2061 this->cmdfunc (mtd
, NAND_CMD_ERASE2
, -1, -1);
2065 * nand_erase - [MTD Interface] erase block(s)
2066 * @mtd: MTD device structure
2067 * @instr: erase instruction
2069 * Erase one ore more blocks
2071 static int nand_erase (struct mtd_info
*mtd
, struct erase_info
*instr
)
2073 return nand_erase_nand (mtd
, instr
, 0);
2076 #define BBT_PAGE_MASK 0xffffff3f
2078 * nand_erase_intern - [NAND Interface] erase block(s)
2079 * @mtd: MTD device structure
2080 * @instr: erase instruction
2081 * @allowbbt: allow erasing the bbt area
2083 * Erase one ore more blocks
2085 int nand_erase_nand (struct mtd_info
*mtd
, struct erase_info
*instr
, int allowbbt
)
2087 int page
, len
, status
, pages_per_block
, ret
, chipnr
;
2088 struct nand_chip
*this = mtd
->priv
;
2089 int rewrite_bbt
[NAND_MAX_CHIPS
]={0}; /* flags to indicate the page, if bbt needs to be rewritten. */
2090 unsigned int bbt_masked_page
; /* bbt mask to compare to page being erased. */
2091 /* It is used to see if the current page is in the same */
2092 /* 256 block group and the same bank as the bbt. */
2094 DEBUG (MTD_DEBUG_LEVEL3
,
2095 "nand_erase: start = 0x%08x, len = %i\n", (unsigned int) instr
->addr
, (unsigned int) instr
->len
);
2097 /* Start address must align on block boundary */
2098 if (instr
->addr
& ((1 << this->phys_erase_shift
) - 1)) {
2099 DEBUG (MTD_DEBUG_LEVEL0
, "nand_erase: Unaligned address\n");
2103 /* Length must align on block boundary */
2104 if (instr
->len
& ((1 << this->phys_erase_shift
) - 1)) {
2105 DEBUG (MTD_DEBUG_LEVEL0
, "nand_erase: Length not block aligned\n");
2109 /* Do not allow erase past end of device */
2110 if ((instr
->len
+ instr
->addr
) > mtd
->size
) {
2111 DEBUG (MTD_DEBUG_LEVEL0
, "nand_erase: Erase past end of device\n");
2115 instr
->fail_addr
= 0xffffffff;
2117 /* Grab the lock and see if the device is available */
2118 nand_get_device (this, mtd
, FL_ERASING
);
2120 /* Shift to get first page */
2121 page
= (int) (instr
->addr
>> this->page_shift
);
2122 chipnr
= (int) (instr
->addr
>> this->chip_shift
);
2124 /* Calculate pages in each block */
2125 pages_per_block
= 1 << (this->phys_erase_shift
- this->page_shift
);
2127 /* Select the NAND device */
2128 this->select_chip(mtd
, chipnr
);
2130 /* Check the WP bit */
2131 /* Check, if it is write protected */
2132 if (nand_check_wp(mtd
)) {
2133 DEBUG (MTD_DEBUG_LEVEL0
, "nand_erase: Device is write protected!!!\n");
2134 instr
->state
= MTD_ERASE_FAILED
;
2138 /* if BBT requires refresh, set the BBT page mask to see if the BBT should be rewritten */
2139 if (this->options
& BBT_AUTO_REFRESH
) {
2140 bbt_masked_page
= this->bbt_td
->pages
[chipnr
] & BBT_PAGE_MASK
;
2142 bbt_masked_page
= 0xffffffff; /* should not match anything */
2145 /* Loop through the pages */
2148 instr
->state
= MTD_ERASING
;
2151 /* Check if we have a bad block, we do not erase bad blocks ! */
2152 if (nand_block_checkbad(mtd
, ((loff_t
) page
) << this->page_shift
, 0, allowbbt
)) {
2153 printk (KERN_WARNING
"nand_erase: attempt to erase a bad block at page 0x%08x\n", page
);
2154 instr
->state
= MTD_ERASE_FAILED
;
2158 /* Invalidate the page cache, if we erase the block which contains
2159 the current cached page */
2160 if (page
<= this->pagebuf
&& this->pagebuf
< (page
+ pages_per_block
))
2163 this->erase_cmd (mtd
, page
& this->pagemask
);
2165 status
= this->waitfunc (mtd
, this, FL_ERASING
);
2167 /* See if operation failed and additional status checks are available */
2168 if ((status
& NAND_STATUS_FAIL
) && (this->errstat
)) {
2169 status
= this->errstat(mtd
, this, FL_ERASING
, status
, page
);
2172 /* See if block erase succeeded */
2173 if (status
& NAND_STATUS_FAIL
) {
2174 DEBUG (MTD_DEBUG_LEVEL0
, "nand_erase: " "Failed erase, page 0x%08x\n", page
);
2175 instr
->state
= MTD_ERASE_FAILED
;
2176 instr
->fail_addr
= (page
<< this->page_shift
);
2180 /* if BBT requires refresh, set the BBT rewrite flag to the page being erased */
2181 if (this->options
& BBT_AUTO_REFRESH
) {
2182 if (((page
& BBT_PAGE_MASK
) == bbt_masked_page
) &&
2183 (page
!= this->bbt_td
->pages
[chipnr
])) {
2184 rewrite_bbt
[chipnr
] = (page
<< this->page_shift
);
2188 /* Increment page address and decrement length */
2189 len
-= (1 << this->phys_erase_shift
);
2190 page
+= pages_per_block
;
2192 /* Check, if we cross a chip boundary */
2193 if (len
&& !(page
& this->pagemask
)) {
2195 this->select_chip(mtd
, -1);
2196 this->select_chip(mtd
, chipnr
);
2198 /* if BBT requires refresh and BBT-PERCHIP,
2199 * set the BBT page mask to see if this BBT should be rewritten */
2200 if ((this->options
& BBT_AUTO_REFRESH
) && (this->bbt_td
->options
& NAND_BBT_PERCHIP
)) {
2201 bbt_masked_page
= this->bbt_td
->pages
[chipnr
] & BBT_PAGE_MASK
;
2206 instr
->state
= MTD_ERASE_DONE
;
2210 ret
= instr
->state
== MTD_ERASE_DONE
? 0 : -EIO
;
2211 /* Do call back function */
2213 mtd_erase_callback(instr
);
2215 /* Deselect and wake up anyone waiting on the device */
2216 nand_release_device(mtd
);
2218 /* if BBT requires refresh and erase was successful, rewrite any selected bad block tables */
2219 if ((this->options
& BBT_AUTO_REFRESH
) && (!ret
)) {
2220 for (chipnr
= 0; chipnr
< this->numchips
; chipnr
++) {
2221 if (rewrite_bbt
[chipnr
]) {
2222 /* update the BBT for chip */
2223 DEBUG (MTD_DEBUG_LEVEL0
, "nand_erase_nand: nand_update_bbt (%d:0x%0x 0x%0x)\n",
2224 chipnr
, rewrite_bbt
[chipnr
], this->bbt_td
->pages
[chipnr
]);
2225 nand_update_bbt (mtd
, rewrite_bbt
[chipnr
]);
2230 /* Return more or less happy */
2235 * nand_sync - [MTD Interface] sync
2236 * @mtd: MTD device structure
2238 * Sync is actually a wait for chip ready function
2240 static void nand_sync (struct mtd_info
*mtd
)
2242 struct nand_chip
*this = mtd
->priv
;
2244 DEBUG (MTD_DEBUG_LEVEL3
, "nand_sync: called\n");
2246 /* Grab the lock and see if the device is available */
2247 nand_get_device (this, mtd
, FL_SYNCING
);
2248 /* Release it and go back */
2249 nand_release_device (mtd
);
2254 * nand_block_isbad - [MTD Interface] Check whether the block at the given offset is bad
2255 * @mtd: MTD device structure
2256 * @ofs: offset relative to mtd start
2258 static int nand_block_isbad (struct mtd_info
*mtd
, loff_t ofs
)
2260 /* Check for invalid offset */
2261 if (ofs
> mtd
->size
)
2264 return nand_block_checkbad (mtd
, ofs
, 1, 0);
2268 * nand_block_markbad - [MTD Interface] Mark the block at the given offset as bad
2269 * @mtd: MTD device structure
2270 * @ofs: offset relative to mtd start
2272 static int nand_block_markbad (struct mtd_info
*mtd
, loff_t ofs
)
2274 struct nand_chip
*this = mtd
->priv
;
2277 if ((ret
= nand_block_isbad(mtd
, ofs
))) {
2278 /* If it was bad already, return success and do nothing. */
2284 return this->block_markbad(mtd
, ofs
);
2288 * nand_scan - [NAND Interface] Scan for the NAND device
2289 * @mtd: MTD device structure
2290 * @maxchips: Number of chips to scan for
2292 * This fills out all the not initialized function pointers
2293 * with the defaults.
2294 * The flash ID is read and the mtd/chip structures are
2295 * filled with the appropriate values. Buffers are allocated if
2296 * they are not provided by the board driver
2299 int nand_scan (struct mtd_info
*mtd
, int maxchips
)
2301 int i
, nand_maf_id
, nand_dev_id
, busw
, maf_id
;
2302 struct nand_chip
*this = mtd
->priv
;
2304 /* Get buswidth to select the correct functions*/
2305 busw
= this->options
& NAND_BUSWIDTH_16
;
2307 /* check for proper chip_delay setup, set 20us if not */
2308 if (!this->chip_delay
)
2309 this->chip_delay
= 20;
2311 /* check, if a user supplied command function given */
2312 if (this->cmdfunc
== NULL
)
2313 this->cmdfunc
= nand_command
;
2315 /* check, if a user supplied wait function given */
2316 if (this->waitfunc
== NULL
)
2317 this->waitfunc
= nand_wait
;
2319 if (!this->select_chip
)
2320 this->select_chip
= nand_select_chip
;
2321 if (!this->write_byte
)
2322 this->write_byte
= busw
? nand_write_byte16
: nand_write_byte
;
2323 if (!this->read_byte
)
2324 this->read_byte
= busw
? nand_read_byte16
: nand_read_byte
;
2325 if (!this->write_word
)
2326 this->write_word
= nand_write_word
;
2327 if (!this->read_word
)
2328 this->read_word
= nand_read_word
;
2329 if (!this->block_bad
)
2330 this->block_bad
= nand_block_bad
;
2331 if (!this->block_markbad
)
2332 this->block_markbad
= nand_default_block_markbad
;
2333 if (!this->write_buf
)
2334 this->write_buf
= busw
? nand_write_buf16
: nand_write_buf
;
2335 if (!this->read_buf
)
2336 this->read_buf
= busw
? nand_read_buf16
: nand_read_buf
;
2337 if (!this->verify_buf
)
2338 this->verify_buf
= busw
? nand_verify_buf16
: nand_verify_buf
;
2339 if (!this->scan_bbt
)
2340 this->scan_bbt
= nand_default_bbt
;
2342 /* Select the device */
2343 this->select_chip(mtd
, 0);
2345 /* Send the command for reading device ID */
2346 this->cmdfunc (mtd
, NAND_CMD_READID
, 0x00, -1);
2348 /* Read manufacturer and device IDs */
2349 nand_maf_id
= this->read_byte(mtd
);
2350 nand_dev_id
= this->read_byte(mtd
);
2352 /* Print and store flash device information */
2353 for (i
= 0; nand_flash_ids
[i
].name
!= NULL
; i
++) {
2355 if (nand_dev_id
!= nand_flash_ids
[i
].id
)
2358 if (!mtd
->name
) mtd
->name
= nand_flash_ids
[i
].name
;
2359 this->chipsize
= nand_flash_ids
[i
].chipsize
<< 20;
2361 /* New devices have all the information in additional id bytes */
2362 if (!nand_flash_ids
[i
].pagesize
) {
2364 /* The 3rd id byte contains non relevant data ATM */
2365 extid
= this->read_byte(mtd
);
2366 /* The 4th id byte is the important one */
2367 extid
= this->read_byte(mtd
);
2369 mtd
->oobblock
= 1024 << (extid
& 0x3);
2372 mtd
->oobsize
= (8 << (extid
& 0x03)) * (mtd
->oobblock
/ 512);
2374 /* Calc blocksize. Blocksize is multiples of 64KiB */
2375 mtd
->erasesize
= (64 * 1024) << (extid
& 0x03);
2377 /* Get buswidth information */
2378 busw
= (extid
& 0x01) ? NAND_BUSWIDTH_16
: 0;
2381 /* Old devices have this data hardcoded in the
2382 * device id table */
2383 mtd
->erasesize
= nand_flash_ids
[i
].erasesize
;
2384 mtd
->oobblock
= nand_flash_ids
[i
].pagesize
;
2385 mtd
->oobsize
= mtd
->oobblock
/ 32;
2386 busw
= nand_flash_ids
[i
].options
& NAND_BUSWIDTH_16
;
2389 /* Try to identify manufacturer */
2390 for (maf_id
= 0; nand_manuf_ids
[maf_id
].id
!= 0x0; maf_id
++) {
2391 if (nand_manuf_ids
[maf_id
].id
== nand_maf_id
)
2395 /* Check, if buswidth is correct. Hardware drivers should set
2397 if (busw
!= (this->options
& NAND_BUSWIDTH_16
)) {
2398 printk (KERN_INFO
"NAND device: Manufacturer ID:"
2399 " 0x%02x, Chip ID: 0x%02x (%s %s)\n", nand_maf_id
, nand_dev_id
,
2400 nand_manuf_ids
[maf_id
].name
, mtd
->name
);
2401 printk (KERN_WARNING
2402 "NAND bus width %d instead %d bit\n",
2403 (this->options
& NAND_BUSWIDTH_16
) ? 16 : 8,
2405 this->select_chip(mtd
, -1);
2409 /* Calculate the address shift from the page size */
2410 this->page_shift
= ffs(mtd
->oobblock
) - 1;
2411 this->bbt_erase_shift
= this->phys_erase_shift
= ffs(mtd
->erasesize
) - 1;
2412 this->chip_shift
= ffs(this->chipsize
) - 1;
2414 /* Set the bad block position */
2415 this->badblockpos
= mtd
->oobblock
> 512 ?
2416 NAND_LARGE_BADBLOCK_POS
: NAND_SMALL_BADBLOCK_POS
;
2418 /* Get chip options, preserve non chip based options */
2419 this->options
&= ~NAND_CHIPOPTIONS_MSK
;
2420 this->options
|= nand_flash_ids
[i
].options
& NAND_CHIPOPTIONS_MSK
;
2421 /* Set this as a default. Board drivers can override it, if neccecary */
2422 this->options
|= NAND_NO_AUTOINCR
;
2423 /* Check if this is a not a samsung device. Do not clear the options
2424 * for chips which are not having an extended id.
2426 if (nand_maf_id
!= NAND_MFR_SAMSUNG
&& !nand_flash_ids
[i
].pagesize
)
2427 this->options
&= ~NAND_SAMSUNG_LP_OPTIONS
;
2429 /* Check for AND chips with 4 page planes */
2430 if (this->options
& NAND_4PAGE_ARRAY
)
2431 this->erase_cmd
= multi_erase_cmd
;
2433 this->erase_cmd
= single_erase_cmd
;
2435 /* Do not replace user supplied command function ! */
2436 if (mtd
->oobblock
> 512 && this->cmdfunc
== nand_command
)
2437 this->cmdfunc
= nand_command_lp
;
2439 printk (KERN_INFO
"NAND device: Manufacturer ID:"
2440 " 0x%02x, Chip ID: 0x%02x (%s %s)\n", nand_maf_id
, nand_dev_id
,
2441 nand_manuf_ids
[maf_id
].name
, nand_flash_ids
[i
].name
);
2445 if (!nand_flash_ids
[i
].name
) {
2446 printk (KERN_WARNING
"No NAND device found!!!\n");
2447 this->select_chip(mtd
, -1);
2451 for (i
=1; i
< maxchips
; i
++) {
2452 this->select_chip(mtd
, i
);
2454 /* Send the command for reading device ID */
2455 this->cmdfunc (mtd
, NAND_CMD_READID
, 0x00, -1);
2457 /* Read manufacturer and device IDs */
2458 if (nand_maf_id
!= this->read_byte(mtd
) ||
2459 nand_dev_id
!= this->read_byte(mtd
))
2463 printk(KERN_INFO
"%d NAND chips detected\n", i
);
2465 /* Allocate buffers, if neccecary */
2466 if (!this->oob_buf
) {
2468 len
= mtd
->oobsize
<< (this->phys_erase_shift
- this->page_shift
);
2469 this->oob_buf
= kmalloc (len
, GFP_KERNEL
);
2470 if (!this->oob_buf
) {
2471 printk (KERN_ERR
"nand_scan(): Cannot allocate oob_buf\n");
2474 this->options
|= NAND_OOBBUF_ALLOC
;
2477 if (!this->data_buf
) {
2479 len
= mtd
->oobblock
+ mtd
->oobsize
;
2480 this->data_buf
= kmalloc (len
, GFP_KERNEL
);
2481 if (!this->data_buf
) {
2482 if (this->options
& NAND_OOBBUF_ALLOC
)
2483 kfree (this->oob_buf
);
2484 printk (KERN_ERR
"nand_scan(): Cannot allocate data_buf\n");
2487 this->options
|= NAND_DATABUF_ALLOC
;
2490 /* Store the number of chips and calc total size for mtd */
2492 mtd
->size
= i
* this->chipsize
;
2493 /* Convert chipsize to number of pages per chip -1. */
2494 this->pagemask
= (this->chipsize
>> this->page_shift
) - 1;
2495 /* Preset the internal oob buffer */
2496 memset(this->oob_buf
, 0xff, mtd
->oobsize
<< (this->phys_erase_shift
- this->page_shift
));
2498 /* If no default placement scheme is given, select an
2499 * appropriate one */
2500 if (!this->autooob
) {
2501 /* Select the appropriate default oob placement scheme for
2502 * placement agnostic filesystems */
2503 switch (mtd
->oobsize
) {
2505 this->autooob
= &nand_oob_8
;
2508 this->autooob
= &nand_oob_16
;
2511 this->autooob
= &nand_oob_64
;
2514 printk (KERN_WARNING
"No oob scheme defined for oobsize %d\n",
2520 /* The number of bytes available for the filesystem to place fs dependend
2523 for (i
= 0; this->autooob
->oobfree
[i
][1]; i
++)
2524 mtd
->oobavail
+= this->autooob
->oobfree
[i
][1];
2527 * check ECC mode, default to software
2528 * if 3byte/512byte hardware ECC is selected and we have 256 byte pagesize
2529 * fallback to software ECC
2531 this->eccsize
= 256; /* set default eccsize */
2534 switch (this->eccmode
) {
2535 case NAND_ECC_HW12_2048
:
2536 if (mtd
->oobblock
< 2048) {
2537 printk(KERN_WARNING
"2048 byte HW ECC not possible on %d byte page size, fallback to SW ECC\n",
2539 this->eccmode
= NAND_ECC_SOFT
;
2540 this->calculate_ecc
= nand_calculate_ecc
;
2541 this->correct_data
= nand_correct_data
;
2543 this->eccsize
= 2048;
2546 case NAND_ECC_HW3_512
:
2547 case NAND_ECC_HW6_512
:
2548 case NAND_ECC_HW8_512
:
2549 if (mtd
->oobblock
== 256) {
2550 printk (KERN_WARNING
"512 byte HW ECC not possible on 256 Byte pagesize, fallback to SW ECC \n");
2551 this->eccmode
= NAND_ECC_SOFT
;
2552 this->calculate_ecc
= nand_calculate_ecc
;
2553 this->correct_data
= nand_correct_data
;
2555 this->eccsize
= 512; /* set eccsize to 512 */
2558 case NAND_ECC_HW3_256
:
2562 printk (KERN_WARNING
"NAND_ECC_NONE selected by board driver. This is not recommended !!\n");
2563 this->eccmode
= NAND_ECC_NONE
;
2567 this->calculate_ecc
= nand_calculate_ecc
;
2568 this->correct_data
= nand_correct_data
;
2572 printk (KERN_WARNING
"Invalid NAND_ECC_MODE %d\n", this->eccmode
);
2576 /* Check hardware ecc function availability and adjust number of ecc bytes per
2579 switch (this->eccmode
) {
2580 case NAND_ECC_HW12_2048
:
2581 this->eccbytes
+= 4;
2582 case NAND_ECC_HW8_512
:
2583 this->eccbytes
+= 2;
2584 case NAND_ECC_HW6_512
:
2585 this->eccbytes
+= 3;
2586 case NAND_ECC_HW3_512
:
2587 case NAND_ECC_HW3_256
:
2588 if (this->calculate_ecc
&& this->correct_data
&& this->enable_hwecc
)
2590 printk (KERN_WARNING
"No ECC functions supplied, Hardware ECC not possible\n");
2594 mtd
->eccsize
= this->eccsize
;
2596 /* Set the number of read / write steps for one page to ensure ECC generation */
2597 switch (this->eccmode
) {
2598 case NAND_ECC_HW12_2048
:
2599 this->eccsteps
= mtd
->oobblock
/ 2048;
2601 case NAND_ECC_HW3_512
:
2602 case NAND_ECC_HW6_512
:
2603 case NAND_ECC_HW8_512
:
2604 this->eccsteps
= mtd
->oobblock
/ 512;
2606 case NAND_ECC_HW3_256
:
2608 this->eccsteps
= mtd
->oobblock
/ 256;
2616 /* Initialize state, waitqueue and spinlock */
2617 this->state
= FL_READY
;
2618 init_waitqueue_head (&this->wq
);
2619 spin_lock_init (&this->chip_lock
);
2621 /* De-select the device */
2622 this->select_chip(mtd
, -1);
2624 /* Invalidate the pagebuffer reference */
2627 /* Fill in remaining MTD driver data */
2628 mtd
->type
= MTD_NANDFLASH
;
2629 mtd
->flags
= MTD_CAP_NANDFLASH
| MTD_ECC
;
2630 mtd
->ecctype
= MTD_ECC_SW
;
2631 mtd
->erase
= nand_erase
;
2633 mtd
->unpoint
= NULL
;
2634 mtd
->read
= nand_read
;
2635 mtd
->write
= nand_write
;
2636 mtd
->read_ecc
= nand_read_ecc
;
2637 mtd
->write_ecc
= nand_write_ecc
;
2638 mtd
->read_oob
= nand_read_oob
;
2639 mtd
->write_oob
= nand_write_oob
;
2641 mtd
->writev
= nand_writev
;
2642 mtd
->writev_ecc
= nand_writev_ecc
;
2643 mtd
->sync
= nand_sync
;
2646 mtd
->suspend
= NULL
;
2648 mtd
->block_isbad
= nand_block_isbad
;
2649 mtd
->block_markbad
= nand_block_markbad
;
2651 /* and make the autooob the default one */
2652 memcpy(&mtd
->oobinfo
, this->autooob
, sizeof(mtd
->oobinfo
));
2654 mtd
->owner
= THIS_MODULE
;
2656 /* Check, if we should skip the bad block table scan */
2657 if (this->options
& NAND_SKIP_BBTSCAN
)
2660 /* Build bad block table */
2661 return this->scan_bbt (mtd
);
2665 * nand_release - [NAND Interface] Free resources held by the NAND device
2666 * @mtd: MTD device structure
2668 void nand_release (struct mtd_info
*mtd
)
2670 struct nand_chip
*this = mtd
->priv
;
2672 #ifdef CONFIG_MTD_PARTITIONS
2673 /* Deregister partitions */
2674 del_mtd_partitions (mtd
);
2676 /* Deregister the device */
2677 del_mtd_device (mtd
);
2679 /* Free bad block table memory, if allocated */
2682 /* Buffer allocated by nand_scan ? */
2683 if (this->options
& NAND_OOBBUF_ALLOC
)
2684 kfree (this->oob_buf
);
2685 /* Buffer allocated by nand_scan ? */
2686 if (this->options
& NAND_DATABUF_ALLOC
)
2687 kfree (this->data_buf
);
2690 EXPORT_SYMBOL_GPL (nand_scan
);
2691 EXPORT_SYMBOL_GPL (nand_release
);
2693 MODULE_LICENSE ("GPL");
2694 MODULE_AUTHOR ("Steven J. Hill <sjhill@realitydiluted.com>, Thomas Gleixner <tglx@linutronix.de>");
2695 MODULE_DESCRIPTION ("Generic NAND flash driver code");