[PATCH] W1: w1_netlink: New init/fini netlink callbacks.
[linux-2.6/verdex.git] / drivers / sbus / char / bbc_envctrl.c
blobd44205d52bf3ce7a69a0da0678c0fe0d377f10d9
1 /* $Id: bbc_envctrl.c,v 1.4 2001/04/06 16:48:08 davem Exp $
2 * bbc_envctrl.c: UltraSPARC-III environment control driver.
4 * Copyright (C) 2001 David S. Miller (davem@redhat.com)
5 */
7 #define __KERNEL_SYSCALLS__
9 #include <linux/kernel.h>
10 #include <linux/kthread.h>
11 #include <linux/sched.h>
12 #include <linux/slab.h>
13 #include <linux/delay.h>
14 #include <asm/oplib.h>
15 #include <asm/ebus.h>
16 static int errno;
17 #include <asm/unistd.h>
19 #include "bbc_i2c.h"
20 #include "max1617.h"
22 #undef ENVCTRL_TRACE
24 /* WARNING: Making changes to this driver is very dangerous.
25 * If you misprogram the sensor chips they can
26 * cut the power on you instantly.
29 /* Two temperature sensors exist in the SunBLADE-1000 enclosure.
30 * Both are implemented using max1617 i2c devices. Each max1617
31 * monitors 2 temperatures, one for one of the cpu dies and the other
32 * for the ambient temperature.
34 * The max1617 is capable of being programmed with power-off
35 * temperature values, one low limit and one high limit. These
36 * can be controlled independently for the cpu or ambient temperature.
37 * If a limit is violated, the power is simply shut off. The frequency
38 * with which the max1617 does temperature sampling can be controlled
39 * as well.
41 * Three fans exist inside the machine, all three are controlled with
42 * an i2c digital to analog converter. There is a fan directed at the
43 * two processor slots, another for the rest of the enclosure, and the
44 * third is for the power supply. The first two fans may be speed
45 * controlled by changing the voltage fed to them. The third fan may
46 * only be completely off or on. The third fan is meant to only be
47 * disabled/enabled when entering/exiting the lowest power-saving
48 * mode of the machine.
50 * An environmental control kernel thread periodically monitors all
51 * temperature sensors. Based upon the samples it will adjust the
52 * fan speeds to try and keep the system within a certain temperature
53 * range (the goal being to make the fans as quiet as possible without
54 * allowing the system to get too hot).
56 * If the temperature begins to rise/fall outside of the acceptable
57 * operating range, a periodic warning will be sent to the kernel log.
58 * The fans will be put on full blast to attempt to deal with this
59 * situation. After exceeding the acceptable operating range by a
60 * certain threshold, the kernel thread will shut down the system.
61 * Here, the thread is attempting to shut the machine down cleanly
62 * before the hardware based power-off event is triggered.
65 /* These settings are in Celsius. We use these defaults only
66 * if we cannot interrogate the cpu-fru SEEPROM.
68 struct temp_limits {
69 s8 high_pwroff, high_shutdown, high_warn;
70 s8 low_warn, low_shutdown, low_pwroff;
73 static struct temp_limits cpu_temp_limits[2] = {
74 { 100, 85, 80, 5, -5, -10 },
75 { 100, 85, 80, 5, -5, -10 },
78 static struct temp_limits amb_temp_limits[2] = {
79 { 65, 55, 40, 5, -5, -10 },
80 { 65, 55, 40, 5, -5, -10 },
83 enum fan_action { FAN_SLOWER, FAN_SAME, FAN_FASTER, FAN_FULLBLAST, FAN_STATE_MAX };
85 struct bbc_cpu_temperature {
86 struct bbc_cpu_temperature *next;
88 struct bbc_i2c_client *client;
89 int index;
91 /* Current readings, and history. */
92 s8 curr_cpu_temp;
93 s8 curr_amb_temp;
94 s8 prev_cpu_temp;
95 s8 prev_amb_temp;
96 s8 avg_cpu_temp;
97 s8 avg_amb_temp;
99 int sample_tick;
101 enum fan_action fan_todo[2];
102 #define FAN_AMBIENT 0
103 #define FAN_CPU 1
106 struct bbc_cpu_temperature *all_bbc_temps;
108 struct bbc_fan_control {
109 struct bbc_fan_control *next;
111 struct bbc_i2c_client *client;
112 int index;
114 int psupply_fan_on;
115 int cpu_fan_speed;
116 int system_fan_speed;
119 struct bbc_fan_control *all_bbc_fans;
121 #define CPU_FAN_REG 0xf0
122 #define SYS_FAN_REG 0xf2
123 #define PSUPPLY_FAN_REG 0xf4
125 #define FAN_SPEED_MIN 0x0c
126 #define FAN_SPEED_MAX 0x3f
128 #define PSUPPLY_FAN_ON 0x1f
129 #define PSUPPLY_FAN_OFF 0x00
131 static void set_fan_speeds(struct bbc_fan_control *fp)
133 /* Put temperatures into range so we don't mis-program
134 * the hardware.
136 if (fp->cpu_fan_speed < FAN_SPEED_MIN)
137 fp->cpu_fan_speed = FAN_SPEED_MIN;
138 if (fp->cpu_fan_speed > FAN_SPEED_MAX)
139 fp->cpu_fan_speed = FAN_SPEED_MAX;
140 if (fp->system_fan_speed < FAN_SPEED_MIN)
141 fp->system_fan_speed = FAN_SPEED_MIN;
142 if (fp->system_fan_speed > FAN_SPEED_MAX)
143 fp->system_fan_speed = FAN_SPEED_MAX;
144 #ifdef ENVCTRL_TRACE
145 printk("fan%d: Changed fan speed to cpu(%02x) sys(%02x)\n",
146 fp->index,
147 fp->cpu_fan_speed, fp->system_fan_speed);
148 #endif
150 bbc_i2c_writeb(fp->client, fp->cpu_fan_speed, CPU_FAN_REG);
151 bbc_i2c_writeb(fp->client, fp->system_fan_speed, SYS_FAN_REG);
152 bbc_i2c_writeb(fp->client,
153 (fp->psupply_fan_on ?
154 PSUPPLY_FAN_ON : PSUPPLY_FAN_OFF),
155 PSUPPLY_FAN_REG);
158 static void get_current_temps(struct bbc_cpu_temperature *tp)
160 tp->prev_amb_temp = tp->curr_amb_temp;
161 bbc_i2c_readb(tp->client,
162 (unsigned char *) &tp->curr_amb_temp,
163 MAX1617_AMB_TEMP);
164 tp->prev_cpu_temp = tp->curr_cpu_temp;
165 bbc_i2c_readb(tp->client,
166 (unsigned char *) &tp->curr_cpu_temp,
167 MAX1617_CPU_TEMP);
168 #ifdef ENVCTRL_TRACE
169 printk("temp%d: cpu(%d C) amb(%d C)\n",
170 tp->index,
171 (int) tp->curr_cpu_temp, (int) tp->curr_amb_temp);
172 #endif
176 static void do_envctrl_shutdown(struct bbc_cpu_temperature *tp)
178 static int shutting_down = 0;
179 static char *envp[] = { "HOME=/", "TERM=linux", "PATH=/sbin:/usr/sbin:/bin:/usr/bin", NULL };
180 char *argv[] = { "/sbin/shutdown", "-h", "now", NULL };
181 char *type = "???";
182 s8 val = -1;
184 if (shutting_down != 0)
185 return;
187 if (tp->curr_amb_temp >= amb_temp_limits[tp->index].high_shutdown ||
188 tp->curr_amb_temp < amb_temp_limits[tp->index].low_shutdown) {
189 type = "ambient";
190 val = tp->curr_amb_temp;
191 } else if (tp->curr_cpu_temp >= cpu_temp_limits[tp->index].high_shutdown ||
192 tp->curr_cpu_temp < cpu_temp_limits[tp->index].low_shutdown) {
193 type = "CPU";
194 val = tp->curr_cpu_temp;
197 printk(KERN_CRIT "temp%d: Outside of safe %s "
198 "operating temperature, %d C.\n",
199 tp->index, type, val);
201 printk(KERN_CRIT "kenvctrld: Shutting down the system now.\n");
203 shutting_down = 1;
204 if (execve("/sbin/shutdown", argv, envp) < 0)
205 printk(KERN_CRIT "envctrl: shutdown execution failed\n");
208 #define WARN_INTERVAL (30 * HZ)
210 static void analyze_ambient_temp(struct bbc_cpu_temperature *tp, unsigned long *last_warn, int tick)
212 int ret = 0;
214 if (time_after(jiffies, (*last_warn + WARN_INTERVAL))) {
215 if (tp->curr_amb_temp >=
216 amb_temp_limits[tp->index].high_warn) {
217 printk(KERN_WARNING "temp%d: "
218 "Above safe ambient operating temperature, %d C.\n",
219 tp->index, (int) tp->curr_amb_temp);
220 ret = 1;
221 } else if (tp->curr_amb_temp <
222 amb_temp_limits[tp->index].low_warn) {
223 printk(KERN_WARNING "temp%d: "
224 "Below safe ambient operating temperature, %d C.\n",
225 tp->index, (int) tp->curr_amb_temp);
226 ret = 1;
228 if (ret)
229 *last_warn = jiffies;
230 } else if (tp->curr_amb_temp >= amb_temp_limits[tp->index].high_warn ||
231 tp->curr_amb_temp < amb_temp_limits[tp->index].low_warn)
232 ret = 1;
234 /* Now check the shutdown limits. */
235 if (tp->curr_amb_temp >= amb_temp_limits[tp->index].high_shutdown ||
236 tp->curr_amb_temp < amb_temp_limits[tp->index].low_shutdown) {
237 do_envctrl_shutdown(tp);
238 ret = 1;
241 if (ret) {
242 tp->fan_todo[FAN_AMBIENT] = FAN_FULLBLAST;
243 } else if ((tick & (8 - 1)) == 0) {
244 s8 amb_goal_hi = amb_temp_limits[tp->index].high_warn - 10;
245 s8 amb_goal_lo;
247 amb_goal_lo = amb_goal_hi - 3;
249 /* We do not try to avoid 'too cold' events. Basically we
250 * only try to deal with over-heating and fan noise reduction.
252 if (tp->avg_amb_temp < amb_goal_hi) {
253 if (tp->avg_amb_temp >= amb_goal_lo)
254 tp->fan_todo[FAN_AMBIENT] = FAN_SAME;
255 else
256 tp->fan_todo[FAN_AMBIENT] = FAN_SLOWER;
257 } else {
258 tp->fan_todo[FAN_AMBIENT] = FAN_FASTER;
260 } else {
261 tp->fan_todo[FAN_AMBIENT] = FAN_SAME;
265 static void analyze_cpu_temp(struct bbc_cpu_temperature *tp, unsigned long *last_warn, int tick)
267 int ret = 0;
269 if (time_after(jiffies, (*last_warn + WARN_INTERVAL))) {
270 if (tp->curr_cpu_temp >=
271 cpu_temp_limits[tp->index].high_warn) {
272 printk(KERN_WARNING "temp%d: "
273 "Above safe CPU operating temperature, %d C.\n",
274 tp->index, (int) tp->curr_cpu_temp);
275 ret = 1;
276 } else if (tp->curr_cpu_temp <
277 cpu_temp_limits[tp->index].low_warn) {
278 printk(KERN_WARNING "temp%d: "
279 "Below safe CPU operating temperature, %d C.\n",
280 tp->index, (int) tp->curr_cpu_temp);
281 ret = 1;
283 if (ret)
284 *last_warn = jiffies;
285 } else if (tp->curr_cpu_temp >= cpu_temp_limits[tp->index].high_warn ||
286 tp->curr_cpu_temp < cpu_temp_limits[tp->index].low_warn)
287 ret = 1;
289 /* Now check the shutdown limits. */
290 if (tp->curr_cpu_temp >= cpu_temp_limits[tp->index].high_shutdown ||
291 tp->curr_cpu_temp < cpu_temp_limits[tp->index].low_shutdown) {
292 do_envctrl_shutdown(tp);
293 ret = 1;
296 if (ret) {
297 tp->fan_todo[FAN_CPU] = FAN_FULLBLAST;
298 } else if ((tick & (8 - 1)) == 0) {
299 s8 cpu_goal_hi = cpu_temp_limits[tp->index].high_warn - 10;
300 s8 cpu_goal_lo;
302 cpu_goal_lo = cpu_goal_hi - 3;
304 /* We do not try to avoid 'too cold' events. Basically we
305 * only try to deal with over-heating and fan noise reduction.
307 if (tp->avg_cpu_temp < cpu_goal_hi) {
308 if (tp->avg_cpu_temp >= cpu_goal_lo)
309 tp->fan_todo[FAN_CPU] = FAN_SAME;
310 else
311 tp->fan_todo[FAN_CPU] = FAN_SLOWER;
312 } else {
313 tp->fan_todo[FAN_CPU] = FAN_FASTER;
315 } else {
316 tp->fan_todo[FAN_CPU] = FAN_SAME;
320 static void analyze_temps(struct bbc_cpu_temperature *tp, unsigned long *last_warn)
322 tp->avg_amb_temp = (s8)((int)((int)tp->avg_amb_temp + (int)tp->curr_amb_temp) / 2);
323 tp->avg_cpu_temp = (s8)((int)((int)tp->avg_cpu_temp + (int)tp->curr_cpu_temp) / 2);
325 analyze_ambient_temp(tp, last_warn, tp->sample_tick);
326 analyze_cpu_temp(tp, last_warn, tp->sample_tick);
328 tp->sample_tick++;
331 static enum fan_action prioritize_fan_action(int which_fan)
333 struct bbc_cpu_temperature *tp;
334 enum fan_action decision = FAN_STATE_MAX;
336 /* Basically, prioritize what the temperature sensors
337 * recommend we do, and perform that action on all the
338 * fans.
340 for (tp = all_bbc_temps; tp; tp = tp->next) {
341 if (tp->fan_todo[which_fan] == FAN_FULLBLAST) {
342 decision = FAN_FULLBLAST;
343 break;
345 if (tp->fan_todo[which_fan] == FAN_SAME &&
346 decision != FAN_FASTER)
347 decision = FAN_SAME;
348 else if (tp->fan_todo[which_fan] == FAN_FASTER)
349 decision = FAN_FASTER;
350 else if (decision != FAN_FASTER &&
351 decision != FAN_SAME &&
352 tp->fan_todo[which_fan] == FAN_SLOWER)
353 decision = FAN_SLOWER;
355 if (decision == FAN_STATE_MAX)
356 decision = FAN_SAME;
358 return decision;
361 static int maybe_new_ambient_fan_speed(struct bbc_fan_control *fp)
363 enum fan_action decision = prioritize_fan_action(FAN_AMBIENT);
364 int ret;
366 if (decision == FAN_SAME)
367 return 0;
369 ret = 1;
370 if (decision == FAN_FULLBLAST) {
371 if (fp->system_fan_speed >= FAN_SPEED_MAX)
372 ret = 0;
373 else
374 fp->system_fan_speed = FAN_SPEED_MAX;
375 } else {
376 if (decision == FAN_FASTER) {
377 if (fp->system_fan_speed >= FAN_SPEED_MAX)
378 ret = 0;
379 else
380 fp->system_fan_speed += 2;
381 } else {
382 int orig_speed = fp->system_fan_speed;
384 if (orig_speed <= FAN_SPEED_MIN ||
385 orig_speed <= (fp->cpu_fan_speed - 3))
386 ret = 0;
387 else
388 fp->system_fan_speed -= 1;
392 return ret;
395 static int maybe_new_cpu_fan_speed(struct bbc_fan_control *fp)
397 enum fan_action decision = prioritize_fan_action(FAN_CPU);
398 int ret;
400 if (decision == FAN_SAME)
401 return 0;
403 ret = 1;
404 if (decision == FAN_FULLBLAST) {
405 if (fp->cpu_fan_speed >= FAN_SPEED_MAX)
406 ret = 0;
407 else
408 fp->cpu_fan_speed = FAN_SPEED_MAX;
409 } else {
410 if (decision == FAN_FASTER) {
411 if (fp->cpu_fan_speed >= FAN_SPEED_MAX)
412 ret = 0;
413 else {
414 fp->cpu_fan_speed += 2;
415 if (fp->system_fan_speed <
416 (fp->cpu_fan_speed - 3))
417 fp->system_fan_speed =
418 fp->cpu_fan_speed - 3;
420 } else {
421 if (fp->cpu_fan_speed <= FAN_SPEED_MIN)
422 ret = 0;
423 else
424 fp->cpu_fan_speed -= 1;
428 return ret;
431 static void maybe_new_fan_speeds(struct bbc_fan_control *fp)
433 int new;
435 new = maybe_new_ambient_fan_speed(fp);
436 new |= maybe_new_cpu_fan_speed(fp);
438 if (new)
439 set_fan_speeds(fp);
442 static void fans_full_blast(void)
444 struct bbc_fan_control *fp;
446 /* Since we will not be monitoring things anymore, put
447 * the fans on full blast.
449 for (fp = all_bbc_fans; fp; fp = fp->next) {
450 fp->cpu_fan_speed = FAN_SPEED_MAX;
451 fp->system_fan_speed = FAN_SPEED_MAX;
452 fp->psupply_fan_on = 1;
453 set_fan_speeds(fp);
457 #define POLL_INTERVAL (5 * 1000)
458 static unsigned long last_warning_jiffies;
459 static struct task_struct *kenvctrld_task;
461 static int kenvctrld(void *__unused)
463 printk(KERN_INFO "bbc_envctrl: kenvctrld starting...\n");
464 last_warning_jiffies = jiffies - WARN_INTERVAL;
465 for (;;) {
466 struct bbc_cpu_temperature *tp;
467 struct bbc_fan_control *fp;
469 msleep_interruptible(POLL_INTERVAL);
470 if (kthread_should_stop())
471 break;
473 for (tp = all_bbc_temps; tp; tp = tp->next) {
474 get_current_temps(tp);
475 analyze_temps(tp, &last_warning_jiffies);
477 for (fp = all_bbc_fans; fp; fp = fp->next)
478 maybe_new_fan_speeds(fp);
480 printk(KERN_INFO "bbc_envctrl: kenvctrld exiting...\n");
482 fans_full_blast();
484 return 0;
487 static void attach_one_temp(struct linux_ebus_child *echild, int temp_idx)
489 struct bbc_cpu_temperature *tp = kmalloc(sizeof(*tp), GFP_KERNEL);
491 if (!tp)
492 return;
493 memset(tp, 0, sizeof(*tp));
494 tp->client = bbc_i2c_attach(echild);
495 if (!tp->client) {
496 kfree(tp);
497 return;
500 tp->index = temp_idx;
502 struct bbc_cpu_temperature **tpp = &all_bbc_temps;
503 while (*tpp)
504 tpp = &((*tpp)->next);
505 tp->next = NULL;
506 *tpp = tp;
509 /* Tell it to convert once every 5 seconds, clear all cfg
510 * bits.
512 bbc_i2c_writeb(tp->client, 0x00, MAX1617_WR_CFG_BYTE);
513 bbc_i2c_writeb(tp->client, 0x02, MAX1617_WR_CVRATE_BYTE);
515 /* Program the hard temperature limits into the chip. */
516 bbc_i2c_writeb(tp->client, amb_temp_limits[tp->index].high_pwroff,
517 MAX1617_WR_AMB_HIGHLIM);
518 bbc_i2c_writeb(tp->client, amb_temp_limits[tp->index].low_pwroff,
519 MAX1617_WR_AMB_LOWLIM);
520 bbc_i2c_writeb(tp->client, cpu_temp_limits[tp->index].high_pwroff,
521 MAX1617_WR_CPU_HIGHLIM);
522 bbc_i2c_writeb(tp->client, cpu_temp_limits[tp->index].low_pwroff,
523 MAX1617_WR_CPU_LOWLIM);
525 get_current_temps(tp);
526 tp->prev_cpu_temp = tp->avg_cpu_temp = tp->curr_cpu_temp;
527 tp->prev_amb_temp = tp->avg_amb_temp = tp->curr_amb_temp;
529 tp->fan_todo[FAN_AMBIENT] = FAN_SAME;
530 tp->fan_todo[FAN_CPU] = FAN_SAME;
533 static void attach_one_fan(struct linux_ebus_child *echild, int fan_idx)
535 struct bbc_fan_control *fp = kmalloc(sizeof(*fp), GFP_KERNEL);
537 if (!fp)
538 return;
539 memset(fp, 0, sizeof(*fp));
540 fp->client = bbc_i2c_attach(echild);
541 if (!fp->client) {
542 kfree(fp);
543 return;
546 fp->index = fan_idx;
549 struct bbc_fan_control **fpp = &all_bbc_fans;
550 while (*fpp)
551 fpp = &((*fpp)->next);
552 fp->next = NULL;
553 *fpp = fp;
556 /* The i2c device controlling the fans is write-only.
557 * So the only way to keep track of the current power
558 * level fed to the fans is via software. Choose half
559 * power for cpu/system and 'on' fo the powersupply fan
560 * and set it now.
562 fp->psupply_fan_on = 1;
563 fp->cpu_fan_speed = (FAN_SPEED_MAX - FAN_SPEED_MIN) / 2;
564 fp->cpu_fan_speed += FAN_SPEED_MIN;
565 fp->system_fan_speed = (FAN_SPEED_MAX - FAN_SPEED_MIN) / 2;
566 fp->system_fan_speed += FAN_SPEED_MIN;
568 set_fan_speeds(fp);
571 int bbc_envctrl_init(void)
573 struct linux_ebus_child *echild;
574 int temp_index = 0;
575 int fan_index = 0;
576 int devidx = 0;
578 while ((echild = bbc_i2c_getdev(devidx++)) != NULL) {
579 if (!strcmp(echild->prom_name, "temperature"))
580 attach_one_temp(echild, temp_index++);
581 if (!strcmp(echild->prom_name, "fan-control"))
582 attach_one_fan(echild, fan_index++);
584 if (temp_index != 0 && fan_index != 0) {
585 kenvctrld_task = kthread_run(kenvctrld, NULL, "kenvctrld");
586 if (IS_ERR(kenvctrld_task))
587 return PTR_ERR(kenvctrld_task);
590 return 0;
593 static void destroy_one_temp(struct bbc_cpu_temperature *tp)
595 bbc_i2c_detach(tp->client);
596 kfree(tp);
599 static void destroy_one_fan(struct bbc_fan_control *fp)
601 bbc_i2c_detach(fp->client);
602 kfree(fp);
605 void bbc_envctrl_cleanup(void)
607 struct bbc_cpu_temperature *tp;
608 struct bbc_fan_control *fp;
610 kthread_stop(kenvctrld_task);
612 tp = all_bbc_temps;
613 while (tp != NULL) {
614 struct bbc_cpu_temperature *next = tp->next;
615 destroy_one_temp(tp);
616 tp = next;
618 all_bbc_temps = NULL;
620 fp = all_bbc_fans;
621 while (fp != NULL) {
622 struct bbc_fan_control *next = fp->next;
623 destroy_one_fan(fp);
624 fp = next;
626 all_bbc_fans = NULL;