[PATCH] W1: w1_netlink: New init/fini netlink callbacks.
[linux-2.6/verdex.git] / drivers / scsi / aacraid / commctrl.c
blob71f1cad9b5f077bf8e5ad1bb3024135e5875c3c7
1 /*
2 * Adaptec AAC series RAID controller driver
3 * (c) Copyright 2001 Red Hat Inc. <alan@redhat.com>
5 * based on the old aacraid driver that is..
6 * Adaptec aacraid device driver for Linux.
8 * Copyright (c) 2000 Adaptec, Inc. (aacraid@adaptec.com)
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2, or (at your option)
13 * any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; see the file COPYING. If not, write to
22 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
24 * Module Name:
25 * commctrl.c
27 * Abstract: Contains all routines for control of the AFA comm layer
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/types.h>
34 #include <linux/sched.h>
35 #include <linux/pci.h>
36 #include <linux/spinlock.h>
37 #include <linux/slab.h>
38 #include <linux/completion.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/blkdev.h>
41 #include <asm/semaphore.h>
42 #include <asm/uaccess.h>
44 #include "aacraid.h"
46 /**
47 * ioctl_send_fib - send a FIB from userspace
48 * @dev: adapter is being processed
49 * @arg: arguments to the ioctl call
51 * This routine sends a fib to the adapter on behalf of a user level
52 * program.
54 # define AAC_DEBUG_PREAMBLE KERN_INFO
55 # define AAC_DEBUG_POSTAMBLE
57 static int ioctl_send_fib(struct aac_dev * dev, void __user *arg)
59 struct hw_fib * kfib;
60 struct fib *fibptr;
61 struct hw_fib * hw_fib = (struct hw_fib *)0;
62 dma_addr_t hw_fib_pa = (dma_addr_t)0LL;
63 unsigned size;
64 int retval;
66 fibptr = fib_alloc(dev);
67 if(fibptr == NULL) {
68 return -ENOMEM;
71 kfib = fibptr->hw_fib;
73 * First copy in the header so that we can check the size field.
75 if (copy_from_user((void *)kfib, arg, sizeof(struct aac_fibhdr))) {
76 fib_free(fibptr);
77 return -EFAULT;
80 * Since we copy based on the fib header size, make sure that we
81 * will not overrun the buffer when we copy the memory. Return
82 * an error if we would.
84 size = le16_to_cpu(kfib->header.Size) + sizeof(struct aac_fibhdr);
85 if (size < le16_to_cpu(kfib->header.SenderSize))
86 size = le16_to_cpu(kfib->header.SenderSize);
87 if (size > dev->max_fib_size) {
88 /* Highjack the hw_fib */
89 hw_fib = fibptr->hw_fib;
90 hw_fib_pa = fibptr->hw_fib_pa;
91 fibptr->hw_fib = kfib = pci_alloc_consistent(dev->pdev, size, &fibptr->hw_fib_pa);
92 memset(((char *)kfib) + dev->max_fib_size, 0, size - dev->max_fib_size);
93 memcpy(kfib, hw_fib, dev->max_fib_size);
96 if (copy_from_user(kfib, arg, size)) {
97 retval = -EFAULT;
98 goto cleanup;
101 if (kfib->header.Command == cpu_to_le16(TakeABreakPt)) {
102 aac_adapter_interrupt(dev);
104 * Since we didn't really send a fib, zero out the state to allow
105 * cleanup code not to assert.
107 kfib->header.XferState = 0;
108 } else {
109 retval = fib_send(le16_to_cpu(kfib->header.Command), fibptr,
110 le16_to_cpu(kfib->header.Size) , FsaNormal,
111 1, 1, NULL, NULL);
112 if (retval) {
113 goto cleanup;
115 if (fib_complete(fibptr) != 0) {
116 retval = -EINVAL;
117 goto cleanup;
121 * Make sure that the size returned by the adapter (which includes
122 * the header) is less than or equal to the size of a fib, so we
123 * don't corrupt application data. Then copy that size to the user
124 * buffer. (Don't try to add the header information again, since it
125 * was already included by the adapter.)
128 retval = 0;
129 if (copy_to_user(arg, (void *)kfib, size))
130 retval = -EFAULT;
131 cleanup:
132 if (hw_fib) {
133 pci_free_consistent(dev->pdev, size, kfib, fibptr->hw_fib_pa);
134 fibptr->hw_fib_pa = hw_fib_pa;
135 fibptr->hw_fib = hw_fib;
137 fib_free(fibptr);
138 return retval;
142 * open_getadapter_fib - Get the next fib
144 * This routine will get the next Fib, if available, from the AdapterFibContext
145 * passed in from the user.
148 static int open_getadapter_fib(struct aac_dev * dev, void __user *arg)
150 struct aac_fib_context * fibctx;
151 int status;
153 fibctx = kmalloc(sizeof(struct aac_fib_context), GFP_KERNEL);
154 if (fibctx == NULL) {
155 status = -ENOMEM;
156 } else {
157 unsigned long flags;
158 struct list_head * entry;
159 struct aac_fib_context * context;
161 fibctx->type = FSAFS_NTC_GET_ADAPTER_FIB_CONTEXT;
162 fibctx->size = sizeof(struct aac_fib_context);
164 * Yes yes, I know this could be an index, but we have a
165 * better guarantee of uniqueness for the locked loop below.
166 * Without the aid of a persistent history, this also helps
167 * reduce the chance that the opaque context would be reused.
169 fibctx->unique = (u32)((ulong)fibctx & 0xFFFFFFFF);
171 * Initialize the mutex used to wait for the next AIF.
173 init_MUTEX_LOCKED(&fibctx->wait_sem);
174 fibctx->wait = 0;
176 * Initialize the fibs and set the count of fibs on
177 * the list to 0.
179 fibctx->count = 0;
180 INIT_LIST_HEAD(&fibctx->fib_list);
181 fibctx->jiffies = jiffies/HZ;
183 * Now add this context onto the adapter's
184 * AdapterFibContext list.
186 spin_lock_irqsave(&dev->fib_lock, flags);
187 /* Ensure that we have a unique identifier */
188 entry = dev->fib_list.next;
189 while (entry != &dev->fib_list) {
190 context = list_entry(entry, struct aac_fib_context, next);
191 if (context->unique == fibctx->unique) {
192 /* Not unique (32 bits) */
193 fibctx->unique++;
194 entry = dev->fib_list.next;
195 } else {
196 entry = entry->next;
199 list_add_tail(&fibctx->next, &dev->fib_list);
200 spin_unlock_irqrestore(&dev->fib_lock, flags);
201 if (copy_to_user(arg, &fibctx->unique,
202 sizeof(fibctx->unique))) {
203 status = -EFAULT;
204 } else {
205 status = 0;
208 return status;
212 * next_getadapter_fib - get the next fib
213 * @dev: adapter to use
214 * @arg: ioctl argument
216 * This routine will get the next Fib, if available, from the AdapterFibContext
217 * passed in from the user.
220 static int next_getadapter_fib(struct aac_dev * dev, void __user *arg)
222 struct fib_ioctl f;
223 struct fib *fib;
224 struct aac_fib_context *fibctx;
225 int status;
226 struct list_head * entry;
227 unsigned long flags;
229 if(copy_from_user((void *)&f, arg, sizeof(struct fib_ioctl)))
230 return -EFAULT;
232 * Verify that the HANDLE passed in was a valid AdapterFibContext
234 * Search the list of AdapterFibContext addresses on the adapter
235 * to be sure this is a valid address
237 entry = dev->fib_list.next;
238 fibctx = NULL;
240 while (entry != &dev->fib_list) {
241 fibctx = list_entry(entry, struct aac_fib_context, next);
243 * Extract the AdapterFibContext from the Input parameters.
245 if (fibctx->unique == f.fibctx) { /* We found a winner */
246 break;
248 entry = entry->next;
249 fibctx = NULL;
251 if (!fibctx) {
252 dprintk ((KERN_INFO "Fib Context not found\n"));
253 return -EINVAL;
256 if((fibctx->type != FSAFS_NTC_GET_ADAPTER_FIB_CONTEXT) ||
257 (fibctx->size != sizeof(struct aac_fib_context))) {
258 dprintk ((KERN_INFO "Fib Context corrupt?\n"));
259 return -EINVAL;
261 status = 0;
262 spin_lock_irqsave(&dev->fib_lock, flags);
264 * If there are no fibs to send back, then either wait or return
265 * -EAGAIN
267 return_fib:
268 if (!list_empty(&fibctx->fib_list)) {
269 struct list_head * entry;
271 * Pull the next fib from the fibs
273 entry = fibctx->fib_list.next;
274 list_del(entry);
276 fib = list_entry(entry, struct fib, fiblink);
277 fibctx->count--;
278 spin_unlock_irqrestore(&dev->fib_lock, flags);
279 if (copy_to_user(f.fib, fib->hw_fib, sizeof(struct hw_fib))) {
280 kfree(fib->hw_fib);
281 kfree(fib);
282 return -EFAULT;
285 * Free the space occupied by this copy of the fib.
287 kfree(fib->hw_fib);
288 kfree(fib);
289 status = 0;
290 } else {
291 spin_unlock_irqrestore(&dev->fib_lock, flags);
292 if (f.wait) {
293 if(down_interruptible(&fibctx->wait_sem) < 0) {
294 status = -EINTR;
295 } else {
296 /* Lock again and retry */
297 spin_lock_irqsave(&dev->fib_lock, flags);
298 goto return_fib;
300 } else {
301 status = -EAGAIN;
304 fibctx->jiffies = jiffies/HZ;
305 return status;
308 int aac_close_fib_context(struct aac_dev * dev, struct aac_fib_context * fibctx)
310 struct fib *fib;
313 * First free any FIBs that have not been consumed.
315 while (!list_empty(&fibctx->fib_list)) {
316 struct list_head * entry;
318 * Pull the next fib from the fibs
320 entry = fibctx->fib_list.next;
321 list_del(entry);
322 fib = list_entry(entry, struct fib, fiblink);
323 fibctx->count--;
325 * Free the space occupied by this copy of the fib.
327 kfree(fib->hw_fib);
328 kfree(fib);
331 * Remove the Context from the AdapterFibContext List
333 list_del(&fibctx->next);
335 * Invalidate context
337 fibctx->type = 0;
339 * Free the space occupied by the Context
341 kfree(fibctx);
342 return 0;
346 * close_getadapter_fib - close down user fib context
347 * @dev: adapter
348 * @arg: ioctl arguments
350 * This routine will close down the fibctx passed in from the user.
353 static int close_getadapter_fib(struct aac_dev * dev, void __user *arg)
355 struct aac_fib_context *fibctx;
356 int status;
357 unsigned long flags;
358 struct list_head * entry;
361 * Verify that the HANDLE passed in was a valid AdapterFibContext
363 * Search the list of AdapterFibContext addresses on the adapter
364 * to be sure this is a valid address
367 entry = dev->fib_list.next;
368 fibctx = NULL;
370 while(entry != &dev->fib_list) {
371 fibctx = list_entry(entry, struct aac_fib_context, next);
373 * Extract the fibctx from the input parameters
375 if (fibctx->unique == (u32)(unsigned long)arg) {
376 /* We found a winner */
377 break;
379 entry = entry->next;
380 fibctx = NULL;
383 if (!fibctx)
384 return 0; /* Already gone */
386 if((fibctx->type != FSAFS_NTC_GET_ADAPTER_FIB_CONTEXT) ||
387 (fibctx->size != sizeof(struct aac_fib_context)))
388 return -EINVAL;
389 spin_lock_irqsave(&dev->fib_lock, flags);
390 status = aac_close_fib_context(dev, fibctx);
391 spin_unlock_irqrestore(&dev->fib_lock, flags);
392 return status;
396 * check_revision - close down user fib context
397 * @dev: adapter
398 * @arg: ioctl arguments
400 * This routine returns the driver version.
401 * Under Linux, there have been no version incompatibilities, so this is
402 * simple!
405 static int check_revision(struct aac_dev *dev, void __user *arg)
407 struct revision response;
408 char *driver_version = aac_driver_version;
409 u32 version;
411 response.compat = cpu_to_le32(1);
412 version = (simple_strtol(driver_version,
413 &driver_version, 10) << 24) | 0x00000400;
414 version += simple_strtol(driver_version + 1, &driver_version, 10) << 16;
415 version += simple_strtol(driver_version + 1, NULL, 10);
416 response.version = cpu_to_le32(version);
417 # if (defined(AAC_DRIVER_BUILD))
418 response.build = cpu_to_le32(AAC_DRIVER_BUILD);
419 # else
420 response.build = cpu_to_le32(9999);
421 # endif
423 if (copy_to_user(arg, &response, sizeof(response)))
424 return -EFAULT;
425 return 0;
431 * aac_send_raw_scb
435 static int aac_send_raw_srb(struct aac_dev* dev, void __user * arg)
437 struct fib* srbfib;
438 int status;
439 struct aac_srb *srbcmd = NULL;
440 struct user_aac_srb *user_srbcmd = NULL;
441 struct user_aac_srb __user *user_srb = arg;
442 struct aac_srb_reply __user *user_reply;
443 struct aac_srb_reply* reply;
444 u32 fibsize = 0;
445 u32 flags = 0;
446 s32 rcode = 0;
447 u32 data_dir;
448 void __user *sg_user[32];
449 void *sg_list[32];
450 u32 sg_indx = 0;
451 u32 byte_count = 0;
452 u32 actual_fibsize = 0;
453 int i;
456 if (!capable(CAP_SYS_ADMIN)){
457 dprintk((KERN_DEBUG"aacraid: No permission to send raw srb\n"));
458 return -EPERM;
461 * Allocate and initialize a Fib then setup a BlockWrite command
463 if (!(srbfib = fib_alloc(dev))) {
464 return -ENOMEM;
466 fib_init(srbfib);
468 srbcmd = (struct aac_srb*) fib_data(srbfib);
470 memset(sg_list, 0, sizeof(sg_list)); /* cleanup may take issue */
471 if(copy_from_user(&fibsize, &user_srb->count,sizeof(u32))){
472 dprintk((KERN_DEBUG"aacraid: Could not copy data size from user\n"));
473 rcode = -EFAULT;
474 goto cleanup;
477 if (fibsize > (dev->max_fib_size - sizeof(struct aac_fibhdr))) {
478 rcode = -EINVAL;
479 goto cleanup;
482 user_srbcmd = kmalloc(fibsize, GFP_KERNEL);
483 if (!user_srbcmd) {
484 dprintk((KERN_DEBUG"aacraid: Could not make a copy of the srb\n"));
485 rcode = -ENOMEM;
486 goto cleanup;
488 if(copy_from_user(user_srbcmd, user_srb,fibsize)){
489 dprintk((KERN_DEBUG"aacraid: Could not copy srb from user\n"));
490 rcode = -EFAULT;
491 goto cleanup;
494 user_reply = arg+fibsize;
496 flags = user_srbcmd->flags; /* from user in cpu order */
497 // Fix up srb for endian and force some values
499 srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi); // Force this
500 srbcmd->channel = cpu_to_le32(user_srbcmd->channel);
501 srbcmd->id = cpu_to_le32(user_srbcmd->id);
502 srbcmd->lun = cpu_to_le32(user_srbcmd->lun);
503 srbcmd->timeout = cpu_to_le32(user_srbcmd->timeout);
504 srbcmd->flags = cpu_to_le32(flags);
505 srbcmd->retry_limit = 0; // Obsolete parameter
506 srbcmd->cdb_size = cpu_to_le32(user_srbcmd->cdb_size);
507 memcpy(srbcmd->cdb, user_srbcmd->cdb, sizeof(srbcmd->cdb));
509 switch (flags & (SRB_DataIn | SRB_DataOut)) {
510 case SRB_DataOut:
511 data_dir = DMA_TO_DEVICE;
512 break;
513 case (SRB_DataIn | SRB_DataOut):
514 data_dir = DMA_BIDIRECTIONAL;
515 break;
516 case SRB_DataIn:
517 data_dir = DMA_FROM_DEVICE;
518 break;
519 default:
520 data_dir = DMA_NONE;
522 if (user_srbcmd->sg.count > (sizeof(sg_list)/sizeof(sg_list[0]))) {
523 dprintk((KERN_DEBUG"aacraid: too many sg entries %d\n",
524 le32_to_cpu(srbcmd->sg.count)));
525 rcode = -EINVAL;
526 goto cleanup;
528 if (dev->dac_support == 1) {
529 struct user_sgmap64* upsg = (struct user_sgmap64*)&user_srbcmd->sg;
530 struct sgmap64* psg = (struct sgmap64*)&srbcmd->sg;
531 struct user_sgmap* usg;
532 byte_count = 0;
535 * This should also catch if user used the 32 bit sgmap
537 actual_fibsize = sizeof(struct aac_srb) -
538 sizeof(struct sgentry) +
539 ((upsg->count & 0xff) *
540 sizeof(struct sgentry));
541 if(actual_fibsize != fibsize){ // User made a mistake - should not continue
542 dprintk((KERN_DEBUG"aacraid: Bad Size specified in Raw SRB command\n"));
543 rcode = -EINVAL;
544 goto cleanup;
546 usg = kmalloc(actual_fibsize - sizeof(struct aac_srb)
547 + sizeof(struct sgmap), GFP_KERNEL);
548 if (!usg) {
549 dprintk((KERN_DEBUG"aacraid: Allocation error in Raw SRB command\n"));
550 rcode = -ENOMEM;
551 goto cleanup;
553 memcpy (usg, upsg, actual_fibsize - sizeof(struct aac_srb)
554 + sizeof(struct sgmap));
555 actual_fibsize = sizeof(struct aac_srb) -
556 sizeof(struct sgentry) + ((usg->count & 0xff) *
557 sizeof(struct sgentry64));
558 if ((data_dir == DMA_NONE) && upsg->count) {
559 kfree (usg);
560 dprintk((KERN_DEBUG"aacraid: SG with no direction specified in Raw SRB command\n"));
561 rcode = -EINVAL;
562 goto cleanup;
565 for (i = 0; i < usg->count; i++) {
566 u64 addr;
567 void* p;
568 /* Does this really need to be GFP_DMA? */
569 p = kmalloc(usg->sg[i].count,GFP_KERNEL|__GFP_DMA);
570 if(p == 0) {
571 kfree (usg);
572 dprintk((KERN_DEBUG"aacraid: Could not allocate SG buffer - size = %d buffer number %d of %d\n",
573 usg->sg[i].count,i,usg->count));
574 rcode = -ENOMEM;
575 goto cleanup;
577 sg_user[i] = (void __user *)usg->sg[i].addr;
578 sg_list[i] = p; // save so we can clean up later
579 sg_indx = i;
581 if( flags & SRB_DataOut ){
582 if(copy_from_user(p,sg_user[i],upsg->sg[i].count)){
583 kfree (usg);
584 dprintk((KERN_DEBUG"aacraid: Could not copy sg data from user\n"));
585 rcode = -EFAULT;
586 goto cleanup;
589 addr = pci_map_single(dev->pdev, p, usg->sg[i].count, data_dir);
591 psg->sg[i].addr[0] = cpu_to_le32(addr & 0xffffffff);
592 psg->sg[i].addr[1] = cpu_to_le32(addr>>32);
593 psg->sg[i].count = cpu_to_le32(usg->sg[i].count);
594 byte_count += usg->sg[i].count;
596 kfree (usg);
598 srbcmd->count = cpu_to_le32(byte_count);
599 psg->count = cpu_to_le32(sg_indx+1);
600 status = fib_send(ScsiPortCommand64, srbfib, actual_fibsize, FsaNormal, 1, 1,NULL,NULL);
601 } else {
602 struct user_sgmap* upsg = &user_srbcmd->sg;
603 struct sgmap* psg = &srbcmd->sg;
604 byte_count = 0;
606 actual_fibsize = sizeof (struct aac_srb) + (((user_srbcmd->sg.count & 0xff) - 1) * sizeof (struct sgentry));
607 if(actual_fibsize != fibsize){ // User made a mistake - should not continue
608 dprintk((KERN_DEBUG"aacraid: Bad Size specified in Raw SRB command\n"));
609 rcode = -EINVAL;
610 goto cleanup;
612 if ((data_dir == DMA_NONE) && upsg->count) {
613 dprintk((KERN_DEBUG"aacraid: SG with no direction specified in Raw SRB command\n"));
614 rcode = -EINVAL;
615 goto cleanup;
617 for (i = 0; i < upsg->count; i++) {
618 dma_addr_t addr;
619 void* p;
620 p = kmalloc(upsg->sg[i].count, GFP_KERNEL);
621 if(p == 0) {
622 dprintk((KERN_DEBUG"aacraid: Could not allocate SG buffer - size = %d buffer number %d of %d\n",
623 upsg->sg[i].count, i, upsg->count));
624 rcode = -ENOMEM;
625 goto cleanup;
627 sg_user[i] = (void __user *)upsg->sg[i].addr;
628 sg_list[i] = p; // save so we can clean up later
629 sg_indx = i;
631 if( flags & SRB_DataOut ){
632 if(copy_from_user(p, sg_user[i],
633 upsg->sg[i].count)) {
634 dprintk((KERN_DEBUG"aacraid: Could not copy sg data from user\n"));
635 rcode = -EFAULT;
636 goto cleanup;
639 addr = pci_map_single(dev->pdev, p,
640 upsg->sg[i].count, data_dir);
642 psg->sg[i].addr = cpu_to_le32(addr);
643 psg->sg[i].count = cpu_to_le32(upsg->sg[i].count);
644 byte_count += upsg->sg[i].count;
646 srbcmd->count = cpu_to_le32(byte_count);
647 psg->count = cpu_to_le32(sg_indx+1);
648 status = fib_send(ScsiPortCommand, srbfib, actual_fibsize, FsaNormal, 1, 1, NULL, NULL);
651 if (status != 0){
652 dprintk((KERN_DEBUG"aacraid: Could not send raw srb fib to hba\n"));
653 rcode = -ENXIO;
654 goto cleanup;
657 if( flags & SRB_DataIn ) {
658 for(i = 0 ; i <= sg_indx; i++){
659 byte_count = le32_to_cpu((dev->dac_support == 1)
660 ? ((struct sgmap64*)&srbcmd->sg)->sg[i].count
661 : srbcmd->sg.sg[i].count);
662 if(copy_to_user(sg_user[i], sg_list[i], byte_count)){
663 dprintk((KERN_DEBUG"aacraid: Could not copy sg data to user\n"));
664 rcode = -EFAULT;
665 goto cleanup;
671 reply = (struct aac_srb_reply *) fib_data(srbfib);
672 if(copy_to_user(user_reply,reply,sizeof(struct aac_srb_reply))){
673 dprintk((KERN_DEBUG"aacraid: Could not copy reply to user\n"));
674 rcode = -EFAULT;
675 goto cleanup;
678 cleanup:
679 kfree(user_srbcmd);
680 for(i=0; i <= sg_indx; i++){
681 kfree(sg_list[i]);
683 fib_complete(srbfib);
684 fib_free(srbfib);
686 return rcode;
689 struct aac_pci_info {
690 u32 bus;
691 u32 slot;
695 static int aac_get_pci_info(struct aac_dev* dev, void __user *arg)
697 struct aac_pci_info pci_info;
699 pci_info.bus = dev->pdev->bus->number;
700 pci_info.slot = PCI_SLOT(dev->pdev->devfn);
702 if (copy_to_user(arg, &pci_info, sizeof(struct aac_pci_info))) {
703 dprintk((KERN_DEBUG "aacraid: Could not copy pci info\n"));
704 return -EFAULT;
706 return 0;
710 int aac_do_ioctl(struct aac_dev * dev, int cmd, void __user *arg)
712 int status;
715 * HBA gets first crack
718 status = aac_dev_ioctl(dev, cmd, arg);
719 if(status != -ENOTTY)
720 return status;
722 switch (cmd) {
723 case FSACTL_MINIPORT_REV_CHECK:
724 status = check_revision(dev, arg);
725 break;
726 case FSACTL_SEND_LARGE_FIB:
727 case FSACTL_SENDFIB:
728 status = ioctl_send_fib(dev, arg);
729 break;
730 case FSACTL_OPEN_GET_ADAPTER_FIB:
731 status = open_getadapter_fib(dev, arg);
732 break;
733 case FSACTL_GET_NEXT_ADAPTER_FIB:
734 status = next_getadapter_fib(dev, arg);
735 break;
736 case FSACTL_CLOSE_GET_ADAPTER_FIB:
737 status = close_getadapter_fib(dev, arg);
738 break;
739 case FSACTL_SEND_RAW_SRB:
740 status = aac_send_raw_srb(dev,arg);
741 break;
742 case FSACTL_GET_PCI_INFO:
743 status = aac_get_pci_info(dev,arg);
744 break;
745 default:
746 status = -ENOTTY;
747 break;
749 return status;