2 * Device driver for the SYMBIOS/LSILOGIC 53C8XX and 53C1010 family
3 * of PCI-SCSI IO processors.
5 * Copyright (C) 1999-2001 Gerard Roudier <groudier@free.fr>
6 * Copyright (c) 2003-2005 Matthew Wilcox <matthew@wil.cx>
8 * This driver is derived from the Linux sym53c8xx driver.
9 * Copyright (C) 1998-2000 Gerard Roudier
11 * The sym53c8xx driver is derived from the ncr53c8xx driver that had been
12 * a port of the FreeBSD ncr driver to Linux-1.2.13.
14 * The original ncr driver has been written for 386bsd and FreeBSD by
15 * Wolfgang Stanglmeier <wolf@cologne.de>
16 * Stefan Esser <se@mi.Uni-Koeln.de>
17 * Copyright (C) 1994 Wolfgang Stanglmeier
19 * Other major contributions:
21 * NVRAM detection and reading.
22 * Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk>
24 *-----------------------------------------------------------------------------
26 * This program is free software; you can redistribute it and/or modify
27 * it under the terms of the GNU General Public License as published by
28 * the Free Software Foundation; either version 2 of the License, or
29 * (at your option) any later version.
31 * This program is distributed in the hope that it will be useful,
32 * but WITHOUT ANY WARRANTY; without even the implied warranty of
33 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
34 * GNU General Public License for more details.
36 * You should have received a copy of the GNU General Public License
37 * along with this program; if not, write to the Free Software
38 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
41 #include "sym_nvram.h"
44 #define SYM_DEBUG_GENERIC_SUPPORT
48 * Needed function prototypes.
50 static void sym_int_ma (struct sym_hcb
*np
);
51 static void sym_int_sir (struct sym_hcb
*np
);
52 static struct sym_ccb
*sym_alloc_ccb(struct sym_hcb
*np
);
53 static struct sym_ccb
*sym_ccb_from_dsa(struct sym_hcb
*np
, u32 dsa
);
54 static void sym_alloc_lcb_tags (struct sym_hcb
*np
, u_char tn
, u_char ln
);
55 static void sym_complete_error (struct sym_hcb
*np
, struct sym_ccb
*cp
);
56 static void sym_complete_ok (struct sym_hcb
*np
, struct sym_ccb
*cp
);
57 static int sym_compute_residual(struct sym_hcb
*np
, struct sym_ccb
*cp
);
60 * Print a buffer in hexadecimal format with a ".\n" at end.
62 static void sym_printl_hex(u_char
*p
, int n
)
70 * Print out the content of a SCSI message.
72 static int sym_show_msg (u_char
* msg
)
76 if (*msg
==M_EXTENDED
) {
78 if (i
-1>msg
[1]) break;
79 printf ("-%x",msg
[i
]);
82 } else if ((*msg
& 0xf0) == 0x20) {
83 printf ("-%x",msg
[1]);
89 static void sym_print_msg(struct sym_ccb
*cp
, char *label
, u_char
*msg
)
91 sym_print_addr(cp
->cmd
, "%s: ", label
);
97 static void sym_print_nego_msg(struct sym_hcb
*np
, int target
, char *label
, u_char
*msg
)
99 struct sym_tcb
*tp
= &np
->target
[target
];
100 dev_info(&tp
->starget
->dev
, "%s: ", label
);
107 * Print something that tells about extended errors.
109 void sym_print_xerr(struct scsi_cmnd
*cmd
, int x_status
)
111 if (x_status
& XE_PARITY_ERR
) {
112 sym_print_addr(cmd
, "unrecovered SCSI parity error.\n");
114 if (x_status
& XE_EXTRA_DATA
) {
115 sym_print_addr(cmd
, "extraneous data discarded.\n");
117 if (x_status
& XE_BAD_PHASE
) {
118 sym_print_addr(cmd
, "illegal scsi phase (4/5).\n");
120 if (x_status
& XE_SODL_UNRUN
) {
121 sym_print_addr(cmd
, "ODD transfer in DATA OUT phase.\n");
123 if (x_status
& XE_SWIDE_OVRUN
) {
124 sym_print_addr(cmd
, "ODD transfer in DATA IN phase.\n");
129 * Return a string for SCSI BUS mode.
131 static char *sym_scsi_bus_mode(int mode
)
134 case SMODE_HVD
: return "HVD";
135 case SMODE_SE
: return "SE";
136 case SMODE_LVD
: return "LVD";
142 * Soft reset the chip.
144 * Raising SRST when the chip is running may cause
145 * problems on dual function chips (see below).
146 * On the other hand, LVD devices need some delay
147 * to settle and report actual BUS mode in STEST4.
149 static void sym_chip_reset (struct sym_hcb
*np
)
151 OUTB(np
, nc_istat
, SRST
);
154 OUTB(np
, nc_istat
, 0);
156 udelay(2000); /* For BUS MODE to settle */
160 * Really soft reset the chip.:)
162 * Some 896 and 876 chip revisions may hang-up if we set
163 * the SRST (soft reset) bit at the wrong time when SCRIPTS
165 * So, we need to abort the current operation prior to
166 * soft resetting the chip.
168 static void sym_soft_reset (struct sym_hcb
*np
)
173 if (!(np
->features
& FE_ISTAT1
) || !(INB(np
, nc_istat1
) & SCRUN
))
176 OUTB(np
, nc_istat
, CABRT
);
177 for (i
= 100000 ; i
; --i
) {
178 istat
= INB(np
, nc_istat
);
182 else if (istat
& DIP
) {
183 if (INB(np
, nc_dstat
) & ABRT
)
188 OUTB(np
, nc_istat
, 0);
190 printf("%s: unable to abort current chip operation, "
191 "ISTAT=0x%02x.\n", sym_name(np
), istat
);
197 * Start reset process.
199 * The interrupt handler will reinitialize the chip.
201 static void sym_start_reset(struct sym_hcb
*np
)
203 sym_reset_scsi_bus(np
, 1);
206 int sym_reset_scsi_bus(struct sym_hcb
*np
, int enab_int
)
211 sym_soft_reset(np
); /* Soft reset the chip */
213 OUTW(np
, nc_sien
, RST
);
215 * Enable Tolerant, reset IRQD if present and
216 * properly set IRQ mode, prior to resetting the bus.
218 OUTB(np
, nc_stest3
, TE
);
219 OUTB(np
, nc_dcntl
, (np
->rv_dcntl
& IRQM
));
220 OUTB(np
, nc_scntl1
, CRST
);
224 if (!SYM_SETUP_SCSI_BUS_CHECK
)
227 * Check for no terminators or SCSI bus shorts to ground.
228 * Read SCSI data bus, data parity bits and control signals.
229 * We are expecting RESET to be TRUE and other signals to be
232 term
= INB(np
, nc_sstat0
);
233 term
= ((term
& 2) << 7) + ((term
& 1) << 17); /* rst sdp0 */
234 term
|= ((INB(np
, nc_sstat2
) & 0x01) << 26) | /* sdp1 */
235 ((INW(np
, nc_sbdl
) & 0xff) << 9) | /* d7-0 */
236 ((INW(np
, nc_sbdl
) & 0xff00) << 10) | /* d15-8 */
237 INB(np
, nc_sbcl
); /* req ack bsy sel atn msg cd io */
242 if (term
!= (2<<7)) {
243 printf("%s: suspicious SCSI data while resetting the BUS.\n",
245 printf("%s: %sdp0,d7-0,rst,req,ack,bsy,sel,atn,msg,c/d,i/o = "
246 "0x%lx, expecting 0x%lx\n",
248 (np
->features
& FE_WIDE
) ? "dp1,d15-8," : "",
249 (u_long
)term
, (u_long
)(2<<7));
250 if (SYM_SETUP_SCSI_BUS_CHECK
== 1)
254 OUTB(np
, nc_scntl1
, 0);
259 * Select SCSI clock frequency
261 static void sym_selectclock(struct sym_hcb
*np
, u_char scntl3
)
264 * If multiplier not present or not selected, leave here.
266 if (np
->multiplier
<= 1) {
267 OUTB(np
, nc_scntl3
, scntl3
);
271 if (sym_verbose
>= 2)
272 printf ("%s: enabling clock multiplier\n", sym_name(np
));
274 OUTB(np
, nc_stest1
, DBLEN
); /* Enable clock multiplier */
276 * Wait for the LCKFRQ bit to be set if supported by the chip.
277 * Otherwise wait 50 micro-seconds (at least).
279 if (np
->features
& FE_LCKFRQ
) {
281 while (!(INB(np
, nc_stest4
) & LCKFRQ
) && --i
> 0)
284 printf("%s: the chip cannot lock the frequency\n",
290 OUTB(np
, nc_stest3
, HSC
); /* Halt the scsi clock */
291 OUTB(np
, nc_scntl3
, scntl3
);
292 OUTB(np
, nc_stest1
, (DBLEN
|DBLSEL
));/* Select clock multiplier */
293 OUTB(np
, nc_stest3
, 0x00); /* Restart scsi clock */
298 * Determine the chip's clock frequency.
300 * This is essential for the negotiation of the synchronous
303 * Note: we have to return the correct value.
304 * THERE IS NO SAFE DEFAULT VALUE.
306 * Most NCR/SYMBIOS boards are delivered with a 40 Mhz clock.
307 * 53C860 and 53C875 rev. 1 support fast20 transfers but
308 * do not have a clock doubler and so are provided with a
309 * 80 MHz clock. All other fast20 boards incorporate a doubler
310 * and so should be delivered with a 40 MHz clock.
311 * The recent fast40 chips (895/896/895A/1010) use a 40 Mhz base
312 * clock and provide a clock quadrupler (160 Mhz).
316 * calculate SCSI clock frequency (in KHz)
318 static unsigned getfreq (struct sym_hcb
*np
, int gen
)
324 * Measure GEN timer delay in order
325 * to calculate SCSI clock frequency
327 * This code will never execute too
328 * many loop iterations (if DELAY is
329 * reasonably correct). It could get
330 * too low a delay (too high a freq.)
331 * if the CPU is slow executing the
332 * loop for some reason (an NMI, for
333 * example). For this reason we will
334 * if multiple measurements are to be
335 * performed trust the higher delay
336 * (lower frequency returned).
338 OUTW(np
, nc_sien
, 0); /* mask all scsi interrupts */
339 INW(np
, nc_sist
); /* clear pending scsi interrupt */
340 OUTB(np
, nc_dien
, 0); /* mask all dma interrupts */
341 INW(np
, nc_sist
); /* another one, just to be sure :) */
343 * The C1010-33 core does not report GEN in SIST,
344 * if this interrupt is masked in SIEN.
345 * I don't know yet if the C1010-66 behaves the same way.
347 if (np
->features
& FE_C10
) {
348 OUTW(np
, nc_sien
, GEN
);
349 OUTB(np
, nc_istat1
, SIRQD
);
351 OUTB(np
, nc_scntl3
, 4); /* set pre-scaler to divide by 3 */
352 OUTB(np
, nc_stime1
, 0); /* disable general purpose timer */
353 OUTB(np
, nc_stime1
, gen
); /* set to nominal delay of 1<<gen * 125us */
354 while (!(INW(np
, nc_sist
) & GEN
) && ms
++ < 100000)
355 udelay(1000/4); /* count in 1/4 of ms */
356 OUTB(np
, nc_stime1
, 0); /* disable general purpose timer */
358 * Undo C1010-33 specific settings.
360 if (np
->features
& FE_C10
) {
361 OUTW(np
, nc_sien
, 0);
362 OUTB(np
, nc_istat1
, 0);
365 * set prescaler to divide by whatever 0 means
366 * 0 ought to choose divide by 2, but appears
367 * to set divide by 3.5 mode in my 53c810 ...
369 OUTB(np
, nc_scntl3
, 0);
372 * adjust for prescaler, and convert into KHz
374 f
= ms
? ((1 << gen
) * (4340*4)) / ms
: 0;
377 * The C1010-33 result is biased by a factor
378 * of 2/3 compared to earlier chips.
380 if (np
->features
& FE_C10
)
383 if (sym_verbose
>= 2)
384 printf ("%s: Delay (GEN=%d): %u msec, %u KHz\n",
385 sym_name(np
), gen
, ms
/4, f
);
390 static unsigned sym_getfreq (struct sym_hcb
*np
)
395 getfreq (np
, gen
); /* throw away first result */
396 f1
= getfreq (np
, gen
);
397 f2
= getfreq (np
, gen
);
398 if (f1
> f2
) f1
= f2
; /* trust lower result */
403 * Get/probe chip SCSI clock frequency
405 static void sym_getclock (struct sym_hcb
*np
, int mult
)
407 unsigned char scntl3
= np
->sv_scntl3
;
408 unsigned char stest1
= np
->sv_stest1
;
414 * True with 875/895/896/895A with clock multiplier selected
416 if (mult
> 1 && (stest1
& (DBLEN
+DBLSEL
)) == DBLEN
+DBLSEL
) {
417 if (sym_verbose
>= 2)
418 printf ("%s: clock multiplier found\n", sym_name(np
));
419 np
->multiplier
= mult
;
423 * If multiplier not found or scntl3 not 7,5,3,
424 * reset chip and get frequency from general purpose timer.
425 * Otherwise trust scntl3 BIOS setting.
427 if (np
->multiplier
!= mult
|| (scntl3
& 7) < 3 || !(scntl3
& 1)) {
428 OUTB(np
, nc_stest1
, 0); /* make sure doubler is OFF */
429 f1
= sym_getfreq (np
);
432 printf ("%s: chip clock is %uKHz\n", sym_name(np
), f1
);
434 if (f1
< 45000) f1
= 40000;
435 else if (f1
< 55000) f1
= 50000;
438 if (f1
< 80000 && mult
> 1) {
439 if (sym_verbose
>= 2)
440 printf ("%s: clock multiplier assumed\n",
442 np
->multiplier
= mult
;
445 if ((scntl3
& 7) == 3) f1
= 40000;
446 else if ((scntl3
& 7) == 5) f1
= 80000;
449 f1
/= np
->multiplier
;
453 * Compute controller synchronous parameters.
455 f1
*= np
->multiplier
;
460 * Get/probe PCI clock frequency
462 static int sym_getpciclock (struct sym_hcb
*np
)
467 * For now, we only need to know about the actual
468 * PCI BUS clock frequency for C1010-66 chips.
471 if (np
->features
& FE_66MHZ
) {
475 OUTB(np
, nc_stest1
, SCLK
); /* Use the PCI clock as SCSI clock */
477 OUTB(np
, nc_stest1
, 0);
485 * SYMBIOS chip clock divisor table.
487 * Divisors are multiplied by 10,000,000 in order to make
488 * calculations more simple.
491 static u32 div_10M
[] = {2*_5M
, 3*_5M
, 4*_5M
, 6*_5M
, 8*_5M
, 12*_5M
, 16*_5M
};
494 * Get clock factor and sync divisor for a given
495 * synchronous factor period.
498 sym_getsync(struct sym_hcb
*np
, u_char dt
, u_char sfac
, u_char
*divp
, u_char
*fakp
)
500 u32 clk
= np
->clock_khz
; /* SCSI clock frequency in kHz */
501 int div
= np
->clock_divn
; /* Number of divisors supported */
502 u32 fak
; /* Sync factor in sxfer */
503 u32 per
; /* Period in tenths of ns */
504 u32 kpc
; /* (per * clk) */
508 * Compute the synchronous period in tenths of nano-seconds
510 if (dt
&& sfac
<= 9) per
= 125;
511 else if (sfac
<= 10) per
= 250;
512 else if (sfac
== 11) per
= 303;
513 else if (sfac
== 12) per
= 500;
514 else per
= 40 * sfac
;
522 * For earliest C10 revision 0, we cannot use extra
523 * clocks for the setting of the SCSI clocking.
524 * Note that this limits the lowest sync data transfer
525 * to 5 Mega-transfers per second and may result in
526 * using higher clock divisors.
529 if ((np
->features
& (FE_C10
|FE_U3EN
)) == FE_C10
) {
531 * Look for the lowest clock divisor that allows an
532 * output speed not faster than the period.
536 if (kpc
> (div_10M
[div
] << 2)) {
541 fak
= 0; /* No extra clocks */
542 if (div
== np
->clock_divn
) { /* Are we too fast ? */
552 * Look for the greatest clock divisor that allows an
553 * input speed faster than the period.
556 if (kpc
>= (div_10M
[div
] << 2)) break;
559 * Calculate the lowest clock factor that allows an output
560 * speed not faster than the period, and the max output speed.
561 * If fak >= 1 we will set both XCLKH_ST and XCLKH_DT.
562 * If fak >= 2 we will also set XCLKS_ST and XCLKS_DT.
565 fak
= (kpc
- 1) / (div_10M
[div
] << 1) + 1 - 2;
566 /* ret = ((2+fak)*div_10M[div])/np->clock_khz; */
568 fak
= (kpc
- 1) / div_10M
[div
] + 1 - 4;
569 /* ret = ((4+fak)*div_10M[div])/np->clock_khz; */
573 * Check against our hardware limits, or bugs :).
581 * Compute and return sync parameters.
590 * SYMBIOS chips allow burst lengths of 2, 4, 8, 16, 32, 64,
591 * 128 transfers. All chips support at least 16 transfers
592 * bursts. The 825A, 875 and 895 chips support bursts of up
593 * to 128 transfers and the 895A and 896 support bursts of up
594 * to 64 transfers. All other chips support up to 16
597 * For PCI 32 bit data transfers each transfer is a DWORD.
598 * It is a QUADWORD (8 bytes) for PCI 64 bit data transfers.
600 * We use log base 2 (burst length) as internal code, with
601 * value 0 meaning "burst disabled".
605 * Burst length from burst code.
607 #define burst_length(bc) (!(bc))? 0 : 1 << (bc)
610 * Burst code from io register bits.
612 #define burst_code(dmode, ctest4, ctest5) \
613 (ctest4) & 0x80? 0 : (((dmode) & 0xc0) >> 6) + ((ctest5) & 0x04) + 1
616 * Set initial io register bits from burst code.
618 static __inline
void sym_init_burst(struct sym_hcb
*np
, u_char bc
)
620 np
->rv_ctest4
&= ~0x80;
621 np
->rv_dmode
&= ~(0x3 << 6);
622 np
->rv_ctest5
&= ~0x4;
625 np
->rv_ctest4
|= 0x80;
629 np
->rv_dmode
|= ((bc
& 0x3) << 6);
630 np
->rv_ctest5
|= (bc
& 0x4);
636 * Print out the list of targets that have some flag disabled by user.
638 static void sym_print_targets_flag(struct sym_hcb
*np
, int mask
, char *msg
)
643 for (cnt
= 0, i
= 0 ; i
< SYM_CONF_MAX_TARGET
; i
++) {
646 if (np
->target
[i
].usrflags
& mask
) {
648 printf("%s: %s disabled for targets",
658 * Save initial settings of some IO registers.
659 * Assumed to have been set by BIOS.
660 * We cannot reset the chip prior to reading the
661 * IO registers, since informations will be lost.
662 * Since the SCRIPTS processor may be running, this
663 * is not safe on paper, but it seems to work quite
666 static void sym_save_initial_setting (struct sym_hcb
*np
)
668 np
->sv_scntl0
= INB(np
, nc_scntl0
) & 0x0a;
669 np
->sv_scntl3
= INB(np
, nc_scntl3
) & 0x07;
670 np
->sv_dmode
= INB(np
, nc_dmode
) & 0xce;
671 np
->sv_dcntl
= INB(np
, nc_dcntl
) & 0xa8;
672 np
->sv_ctest3
= INB(np
, nc_ctest3
) & 0x01;
673 np
->sv_ctest4
= INB(np
, nc_ctest4
) & 0x80;
674 np
->sv_gpcntl
= INB(np
, nc_gpcntl
);
675 np
->sv_stest1
= INB(np
, nc_stest1
);
676 np
->sv_stest2
= INB(np
, nc_stest2
) & 0x20;
677 np
->sv_stest4
= INB(np
, nc_stest4
);
678 if (np
->features
& FE_C10
) { /* Always large DMA fifo + ultra3 */
679 np
->sv_scntl4
= INB(np
, nc_scntl4
);
680 np
->sv_ctest5
= INB(np
, nc_ctest5
) & 0x04;
683 np
->sv_ctest5
= INB(np
, nc_ctest5
) & 0x24;
687 * Prepare io register values used by sym_start_up()
688 * according to selected and supported features.
690 static int sym_prepare_setting(struct Scsi_Host
*shost
, struct sym_hcb
*np
, struct sym_nvram
*nvram
)
699 np
->maxwide
= (np
->features
& FE_WIDE
)? 1 : 0;
702 * Guess the frequency of the chip's clock.
704 if (np
->features
& (FE_ULTRA3
| FE_ULTRA2
))
705 np
->clock_khz
= 160000;
706 else if (np
->features
& FE_ULTRA
)
707 np
->clock_khz
= 80000;
709 np
->clock_khz
= 40000;
712 * Get the clock multiplier factor.
714 if (np
->features
& FE_QUAD
)
716 else if (np
->features
& FE_DBLR
)
722 * Measure SCSI clock frequency for chips
723 * it may vary from assumed one.
725 if (np
->features
& FE_VARCLK
)
726 sym_getclock(np
, np
->multiplier
);
729 * Divisor to be used for async (timer pre-scaler).
731 i
= np
->clock_divn
- 1;
733 if (10ul * SYM_CONF_MIN_ASYNC
* np
->clock_khz
> div_10M
[i
]) {
741 * The C1010 uses hardwired divisors for async.
742 * So, we just throw away, the async. divisor.:-)
744 if (np
->features
& FE_C10
)
748 * Minimum synchronous period factor supported by the chip.
749 * Btw, 'period' is in tenths of nanoseconds.
751 period
= (4 * div_10M
[0] + np
->clock_khz
- 1) / np
->clock_khz
;
753 if (period
<= 250) np
->minsync
= 10;
754 else if (period
<= 303) np
->minsync
= 11;
755 else if (period
<= 500) np
->minsync
= 12;
756 else np
->minsync
= (period
+ 40 - 1) / 40;
759 * Check against chip SCSI standard support (SCSI-2,ULTRA,ULTRA2).
761 if (np
->minsync
< 25 &&
762 !(np
->features
& (FE_ULTRA
|FE_ULTRA2
|FE_ULTRA3
)))
764 else if (np
->minsync
< 12 &&
765 !(np
->features
& (FE_ULTRA2
|FE_ULTRA3
)))
769 * Maximum synchronous period factor supported by the chip.
771 period
= (11 * div_10M
[np
->clock_divn
- 1]) / (4 * np
->clock_khz
);
772 np
->maxsync
= period
> 2540 ? 254 : period
/ 10;
775 * If chip is a C1010, guess the sync limits in DT mode.
777 if ((np
->features
& (FE_C10
|FE_ULTRA3
)) == (FE_C10
|FE_ULTRA3
)) {
778 if (np
->clock_khz
== 160000) {
781 np
->maxoffs_dt
= nvram
->type
? 62 : 31;
786 * 64 bit addressing (895A/896/1010) ?
788 if (np
->features
& FE_DAC
) {
789 #if SYM_CONF_DMA_ADDRESSING_MODE == 0
790 np
->rv_ccntl1
|= (DDAC
);
791 #elif SYM_CONF_DMA_ADDRESSING_MODE == 1
793 np
->rv_ccntl1
|= (DDAC
);
795 np
->rv_ccntl1
|= (XTIMOD
| EXTIBMV
);
796 #elif SYM_CONF_DMA_ADDRESSING_MODE == 2
798 np
->rv_ccntl1
|= (DDAC
);
800 np
->rv_ccntl1
|= (0 | EXTIBMV
);
805 * Phase mismatch handled by SCRIPTS (895A/896/1010) ?
807 if (np
->features
& FE_NOPM
)
808 np
->rv_ccntl0
|= (ENPMJ
);
811 * C1010-33 Errata: Part Number:609-039638 (rev. 1) is fixed.
812 * In dual channel mode, contention occurs if internal cycles
813 * are used. Disable internal cycles.
815 if (np
->device_id
== PCI_DEVICE_ID_LSI_53C1010_33
&&
816 np
->revision_id
< 0x1)
817 np
->rv_ccntl0
|= DILS
;
820 * Select burst length (dwords)
822 burst_max
= SYM_SETUP_BURST_ORDER
;
823 if (burst_max
== 255)
824 burst_max
= burst_code(np
->sv_dmode
, np
->sv_ctest4
,
828 if (burst_max
> np
->maxburst
)
829 burst_max
= np
->maxburst
;
832 * DEL 352 - 53C810 Rev x11 - Part Number 609-0392140 - ITEM 2.
833 * This chip and the 860 Rev 1 may wrongly use PCI cache line
834 * based transactions on LOAD/STORE instructions. So we have
835 * to prevent these chips from using such PCI transactions in
836 * this driver. The generic ncr driver that does not use
837 * LOAD/STORE instructions does not need this work-around.
839 if ((np
->device_id
== PCI_DEVICE_ID_NCR_53C810
&&
840 np
->revision_id
>= 0x10 && np
->revision_id
<= 0x11) ||
841 (np
->device_id
== PCI_DEVICE_ID_NCR_53C860
&&
842 np
->revision_id
<= 0x1))
843 np
->features
&= ~(FE_WRIE
|FE_ERL
|FE_ERMP
);
846 * Select all supported special features.
847 * If we are using on-board RAM for scripts, prefetch (PFEN)
848 * does not help, but burst op fetch (BOF) does.
849 * Disabling PFEN makes sure BOF will be used.
851 if (np
->features
& FE_ERL
)
852 np
->rv_dmode
|= ERL
; /* Enable Read Line */
853 if (np
->features
& FE_BOF
)
854 np
->rv_dmode
|= BOF
; /* Burst Opcode Fetch */
855 if (np
->features
& FE_ERMP
)
856 np
->rv_dmode
|= ERMP
; /* Enable Read Multiple */
858 if ((np
->features
& FE_PFEN
) && !np
->ram_ba
)
860 if (np
->features
& FE_PFEN
)
862 np
->rv_dcntl
|= PFEN
; /* Prefetch Enable */
863 if (np
->features
& FE_CLSE
)
864 np
->rv_dcntl
|= CLSE
; /* Cache Line Size Enable */
865 if (np
->features
& FE_WRIE
)
866 np
->rv_ctest3
|= WRIE
; /* Write and Invalidate */
867 if (np
->features
& FE_DFS
)
868 np
->rv_ctest5
|= DFS
; /* Dma Fifo Size */
873 np
->rv_ctest4
|= MPEE
; /* Master parity checking */
874 np
->rv_scntl0
|= 0x0a; /* full arb., ena parity, par->ATN */
877 * Get parity checking, host ID and verbose mode from NVRAM
880 sym_nvram_setup_host(shost
, np
, nvram
);
883 * Get SCSI addr of host adapter (set by bios?).
885 if (np
->myaddr
== 255) {
886 np
->myaddr
= INB(np
, nc_scid
) & 0x07;
888 np
->myaddr
= SYM_SETUP_HOST_ID
;
892 * Prepare initial io register bits for burst length
894 sym_init_burst(np
, burst_max
);
898 * - LVD capable chips (895/895A/896/1010) report the
899 * current BUS mode through the STEST4 IO register.
900 * - For previous generation chips (825/825A/875),
901 * user has to tell us how to check against HVD,
902 * since a 100% safe algorithm is not possible.
904 np
->scsi_mode
= SMODE_SE
;
905 if (np
->features
& (FE_ULTRA2
|FE_ULTRA3
))
906 np
->scsi_mode
= (np
->sv_stest4
& SMODE
);
907 else if (np
->features
& FE_DIFF
) {
908 if (SYM_SETUP_SCSI_DIFF
== 1) {
910 if (np
->sv_stest2
& 0x20)
911 np
->scsi_mode
= SMODE_HVD
;
913 else if (nvram
->type
== SYM_SYMBIOS_NVRAM
) {
914 if (!(INB(np
, nc_gpreg
) & 0x08))
915 np
->scsi_mode
= SMODE_HVD
;
918 else if (SYM_SETUP_SCSI_DIFF
== 2)
919 np
->scsi_mode
= SMODE_HVD
;
921 if (np
->scsi_mode
== SMODE_HVD
)
922 np
->rv_stest2
|= 0x20;
925 * Set LED support from SCRIPTS.
926 * Ignore this feature for boards known to use a
927 * specific GPIO wiring and for the 895A, 896
928 * and 1010 that drive the LED directly.
930 if ((SYM_SETUP_SCSI_LED
||
931 (nvram
->type
== SYM_SYMBIOS_NVRAM
||
932 (nvram
->type
== SYM_TEKRAM_NVRAM
&&
933 np
->device_id
== PCI_DEVICE_ID_NCR_53C895
))) &&
934 !(np
->features
& FE_LEDC
) && !(np
->sv_gpcntl
& 0x01))
935 np
->features
|= FE_LED0
;
940 switch(SYM_SETUP_IRQ_MODE
& 3) {
942 np
->rv_dcntl
|= IRQM
;
945 np
->rv_dcntl
|= (np
->sv_dcntl
& IRQM
);
952 * Configure targets according to driver setup.
953 * If NVRAM present get targets setup from NVRAM.
955 for (i
= 0 ; i
< SYM_CONF_MAX_TARGET
; i
++) {
956 struct sym_tcb
*tp
= &np
->target
[i
];
958 tp
->usrflags
|= (SYM_DISC_ENABLED
| SYM_TAGS_ENABLED
);
959 tp
->usrtags
= SYM_SETUP_MAX_TAG
;
961 sym_nvram_setup_target(np
, i
, nvram
);
964 tp
->usrflags
&= ~SYM_TAGS_ENABLED
;
968 * Let user know about the settings.
970 printf("%s: %s, ID %d, Fast-%d, %s, %s\n", sym_name(np
),
971 sym_nvram_type(nvram
), np
->myaddr
,
972 (np
->features
& FE_ULTRA3
) ? 80 :
973 (np
->features
& FE_ULTRA2
) ? 40 :
974 (np
->features
& FE_ULTRA
) ? 20 : 10,
975 sym_scsi_bus_mode(np
->scsi_mode
),
976 (np
->rv_scntl0
& 0xa) ? "parity checking" : "NO parity");
978 * Tell him more on demand.
981 printf("%s: %s IRQ line driver%s\n",
983 np
->rv_dcntl
& IRQM
? "totem pole" : "open drain",
984 np
->ram_ba
? ", using on-chip SRAM" : "");
985 printf("%s: using %s firmware.\n", sym_name(np
), np
->fw_name
);
986 if (np
->features
& FE_NOPM
)
987 printf("%s: handling phase mismatch from SCRIPTS.\n",
993 if (sym_verbose
>= 2) {
994 printf ("%s: initial SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
995 "(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
996 sym_name(np
), np
->sv_scntl3
, np
->sv_dmode
, np
->sv_dcntl
,
997 np
->sv_ctest3
, np
->sv_ctest4
, np
->sv_ctest5
);
999 printf ("%s: final SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
1000 "(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
1001 sym_name(np
), np
->rv_scntl3
, np
->rv_dmode
, np
->rv_dcntl
,
1002 np
->rv_ctest3
, np
->rv_ctest4
, np
->rv_ctest5
);
1005 * Let user be aware of targets that have some disable flags set.
1007 sym_print_targets_flag(np
, SYM_SCAN_BOOT_DISABLED
, "SCAN AT BOOT");
1009 sym_print_targets_flag(np
, SYM_SCAN_LUNS_DISABLED
,
1016 * Test the pci bus snoop logic :-(
1018 * Has to be called with interrupts disabled.
1020 #ifndef CONFIG_SCSI_SYM53C8XX_IOMAPPED
1021 static int sym_regtest (struct sym_hcb
*np
)
1023 register volatile u32 data
;
1025 * chip registers may NOT be cached.
1026 * write 0xffffffff to a read only register area,
1027 * and try to read it back.
1030 OUTL(np
, nc_dstat
, data
);
1031 data
= INL(np
, nc_dstat
);
1033 if (data
== 0xffffffff) {
1035 if ((data
& 0xe2f0fffd) != 0x02000080) {
1037 printf ("CACHE TEST FAILED: reg dstat-sstat2 readback %x.\n",
1045 static int sym_snooptest (struct sym_hcb
*np
)
1047 u32 sym_rd
, sym_wr
, sym_bk
, host_rd
, host_wr
, pc
, dstat
;
1049 #ifndef CONFIG_SCSI_SYM53C8XX_IOMAPPED
1050 err
|= sym_regtest (np
);
1051 if (err
) return (err
);
1055 * Enable Master Parity Checking as we intend
1056 * to enable it for normal operations.
1058 OUTB(np
, nc_ctest4
, (np
->rv_ctest4
& MPEE
));
1062 pc
= SCRIPTZ_BA(np
, snooptest
);
1066 * Set memory and register.
1068 np
->scratch
= cpu_to_scr(host_wr
);
1069 OUTL(np
, nc_temp
, sym_wr
);
1071 * Start script (exchange values)
1073 OUTL(np
, nc_dsa
, np
->hcb_ba
);
1076 * Wait 'til done (with timeout)
1078 for (i
=0; i
<SYM_SNOOP_TIMEOUT
; i
++)
1079 if (INB(np
, nc_istat
) & (INTF
|SIP
|DIP
))
1081 if (i
>=SYM_SNOOP_TIMEOUT
) {
1082 printf ("CACHE TEST FAILED: timeout.\n");
1086 * Check for fatal DMA errors.
1088 dstat
= INB(np
, nc_dstat
);
1089 #if 1 /* Band aiding for broken hardwares that fail PCI parity */
1090 if ((dstat
& MDPE
) && (np
->rv_ctest4
& MPEE
)) {
1091 printf ("%s: PCI DATA PARITY ERROR DETECTED - "
1092 "DISABLING MASTER DATA PARITY CHECKING.\n",
1094 np
->rv_ctest4
&= ~MPEE
;
1098 if (dstat
& (MDPE
|BF
|IID
)) {
1099 printf ("CACHE TEST FAILED: DMA error (dstat=0x%02x).", dstat
);
1103 * Save termination position.
1105 pc
= INL(np
, nc_dsp
);
1107 * Read memory and register.
1109 host_rd
= scr_to_cpu(np
->scratch
);
1110 sym_rd
= INL(np
, nc_scratcha
);
1111 sym_bk
= INL(np
, nc_temp
);
1113 * Check termination position.
1115 if (pc
!= SCRIPTZ_BA(np
, snoopend
)+8) {
1116 printf ("CACHE TEST FAILED: script execution failed.\n");
1117 printf ("start=%08lx, pc=%08lx, end=%08lx\n",
1118 (u_long
) SCRIPTZ_BA(np
, snooptest
), (u_long
) pc
,
1119 (u_long
) SCRIPTZ_BA(np
, snoopend
) +8);
1125 if (host_wr
!= sym_rd
) {
1126 printf ("CACHE TEST FAILED: host wrote %d, chip read %d.\n",
1127 (int) host_wr
, (int) sym_rd
);
1130 if (host_rd
!= sym_wr
) {
1131 printf ("CACHE TEST FAILED: chip wrote %d, host read %d.\n",
1132 (int) sym_wr
, (int) host_rd
);
1135 if (sym_bk
!= sym_wr
) {
1136 printf ("CACHE TEST FAILED: chip wrote %d, read back %d.\n",
1137 (int) sym_wr
, (int) sym_bk
);
1145 * log message for real hard errors
1147 * sym0 targ 0?: ERROR (ds:si) (so-si-sd) (sx/s3/s4) @ name (dsp:dbc).
1148 * reg: r0 r1 r2 r3 r4 r5 r6 ..... rf.
1150 * exception register:
1155 * so: control lines as driven by chip.
1156 * si: control lines as seen by chip.
1157 * sd: scsi data lines as seen by chip.
1160 * sx: sxfer (see the manual)
1161 * s3: scntl3 (see the manual)
1162 * s4: scntl4 (see the manual)
1164 * current script command:
1165 * dsp: script address (relative to start of script).
1166 * dbc: first word of script command.
1168 * First 24 register of the chip:
1171 static void sym_log_hard_error(struct sym_hcb
*np
, u_short sist
, u_char dstat
)
1177 u_char
*script_base
;
1180 dsp
= INL(np
, nc_dsp
);
1182 if (dsp
> np
->scripta_ba
&&
1183 dsp
<= np
->scripta_ba
+ np
->scripta_sz
) {
1184 script_ofs
= dsp
- np
->scripta_ba
;
1185 script_size
= np
->scripta_sz
;
1186 script_base
= (u_char
*) np
->scripta0
;
1187 script_name
= "scripta";
1189 else if (np
->scriptb_ba
< dsp
&&
1190 dsp
<= np
->scriptb_ba
+ np
->scriptb_sz
) {
1191 script_ofs
= dsp
- np
->scriptb_ba
;
1192 script_size
= np
->scriptb_sz
;
1193 script_base
= (u_char
*) np
->scriptb0
;
1194 script_name
= "scriptb";
1199 script_name
= "mem";
1202 printf ("%s:%d: ERROR (%x:%x) (%x-%x-%x) (%x/%x/%x) @ (%s %x:%08x).\n",
1203 sym_name(np
), (unsigned)INB(np
, nc_sdid
)&0x0f, dstat
, sist
,
1204 (unsigned)INB(np
, nc_socl
), (unsigned)INB(np
, nc_sbcl
),
1205 (unsigned)INB(np
, nc_sbdl
), (unsigned)INB(np
, nc_sxfer
),
1206 (unsigned)INB(np
, nc_scntl3
),
1207 (np
->features
& FE_C10
) ? (unsigned)INB(np
, nc_scntl4
) : 0,
1208 script_name
, script_ofs
, (unsigned)INL(np
, nc_dbc
));
1210 if (((script_ofs
& 3) == 0) &&
1211 (unsigned)script_ofs
< script_size
) {
1212 printf ("%s: script cmd = %08x\n", sym_name(np
),
1213 scr_to_cpu((int) *(u32
*)(script_base
+ script_ofs
)));
1216 printf ("%s: regdump:", sym_name(np
));
1218 printf (" %02x", (unsigned)INB_OFF(np
, i
));
1224 if (dstat
& (MDPE
|BF
))
1225 sym_log_bus_error(np
);
1228 static struct sym_chip sym_dev_table
[] = {
1229 {PCI_DEVICE_ID_NCR_53C810
, 0x0f, "810", 4, 8, 4, 64,
1232 #ifdef SYM_DEBUG_GENERIC_SUPPORT
1233 {PCI_DEVICE_ID_NCR_53C810
, 0xff, "810a", 4, 8, 4, 1,
1237 {PCI_DEVICE_ID_NCR_53C810
, 0xff, "810a", 4, 8, 4, 1,
1238 FE_CACHE_SET
|FE_LDSTR
|FE_PFEN
|FE_BOF
}
1241 {PCI_DEVICE_ID_NCR_53C815
, 0xff, "815", 4, 8, 4, 64,
1244 {PCI_DEVICE_ID_NCR_53C825
, 0x0f, "825", 6, 8, 4, 64,
1245 FE_WIDE
|FE_BOF
|FE_ERL
|FE_DIFF
}
1247 {PCI_DEVICE_ID_NCR_53C825
, 0xff, "825a", 6, 8, 4, 2,
1248 FE_WIDE
|FE_CACHE0_SET
|FE_BOF
|FE_DFS
|FE_LDSTR
|FE_PFEN
|FE_RAM
|FE_DIFF
}
1250 {PCI_DEVICE_ID_NCR_53C860
, 0xff, "860", 4, 8, 5, 1,
1251 FE_ULTRA
|FE_CACHE_SET
|FE_BOF
|FE_LDSTR
|FE_PFEN
}
1253 {PCI_DEVICE_ID_NCR_53C875
, 0x01, "875", 6, 16, 5, 2,
1254 FE_WIDE
|FE_ULTRA
|FE_CACHE0_SET
|FE_BOF
|FE_DFS
|FE_LDSTR
|FE_PFEN
|
1255 FE_RAM
|FE_DIFF
|FE_VARCLK
}
1257 {PCI_DEVICE_ID_NCR_53C875
, 0xff, "875", 6, 16, 5, 2,
1258 FE_WIDE
|FE_ULTRA
|FE_DBLR
|FE_CACHE0_SET
|FE_BOF
|FE_DFS
|FE_LDSTR
|FE_PFEN
|
1259 FE_RAM
|FE_DIFF
|FE_VARCLK
}
1261 {PCI_DEVICE_ID_NCR_53C875J
, 0xff, "875J", 6, 16, 5, 2,
1262 FE_WIDE
|FE_ULTRA
|FE_DBLR
|FE_CACHE0_SET
|FE_BOF
|FE_DFS
|FE_LDSTR
|FE_PFEN
|
1263 FE_RAM
|FE_DIFF
|FE_VARCLK
}
1265 {PCI_DEVICE_ID_NCR_53C885
, 0xff, "885", 6, 16, 5, 2,
1266 FE_WIDE
|FE_ULTRA
|FE_DBLR
|FE_CACHE0_SET
|FE_BOF
|FE_DFS
|FE_LDSTR
|FE_PFEN
|
1267 FE_RAM
|FE_DIFF
|FE_VARCLK
}
1269 #ifdef SYM_DEBUG_GENERIC_SUPPORT
1270 {PCI_DEVICE_ID_NCR_53C895
, 0xff, "895", 6, 31, 7, 2,
1271 FE_WIDE
|FE_ULTRA2
|FE_QUAD
|FE_CACHE_SET
|FE_BOF
|FE_DFS
|
1275 {PCI_DEVICE_ID_NCR_53C895
, 0xff, "895", 6, 31, 7, 2,
1276 FE_WIDE
|FE_ULTRA2
|FE_QUAD
|FE_CACHE_SET
|FE_BOF
|FE_DFS
|FE_LDSTR
|FE_PFEN
|
1280 {PCI_DEVICE_ID_NCR_53C896
, 0xff, "896", 6, 31, 7, 4,
1281 FE_WIDE
|FE_ULTRA2
|FE_QUAD
|FE_CACHE_SET
|FE_BOF
|FE_DFS
|FE_LDSTR
|FE_PFEN
|
1282 FE_RAM
|FE_RAM8K
|FE_64BIT
|FE_DAC
|FE_IO256
|FE_NOPM
|FE_LEDC
|FE_LCKFRQ
}
1284 {PCI_DEVICE_ID_LSI_53C895A
, 0xff, "895a", 6, 31, 7, 4,
1285 FE_WIDE
|FE_ULTRA2
|FE_QUAD
|FE_CACHE_SET
|FE_BOF
|FE_DFS
|FE_LDSTR
|FE_PFEN
|
1286 FE_RAM
|FE_RAM8K
|FE_DAC
|FE_IO256
|FE_NOPM
|FE_LEDC
|FE_LCKFRQ
}
1288 {PCI_DEVICE_ID_LSI_53C875A
, 0xff, "875a", 6, 31, 7, 4,
1289 FE_WIDE
|FE_ULTRA
|FE_QUAD
|FE_CACHE_SET
|FE_BOF
|FE_DFS
|FE_LDSTR
|FE_PFEN
|
1290 FE_RAM
|FE_DAC
|FE_IO256
|FE_NOPM
|FE_LEDC
|FE_LCKFRQ
}
1292 {PCI_DEVICE_ID_LSI_53C1010_33
, 0x00, "1010-33", 6, 31, 7, 8,
1293 FE_WIDE
|FE_ULTRA3
|FE_QUAD
|FE_CACHE_SET
|FE_BOF
|FE_DFBC
|FE_LDSTR
|FE_PFEN
|
1294 FE_RAM
|FE_RAM8K
|FE_64BIT
|FE_DAC
|FE_IO256
|FE_NOPM
|FE_LEDC
|FE_CRC
|
1297 {PCI_DEVICE_ID_LSI_53C1010_33
, 0xff, "1010-33", 6, 31, 7, 8,
1298 FE_WIDE
|FE_ULTRA3
|FE_QUAD
|FE_CACHE_SET
|FE_BOF
|FE_DFBC
|FE_LDSTR
|FE_PFEN
|
1299 FE_RAM
|FE_RAM8K
|FE_64BIT
|FE_DAC
|FE_IO256
|FE_NOPM
|FE_LEDC
|FE_CRC
|
1302 {PCI_DEVICE_ID_LSI_53C1010_66
, 0xff, "1010-66", 6, 31, 7, 8,
1303 FE_WIDE
|FE_ULTRA3
|FE_QUAD
|FE_CACHE_SET
|FE_BOF
|FE_DFBC
|FE_LDSTR
|FE_PFEN
|
1304 FE_RAM
|FE_RAM8K
|FE_64BIT
|FE_DAC
|FE_IO256
|FE_NOPM
|FE_LEDC
|FE_66MHZ
|FE_CRC
|
1307 {PCI_DEVICE_ID_LSI_53C1510
, 0xff, "1510d", 6, 31, 7, 4,
1308 FE_WIDE
|FE_ULTRA2
|FE_QUAD
|FE_CACHE_SET
|FE_BOF
|FE_DFS
|FE_LDSTR
|FE_PFEN
|
1309 FE_RAM
|FE_IO256
|FE_LEDC
}
1312 #define sym_num_devs \
1313 (sizeof(sym_dev_table) / sizeof(sym_dev_table[0]))
1316 * Look up the chip table.
1318 * Return a pointer to the chip entry if found,
1322 sym_lookup_chip_table (u_short device_id
, u_char revision
)
1324 struct sym_chip
*chip
;
1327 for (i
= 0; i
< sym_num_devs
; i
++) {
1328 chip
= &sym_dev_table
[i
];
1329 if (device_id
!= chip
->device_id
)
1331 if (revision
> chip
->revision_id
)
1339 #if SYM_CONF_DMA_ADDRESSING_MODE == 2
1341 * Lookup the 64 bit DMA segments map.
1342 * This is only used if the direct mapping
1343 * has been unsuccessful.
1345 int sym_lookup_dmap(struct sym_hcb
*np
, u32 h
, int s
)
1352 /* Look up existing mappings */
1353 for (i
= SYM_DMAP_SIZE
-1; i
> 0; i
--) {
1354 if (h
== np
->dmap_bah
[i
])
1357 /* If direct mapping is free, get it */
1358 if (!np
->dmap_bah
[s
])
1360 /* Collision -> lookup free mappings */
1361 for (s
= SYM_DMAP_SIZE
-1; s
> 0; s
--) {
1362 if (!np
->dmap_bah
[s
])
1366 panic("sym: ran out of 64 bit DMA segment registers");
1369 np
->dmap_bah
[s
] = h
;
1375 * Update IO registers scratch C..R so they will be
1376 * in sync. with queued CCB expectations.
1378 static void sym_update_dmap_regs(struct sym_hcb
*np
)
1382 if (!np
->dmap_dirty
)
1384 o
= offsetof(struct sym_reg
, nc_scrx
[0]);
1385 for (i
= 0; i
< SYM_DMAP_SIZE
; i
++) {
1386 OUTL_OFF(np
, o
, np
->dmap_bah
[i
]);
1393 /* Enforce all the fiddly SPI rules and the chip limitations */
1394 static void sym_check_goals(struct sym_hcb
*np
, struct scsi_target
*starget
,
1395 struct sym_trans
*goal
)
1397 if (!spi_support_wide(starget
))
1400 if (!spi_support_sync(starget
)) {
1409 if (spi_support_dt(starget
)) {
1410 if (spi_support_dt_only(starget
))
1413 if (goal
->offset
== 0)
1419 /* Some targets fail to properly negotiate DT in SE mode */
1420 if ((np
->scsi_mode
!= SMODE_LVD
) || !(np
->features
& FE_U3EN
))
1424 /* all DT transfers must be wide */
1426 if (goal
->offset
> np
->maxoffs_dt
)
1427 goal
->offset
= np
->maxoffs_dt
;
1428 if (goal
->period
< np
->minsync_dt
)
1429 goal
->period
= np
->minsync_dt
;
1430 if (goal
->period
> np
->maxsync_dt
)
1431 goal
->period
= np
->maxsync_dt
;
1433 goal
->iu
= goal
->qas
= 0;
1434 if (goal
->offset
> np
->maxoffs
)
1435 goal
->offset
= np
->maxoffs
;
1436 if (goal
->period
< np
->minsync
)
1437 goal
->period
= np
->minsync
;
1438 if (goal
->period
> np
->maxsync
)
1439 goal
->period
= np
->maxsync
;
1444 * Prepare the next negotiation message if needed.
1446 * Fill in the part of message buffer that contains the
1447 * negotiation and the nego_status field of the CCB.
1448 * Returns the size of the message in bytes.
1450 static int sym_prepare_nego(struct sym_hcb
*np
, struct sym_ccb
*cp
, u_char
*msgptr
)
1452 struct sym_tcb
*tp
= &np
->target
[cp
->target
];
1453 struct scsi_target
*starget
= tp
->starget
;
1454 struct sym_trans
*goal
= &tp
->tgoal
;
1458 sym_check_goals(np
, starget
, goal
);
1461 * Many devices implement PPR in a buggy way, so only use it if we
1464 if (goal
->iu
|| goal
->dt
|| goal
->qas
|| (goal
->period
< 0xa)) {
1466 } else if (spi_width(starget
) != goal
->width
) {
1468 } else if (spi_period(starget
) != goal
->period
||
1469 spi_offset(starget
) != goal
->offset
) {
1472 goal
->check_nego
= 0;
1478 msgptr
[msglen
++] = M_EXTENDED
;
1479 msgptr
[msglen
++] = 3;
1480 msgptr
[msglen
++] = M_X_SYNC_REQ
;
1481 msgptr
[msglen
++] = goal
->period
;
1482 msgptr
[msglen
++] = goal
->offset
;
1485 msgptr
[msglen
++] = M_EXTENDED
;
1486 msgptr
[msglen
++] = 2;
1487 msgptr
[msglen
++] = M_X_WIDE_REQ
;
1488 msgptr
[msglen
++] = goal
->width
;
1491 msgptr
[msglen
++] = M_EXTENDED
;
1492 msgptr
[msglen
++] = 6;
1493 msgptr
[msglen
++] = M_X_PPR_REQ
;
1494 msgptr
[msglen
++] = goal
->period
;
1495 msgptr
[msglen
++] = 0;
1496 msgptr
[msglen
++] = goal
->offset
;
1497 msgptr
[msglen
++] = goal
->width
;
1498 msgptr
[msglen
++] = (goal
->iu
? PPR_OPT_IU
: 0) |
1499 (goal
->dt
? PPR_OPT_DT
: 0) |
1500 (goal
->qas
? PPR_OPT_QAS
: 0);
1504 cp
->nego_status
= nego
;
1507 tp
->nego_cp
= cp
; /* Keep track a nego will be performed */
1508 if (DEBUG_FLAGS
& DEBUG_NEGO
) {
1509 sym_print_nego_msg(np
, cp
->target
,
1510 nego
== NS_SYNC
? "sync msgout" :
1511 nego
== NS_WIDE
? "wide msgout" :
1512 "ppr msgout", msgptr
);
1520 * Insert a job into the start queue.
1522 void sym_put_start_queue(struct sym_hcb
*np
, struct sym_ccb
*cp
)
1526 #ifdef SYM_CONF_IARB_SUPPORT
1528 * If the previously queued CCB is not yet done,
1529 * set the IARB hint. The SCRIPTS will go with IARB
1530 * for this job when starting the previous one.
1531 * We leave devices a chance to win arbitration by
1532 * not using more than 'iarb_max' consecutive
1533 * immediate arbitrations.
1535 if (np
->last_cp
&& np
->iarb_count
< np
->iarb_max
) {
1536 np
->last_cp
->host_flags
|= HF_HINT_IARB
;
1544 #if SYM_CONF_DMA_ADDRESSING_MODE == 2
1546 * Make SCRIPTS aware of the 64 bit DMA
1547 * segment registers not being up-to-date.
1550 cp
->host_xflags
|= HX_DMAP_DIRTY
;
1554 * Insert first the idle task and then our job.
1555 * The MBs should ensure proper ordering.
1557 qidx
= np
->squeueput
+ 2;
1558 if (qidx
>= MAX_QUEUE
*2) qidx
= 0;
1560 np
->squeue
[qidx
] = cpu_to_scr(np
->idletask_ba
);
1561 MEMORY_WRITE_BARRIER();
1562 np
->squeue
[np
->squeueput
] = cpu_to_scr(cp
->ccb_ba
);
1564 np
->squeueput
= qidx
;
1566 if (DEBUG_FLAGS
& DEBUG_QUEUE
)
1567 printf ("%s: queuepos=%d.\n", sym_name (np
), np
->squeueput
);
1570 * Script processor may be waiting for reselect.
1573 MEMORY_WRITE_BARRIER();
1574 OUTB(np
, nc_istat
, SIGP
|np
->istat_sem
);
1577 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
1579 * Start next ready-to-start CCBs.
1581 void sym_start_next_ccbs(struct sym_hcb
*np
, struct sym_lcb
*lp
, int maxn
)
1587 * Paranoia, as usual. :-)
1589 assert(!lp
->started_tags
|| !lp
->started_no_tag
);
1592 * Try to start as many commands as asked by caller.
1593 * Prevent from having both tagged and untagged
1594 * commands queued to the device at the same time.
1597 qp
= sym_remque_head(&lp
->waiting_ccbq
);
1600 cp
= sym_que_entry(qp
, struct sym_ccb
, link2_ccbq
);
1601 if (cp
->tag
!= NO_TAG
) {
1602 if (lp
->started_no_tag
||
1603 lp
->started_tags
>= lp
->started_max
) {
1604 sym_insque_head(qp
, &lp
->waiting_ccbq
);
1607 lp
->itlq_tbl
[cp
->tag
] = cpu_to_scr(cp
->ccb_ba
);
1609 cpu_to_scr(SCRIPTA_BA(np
, resel_tag
));
1612 if (lp
->started_no_tag
|| lp
->started_tags
) {
1613 sym_insque_head(qp
, &lp
->waiting_ccbq
);
1616 lp
->head
.itl_task_sa
= cpu_to_scr(cp
->ccb_ba
);
1618 cpu_to_scr(SCRIPTA_BA(np
, resel_no_tag
));
1619 ++lp
->started_no_tag
;
1622 sym_insque_tail(qp
, &lp
->started_ccbq
);
1623 sym_put_start_queue(np
, cp
);
1626 #endif /* SYM_OPT_HANDLE_DEVICE_QUEUEING */
1629 * The chip may have completed jobs. Look at the DONE QUEUE.
1631 * On paper, memory read barriers may be needed here to
1632 * prevent out of order LOADs by the CPU from having
1633 * prefetched stale data prior to DMA having occurred.
1635 static int sym_wakeup_done (struct sym_hcb
*np
)
1644 /* MEMORY_READ_BARRIER(); */
1646 dsa
= scr_to_cpu(np
->dqueue
[i
]);
1650 if ((i
= i
+2) >= MAX_QUEUE
*2)
1653 cp
= sym_ccb_from_dsa(np
, dsa
);
1655 MEMORY_READ_BARRIER();
1656 sym_complete_ok (np
, cp
);
1660 printf ("%s: bad DSA (%x) in done queue.\n",
1661 sym_name(np
), (u_int
) dsa
);
1669 * Complete all CCBs queued to the COMP queue.
1671 * These CCBs are assumed:
1672 * - Not to be referenced either by devices or
1673 * SCRIPTS-related queues and datas.
1674 * - To have to be completed with an error condition
1677 * The device queue freeze count is incremented
1678 * for each CCB that does not prevent this.
1679 * This function is called when all CCBs involved
1680 * in error handling/recovery have been reaped.
1682 static void sym_flush_comp_queue(struct sym_hcb
*np
, int cam_status
)
1687 while ((qp
= sym_remque_head(&np
->comp_ccbq
)) != 0) {
1688 struct scsi_cmnd
*cmd
;
1689 cp
= sym_que_entry(qp
, struct sym_ccb
, link_ccbq
);
1690 sym_insque_tail(&cp
->link_ccbq
, &np
->busy_ccbq
);
1691 /* Leave quiet CCBs waiting for resources */
1692 if (cp
->host_status
== HS_WAIT
)
1696 sym_set_cam_status(cmd
, cam_status
);
1697 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
1698 if (sym_get_cam_status(cmd
) == DID_SOFT_ERROR
) {
1699 struct sym_tcb
*tp
= &np
->target
[cp
->target
];
1700 struct sym_lcb
*lp
= sym_lp(tp
, cp
->lun
);
1702 sym_remque(&cp
->link2_ccbq
);
1703 sym_insque_tail(&cp
->link2_ccbq
,
1706 if (cp
->tag
!= NO_TAG
)
1709 --lp
->started_no_tag
;
1716 sym_free_ccb(np
, cp
);
1717 sym_xpt_done(np
, cmd
);
1722 * Complete all active CCBs with error.
1723 * Used on CHIP/SCSI RESET.
1725 static void sym_flush_busy_queue (struct sym_hcb
*np
, int cam_status
)
1728 * Move all active CCBs to the COMP queue
1729 * and flush this queue.
1731 sym_que_splice(&np
->busy_ccbq
, &np
->comp_ccbq
);
1732 sym_que_init(&np
->busy_ccbq
);
1733 sym_flush_comp_queue(np
, cam_status
);
1740 * 0: initialisation.
1741 * 1: SCSI BUS RESET delivered or received.
1742 * 2: SCSI BUS MODE changed.
1744 void sym_start_up (struct sym_hcb
*np
, int reason
)
1750 * Reset chip if asked, otherwise just clear fifos.
1755 OUTB(np
, nc_stest3
, TE
|CSF
);
1756 OUTONB(np
, nc_ctest3
, CLF
);
1762 phys
= np
->squeue_ba
;
1763 for (i
= 0; i
< MAX_QUEUE
*2; i
+= 2) {
1764 np
->squeue
[i
] = cpu_to_scr(np
->idletask_ba
);
1765 np
->squeue
[i
+1] = cpu_to_scr(phys
+ (i
+2)*4);
1767 np
->squeue
[MAX_QUEUE
*2-1] = cpu_to_scr(phys
);
1770 * Start at first entry.
1777 phys
= np
->dqueue_ba
;
1778 for (i
= 0; i
< MAX_QUEUE
*2; i
+= 2) {
1780 np
->dqueue
[i
+1] = cpu_to_scr(phys
+ (i
+2)*4);
1782 np
->dqueue
[MAX_QUEUE
*2-1] = cpu_to_scr(phys
);
1785 * Start at first entry.
1790 * Install patches in scripts.
1791 * This also let point to first position the start
1792 * and done queue pointers used from SCRIPTS.
1797 * Wakeup all pending jobs.
1799 sym_flush_busy_queue(np
, DID_RESET
);
1804 OUTB(np
, nc_istat
, 0x00); /* Remove Reset, abort */
1806 udelay(2000); /* The 895 needs time for the bus mode to settle */
1808 OUTB(np
, nc_scntl0
, np
->rv_scntl0
| 0xc0);
1809 /* full arb., ena parity, par->ATN */
1810 OUTB(np
, nc_scntl1
, 0x00); /* odd parity, and remove CRST!! */
1812 sym_selectclock(np
, np
->rv_scntl3
); /* Select SCSI clock */
1814 OUTB(np
, nc_scid
, RRE
|np
->myaddr
); /* Adapter SCSI address */
1815 OUTW(np
, nc_respid
, 1ul<<np
->myaddr
); /* Id to respond to */
1816 OUTB(np
, nc_istat
, SIGP
); /* Signal Process */
1817 OUTB(np
, nc_dmode
, np
->rv_dmode
); /* Burst length, dma mode */
1818 OUTB(np
, nc_ctest5
, np
->rv_ctest5
); /* Large fifo + large burst */
1820 OUTB(np
, nc_dcntl
, NOCOM
|np
->rv_dcntl
); /* Protect SFBR */
1821 OUTB(np
, nc_ctest3
, np
->rv_ctest3
); /* Write and invalidate */
1822 OUTB(np
, nc_ctest4
, np
->rv_ctest4
); /* Master parity checking */
1824 /* Extended Sreq/Sack filtering not supported on the C10 */
1825 if (np
->features
& FE_C10
)
1826 OUTB(np
, nc_stest2
, np
->rv_stest2
);
1828 OUTB(np
, nc_stest2
, EXT
|np
->rv_stest2
);
1830 OUTB(np
, nc_stest3
, TE
); /* TolerANT enable */
1831 OUTB(np
, nc_stime0
, 0x0c); /* HTH disabled STO 0.25 sec */
1834 * For now, disable AIP generation on C1010-66.
1836 if (np
->device_id
== PCI_DEVICE_ID_LSI_53C1010_66
)
1837 OUTB(np
, nc_aipcntl1
, DISAIP
);
1840 * C10101 rev. 0 errata.
1841 * Errant SGE's when in narrow. Write bits 4 & 5 of
1842 * STEST1 register to disable SGE. We probably should do
1843 * that from SCRIPTS for each selection/reselection, but
1844 * I just don't want. :)
1846 if (np
->device_id
== PCI_DEVICE_ID_LSI_53C1010_33
&&
1847 np
->revision_id
< 1)
1848 OUTB(np
, nc_stest1
, INB(np
, nc_stest1
) | 0x30);
1851 * DEL 441 - 53C876 Rev 5 - Part Number 609-0392787/2788 - ITEM 2.
1852 * Disable overlapped arbitration for some dual function devices,
1853 * regardless revision id (kind of post-chip-design feature. ;-))
1855 if (np
->device_id
== PCI_DEVICE_ID_NCR_53C875
)
1856 OUTB(np
, nc_ctest0
, (1<<5));
1857 else if (np
->device_id
== PCI_DEVICE_ID_NCR_53C896
)
1858 np
->rv_ccntl0
|= DPR
;
1861 * Write CCNTL0/CCNTL1 for chips capable of 64 bit addressing
1862 * and/or hardware phase mismatch, since only such chips
1863 * seem to support those IO registers.
1865 if (np
->features
& (FE_DAC
|FE_NOPM
)) {
1866 OUTB(np
, nc_ccntl0
, np
->rv_ccntl0
);
1867 OUTB(np
, nc_ccntl1
, np
->rv_ccntl1
);
1870 #if SYM_CONF_DMA_ADDRESSING_MODE == 2
1872 * Set up scratch C and DRS IO registers to map the 32 bit
1873 * DMA address range our data structures are located in.
1876 np
->dmap_bah
[0] = 0; /* ??? */
1877 OUTL(np
, nc_scrx
[0], np
->dmap_bah
[0]);
1878 OUTL(np
, nc_drs
, np
->dmap_bah
[0]);
1883 * If phase mismatch handled by scripts (895A/896/1010),
1884 * set PM jump addresses.
1886 if (np
->features
& FE_NOPM
) {
1887 OUTL(np
, nc_pmjad1
, SCRIPTB_BA(np
, pm_handle
));
1888 OUTL(np
, nc_pmjad2
, SCRIPTB_BA(np
, pm_handle
));
1892 * Enable GPIO0 pin for writing if LED support from SCRIPTS.
1893 * Also set GPIO5 and clear GPIO6 if hardware LED control.
1895 if (np
->features
& FE_LED0
)
1896 OUTB(np
, nc_gpcntl
, INB(np
, nc_gpcntl
) & ~0x01);
1897 else if (np
->features
& FE_LEDC
)
1898 OUTB(np
, nc_gpcntl
, (INB(np
, nc_gpcntl
) & ~0x41) | 0x20);
1903 OUTW(np
, nc_sien
, STO
|HTH
|MA
|SGE
|UDC
|RST
|PAR
);
1904 OUTB(np
, nc_dien
, MDPE
|BF
|SSI
|SIR
|IID
);
1907 * For 895/6 enable SBMC interrupt and save current SCSI bus mode.
1908 * Try to eat the spurious SBMC interrupt that may occur when
1909 * we reset the chip but not the SCSI BUS (at initialization).
1911 if (np
->features
& (FE_ULTRA2
|FE_ULTRA3
)) {
1912 OUTONW(np
, nc_sien
, SBMC
);
1918 np
->scsi_mode
= INB(np
, nc_stest4
) & SMODE
;
1922 * Fill in target structure.
1923 * Reinitialize usrsync.
1924 * Reinitialize usrwide.
1925 * Prepare sync negotiation according to actual SCSI bus mode.
1927 for (i
=0;i
<SYM_CONF_MAX_TARGET
;i
++) {
1928 struct sym_tcb
*tp
= &np
->target
[i
];
1932 tp
->head
.wval
= np
->rv_scntl3
;
1937 * Download SCSI SCRIPTS to on-chip RAM if present,
1938 * and start script processor.
1939 * We do the download preferently from the CPU.
1940 * For platforms that may not support PCI memory mapping,
1941 * we use simple SCRIPTS that performs MEMORY MOVEs.
1943 phys
= SCRIPTA_BA(np
, init
);
1945 if (sym_verbose
>= 2)
1946 printf("%s: Downloading SCSI SCRIPTS.\n", sym_name(np
));
1947 memcpy_toio(np
->s
.ramaddr
, np
->scripta0
, np
->scripta_sz
);
1948 if (np
->ram_ws
== 8192) {
1949 memcpy_toio(np
->s
.ramaddr
+ 4096, np
->scriptb0
, np
->scriptb_sz
);
1950 phys
= scr_to_cpu(np
->scr_ram_seg
);
1951 OUTL(np
, nc_mmws
, phys
);
1952 OUTL(np
, nc_mmrs
, phys
);
1953 OUTL(np
, nc_sfs
, phys
);
1954 phys
= SCRIPTB_BA(np
, start64
);
1960 OUTL(np
, nc_dsa
, np
->hcb_ba
);
1964 * Notify the XPT about the RESET condition.
1967 sym_xpt_async_bus_reset(np
);
1971 * Switch trans mode for current job and its target.
1973 static void sym_settrans(struct sym_hcb
*np
, int target
, u_char opts
, u_char ofs
,
1974 u_char per
, u_char wide
, u_char div
, u_char fak
)
1977 u_char sval
, wval
, uval
;
1978 struct sym_tcb
*tp
= &np
->target
[target
];
1980 assert(target
== (INB(np
, nc_sdid
) & 0x0f));
1982 sval
= tp
->head
.sval
;
1983 wval
= tp
->head
.wval
;
1984 uval
= tp
->head
.uval
;
1987 printf("XXXX sval=%x wval=%x uval=%x (%x)\n",
1988 sval
, wval
, uval
, np
->rv_scntl3
);
1993 if (!(np
->features
& FE_C10
))
1994 sval
= (sval
& ~0x1f) | ofs
;
1996 sval
= (sval
& ~0x3f) | ofs
;
1999 * Set the sync divisor and extra clock factor.
2002 wval
= (wval
& ~0x70) | ((div
+1) << 4);
2003 if (!(np
->features
& FE_C10
))
2004 sval
= (sval
& ~0xe0) | (fak
<< 5);
2006 uval
= uval
& ~(XCLKH_ST
|XCLKH_DT
|XCLKS_ST
|XCLKS_DT
);
2007 if (fak
>= 1) uval
|= (XCLKH_ST
|XCLKH_DT
);
2008 if (fak
>= 2) uval
|= (XCLKS_ST
|XCLKS_DT
);
2013 * Set the bus width.
2020 * Set misc. ultra enable bits.
2022 if (np
->features
& FE_C10
) {
2023 uval
= uval
& ~(U3EN
|AIPCKEN
);
2025 assert(np
->features
& FE_U3EN
);
2029 wval
= wval
& ~ULTRA
;
2030 if (per
<= 12) wval
|= ULTRA
;
2034 * Stop there if sync parameters are unchanged.
2036 if (tp
->head
.sval
== sval
&&
2037 tp
->head
.wval
== wval
&&
2038 tp
->head
.uval
== uval
)
2040 tp
->head
.sval
= sval
;
2041 tp
->head
.wval
= wval
;
2042 tp
->head
.uval
= uval
;
2045 * Disable extended Sreq/Sack filtering if per < 50.
2046 * Not supported on the C1010.
2048 if (per
< 50 && !(np
->features
& FE_C10
))
2049 OUTOFFB(np
, nc_stest2
, EXT
);
2052 * set actual value and sync_status
2054 OUTB(np
, nc_sxfer
, tp
->head
.sval
);
2055 OUTB(np
, nc_scntl3
, tp
->head
.wval
);
2057 if (np
->features
& FE_C10
) {
2058 OUTB(np
, nc_scntl4
, tp
->head
.uval
);
2062 * patch ALL busy ccbs of this target.
2064 FOR_EACH_QUEUED_ELEMENT(&np
->busy_ccbq
, qp
) {
2066 cp
= sym_que_entry(qp
, struct sym_ccb
, link_ccbq
);
2067 if (cp
->target
!= target
)
2069 cp
->phys
.select
.sel_scntl3
= tp
->head
.wval
;
2070 cp
->phys
.select
.sel_sxfer
= tp
->head
.sval
;
2071 if (np
->features
& FE_C10
) {
2072 cp
->phys
.select
.sel_scntl4
= tp
->head
.uval
;
2078 * We received a WDTR.
2079 * Let everything be aware of the changes.
2081 static void sym_setwide(struct sym_hcb
*np
, int target
, u_char wide
)
2083 struct sym_tcb
*tp
= &np
->target
[target
];
2084 struct scsi_target
*starget
= tp
->starget
;
2086 if (spi_width(starget
) == wide
)
2089 sym_settrans(np
, target
, 0, 0, 0, wide
, 0, 0);
2091 tp
->tgoal
.width
= wide
;
2092 spi_offset(starget
) = 0;
2093 spi_period(starget
) = 0;
2094 spi_width(starget
) = wide
;
2095 spi_iu(starget
) = 0;
2096 spi_dt(starget
) = 0;
2097 spi_qas(starget
) = 0;
2099 if (sym_verbose
>= 3)
2100 spi_display_xfer_agreement(starget
);
2104 * We received a SDTR.
2105 * Let everything be aware of the changes.
2108 sym_setsync(struct sym_hcb
*np
, int target
,
2109 u_char ofs
, u_char per
, u_char div
, u_char fak
)
2111 struct sym_tcb
*tp
= &np
->target
[target
];
2112 struct scsi_target
*starget
= tp
->starget
;
2113 u_char wide
= (tp
->head
.wval
& EWS
) ? BUS_16_BIT
: BUS_8_BIT
;
2115 sym_settrans(np
, target
, 0, ofs
, per
, wide
, div
, fak
);
2117 spi_period(starget
) = per
;
2118 spi_offset(starget
) = ofs
;
2119 spi_iu(starget
) = spi_dt(starget
) = spi_qas(starget
) = 0;
2121 if (!tp
->tgoal
.dt
&& !tp
->tgoal
.iu
&& !tp
->tgoal
.qas
) {
2122 tp
->tgoal
.period
= per
;
2123 tp
->tgoal
.offset
= ofs
;
2124 tp
->tgoal
.check_nego
= 0;
2127 spi_display_xfer_agreement(starget
);
2131 * We received a PPR.
2132 * Let everything be aware of the changes.
2135 sym_setpprot(struct sym_hcb
*np
, int target
, u_char opts
, u_char ofs
,
2136 u_char per
, u_char wide
, u_char div
, u_char fak
)
2138 struct sym_tcb
*tp
= &np
->target
[target
];
2139 struct scsi_target
*starget
= tp
->starget
;
2141 sym_settrans(np
, target
, opts
, ofs
, per
, wide
, div
, fak
);
2143 spi_width(starget
) = tp
->tgoal
.width
= wide
;
2144 spi_period(starget
) = tp
->tgoal
.period
= per
;
2145 spi_offset(starget
) = tp
->tgoal
.offset
= ofs
;
2146 spi_iu(starget
) = tp
->tgoal
.iu
= !!(opts
& PPR_OPT_IU
);
2147 spi_dt(starget
) = tp
->tgoal
.dt
= !!(opts
& PPR_OPT_DT
);
2148 spi_qas(starget
) = tp
->tgoal
.qas
= !!(opts
& PPR_OPT_QAS
);
2149 tp
->tgoal
.check_nego
= 0;
2151 spi_display_xfer_agreement(starget
);
2155 * generic recovery from scsi interrupt
2157 * The doc says that when the chip gets an SCSI interrupt,
2158 * it tries to stop in an orderly fashion, by completing
2159 * an instruction fetch that had started or by flushing
2160 * the DMA fifo for a write to memory that was executing.
2161 * Such a fashion is not enough to know if the instruction
2162 * that was just before the current DSP value has been
2165 * There are some small SCRIPTS sections that deal with
2166 * the start queue and the done queue that may break any
2167 * assomption from the C code if we are interrupted
2168 * inside, so we reset if this happens. Btw, since these
2169 * SCRIPTS sections are executed while the SCRIPTS hasn't
2170 * started SCSI operations, it is very unlikely to happen.
2172 * All the driver data structures are supposed to be
2173 * allocated from the same 4 GB memory window, so there
2174 * is a 1 to 1 relationship between DSA and driver data
2175 * structures. Since we are careful :) to invalidate the
2176 * DSA when we complete a command or when the SCRIPTS
2177 * pushes a DSA into a queue, we can trust it when it
2180 static void sym_recover_scsi_int (struct sym_hcb
*np
, u_char hsts
)
2182 u32 dsp
= INL(np
, nc_dsp
);
2183 u32 dsa
= INL(np
, nc_dsa
);
2184 struct sym_ccb
*cp
= sym_ccb_from_dsa(np
, dsa
);
2187 * If we haven't been interrupted inside the SCRIPTS
2188 * critical pathes, we can safely restart the SCRIPTS
2189 * and trust the DSA value if it matches a CCB.
2191 if ((!(dsp
> SCRIPTA_BA(np
, getjob_begin
) &&
2192 dsp
< SCRIPTA_BA(np
, getjob_end
) + 1)) &&
2193 (!(dsp
> SCRIPTA_BA(np
, ungetjob
) &&
2194 dsp
< SCRIPTA_BA(np
, reselect
) + 1)) &&
2195 (!(dsp
> SCRIPTB_BA(np
, sel_for_abort
) &&
2196 dsp
< SCRIPTB_BA(np
, sel_for_abort_1
) + 1)) &&
2197 (!(dsp
> SCRIPTA_BA(np
, done
) &&
2198 dsp
< SCRIPTA_BA(np
, done_end
) + 1))) {
2199 OUTB(np
, nc_ctest3
, np
->rv_ctest3
| CLF
); /* clear dma fifo */
2200 OUTB(np
, nc_stest3
, TE
|CSF
); /* clear scsi fifo */
2202 * If we have a CCB, let the SCRIPTS call us back for
2203 * the handling of the error with SCRATCHA filled with
2204 * STARTPOS. This way, we will be able to freeze the
2205 * device queue and requeue awaiting IOs.
2208 cp
->host_status
= hsts
;
2209 OUTL_DSP(np
, SCRIPTA_BA(np
, complete_error
));
2212 * Otherwise just restart the SCRIPTS.
2215 OUTL(np
, nc_dsa
, 0xffffff);
2216 OUTL_DSP(np
, SCRIPTA_BA(np
, start
));
2225 sym_start_reset(np
);
2229 * chip exception handler for selection timeout
2231 static void sym_int_sto (struct sym_hcb
*np
)
2233 u32 dsp
= INL(np
, nc_dsp
);
2235 if (DEBUG_FLAGS
& DEBUG_TINY
) printf ("T");
2237 if (dsp
== SCRIPTA_BA(np
, wf_sel_done
) + 8)
2238 sym_recover_scsi_int(np
, HS_SEL_TIMEOUT
);
2240 sym_start_reset(np
);
2244 * chip exception handler for unexpected disconnect
2246 static void sym_int_udc (struct sym_hcb
*np
)
2248 printf ("%s: unexpected disconnect\n", sym_name(np
));
2249 sym_recover_scsi_int(np
, HS_UNEXPECTED
);
2253 * chip exception handler for SCSI bus mode change
2255 * spi2-r12 11.2.3 says a transceiver mode change must
2256 * generate a reset event and a device that detects a reset
2257 * event shall initiate a hard reset. It says also that a
2258 * device that detects a mode change shall set data transfer
2259 * mode to eight bit asynchronous, etc...
2260 * So, just reinitializing all except chip should be enough.
2262 static void sym_int_sbmc (struct sym_hcb
*np
)
2264 u_char scsi_mode
= INB(np
, nc_stest4
) & SMODE
;
2269 printf("%s: SCSI BUS mode change from %s to %s.\n", sym_name(np
),
2270 sym_scsi_bus_mode(np
->scsi_mode
), sym_scsi_bus_mode(scsi_mode
));
2273 * Should suspend command processing for a few seconds and
2274 * reinitialize all except the chip.
2276 sym_start_up (np
, 2);
2280 * chip exception handler for SCSI parity error.
2282 * When the chip detects a SCSI parity error and is
2283 * currently executing a (CH)MOV instruction, it does
2284 * not interrupt immediately, but tries to finish the
2285 * transfer of the current scatter entry before
2286 * interrupting. The following situations may occur:
2288 * - The complete scatter entry has been transferred
2289 * without the device having changed phase.
2290 * The chip will then interrupt with the DSP pointing
2291 * to the instruction that follows the MOV.
2293 * - A phase mismatch occurs before the MOV finished
2294 * and phase errors are to be handled by the C code.
2295 * The chip will then interrupt with both PAR and MA
2298 * - A phase mismatch occurs before the MOV finished and
2299 * phase errors are to be handled by SCRIPTS.
2300 * The chip will load the DSP with the phase mismatch
2301 * JUMP address and interrupt the host processor.
2303 static void sym_int_par (struct sym_hcb
*np
, u_short sist
)
2305 u_char hsts
= INB(np
, HS_PRT
);
2306 u32 dsp
= INL(np
, nc_dsp
);
2307 u32 dbc
= INL(np
, nc_dbc
);
2308 u32 dsa
= INL(np
, nc_dsa
);
2309 u_char sbcl
= INB(np
, nc_sbcl
);
2310 u_char cmd
= dbc
>> 24;
2311 int phase
= cmd
& 7;
2312 struct sym_ccb
*cp
= sym_ccb_from_dsa(np
, dsa
);
2314 printf("%s: SCSI parity error detected: SCR1=%d DBC=%x SBCL=%x\n",
2315 sym_name(np
), hsts
, dbc
, sbcl
);
2318 * Check that the chip is connected to the SCSI BUS.
2320 if (!(INB(np
, nc_scntl1
) & ISCON
)) {
2321 sym_recover_scsi_int(np
, HS_UNEXPECTED
);
2326 * If the nexus is not clearly identified, reset the bus.
2327 * We will try to do better later.
2333 * Check instruction was a MOV, direction was INPUT and
2336 if ((cmd
& 0xc0) || !(phase
& 1) || !(sbcl
& 0x8))
2340 * Keep track of the parity error.
2342 OUTONB(np
, HF_PRT
, HF_EXT_ERR
);
2343 cp
->xerr_status
|= XE_PARITY_ERR
;
2346 * Prepare the message to send to the device.
2348 np
->msgout
[0] = (phase
== 7) ? M_PARITY
: M_ID_ERROR
;
2351 * If the old phase was DATA IN phase, we have to deal with
2352 * the 3 situations described above.
2353 * For other input phases (MSG IN and STATUS), the device
2354 * must resend the whole thing that failed parity checking
2355 * or signal error. So, jumping to dispatcher should be OK.
2357 if (phase
== 1 || phase
== 5) {
2358 /* Phase mismatch handled by SCRIPTS */
2359 if (dsp
== SCRIPTB_BA(np
, pm_handle
))
2361 /* Phase mismatch handled by the C code */
2364 /* No phase mismatch occurred */
2366 sym_set_script_dp (np
, cp
, dsp
);
2367 OUTL_DSP(np
, SCRIPTA_BA(np
, dispatch
));
2370 else if (phase
== 7) /* We definitely cannot handle parity errors */
2371 #if 1 /* in message-in phase due to the relection */
2372 goto reset_all
; /* path and various message anticipations. */
2374 OUTL_DSP(np
, SCRIPTA_BA(np
, clrack
));
2377 OUTL_DSP(np
, SCRIPTA_BA(np
, dispatch
));
2381 sym_start_reset(np
);
2386 * chip exception handler for phase errors.
2388 * We have to construct a new transfer descriptor,
2389 * to transfer the rest of the current block.
2391 static void sym_int_ma (struct sym_hcb
*np
)
2404 u_char hflags
, hflags0
;
2408 dsp
= INL(np
, nc_dsp
);
2409 dbc
= INL(np
, nc_dbc
);
2410 dsa
= INL(np
, nc_dsa
);
2413 rest
= dbc
& 0xffffff;
2417 * locate matching cp if any.
2419 cp
= sym_ccb_from_dsa(np
, dsa
);
2422 * Donnot take into account dma fifo and various buffers in
2423 * INPUT phase since the chip flushes everything before
2424 * raising the MA interrupt for interrupted INPUT phases.
2425 * For DATA IN phase, we will check for the SWIDE later.
2427 if ((cmd
& 7) != 1 && (cmd
& 7) != 5) {
2430 if (np
->features
& FE_DFBC
)
2431 delta
= INW(np
, nc_dfbc
);
2436 * Read DFIFO, CTEST[4-6] using 1 PCI bus ownership.
2438 dfifo
= INL(np
, nc_dfifo
);
2441 * Calculate remaining bytes in DMA fifo.
2442 * (CTEST5 = dfifo >> 16)
2444 if (dfifo
& (DFS
<< 16))
2445 delta
= ((((dfifo
>> 8) & 0x300) |
2446 (dfifo
& 0xff)) - rest
) & 0x3ff;
2448 delta
= ((dfifo
& 0xff) - rest
) & 0x7f;
2452 * The data in the dma fifo has not been transfered to
2453 * the target -> add the amount to the rest
2454 * and clear the data.
2455 * Check the sstat2 register in case of wide transfer.
2458 ss0
= INB(np
, nc_sstat0
);
2459 if (ss0
& OLF
) rest
++;
2460 if (!(np
->features
& FE_C10
))
2461 if (ss0
& ORF
) rest
++;
2462 if (cp
&& (cp
->phys
.select
.sel_scntl3
& EWS
)) {
2463 ss2
= INB(np
, nc_sstat2
);
2464 if (ss2
& OLF1
) rest
++;
2465 if (!(np
->features
& FE_C10
))
2466 if (ss2
& ORF1
) rest
++;
2472 OUTB(np
, nc_ctest3
, np
->rv_ctest3
| CLF
); /* dma fifo */
2473 OUTB(np
, nc_stest3
, TE
|CSF
); /* scsi fifo */
2477 * log the information
2479 if (DEBUG_FLAGS
& (DEBUG_TINY
|DEBUG_PHASE
))
2480 printf ("P%x%x RL=%d D=%d ", cmd
&7, INB(np
, nc_sbcl
)&7,
2481 (unsigned) rest
, (unsigned) delta
);
2484 * try to find the interrupted script command,
2485 * and the address at which to continue.
2489 if (dsp
> np
->scripta_ba
&&
2490 dsp
<= np
->scripta_ba
+ np
->scripta_sz
) {
2491 vdsp
= (u32
*)((char*)np
->scripta0
+ (dsp
-np
->scripta_ba
-8));
2494 else if (dsp
> np
->scriptb_ba
&&
2495 dsp
<= np
->scriptb_ba
+ np
->scriptb_sz
) {
2496 vdsp
= (u32
*)((char*)np
->scriptb0
+ (dsp
-np
->scriptb_ba
-8));
2501 * log the information
2503 if (DEBUG_FLAGS
& DEBUG_PHASE
) {
2504 printf ("\nCP=%p DSP=%x NXT=%x VDSP=%p CMD=%x ",
2505 cp
, (unsigned)dsp
, (unsigned)nxtdsp
, vdsp
, cmd
);
2509 printf ("%s: interrupted SCRIPT address not found.\n",
2515 printf ("%s: SCSI phase error fixup: CCB already dequeued.\n",
2521 * get old startaddress and old length.
2523 oadr
= scr_to_cpu(vdsp
[1]);
2525 if (cmd
& 0x10) { /* Table indirect */
2526 tblp
= (u32
*) ((char*) &cp
->phys
+ oadr
);
2527 olen
= scr_to_cpu(tblp
[0]);
2528 oadr
= scr_to_cpu(tblp
[1]);
2531 olen
= scr_to_cpu(vdsp
[0]) & 0xffffff;
2534 if (DEBUG_FLAGS
& DEBUG_PHASE
) {
2535 printf ("OCMD=%x\nTBLP=%p OLEN=%x OADR=%x\n",
2536 (unsigned) (scr_to_cpu(vdsp
[0]) >> 24),
2543 * check cmd against assumed interrupted script command.
2544 * If dt data phase, the MOVE instruction hasn't bit 4 of
2547 if (((cmd
& 2) ? cmd
: (cmd
& ~4)) != (scr_to_cpu(vdsp
[0]) >> 24)) {
2548 sym_print_addr(cp
->cmd
,
2549 "internal error: cmd=%02x != %02x=(vdsp[0] >> 24)\n",
2550 cmd
, scr_to_cpu(vdsp
[0]) >> 24);
2556 * if old phase not dataphase, leave here.
2559 sym_print_addr(cp
->cmd
,
2560 "phase change %x-%x %d@%08x resid=%d.\n",
2561 cmd
&7, INB(np
, nc_sbcl
)&7, (unsigned)olen
,
2562 (unsigned)oadr
, (unsigned)rest
);
2563 goto unexpected_phase
;
2567 * Choose the correct PM save area.
2569 * Look at the PM_SAVE SCRIPT if you want to understand
2570 * this stuff. The equivalent code is implemented in
2571 * SCRIPTS for the 895A, 896 and 1010 that are able to
2572 * handle PM from the SCRIPTS processor.
2574 hflags0
= INB(np
, HF_PRT
);
2577 if (hflags
& (HF_IN_PM0
| HF_IN_PM1
| HF_DP_SAVED
)) {
2578 if (hflags
& HF_IN_PM0
)
2579 nxtdsp
= scr_to_cpu(cp
->phys
.pm0
.ret
);
2580 else if (hflags
& HF_IN_PM1
)
2581 nxtdsp
= scr_to_cpu(cp
->phys
.pm1
.ret
);
2583 if (hflags
& HF_DP_SAVED
)
2584 hflags
^= HF_ACT_PM
;
2587 if (!(hflags
& HF_ACT_PM
)) {
2589 newcmd
= SCRIPTA_BA(np
, pm0_data
);
2593 newcmd
= SCRIPTA_BA(np
, pm1_data
);
2596 hflags
&= ~(HF_IN_PM0
| HF_IN_PM1
| HF_DP_SAVED
);
2597 if (hflags
!= hflags0
)
2598 OUTB(np
, HF_PRT
, hflags
);
2601 * fillin the phase mismatch context
2603 pm
->sg
.addr
= cpu_to_scr(oadr
+ olen
- rest
);
2604 pm
->sg
.size
= cpu_to_scr(rest
);
2605 pm
->ret
= cpu_to_scr(nxtdsp
);
2608 * If we have a SWIDE,
2609 * - prepare the address to write the SWIDE from SCRIPTS,
2610 * - compute the SCRIPTS address to restart from,
2611 * - move current data pointer context by one byte.
2613 nxtdsp
= SCRIPTA_BA(np
, dispatch
);
2614 if ((cmd
& 7) == 1 && cp
&& (cp
->phys
.select
.sel_scntl3
& EWS
) &&
2615 (INB(np
, nc_scntl2
) & WSR
)) {
2619 * Set up the table indirect for the MOVE
2620 * of the residual byte and adjust the data
2623 tmp
= scr_to_cpu(pm
->sg
.addr
);
2624 cp
->phys
.wresid
.addr
= cpu_to_scr(tmp
);
2625 pm
->sg
.addr
= cpu_to_scr(tmp
+ 1);
2626 tmp
= scr_to_cpu(pm
->sg
.size
);
2627 cp
->phys
.wresid
.size
= cpu_to_scr((tmp
&0xff000000) | 1);
2628 pm
->sg
.size
= cpu_to_scr(tmp
- 1);
2631 * If only the residual byte is to be moved,
2632 * no PM context is needed.
2634 if ((tmp
&0xffffff) == 1)
2638 * Prepare the address of SCRIPTS that will
2639 * move the residual byte to memory.
2641 nxtdsp
= SCRIPTB_BA(np
, wsr_ma_helper
);
2644 if (DEBUG_FLAGS
& DEBUG_PHASE
) {
2645 sym_print_addr(cp
->cmd
, "PM %x %x %x / %x %x %x.\n",
2646 hflags0
, hflags
, newcmd
,
2647 (unsigned)scr_to_cpu(pm
->sg
.addr
),
2648 (unsigned)scr_to_cpu(pm
->sg
.size
),
2649 (unsigned)scr_to_cpu(pm
->ret
));
2653 * Restart the SCRIPTS processor.
2655 sym_set_script_dp (np
, cp
, newcmd
);
2656 OUTL_DSP(np
, nxtdsp
);
2660 * Unexpected phase changes that occurs when the current phase
2661 * is not a DATA IN or DATA OUT phase are due to error conditions.
2662 * Such event may only happen when the SCRIPTS is using a
2663 * multibyte SCSI MOVE.
2665 * Phase change Some possible cause
2667 * COMMAND --> MSG IN SCSI parity error detected by target.
2668 * COMMAND --> STATUS Bad command or refused by target.
2669 * MSG OUT --> MSG IN Message rejected by target.
2670 * MSG OUT --> COMMAND Bogus target that discards extended
2671 * negotiation messages.
2673 * The code below does not care of the new phase and so
2674 * trusts the target. Why to annoy it ?
2675 * If the interrupted phase is COMMAND phase, we restart at
2677 * If a target does not get all the messages after selection,
2678 * the code assumes blindly that the target discards extended
2679 * messages and clears the negotiation status.
2680 * If the target does not want all our response to negotiation,
2681 * we force a SIR_NEGO_PROTO interrupt (it is a hack that avoids
2682 * bloat for such a should_not_happen situation).
2683 * In all other situation, we reset the BUS.
2684 * Are these assumptions reasonnable ? (Wait and see ...)
2691 case 2: /* COMMAND phase */
2692 nxtdsp
= SCRIPTA_BA(np
, dispatch
);
2695 case 3: /* STATUS phase */
2696 nxtdsp
= SCRIPTA_BA(np
, dispatch
);
2699 case 6: /* MSG OUT phase */
2701 * If the device may want to use untagged when we want
2702 * tagged, we prepare an IDENTIFY without disc. granted,
2703 * since we will not be able to handle reselect.
2704 * Otherwise, we just don't care.
2706 if (dsp
== SCRIPTA_BA(np
, send_ident
)) {
2707 if (cp
->tag
!= NO_TAG
&& olen
- rest
<= 3) {
2708 cp
->host_status
= HS_BUSY
;
2709 np
->msgout
[0] = IDENTIFY(0, cp
->lun
);
2710 nxtdsp
= SCRIPTB_BA(np
, ident_break_atn
);
2713 nxtdsp
= SCRIPTB_BA(np
, ident_break
);
2715 else if (dsp
== SCRIPTB_BA(np
, send_wdtr
) ||
2716 dsp
== SCRIPTB_BA(np
, send_sdtr
) ||
2717 dsp
== SCRIPTB_BA(np
, send_ppr
)) {
2718 nxtdsp
= SCRIPTB_BA(np
, nego_bad_phase
);
2719 if (dsp
== SCRIPTB_BA(np
, send_ppr
)) {
2720 struct scsi_device
*dev
= cp
->cmd
->device
;
2726 case 7: /* MSG IN phase */
2727 nxtdsp
= SCRIPTA_BA(np
, clrack
);
2733 OUTL_DSP(np
, nxtdsp
);
2738 sym_start_reset(np
);
2742 * chip interrupt handler
2744 * In normal situations, interrupt conditions occur one at
2745 * a time. But when something bad happens on the SCSI BUS,
2746 * the chip may raise several interrupt flags before
2747 * stopping and interrupting the CPU. The additionnal
2748 * interrupt flags are stacked in some extra registers
2749 * after the SIP and/or DIP flag has been raised in the
2750 * ISTAT. After the CPU has read the interrupt condition
2751 * flag from SIST or DSTAT, the chip unstacks the other
2752 * interrupt flags and sets the corresponding bits in
2753 * SIST or DSTAT. Since the chip starts stacking once the
2754 * SIP or DIP flag is set, there is a small window of time
2755 * where the stacking does not occur.
2757 * Typically, multiple interrupt conditions may happen in
2758 * the following situations:
2760 * - SCSI parity error + Phase mismatch (PAR|MA)
2761 * When an parity error is detected in input phase
2762 * and the device switches to msg-in phase inside a
2764 * - SCSI parity error + Unexpected disconnect (PAR|UDC)
2765 * When a stupid device does not want to handle the
2766 * recovery of an SCSI parity error.
2767 * - Some combinations of STO, PAR, UDC, ...
2768 * When using non compliant SCSI stuff, when user is
2769 * doing non compliant hot tampering on the BUS, when
2770 * something really bad happens to a device, etc ...
2772 * The heuristic suggested by SYMBIOS to handle
2773 * multiple interrupts is to try unstacking all
2774 * interrupts conditions and to handle them on some
2775 * priority based on error severity.
2776 * This will work when the unstacking has been
2777 * successful, but we cannot be 100 % sure of that,
2778 * since the CPU may have been faster to unstack than
2779 * the chip is able to stack. Hmmm ... But it seems that
2780 * such a situation is very unlikely to happen.
2782 * If this happen, for example STO caught by the CPU
2783 * then UDC happenning before the CPU have restarted
2784 * the SCRIPTS, the driver may wrongly complete the
2785 * same command on UDC, since the SCRIPTS didn't restart
2786 * and the DSA still points to the same command.
2787 * We avoid this situation by setting the DSA to an
2788 * invalid value when the CCB is completed and before
2789 * restarting the SCRIPTS.
2791 * Another issue is that we need some section of our
2792 * recovery procedures to be somehow uninterruptible but
2793 * the SCRIPTS processor does not provides such a
2794 * feature. For this reason, we handle recovery preferently
2795 * from the C code and check against some SCRIPTS critical
2796 * sections from the C code.
2798 * Hopefully, the interrupt handling of the driver is now
2799 * able to resist to weird BUS error conditions, but donnot
2800 * ask me for any guarantee that it will never fail. :-)
2801 * Use at your own decision and risk.
2804 void sym_interrupt (struct sym_hcb
*np
)
2806 u_char istat
, istatc
;
2811 * interrupt on the fly ?
2812 * (SCRIPTS may still be running)
2814 * A `dummy read' is needed to ensure that the
2815 * clear of the INTF flag reaches the device
2816 * and that posted writes are flushed to memory
2817 * before the scanning of the DONE queue.
2818 * Note that SCRIPTS also (dummy) read to memory
2819 * prior to deliver the INTF interrupt condition.
2821 istat
= INB(np
, nc_istat
);
2823 OUTB(np
, nc_istat
, (istat
& SIGP
) | INTF
| np
->istat_sem
);
2824 istat
= INB(np
, nc_istat
); /* DUMMY READ */
2825 if (DEBUG_FLAGS
& DEBUG_TINY
) printf ("F ");
2826 sym_wakeup_done(np
);
2829 if (!(istat
& (SIP
|DIP
)))
2832 #if 0 /* We should never get this one */
2834 OUTB(np
, nc_istat
, CABRT
);
2838 * PAR and MA interrupts may occur at the same time,
2839 * and we need to know of both in order to handle
2840 * this situation properly. We try to unstack SCSI
2841 * interrupts for that reason. BTW, I dislike a LOT
2842 * such a loop inside the interrupt routine.
2843 * Even if DMA interrupt stacking is very unlikely to
2844 * happen, we also try unstacking these ones, since
2845 * this has no performance impact.
2852 sist
|= INW(np
, nc_sist
);
2854 dstat
|= INB(np
, nc_dstat
);
2855 istatc
= INB(np
, nc_istat
);
2857 } while (istatc
& (SIP
|DIP
));
2859 if (DEBUG_FLAGS
& DEBUG_TINY
)
2860 printf ("<%d|%x:%x|%x:%x>",
2861 (int)INB(np
, nc_scr0
),
2863 (unsigned)INL(np
, nc_dsp
),
2864 (unsigned)INL(np
, nc_dbc
));
2866 * On paper, a memory read barrier may be needed here to
2867 * prevent out of order LOADs by the CPU from having
2868 * prefetched stale data prior to DMA having occurred.
2869 * And since we are paranoid ... :)
2871 MEMORY_READ_BARRIER();
2874 * First, interrupts we want to service cleanly.
2876 * Phase mismatch (MA) is the most frequent interrupt
2877 * for chip earlier than the 896 and so we have to service
2878 * it as quickly as possible.
2879 * A SCSI parity error (PAR) may be combined with a phase
2880 * mismatch condition (MA).
2881 * Programmed interrupts (SIR) are used to call the C code
2883 * The single step interrupt (SSI) is not used in this
2886 if (!(sist
& (STO
|GEN
|HTH
|SGE
|UDC
|SBMC
|RST
)) &&
2887 !(dstat
& (MDPE
|BF
|ABRT
|IID
))) {
2888 if (sist
& PAR
) sym_int_par (np
, sist
);
2889 else if (sist
& MA
) sym_int_ma (np
);
2890 else if (dstat
& SIR
) sym_int_sir (np
);
2891 else if (dstat
& SSI
) OUTONB_STD();
2892 else goto unknown_int
;
2897 * Now, interrupts that donnot happen in normal
2898 * situations and that we may need to recover from.
2900 * On SCSI RESET (RST), we reset everything.
2901 * On SCSI BUS MODE CHANGE (SBMC), we complete all
2902 * active CCBs with RESET status, prepare all devices
2903 * for negotiating again and restart the SCRIPTS.
2904 * On STO and UDC, we complete the CCB with the corres-
2905 * ponding status and restart the SCRIPTS.
2908 printf("%s: SCSI BUS reset detected.\n", sym_name(np
));
2909 sym_start_up (np
, 1);
2913 OUTB(np
, nc_ctest3
, np
->rv_ctest3
| CLF
); /* clear dma fifo */
2914 OUTB(np
, nc_stest3
, TE
|CSF
); /* clear scsi fifo */
2916 if (!(sist
& (GEN
|HTH
|SGE
)) &&
2917 !(dstat
& (MDPE
|BF
|ABRT
|IID
))) {
2918 if (sist
& SBMC
) sym_int_sbmc (np
);
2919 else if (sist
& STO
) sym_int_sto (np
);
2920 else if (sist
& UDC
) sym_int_udc (np
);
2921 else goto unknown_int
;
2926 * Now, interrupts we are not able to recover cleanly.
2928 * Log message for hard errors.
2932 sym_log_hard_error(np
, sist
, dstat
);
2934 if ((sist
& (GEN
|HTH
|SGE
)) ||
2935 (dstat
& (MDPE
|BF
|ABRT
|IID
))) {
2936 sym_start_reset(np
);
2942 * We just miss the cause of the interrupt. :(
2943 * Print a message. The timeout will do the real work.
2945 printf( "%s: unknown interrupt(s) ignored, "
2946 "ISTAT=0x%x DSTAT=0x%x SIST=0x%x\n",
2947 sym_name(np
), istat
, dstat
, sist
);
2951 * Dequeue from the START queue all CCBs that match
2952 * a given target/lun/task condition (-1 means all),
2953 * and move them from the BUSY queue to the COMP queue
2954 * with DID_SOFT_ERROR status condition.
2955 * This function is used during error handling/recovery.
2956 * It is called with SCRIPTS not running.
2959 sym_dequeue_from_squeue(struct sym_hcb
*np
, int i
, int target
, int lun
, int task
)
2965 * Make sure the starting index is within range.
2967 assert((i
>= 0) && (i
< 2*MAX_QUEUE
));
2970 * Walk until end of START queue and dequeue every job
2971 * that matches the target/lun/task condition.
2974 while (i
!= np
->squeueput
) {
2975 cp
= sym_ccb_from_dsa(np
, scr_to_cpu(np
->squeue
[i
]));
2977 #ifdef SYM_CONF_IARB_SUPPORT
2978 /* Forget hints for IARB, they may be no longer relevant */
2979 cp
->host_flags
&= ~HF_HINT_IARB
;
2981 if ((target
== -1 || cp
->target
== target
) &&
2982 (lun
== -1 || cp
->lun
== lun
) &&
2983 (task
== -1 || cp
->tag
== task
)) {
2984 sym_set_cam_status(cp
->cmd
, DID_SOFT_ERROR
);
2985 sym_remque(&cp
->link_ccbq
);
2986 sym_insque_tail(&cp
->link_ccbq
, &np
->comp_ccbq
);
2990 np
->squeue
[j
] = np
->squeue
[i
];
2991 if ((j
+= 2) >= MAX_QUEUE
*2) j
= 0;
2993 if ((i
+= 2) >= MAX_QUEUE
*2) i
= 0;
2995 if (i
!= j
) /* Copy back the idle task if needed */
2996 np
->squeue
[j
] = np
->squeue
[i
];
2997 np
->squeueput
= j
; /* Update our current start queue pointer */
3003 * chip handler for bad SCSI status condition
3005 * In case of bad SCSI status, we unqueue all the tasks
3006 * currently queued to the controller but not yet started
3007 * and then restart the SCRIPTS processor immediately.
3009 * QUEUE FULL and BUSY conditions are handled the same way.
3010 * Basically all the not yet started tasks are requeued in
3011 * device queue and the queue is frozen until a completion.
3013 * For CHECK CONDITION and COMMAND TERMINATED status, we use
3014 * the CCB of the failed command to prepare a REQUEST SENSE
3015 * SCSI command and queue it to the controller queue.
3017 * SCRATCHA is assumed to have been loaded with STARTPOS
3018 * before the SCRIPTS called the C code.
3020 static void sym_sir_bad_scsi_status(struct sym_hcb
*np
, int num
, struct sym_ccb
*cp
)
3023 u_char s_status
= cp
->ssss_status
;
3024 u_char h_flags
= cp
->host_flags
;
3029 * Compute the index of the next job to start from SCRIPTS.
3031 i
= (INL(np
, nc_scratcha
) - np
->squeue_ba
) / 4;
3034 * The last CCB queued used for IARB hint may be
3035 * no longer relevant. Forget it.
3037 #ifdef SYM_CONF_IARB_SUPPORT
3043 * Now deal with the SCSI status.
3048 if (sym_verbose
>= 2) {
3049 sym_print_addr(cp
->cmd
, "%s\n",
3050 s_status
== S_BUSY
? "BUSY" : "QUEUE FULL\n");
3052 default: /* S_INT, S_INT_COND_MET, S_CONFLICT */
3053 sym_complete_error (np
, cp
);
3058 * If we get an SCSI error when requesting sense, give up.
3060 if (h_flags
& HF_SENSE
) {
3061 sym_complete_error (np
, cp
);
3066 * Dequeue all queued CCBs for that device not yet started,
3067 * and restart the SCRIPTS processor immediately.
3069 sym_dequeue_from_squeue(np
, i
, cp
->target
, cp
->lun
, -1);
3070 OUTL_DSP(np
, SCRIPTA_BA(np
, start
));
3073 * Save some info of the actual IO.
3074 * Compute the data residual.
3076 cp
->sv_scsi_status
= cp
->ssss_status
;
3077 cp
->sv_xerr_status
= cp
->xerr_status
;
3078 cp
->sv_resid
= sym_compute_residual(np
, cp
);
3081 * Prepare all needed data structures for
3082 * requesting sense data.
3085 cp
->scsi_smsg2
[0] = IDENTIFY(0, cp
->lun
);
3089 * If we are currently using anything different from
3090 * async. 8 bit data transfers with that target,
3091 * start a negotiation, since the device may want
3092 * to report us a UNIT ATTENTION condition due to
3093 * a cause we currently ignore, and we donnot want
3094 * to be stuck with WIDE and/or SYNC data transfer.
3096 * cp->nego_status is filled by sym_prepare_nego().
3098 cp
->nego_status
= 0;
3099 msglen
+= sym_prepare_nego(np
, cp
, &cp
->scsi_smsg2
[msglen
]);
3101 * Message table indirect structure.
3103 cp
->phys
.smsg
.addr
= CCB_BA(cp
, scsi_smsg2
);
3104 cp
->phys
.smsg
.size
= cpu_to_scr(msglen
);
3109 cp
->phys
.cmd
.addr
= CCB_BA(cp
, sensecmd
);
3110 cp
->phys
.cmd
.size
= cpu_to_scr(6);
3113 * patch requested size into sense command
3115 cp
->sensecmd
[0] = REQUEST_SENSE
;
3116 cp
->sensecmd
[1] = 0;
3117 if (cp
->cmd
->device
->scsi_level
<= SCSI_2
&& cp
->lun
<= 7)
3118 cp
->sensecmd
[1] = cp
->lun
<< 5;
3119 cp
->sensecmd
[4] = SYM_SNS_BBUF_LEN
;
3120 cp
->data_len
= SYM_SNS_BBUF_LEN
;
3125 memset(cp
->sns_bbuf
, 0, SYM_SNS_BBUF_LEN
);
3126 cp
->phys
.sense
.addr
= CCB_BA(cp
, sns_bbuf
);
3127 cp
->phys
.sense
.size
= cpu_to_scr(SYM_SNS_BBUF_LEN
);
3130 * requeue the command.
3132 startp
= SCRIPTB_BA(np
, sdata_in
);
3134 cp
->phys
.head
.savep
= cpu_to_scr(startp
);
3135 cp
->phys
.head
.lastp
= cpu_to_scr(startp
);
3136 cp
->startp
= cpu_to_scr(startp
);
3137 cp
->goalp
= cpu_to_scr(startp
+ 16);
3139 cp
->host_xflags
= 0;
3140 cp
->host_status
= cp
->nego_status
? HS_NEGOTIATE
: HS_BUSY
;
3141 cp
->ssss_status
= S_ILLEGAL
;
3142 cp
->host_flags
= (HF_SENSE
|HF_DATA_IN
);
3143 cp
->xerr_status
= 0;
3144 cp
->extra_bytes
= 0;
3146 cp
->phys
.head
.go
.start
= cpu_to_scr(SCRIPTA_BA(np
, select
));
3149 * Requeue the command.
3151 sym_put_start_queue(np
, cp
);
3154 * Give back to upper layer everything we have dequeued.
3156 sym_flush_comp_queue(np
, 0);
3162 * After a device has accepted some management message
3163 * as BUS DEVICE RESET, ABORT TASK, etc ..., or when
3164 * a device signals a UNIT ATTENTION condition, some
3165 * tasks are thrown away by the device. We are required
3166 * to reflect that on our tasks list since the device
3167 * will never complete these tasks.
3169 * This function move from the BUSY queue to the COMP
3170 * queue all disconnected CCBs for a given target that
3171 * match the following criteria:
3172 * - lun=-1 means any logical UNIT otherwise a given one.
3173 * - task=-1 means any task, otherwise a given one.
3175 int sym_clear_tasks(struct sym_hcb
*np
, int cam_status
, int target
, int lun
, int task
)
3177 SYM_QUEHEAD qtmp
, *qp
;
3182 * Move the entire BUSY queue to our temporary queue.
3184 sym_que_init(&qtmp
);
3185 sym_que_splice(&np
->busy_ccbq
, &qtmp
);
3186 sym_que_init(&np
->busy_ccbq
);
3189 * Put all CCBs that matches our criteria into
3190 * the COMP queue and put back other ones into
3193 while ((qp
= sym_remque_head(&qtmp
)) != 0) {
3194 struct scsi_cmnd
*cmd
;
3195 cp
= sym_que_entry(qp
, struct sym_ccb
, link_ccbq
);
3197 if (cp
->host_status
!= HS_DISCONNECT
||
3198 cp
->target
!= target
||
3199 (lun
!= -1 && cp
->lun
!= lun
) ||
3201 (cp
->tag
!= NO_TAG
&& cp
->scsi_smsg
[2] != task
))) {
3202 sym_insque_tail(&cp
->link_ccbq
, &np
->busy_ccbq
);
3205 sym_insque_tail(&cp
->link_ccbq
, &np
->comp_ccbq
);
3207 /* Preserve the software timeout condition */
3208 if (sym_get_cam_status(cmd
) != DID_TIME_OUT
)
3209 sym_set_cam_status(cmd
, cam_status
);
3212 printf("XXXX TASK @%p CLEARED\n", cp
);
3219 * chip handler for TASKS recovery
3221 * We cannot safely abort a command, while the SCRIPTS
3222 * processor is running, since we just would be in race
3225 * As long as we have tasks to abort, we keep the SEM
3226 * bit set in the ISTAT. When this bit is set, the
3227 * SCRIPTS processor interrupts (SIR_SCRIPT_STOPPED)
3228 * each time it enters the scheduler.
3230 * If we have to reset a target, clear tasks of a unit,
3231 * or to perform the abort of a disconnected job, we
3232 * restart the SCRIPTS for selecting the target. Once
3233 * selected, the SCRIPTS interrupts (SIR_TARGET_SELECTED).
3234 * If it loses arbitration, the SCRIPTS will interrupt again
3235 * the next time it will enter its scheduler, and so on ...
3237 * On SIR_TARGET_SELECTED, we scan for the more
3238 * appropriate thing to do:
3240 * - If nothing, we just sent a M_ABORT message to the
3241 * target to get rid of the useless SCSI bus ownership.
3242 * According to the specs, no tasks shall be affected.
3243 * - If the target is to be reset, we send it a M_RESET
3245 * - If a logical UNIT is to be cleared , we send the
3246 * IDENTIFY(lun) + M_ABORT.
3247 * - If an untagged task is to be aborted, we send the
3248 * IDENTIFY(lun) + M_ABORT.
3249 * - If a tagged task is to be aborted, we send the
3250 * IDENTIFY(lun) + task attributes + M_ABORT_TAG.
3252 * Once our 'kiss of death' :) message has been accepted
3253 * by the target, the SCRIPTS interrupts again
3254 * (SIR_ABORT_SENT). On this interrupt, we complete
3255 * all the CCBs that should have been aborted by the
3256 * target according to our message.
3258 static void sym_sir_task_recovery(struct sym_hcb
*np
, int num
)
3262 struct sym_tcb
*tp
= NULL
; /* gcc isn't quite smart enough yet */
3263 struct scsi_target
*starget
;
3264 int target
=-1, lun
=-1, task
;
3269 * The SCRIPTS processor stopped before starting
3270 * the next command in order to allow us to perform
3271 * some task recovery.
3273 case SIR_SCRIPT_STOPPED
:
3275 * Do we have any target to reset or unit to clear ?
3277 for (i
= 0 ; i
< SYM_CONF_MAX_TARGET
; i
++) {
3278 tp
= &np
->target
[i
];
3280 (tp
->lun0p
&& tp
->lun0p
->to_clear
)) {
3286 for (k
= 1 ; k
< SYM_CONF_MAX_LUN
; k
++) {
3287 if (tp
->lunmp
[k
] && tp
->lunmp
[k
]->to_clear
) {
3297 * If not, walk the busy queue for any
3298 * disconnected CCB to be aborted.
3301 FOR_EACH_QUEUED_ELEMENT(&np
->busy_ccbq
, qp
) {
3302 cp
= sym_que_entry(qp
,struct sym_ccb
,link_ccbq
);
3303 if (cp
->host_status
!= HS_DISCONNECT
)
3306 target
= cp
->target
;
3313 * If some target is to be selected,
3314 * prepare and start the selection.
3317 tp
= &np
->target
[target
];
3318 np
->abrt_sel
.sel_id
= target
;
3319 np
->abrt_sel
.sel_scntl3
= tp
->head
.wval
;
3320 np
->abrt_sel
.sel_sxfer
= tp
->head
.sval
;
3321 OUTL(np
, nc_dsa
, np
->hcb_ba
);
3322 OUTL_DSP(np
, SCRIPTB_BA(np
, sel_for_abort
));
3327 * Now look for a CCB to abort that haven't started yet.
3328 * Btw, the SCRIPTS processor is still stopped, so
3329 * we are not in race.
3333 FOR_EACH_QUEUED_ELEMENT(&np
->busy_ccbq
, qp
) {
3334 cp
= sym_que_entry(qp
, struct sym_ccb
, link_ccbq
);
3335 if (cp
->host_status
!= HS_BUSY
&&
3336 cp
->host_status
!= HS_NEGOTIATE
)
3340 #ifdef SYM_CONF_IARB_SUPPORT
3342 * If we are using IMMEDIATE ARBITRATION, we donnot
3343 * want to cancel the last queued CCB, since the
3344 * SCRIPTS may have anticipated the selection.
3346 if (cp
== np
->last_cp
) {
3351 i
= 1; /* Means we have found some */
3356 * We are done, so we donnot need
3357 * to synchronize with the SCRIPTS anylonger.
3358 * Remove the SEM flag from the ISTAT.
3361 OUTB(np
, nc_istat
, SIGP
);
3365 * Compute index of next position in the start
3366 * queue the SCRIPTS intends to start and dequeue
3367 * all CCBs for that device that haven't been started.
3369 i
= (INL(np
, nc_scratcha
) - np
->squeue_ba
) / 4;
3370 i
= sym_dequeue_from_squeue(np
, i
, cp
->target
, cp
->lun
, -1);
3373 * Make sure at least our IO to abort has been dequeued.
3375 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
3376 assert(i
&& sym_get_cam_status(cp
->cmd
) == DID_SOFT_ERROR
);
3378 sym_remque(&cp
->link_ccbq
);
3379 sym_insque_tail(&cp
->link_ccbq
, &np
->comp_ccbq
);
3382 * Keep track in cam status of the reason of the abort.
3384 if (cp
->to_abort
== 2)
3385 sym_set_cam_status(cp
->cmd
, DID_TIME_OUT
);
3387 sym_set_cam_status(cp
->cmd
, DID_ABORT
);
3390 * Complete with error everything that we have dequeued.
3392 sym_flush_comp_queue(np
, 0);
3395 * The SCRIPTS processor has selected a target
3396 * we may have some manual recovery to perform for.
3398 case SIR_TARGET_SELECTED
:
3399 target
= INB(np
, nc_sdid
) & 0xf;
3400 tp
= &np
->target
[target
];
3402 np
->abrt_tbl
.addr
= cpu_to_scr(vtobus(np
->abrt_msg
));
3405 * If the target is to be reset, prepare a
3406 * M_RESET message and clear the to_reset flag
3407 * since we donnot expect this operation to fail.
3410 np
->abrt_msg
[0] = M_RESET
;
3411 np
->abrt_tbl
.size
= 1;
3417 * Otherwise, look for some logical unit to be cleared.
3419 if (tp
->lun0p
&& tp
->lun0p
->to_clear
)
3421 else if (tp
->lunmp
) {
3422 for (k
= 1 ; k
< SYM_CONF_MAX_LUN
; k
++) {
3423 if (tp
->lunmp
[k
] && tp
->lunmp
[k
]->to_clear
) {
3431 * If a logical unit is to be cleared, prepare
3432 * an IDENTIFY(lun) + ABORT MESSAGE.
3435 struct sym_lcb
*lp
= sym_lp(tp
, lun
);
3436 lp
->to_clear
= 0; /* We don't expect to fail here */
3437 np
->abrt_msg
[0] = IDENTIFY(0, lun
);
3438 np
->abrt_msg
[1] = M_ABORT
;
3439 np
->abrt_tbl
.size
= 2;
3444 * Otherwise, look for some disconnected job to
3445 * abort for this target.
3449 FOR_EACH_QUEUED_ELEMENT(&np
->busy_ccbq
, qp
) {
3450 cp
= sym_que_entry(qp
, struct sym_ccb
, link_ccbq
);
3451 if (cp
->host_status
!= HS_DISCONNECT
)
3453 if (cp
->target
!= target
)
3457 i
= 1; /* Means we have some */
3462 * If we have none, probably since the device has
3463 * completed the command before we won abitration,
3464 * send a M_ABORT message without IDENTIFY.
3465 * According to the specs, the device must just
3466 * disconnect the BUS and not abort any task.
3469 np
->abrt_msg
[0] = M_ABORT
;
3470 np
->abrt_tbl
.size
= 1;
3475 * We have some task to abort.
3476 * Set the IDENTIFY(lun)
3478 np
->abrt_msg
[0] = IDENTIFY(0, cp
->lun
);
3481 * If we want to abort an untagged command, we
3482 * will send a IDENTIFY + M_ABORT.
3483 * Otherwise (tagged command), we will send
3484 * a IDENTITFY + task attributes + ABORT TAG.
3486 if (cp
->tag
== NO_TAG
) {
3487 np
->abrt_msg
[1] = M_ABORT
;
3488 np
->abrt_tbl
.size
= 2;
3490 np
->abrt_msg
[1] = cp
->scsi_smsg
[1];
3491 np
->abrt_msg
[2] = cp
->scsi_smsg
[2];
3492 np
->abrt_msg
[3] = M_ABORT_TAG
;
3493 np
->abrt_tbl
.size
= 4;
3496 * Keep track of software timeout condition, since the
3497 * peripheral driver may not count retries on abort
3498 * conditions not due to timeout.
3500 if (cp
->to_abort
== 2)
3501 sym_set_cam_status(cp
->cmd
, DID_TIME_OUT
);
3502 cp
->to_abort
= 0; /* We donnot expect to fail here */
3506 * The target has accepted our message and switched
3507 * to BUS FREE phase as we expected.
3509 case SIR_ABORT_SENT
:
3510 target
= INB(np
, nc_sdid
) & 0xf;
3511 tp
= &np
->target
[target
];
3512 starget
= tp
->starget
;
3515 ** If we didn't abort anything, leave here.
3517 if (np
->abrt_msg
[0] == M_ABORT
)
3521 * If we sent a M_RESET, then a hardware reset has
3522 * been performed by the target.
3523 * - Reset everything to async 8 bit
3524 * - Tell ourself to negotiate next time :-)
3525 * - Prepare to clear all disconnected CCBs for
3526 * this target from our task list (lun=task=-1)
3530 if (np
->abrt_msg
[0] == M_RESET
) {
3532 tp
->head
.wval
= np
->rv_scntl3
;
3534 spi_period(starget
) = 0;
3535 spi_offset(starget
) = 0;
3536 spi_width(starget
) = 0;
3537 spi_iu(starget
) = 0;
3538 spi_dt(starget
) = 0;
3539 spi_qas(starget
) = 0;
3540 tp
->tgoal
.check_nego
= 1;
3544 * Otherwise, check for the LUN and TASK(s)
3545 * concerned by the cancelation.
3546 * If it is not ABORT_TAG then it is CLEAR_QUEUE
3547 * or an ABORT message :-)
3550 lun
= np
->abrt_msg
[0] & 0x3f;
3551 if (np
->abrt_msg
[1] == M_ABORT_TAG
)
3552 task
= np
->abrt_msg
[2];
3556 * Complete all the CCBs the device should have
3557 * aborted due to our 'kiss of death' message.
3559 i
= (INL(np
, nc_scratcha
) - np
->squeue_ba
) / 4;
3560 sym_dequeue_from_squeue(np
, i
, target
, lun
, -1);
3561 sym_clear_tasks(np
, DID_ABORT
, target
, lun
, task
);
3562 sym_flush_comp_queue(np
, 0);
3565 * If we sent a BDR, make upper layer aware of that.
3567 if (np
->abrt_msg
[0] == M_RESET
)
3568 sym_xpt_async_sent_bdr(np
, target
);
3573 * Print to the log the message we intend to send.
3575 if (num
== SIR_TARGET_SELECTED
) {
3576 dev_info(&tp
->starget
->dev
, "control msgout:");
3577 sym_printl_hex(np
->abrt_msg
, np
->abrt_tbl
.size
);
3578 np
->abrt_tbl
.size
= cpu_to_scr(np
->abrt_tbl
.size
);
3582 * Let the SCRIPTS processor continue.
3588 * Gerard's alchemy:) that deals with with the data
3589 * pointer for both MDP and the residual calculation.
3591 * I didn't want to bloat the code by more than 200
3592 * lines for the handling of both MDP and the residual.
3593 * This has been achieved by using a data pointer
3594 * representation consisting in an index in the data
3595 * array (dp_sg) and a negative offset (dp_ofs) that
3596 * have the following meaning:
3598 * - dp_sg = SYM_CONF_MAX_SG
3599 * we are at the end of the data script.
3600 * - dp_sg < SYM_CONF_MAX_SG
3601 * dp_sg points to the next entry of the scatter array
3602 * we want to transfer.
3604 * dp_ofs represents the residual of bytes of the
3605 * previous entry scatter entry we will send first.
3607 * no residual to send first.
3609 * The function sym_evaluate_dp() accepts an arbitray
3610 * offset (basically from the MDP message) and returns
3611 * the corresponding values of dp_sg and dp_ofs.
3614 static int sym_evaluate_dp(struct sym_hcb
*np
, struct sym_ccb
*cp
, u32 scr
, int *ofs
)
3617 int dp_ofs
, dp_sg
, dp_sgmin
;
3622 * Compute the resulted data pointer in term of a script
3623 * address within some DATA script and a signed byte offset.
3627 if (dp_scr
== SCRIPTA_BA(np
, pm0_data
))
3629 else if (dp_scr
== SCRIPTA_BA(np
, pm1_data
))
3635 dp_scr
= scr_to_cpu(pm
->ret
);
3636 dp_ofs
-= scr_to_cpu(pm
->sg
.size
);
3640 * If we are auto-sensing, then we are done.
3642 if (cp
->host_flags
& HF_SENSE
) {
3648 * Deduce the index of the sg entry.
3649 * Keep track of the index of the first valid entry.
3650 * If result is dp_sg = SYM_CONF_MAX_SG, then we are at the
3653 tmp
= scr_to_cpu(sym_goalp(cp
));
3654 dp_sg
= SYM_CONF_MAX_SG
;
3656 dp_sg
-= (tmp
- 8 - (int)dp_scr
) / (2*4);
3657 dp_sgmin
= SYM_CONF_MAX_SG
- cp
->segments
;
3660 * Move to the sg entry the data pointer belongs to.
3662 * If we are inside the data area, we expect result to be:
3665 * dp_ofs = 0 and dp_sg is the index of the sg entry
3666 * the data pointer belongs to (or the end of the data)
3668 * dp_ofs < 0 and dp_sg is the index of the sg entry
3669 * the data pointer belongs to + 1.
3673 while (dp_sg
> dp_sgmin
) {
3675 tmp
= scr_to_cpu(cp
->phys
.data
[dp_sg
].size
);
3676 n
= dp_ofs
+ (tmp
& 0xffffff);
3684 else if (dp_ofs
> 0) {
3685 while (dp_sg
< SYM_CONF_MAX_SG
) {
3686 tmp
= scr_to_cpu(cp
->phys
.data
[dp_sg
].size
);
3687 dp_ofs
-= (tmp
& 0xffffff);
3695 * Make sure the data pointer is inside the data area.
3696 * If not, return some error.
3698 if (dp_sg
< dp_sgmin
|| (dp_sg
== dp_sgmin
&& dp_ofs
< 0))
3700 else if (dp_sg
> SYM_CONF_MAX_SG
||
3701 (dp_sg
== SYM_CONF_MAX_SG
&& dp_ofs
> 0))
3705 * Save the extreme pointer if needed.
3707 if (dp_sg
> cp
->ext_sg
||
3708 (dp_sg
== cp
->ext_sg
&& dp_ofs
> cp
->ext_ofs
)) {
3710 cp
->ext_ofs
= dp_ofs
;
3724 * chip handler for MODIFY DATA POINTER MESSAGE
3726 * We also call this function on IGNORE WIDE RESIDUE
3727 * messages that do not match a SWIDE full condition.
3728 * Btw, we assume in that situation that such a message
3729 * is equivalent to a MODIFY DATA POINTER (offset=-1).
3732 static void sym_modify_dp(struct sym_hcb
*np
, struct sym_tcb
*tp
, struct sym_ccb
*cp
, int ofs
)
3735 u32 dp_scr
= sym_get_script_dp (np
, cp
);
3743 * Not supported for auto-sense.
3745 if (cp
->host_flags
& HF_SENSE
)
3749 * Apply our alchemy:) (see comments in sym_evaluate_dp()),
3750 * to the resulted data pointer.
3752 dp_sg
= sym_evaluate_dp(np
, cp
, dp_scr
, &dp_ofs
);
3757 * And our alchemy:) allows to easily calculate the data
3758 * script address we want to return for the next data phase.
3760 dp_ret
= cpu_to_scr(sym_goalp(cp
));
3761 dp_ret
= dp_ret
- 8 - (SYM_CONF_MAX_SG
- dp_sg
) * (2*4);
3764 * If offset / scatter entry is zero we donnot need
3765 * a context for the new current data pointer.
3773 * Get a context for the new current data pointer.
3775 hflags
= INB(np
, HF_PRT
);
3777 if (hflags
& HF_DP_SAVED
)
3778 hflags
^= HF_ACT_PM
;
3780 if (!(hflags
& HF_ACT_PM
)) {
3782 dp_scr
= SCRIPTA_BA(np
, pm0_data
);
3786 dp_scr
= SCRIPTA_BA(np
, pm1_data
);
3789 hflags
&= ~(HF_DP_SAVED
);
3791 OUTB(np
, HF_PRT
, hflags
);
3794 * Set up the new current data pointer.
3795 * ofs < 0 there, and for the next data phase, we
3796 * want to transfer part of the data of the sg entry
3797 * corresponding to index dp_sg-1 prior to returning
3798 * to the main data script.
3800 pm
->ret
= cpu_to_scr(dp_ret
);
3801 tmp
= scr_to_cpu(cp
->phys
.data
[dp_sg
-1].addr
);
3802 tmp
+= scr_to_cpu(cp
->phys
.data
[dp_sg
-1].size
) + dp_ofs
;
3803 pm
->sg
.addr
= cpu_to_scr(tmp
);
3804 pm
->sg
.size
= cpu_to_scr(-dp_ofs
);
3807 sym_set_script_dp (np
, cp
, dp_scr
);
3808 OUTL_DSP(np
, SCRIPTA_BA(np
, clrack
));
3812 OUTL_DSP(np
, SCRIPTB_BA(np
, msg_bad
));
3817 * chip calculation of the data residual.
3819 * As I used to say, the requirement of data residual
3820 * in SCSI is broken, useless and cannot be achieved
3821 * without huge complexity.
3822 * But most OSes and even the official CAM require it.
3823 * When stupidity happens to be so widely spread inside
3824 * a community, it gets hard to convince.
3826 * Anyway, I don't care, since I am not going to use
3827 * any software that considers this data residual as
3828 * a relevant information. :)
3831 int sym_compute_residual(struct sym_hcb
*np
, struct sym_ccb
*cp
)
3833 int dp_sg
, dp_sgmin
, resid
= 0;
3837 * Check for some data lost or just thrown away.
3838 * We are not required to be quite accurate in this
3839 * situation. Btw, if we are odd for output and the
3840 * device claims some more data, it may well happen
3841 * than our residual be zero. :-)
3843 if (cp
->xerr_status
& (XE_EXTRA_DATA
|XE_SODL_UNRUN
|XE_SWIDE_OVRUN
)) {
3844 if (cp
->xerr_status
& XE_EXTRA_DATA
)
3845 resid
-= cp
->extra_bytes
;
3846 if (cp
->xerr_status
& XE_SODL_UNRUN
)
3848 if (cp
->xerr_status
& XE_SWIDE_OVRUN
)
3853 * If all data has been transferred,
3854 * there is no residual.
3856 if (cp
->phys
.head
.lastp
== sym_goalp(cp
))
3860 * If no data transfer occurs, or if the data
3861 * pointer is weird, return full residual.
3863 if (cp
->startp
== cp
->phys
.head
.lastp
||
3864 sym_evaluate_dp(np
, cp
, scr_to_cpu(cp
->phys
.head
.lastp
),
3866 return cp
->data_len
;
3870 * If we were auto-sensing, then we are done.
3872 if (cp
->host_flags
& HF_SENSE
) {
3877 * We are now full comfortable in the computation
3878 * of the data residual (2's complement).
3880 dp_sgmin
= SYM_CONF_MAX_SG
- cp
->segments
;
3881 resid
= -cp
->ext_ofs
;
3882 for (dp_sg
= cp
->ext_sg
; dp_sg
< SYM_CONF_MAX_SG
; ++dp_sg
) {
3883 u_int tmp
= scr_to_cpu(cp
->phys
.data
[dp_sg
].size
);
3884 resid
+= (tmp
& 0xffffff);
3887 resid
-= cp
->odd_byte_adjustment
;
3890 * Hopefully, the result is not too wrong.
3896 * Negotiation for WIDE and SYNCHRONOUS DATA TRANSFER.
3898 * When we try to negotiate, we append the negotiation message
3899 * to the identify and (maybe) simple tag message.
3900 * The host status field is set to HS_NEGOTIATE to mark this
3903 * If the target doesn't answer this message immediately
3904 * (as required by the standard), the SIR_NEGO_FAILED interrupt
3905 * will be raised eventually.
3906 * The handler removes the HS_NEGOTIATE status, and sets the
3907 * negotiated value to the default (async / nowide).
3909 * If we receive a matching answer immediately, we check it
3910 * for validity, and set the values.
3912 * If we receive a Reject message immediately, we assume the
3913 * negotiation has failed, and fall back to standard values.
3915 * If we receive a negotiation message while not in HS_NEGOTIATE
3916 * state, it's a target initiated negotiation. We prepare a
3917 * (hopefully) valid answer, set our parameters, and send back
3918 * this answer to the target.
3920 * If the target doesn't fetch the answer (no message out phase),
3921 * we assume the negotiation has failed, and fall back to default
3922 * settings (SIR_NEGO_PROTO interrupt).
3924 * When we set the values, we adjust them in all ccbs belonging
3925 * to this target, in the controller's register, and in the "phys"
3926 * field of the controller's struct sym_hcb.
3930 * chip handler for SYNCHRONOUS DATA TRANSFER REQUEST (SDTR) message.
3933 sym_sync_nego_check(struct sym_hcb
*np
, int req
, struct sym_ccb
*cp
)
3935 int target
= cp
->target
;
3936 u_char chg
, ofs
, per
, fak
, div
;
3938 if (DEBUG_FLAGS
& DEBUG_NEGO
) {
3939 sym_print_nego_msg(np
, target
, "sync msgin", np
->msgin
);
3943 * Get requested values.
3950 * Check values against our limits.
3953 if (ofs
> np
->maxoffs
)
3954 {chg
= 1; ofs
= np
->maxoffs
;}
3958 if (per
< np
->minsync
)
3959 {chg
= 1; per
= np
->minsync
;}
3963 * Get new chip synchronous parameters value.
3966 if (ofs
&& sym_getsync(np
, 0, per
, &div
, &fak
) < 0)
3969 if (DEBUG_FLAGS
& DEBUG_NEGO
) {
3970 sym_print_addr(cp
->cmd
,
3971 "sdtr: ofs=%d per=%d div=%d fak=%d chg=%d.\n",
3972 ofs
, per
, div
, fak
, chg
);
3976 * If it was an answer we want to change,
3977 * then it isn't acceptable. Reject it.
3985 sym_setsync (np
, target
, ofs
, per
, div
, fak
);
3988 * It was an answer. We are done.
3994 * It was a request. Prepare an answer message.
3996 np
->msgout
[0] = M_EXTENDED
;
3998 np
->msgout
[2] = M_X_SYNC_REQ
;
3999 np
->msgout
[3] = per
;
4000 np
->msgout
[4] = ofs
;
4002 if (DEBUG_FLAGS
& DEBUG_NEGO
) {
4003 sym_print_nego_msg(np
, target
, "sync msgout", np
->msgout
);
4006 np
->msgin
[0] = M_NOOP
;
4011 sym_setsync (np
, target
, 0, 0, 0, 0);
4015 static void sym_sync_nego(struct sym_hcb
*np
, struct sym_tcb
*tp
, struct sym_ccb
*cp
)
4021 * Request or answer ?
4023 if (INB(np
, HS_PRT
) == HS_NEGOTIATE
) {
4024 OUTB(np
, HS_PRT
, HS_BUSY
);
4025 if (cp
->nego_status
&& cp
->nego_status
!= NS_SYNC
)
4031 * Check and apply new values.
4033 result
= sym_sync_nego_check(np
, req
, cp
);
4034 if (result
) /* Not acceptable, reject it */
4036 if (req
) { /* Was a request, send response. */
4037 cp
->nego_status
= NS_SYNC
;
4038 OUTL_DSP(np
, SCRIPTB_BA(np
, sdtr_resp
));
4040 else /* Was a response, we are done. */
4041 OUTL_DSP(np
, SCRIPTA_BA(np
, clrack
));
4045 OUTL_DSP(np
, SCRIPTB_BA(np
, msg_bad
));
4049 * chip handler for PARALLEL PROTOCOL REQUEST (PPR) message.
4052 sym_ppr_nego_check(struct sym_hcb
*np
, int req
, int target
)
4054 struct sym_tcb
*tp
= &np
->target
[target
];
4055 unsigned char fak
, div
;
4058 unsigned char per
= np
->msgin
[3];
4059 unsigned char ofs
= np
->msgin
[5];
4060 unsigned char wide
= np
->msgin
[6];
4061 unsigned char opts
= np
->msgin
[7] & PPR_OPT_MASK
;
4063 if (DEBUG_FLAGS
& DEBUG_NEGO
) {
4064 sym_print_nego_msg(np
, target
, "ppr msgin", np
->msgin
);
4068 * Check values against our limits.
4070 if (wide
> np
->maxwide
) {
4074 if (!wide
|| !(np
->features
& FE_U3EN
))
4077 if (opts
!= (np
->msgin
[7] & PPR_OPT_MASK
))
4080 dt
= opts
& PPR_OPT_DT
;
4083 unsigned char maxoffs
= dt
? np
->maxoffs_dt
: np
->maxoffs
;
4084 if (ofs
> maxoffs
) {
4091 unsigned char minsync
= dt
? np
->minsync_dt
: np
->minsync
;
4092 if (per
< minsync
) {
4099 * Get new chip synchronous parameters value.
4102 if (ofs
&& sym_getsync(np
, dt
, per
, &div
, &fak
) < 0)
4106 * If it was an answer we want to change,
4107 * then it isn't acceptable. Reject it.
4115 sym_setpprot(np
, target
, opts
, ofs
, per
, wide
, div
, fak
);
4118 * It was an answer. We are done.
4124 * It was a request. Prepare an answer message.
4126 np
->msgout
[0] = M_EXTENDED
;
4128 np
->msgout
[2] = M_X_PPR_REQ
;
4129 np
->msgout
[3] = per
;
4131 np
->msgout
[5] = ofs
;
4132 np
->msgout
[6] = wide
;
4133 np
->msgout
[7] = opts
;
4135 if (DEBUG_FLAGS
& DEBUG_NEGO
) {
4136 sym_print_nego_msg(np
, target
, "ppr msgout", np
->msgout
);
4139 np
->msgin
[0] = M_NOOP
;
4144 sym_setpprot (np
, target
, 0, 0, 0, 0, 0, 0);
4146 * If it is a device response that should result in
4147 * ST, we may want to try a legacy negotiation later.
4149 if (!req
&& !opts
) {
4150 tp
->tgoal
.period
= per
;
4151 tp
->tgoal
.offset
= ofs
;
4152 tp
->tgoal
.width
= wide
;
4153 tp
->tgoal
.iu
= tp
->tgoal
.dt
= tp
->tgoal
.qas
= 0;
4154 tp
->tgoal
.check_nego
= 1;
4159 static void sym_ppr_nego(struct sym_hcb
*np
, struct sym_tcb
*tp
, struct sym_ccb
*cp
)
4165 * Request or answer ?
4167 if (INB(np
, HS_PRT
) == HS_NEGOTIATE
) {
4168 OUTB(np
, HS_PRT
, HS_BUSY
);
4169 if (cp
->nego_status
&& cp
->nego_status
!= NS_PPR
)
4175 * Check and apply new values.
4177 result
= sym_ppr_nego_check(np
, req
, cp
->target
);
4178 if (result
) /* Not acceptable, reject it */
4180 if (req
) { /* Was a request, send response. */
4181 cp
->nego_status
= NS_PPR
;
4182 OUTL_DSP(np
, SCRIPTB_BA(np
, ppr_resp
));
4184 else /* Was a response, we are done. */
4185 OUTL_DSP(np
, SCRIPTA_BA(np
, clrack
));
4189 OUTL_DSP(np
, SCRIPTB_BA(np
, msg_bad
));
4193 * chip handler for WIDE DATA TRANSFER REQUEST (WDTR) message.
4196 sym_wide_nego_check(struct sym_hcb
*np
, int req
, struct sym_ccb
*cp
)
4198 int target
= cp
->target
;
4201 if (DEBUG_FLAGS
& DEBUG_NEGO
) {
4202 sym_print_nego_msg(np
, target
, "wide msgin", np
->msgin
);
4206 * Get requested values.
4209 wide
= np
->msgin
[3];
4212 * Check values against our limits.
4214 if (wide
> np
->maxwide
) {
4219 if (DEBUG_FLAGS
& DEBUG_NEGO
) {
4220 sym_print_addr(cp
->cmd
, "wdtr: wide=%d chg=%d.\n",
4225 * If it was an answer we want to change,
4226 * then it isn't acceptable. Reject it.
4234 sym_setwide (np
, target
, wide
);
4237 * It was an answer. We are done.
4243 * It was a request. Prepare an answer message.
4245 np
->msgout
[0] = M_EXTENDED
;
4247 np
->msgout
[2] = M_X_WIDE_REQ
;
4248 np
->msgout
[3] = wide
;
4250 np
->msgin
[0] = M_NOOP
;
4252 if (DEBUG_FLAGS
& DEBUG_NEGO
) {
4253 sym_print_nego_msg(np
, target
, "wide msgout", np
->msgout
);
4262 static void sym_wide_nego(struct sym_hcb
*np
, struct sym_tcb
*tp
, struct sym_ccb
*cp
)
4268 * Request or answer ?
4270 if (INB(np
, HS_PRT
) == HS_NEGOTIATE
) {
4271 OUTB(np
, HS_PRT
, HS_BUSY
);
4272 if (cp
->nego_status
&& cp
->nego_status
!= NS_WIDE
)
4278 * Check and apply new values.
4280 result
= sym_wide_nego_check(np
, req
, cp
);
4281 if (result
) /* Not acceptable, reject it */
4283 if (req
) { /* Was a request, send response. */
4284 cp
->nego_status
= NS_WIDE
;
4285 OUTL_DSP(np
, SCRIPTB_BA(np
, wdtr_resp
));
4286 } else { /* Was a response. */
4288 * Negotiate for SYNC immediately after WIDE response.
4289 * This allows to negotiate for both WIDE and SYNC on
4290 * a single SCSI command (Suggested by Justin Gibbs).
4292 if (tp
->tgoal
.offset
) {
4293 np
->msgout
[0] = M_EXTENDED
;
4295 np
->msgout
[2] = M_X_SYNC_REQ
;
4296 np
->msgout
[3] = tp
->tgoal
.period
;
4297 np
->msgout
[4] = tp
->tgoal
.offset
;
4299 if (DEBUG_FLAGS
& DEBUG_NEGO
) {
4300 sym_print_nego_msg(np
, cp
->target
,
4301 "sync msgout", np
->msgout
);
4304 cp
->nego_status
= NS_SYNC
;
4305 OUTB(np
, HS_PRT
, HS_NEGOTIATE
);
4306 OUTL_DSP(np
, SCRIPTB_BA(np
, sdtr_resp
));
4309 OUTL_DSP(np
, SCRIPTA_BA(np
, clrack
));
4315 OUTL_DSP(np
, SCRIPTB_BA(np
, msg_bad
));
4319 * Reset DT, SYNC or WIDE to default settings.
4321 * Called when a negotiation does not succeed either
4322 * on rejection or on protocol error.
4324 * A target that understands a PPR message should never
4325 * reject it, and messing with it is very unlikely.
4326 * So, if a PPR makes problems, we may just want to
4327 * try a legacy negotiation later.
4329 static void sym_nego_default(struct sym_hcb
*np
, struct sym_tcb
*tp
, struct sym_ccb
*cp
)
4331 switch (cp
->nego_status
) {
4334 sym_setpprot (np
, cp
->target
, 0, 0, 0, 0, 0, 0);
4336 if (tp
->tgoal
.period
< np
->minsync
)
4337 tp
->tgoal
.period
= np
->minsync
;
4338 if (tp
->tgoal
.offset
> np
->maxoffs
)
4339 tp
->tgoal
.offset
= np
->maxoffs
;
4340 tp
->tgoal
.iu
= tp
->tgoal
.dt
= tp
->tgoal
.qas
= 0;
4341 tp
->tgoal
.check_nego
= 1;
4345 sym_setsync (np
, cp
->target
, 0, 0, 0, 0);
4348 sym_setwide (np
, cp
->target
, 0);
4351 np
->msgin
[0] = M_NOOP
;
4352 np
->msgout
[0] = M_NOOP
;
4353 cp
->nego_status
= 0;
4357 * chip handler for MESSAGE REJECT received in response to
4358 * PPR, WIDE or SYNCHRONOUS negotiation.
4360 static void sym_nego_rejected(struct sym_hcb
*np
, struct sym_tcb
*tp
, struct sym_ccb
*cp
)
4362 sym_nego_default(np
, tp
, cp
);
4363 OUTB(np
, HS_PRT
, HS_BUSY
);
4367 * chip exception handler for programmed interrupts.
4369 static void sym_int_sir (struct sym_hcb
*np
)
4371 u_char num
= INB(np
, nc_dsps
);
4372 u32 dsa
= INL(np
, nc_dsa
);
4373 struct sym_ccb
*cp
= sym_ccb_from_dsa(np
, dsa
);
4374 u_char target
= INB(np
, nc_sdid
) & 0x0f;
4375 struct sym_tcb
*tp
= &np
->target
[target
];
4378 if (DEBUG_FLAGS
& DEBUG_TINY
) printf ("I#%d", num
);
4381 #if SYM_CONF_DMA_ADDRESSING_MODE == 2
4383 * SCRIPTS tell us that we may have to update
4384 * 64 bit DMA segment registers.
4386 case SIR_DMAP_DIRTY
:
4387 sym_update_dmap_regs(np
);
4391 * Command has been completed with error condition
4392 * or has been auto-sensed.
4394 case SIR_COMPLETE_ERROR
:
4395 sym_complete_error(np
, cp
);
4398 * The C code is currently trying to recover from something.
4399 * Typically, user want to abort some command.
4401 case SIR_SCRIPT_STOPPED
:
4402 case SIR_TARGET_SELECTED
:
4403 case SIR_ABORT_SENT
:
4404 sym_sir_task_recovery(np
, num
);
4407 * The device didn't go to MSG OUT phase after having
4408 * been selected with ATN. We donnot want to handle
4411 case SIR_SEL_ATN_NO_MSG_OUT
:
4412 printf ("%s:%d: No MSG OUT phase after selection with ATN.\n",
4413 sym_name (np
), target
);
4416 * The device didn't switch to MSG IN phase after
4417 * having reseleted the initiator.
4419 case SIR_RESEL_NO_MSG_IN
:
4420 printf ("%s:%d: No MSG IN phase after reselection.\n",
4421 sym_name (np
), target
);
4424 * After reselection, the device sent a message that wasn't
4427 case SIR_RESEL_NO_IDENTIFY
:
4428 printf ("%s:%d: No IDENTIFY after reselection.\n",
4429 sym_name (np
), target
);
4432 * The device reselected a LUN we donnot know about.
4434 case SIR_RESEL_BAD_LUN
:
4435 np
->msgout
[0] = M_RESET
;
4438 * The device reselected for an untagged nexus and we
4441 case SIR_RESEL_BAD_I_T_L
:
4442 np
->msgout
[0] = M_ABORT
;
4445 * The device reselected for a tagged nexus that we donnot
4448 case SIR_RESEL_BAD_I_T_L_Q
:
4449 np
->msgout
[0] = M_ABORT_TAG
;
4452 * The SCRIPTS let us know that the device has grabbed
4453 * our message and will abort the job.
4455 case SIR_RESEL_ABORTED
:
4456 np
->lastmsg
= np
->msgout
[0];
4457 np
->msgout
[0] = M_NOOP
;
4458 printf ("%s:%d: message %x sent on bad reselection.\n",
4459 sym_name (np
), target
, np
->lastmsg
);
4462 * The SCRIPTS let us know that a message has been
4463 * successfully sent to the device.
4465 case SIR_MSG_OUT_DONE
:
4466 np
->lastmsg
= np
->msgout
[0];
4467 np
->msgout
[0] = M_NOOP
;
4468 /* Should we really care of that */
4469 if (np
->lastmsg
== M_PARITY
|| np
->lastmsg
== M_ID_ERROR
) {
4471 cp
->xerr_status
&= ~XE_PARITY_ERR
;
4472 if (!cp
->xerr_status
)
4473 OUTOFFB(np
, HF_PRT
, HF_EXT_ERR
);
4478 * The device didn't send a GOOD SCSI status.
4479 * We may have some work to do prior to allow
4480 * the SCRIPTS processor to continue.
4482 case SIR_BAD_SCSI_STATUS
:
4485 sym_sir_bad_scsi_status(np
, num
, cp
);
4488 * We are asked by the SCRIPTS to prepare a
4491 case SIR_REJECT_TO_SEND
:
4492 sym_print_msg(cp
, "M_REJECT to send for ", np
->msgin
);
4493 np
->msgout
[0] = M_REJECT
;
4496 * We have been ODD at the end of a DATA IN
4497 * transfer and the device didn't send a
4498 * IGNORE WIDE RESIDUE message.
4499 * It is a data overrun condition.
4501 case SIR_SWIDE_OVERRUN
:
4503 OUTONB(np
, HF_PRT
, HF_EXT_ERR
);
4504 cp
->xerr_status
|= XE_SWIDE_OVRUN
;
4508 * We have been ODD at the end of a DATA OUT
4510 * It is a data underrun condition.
4512 case SIR_SODL_UNDERRUN
:
4514 OUTONB(np
, HF_PRT
, HF_EXT_ERR
);
4515 cp
->xerr_status
|= XE_SODL_UNRUN
;
4519 * The device wants us to tranfer more data than
4520 * expected or in the wrong direction.
4521 * The number of extra bytes is in scratcha.
4522 * It is a data overrun condition.
4524 case SIR_DATA_OVERRUN
:
4526 OUTONB(np
, HF_PRT
, HF_EXT_ERR
);
4527 cp
->xerr_status
|= XE_EXTRA_DATA
;
4528 cp
->extra_bytes
+= INL(np
, nc_scratcha
);
4532 * The device switched to an illegal phase (4/5).
4536 OUTONB(np
, HF_PRT
, HF_EXT_ERR
);
4537 cp
->xerr_status
|= XE_BAD_PHASE
;
4541 * We received a message.
4543 case SIR_MSG_RECEIVED
:
4546 switch (np
->msgin
[0]) {
4548 * We received an extended message.
4549 * We handle MODIFY DATA POINTER, SDTR, WDTR
4550 * and reject all other extended messages.
4553 switch (np
->msgin
[2]) {
4555 if (DEBUG_FLAGS
& DEBUG_POINTER
)
4556 sym_print_msg(cp
,"modify DP",np
->msgin
);
4557 tmp
= (np
->msgin
[3]<<24) + (np
->msgin
[4]<<16) +
4558 (np
->msgin
[5]<<8) + (np
->msgin
[6]);
4559 sym_modify_dp(np
, tp
, cp
, tmp
);
4562 sym_sync_nego(np
, tp
, cp
);
4565 sym_ppr_nego(np
, tp
, cp
);
4568 sym_wide_nego(np
, tp
, cp
);
4575 * We received a 1/2 byte message not handled from SCRIPTS.
4576 * We are only expecting MESSAGE REJECT and IGNORE WIDE
4577 * RESIDUE messages that haven't been anticipated by
4578 * SCRIPTS on SWIDE full condition. Unanticipated IGNORE
4579 * WIDE RESIDUE messages are aliased as MODIFY DP (-1).
4582 if (DEBUG_FLAGS
& DEBUG_POINTER
)
4583 sym_print_msg(cp
,"ign wide residue", np
->msgin
);
4584 if (cp
->host_flags
& HF_SENSE
)
4585 OUTL_DSP(np
, SCRIPTA_BA(np
, clrack
));
4587 sym_modify_dp(np
, tp
, cp
, -1);
4590 if (INB(np
, HS_PRT
) == HS_NEGOTIATE
)
4591 sym_nego_rejected(np
, tp
, cp
);
4593 sym_print_addr(cp
->cmd
,
4594 "M_REJECT received (%x:%x).\n",
4595 scr_to_cpu(np
->lastmsg
), np
->msgout
[0]);
4604 * We received an unknown message.
4605 * Ignore all MSG IN phases and reject it.
4608 sym_print_msg(cp
, "WEIRD message received", np
->msgin
);
4609 OUTL_DSP(np
, SCRIPTB_BA(np
, msg_weird
));
4612 * Negotiation failed.
4613 * Target does not send us the reply.
4614 * Remove the HS_NEGOTIATE status.
4616 case SIR_NEGO_FAILED
:
4617 OUTB(np
, HS_PRT
, HS_BUSY
);
4619 * Negotiation failed.
4620 * Target does not want answer message.
4622 case SIR_NEGO_PROTO
:
4623 sym_nego_default(np
, tp
, cp
);
4631 OUTL_DSP(np
, SCRIPTB_BA(np
, msg_bad
));
4634 OUTL_DSP(np
, SCRIPTA_BA(np
, clrack
));
4641 * Acquire a control block
4643 struct sym_ccb
*sym_get_ccb (struct sym_hcb
*np
, struct scsi_cmnd
*cmd
, u_char tag_order
)
4645 u_char tn
= cmd
->device
->id
;
4646 u_char ln
= cmd
->device
->lun
;
4647 struct sym_tcb
*tp
= &np
->target
[tn
];
4648 struct sym_lcb
*lp
= sym_lp(tp
, ln
);
4649 u_short tag
= NO_TAG
;
4651 struct sym_ccb
*cp
= NULL
;
4654 * Look for a free CCB
4656 if (sym_que_empty(&np
->free_ccbq
))
4658 qp
= sym_remque_head(&np
->free_ccbq
);
4661 cp
= sym_que_entry(qp
, struct sym_ccb
, link_ccbq
);
4663 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
4665 * If the LCB is not yet available and the LUN
4666 * has been probed ok, try to allocate the LCB.
4668 if (!lp
&& sym_is_bit(tp
->lun_map
, ln
)) {
4669 lp
= sym_alloc_lcb(np
, tn
, ln
);
4676 * If the LCB is not available here, then the
4677 * logical unit is not yet discovered. For those
4678 * ones only accept 1 SCSI IO per logical unit,
4679 * since we cannot allow disconnections.
4682 if (!sym_is_bit(tp
->busy0_map
, ln
))
4683 sym_set_bit(tp
->busy0_map
, ln
);
4688 * If we have been asked for a tagged command.
4692 * Debugging purpose.
4694 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
4695 assert(lp
->busy_itl
== 0);
4698 * Allocate resources for tags if not yet.
4701 sym_alloc_lcb_tags(np
, tn
, ln
);
4706 * Get a tag for this SCSI IO and set up
4707 * the CCB bus address for reselection,
4708 * and count it for this LUN.
4709 * Toggle reselect path to tagged.
4711 if (lp
->busy_itlq
< SYM_CONF_MAX_TASK
) {
4712 tag
= lp
->cb_tags
[lp
->ia_tag
];
4713 if (++lp
->ia_tag
== SYM_CONF_MAX_TASK
)
4716 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
4717 lp
->itlq_tbl
[tag
] = cpu_to_scr(cp
->ccb_ba
);
4719 cpu_to_scr(SCRIPTA_BA(np
, resel_tag
));
4721 #ifdef SYM_OPT_LIMIT_COMMAND_REORDERING
4722 cp
->tags_si
= lp
->tags_si
;
4723 ++lp
->tags_sum
[cp
->tags_si
];
4731 * This command will not be tagged.
4732 * If we already have either a tagged or untagged
4733 * one, refuse to overlap this untagged one.
4737 * Debugging purpose.
4739 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
4740 assert(lp
->busy_itl
== 0 && lp
->busy_itlq
== 0);
4743 * Count this nexus for this LUN.
4744 * Set up the CCB bus address for reselection.
4745 * Toggle reselect path to untagged.
4748 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
4749 if (lp
->busy_itl
== 1) {
4750 lp
->head
.itl_task_sa
= cpu_to_scr(cp
->ccb_ba
);
4752 cpu_to_scr(SCRIPTA_BA(np
, resel_no_tag
));
4760 * Put the CCB into the busy queue.
4762 sym_insque_tail(&cp
->link_ccbq
, &np
->busy_ccbq
);
4763 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
4765 sym_remque(&cp
->link2_ccbq
);
4766 sym_insque_tail(&cp
->link2_ccbq
, &lp
->waiting_ccbq
);
4771 cp
->odd_byte_adjustment
= 0;
4773 cp
->order
= tag_order
;
4777 if (DEBUG_FLAGS
& DEBUG_TAGS
) {
4778 sym_print_addr(cmd
, "ccb @%p using tag %d.\n", cp
, tag
);
4784 sym_insque_head(&cp
->link_ccbq
, &np
->free_ccbq
);
4789 * Release one control block
4791 void sym_free_ccb (struct sym_hcb
*np
, struct sym_ccb
*cp
)
4793 struct sym_tcb
*tp
= &np
->target
[cp
->target
];
4794 struct sym_lcb
*lp
= sym_lp(tp
, cp
->lun
);
4796 if (DEBUG_FLAGS
& DEBUG_TAGS
) {
4797 sym_print_addr(cp
->cmd
, "ccb @%p freeing tag %d.\n",
4806 * If tagged, release the tag, set the relect path
4808 if (cp
->tag
!= NO_TAG
) {
4809 #ifdef SYM_OPT_LIMIT_COMMAND_REORDERING
4810 --lp
->tags_sum
[cp
->tags_si
];
4813 * Free the tag value.
4815 lp
->cb_tags
[lp
->if_tag
] = cp
->tag
;
4816 if (++lp
->if_tag
== SYM_CONF_MAX_TASK
)
4819 * Make the reselect path invalid,
4820 * and uncount this CCB.
4822 lp
->itlq_tbl
[cp
->tag
] = cpu_to_scr(np
->bad_itlq_ba
);
4824 } else { /* Untagged */
4826 * Make the reselect path invalid,
4827 * and uncount this CCB.
4829 lp
->head
.itl_task_sa
= cpu_to_scr(np
->bad_itl_ba
);
4833 * If no JOB active, make the LUN reselect path invalid.
4835 if (lp
->busy_itlq
== 0 && lp
->busy_itl
== 0)
4837 cpu_to_scr(SCRIPTB_BA(np
, resel_bad_lun
));
4840 * Otherwise, we only accept 1 IO per LUN.
4841 * Clear the bit that keeps track of this IO.
4844 sym_clr_bit(tp
->busy0_map
, cp
->lun
);
4847 * We donnot queue more than 1 ccb per target
4848 * with negotiation at any time. If this ccb was
4849 * used for negotiation, clear this info in the tcb.
4851 if (cp
== tp
->nego_cp
)
4854 #ifdef SYM_CONF_IARB_SUPPORT
4856 * If we just complete the last queued CCB,
4857 * clear this info that is no longer relevant.
4859 if (cp
== np
->last_cp
)
4864 * Make this CCB available.
4867 cp
->host_status
= HS_IDLE
;
4868 sym_remque(&cp
->link_ccbq
);
4869 sym_insque_head(&cp
->link_ccbq
, &np
->free_ccbq
);
4871 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
4873 sym_remque(&cp
->link2_ccbq
);
4874 sym_insque_tail(&cp
->link2_ccbq
, &np
->dummy_ccbq
);
4876 if (cp
->tag
!= NO_TAG
)
4879 --lp
->started_no_tag
;
4887 * Allocate a CCB from memory and initialize its fixed part.
4889 static struct sym_ccb
*sym_alloc_ccb(struct sym_hcb
*np
)
4891 struct sym_ccb
*cp
= NULL
;
4895 * Prevent from allocating more CCBs than we can
4896 * queue to the controller.
4898 if (np
->actccbs
>= SYM_CONF_MAX_START
)
4902 * Allocate memory for this CCB.
4904 cp
= sym_calloc_dma(sizeof(struct sym_ccb
), "CCB");
4914 * Compute the bus address of this ccb.
4916 cp
->ccb_ba
= vtobus(cp
);
4919 * Insert this ccb into the hashed list.
4921 hcode
= CCB_HASH_CODE(cp
->ccb_ba
);
4922 cp
->link_ccbh
= np
->ccbh
[hcode
];
4923 np
->ccbh
[hcode
] = cp
;
4926 * Initialyze the start and restart actions.
4928 cp
->phys
.head
.go
.start
= cpu_to_scr(SCRIPTA_BA(np
, idle
));
4929 cp
->phys
.head
.go
.restart
= cpu_to_scr(SCRIPTB_BA(np
, bad_i_t_l
));
4932 * Initilialyze some other fields.
4934 cp
->phys
.smsg_ext
.addr
= cpu_to_scr(HCB_BA(np
, msgin
[2]));
4937 * Chain into free ccb queue.
4939 sym_insque_head(&cp
->link_ccbq
, &np
->free_ccbq
);
4942 * Chain into optionnal lists.
4944 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
4945 sym_insque_head(&cp
->link2_ccbq
, &np
->dummy_ccbq
);
4950 sym_mfree_dma(cp
, sizeof(*cp
), "CCB");
4955 * Look up a CCB from a DSA value.
4957 static struct sym_ccb
*sym_ccb_from_dsa(struct sym_hcb
*np
, u32 dsa
)
4962 hcode
= CCB_HASH_CODE(dsa
);
4963 cp
= np
->ccbh
[hcode
];
4965 if (cp
->ccb_ba
== dsa
)
4974 * Target control block initialisation.
4975 * Nothing important to do at the moment.
4977 static void sym_init_tcb (struct sym_hcb
*np
, u_char tn
)
4979 #if 0 /* Hmmm... this checking looks paranoid. */
4981 * Check some alignments required by the chip.
4983 assert (((offsetof(struct sym_reg
, nc_sxfer
) ^
4984 offsetof(struct sym_tcb
, head
.sval
)) &3) == 0);
4985 assert (((offsetof(struct sym_reg
, nc_scntl3
) ^
4986 offsetof(struct sym_tcb
, head
.wval
)) &3) == 0);
4991 * Lun control block allocation and initialization.
4993 struct sym_lcb
*sym_alloc_lcb (struct sym_hcb
*np
, u_char tn
, u_char ln
)
4995 struct sym_tcb
*tp
= &np
->target
[tn
];
4996 struct sym_lcb
*lp
= sym_lp(tp
, ln
);
4999 * Already done, just return.
5005 * Donnot allow LUN control block
5006 * allocation for not probed LUNs.
5008 if (!sym_is_bit(tp
->lun_map
, ln
))
5012 * Initialize the target control block if not yet.
5014 sym_init_tcb (np
, tn
);
5017 * Allocate the LCB bus address array.
5018 * Compute the bus address of this table.
5020 if (ln
&& !tp
->luntbl
) {
5023 tp
->luntbl
= sym_calloc_dma(256, "LUNTBL");
5026 for (i
= 0 ; i
< 64 ; i
++)
5027 tp
->luntbl
[i
] = cpu_to_scr(vtobus(&np
->badlun_sa
));
5028 tp
->head
.luntbl_sa
= cpu_to_scr(vtobus(tp
->luntbl
));
5032 * Allocate the table of pointers for LUN(s) > 0, if needed.
5034 if (ln
&& !tp
->lunmp
) {
5035 tp
->lunmp
= kcalloc(SYM_CONF_MAX_LUN
, sizeof(struct sym_lcb
*),
5043 * Make it available to the chip.
5045 lp
= sym_calloc_dma(sizeof(struct sym_lcb
), "LCB");
5050 tp
->luntbl
[ln
] = cpu_to_scr(vtobus(lp
));
5054 tp
->head
.lun0_sa
= cpu_to_scr(vtobus(lp
));
5058 * Let the itl task point to error handling.
5060 lp
->head
.itl_task_sa
= cpu_to_scr(np
->bad_itl_ba
);
5063 * Set the reselect pattern to our default. :)
5065 lp
->head
.resel_sa
= cpu_to_scr(SCRIPTB_BA(np
, resel_bad_lun
));
5068 * Set user capabilities.
5070 lp
->user_flags
= tp
->usrflags
& (SYM_DISC_ENABLED
| SYM_TAGS_ENABLED
);
5072 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5074 * Initialize device queueing.
5076 sym_que_init(&lp
->waiting_ccbq
);
5077 sym_que_init(&lp
->started_ccbq
);
5078 lp
->started_max
= SYM_CONF_MAX_TASK
;
5079 lp
->started_limit
= SYM_CONF_MAX_TASK
;
5082 * If we are busy, count the IO.
5084 if (sym_is_bit(tp
->busy0_map
, ln
)) {
5086 sym_clr_bit(tp
->busy0_map
, ln
);
5093 * Allocate LCB resources for tagged command queuing.
5095 static void sym_alloc_lcb_tags (struct sym_hcb
*np
, u_char tn
, u_char ln
)
5097 struct sym_tcb
*tp
= &np
->target
[tn
];
5098 struct sym_lcb
*lp
= sym_lp(tp
, ln
);
5102 * If LCB not available, try to allocate it.
5104 if (!lp
&& !(lp
= sym_alloc_lcb(np
, tn
, ln
)))
5108 * Allocate the task table and and the tag allocation
5109 * circular buffer. We want both or none.
5111 lp
->itlq_tbl
= sym_calloc_dma(SYM_CONF_MAX_TASK
*4, "ITLQ_TBL");
5114 lp
->cb_tags
= kcalloc(SYM_CONF_MAX_TASK
, 1, GFP_ATOMIC
);
5116 sym_mfree_dma(lp
->itlq_tbl
, SYM_CONF_MAX_TASK
*4, "ITLQ_TBL");
5117 lp
->itlq_tbl
= NULL
;
5122 * Initialize the task table with invalid entries.
5124 for (i
= 0 ; i
< SYM_CONF_MAX_TASK
; i
++)
5125 lp
->itlq_tbl
[i
] = cpu_to_scr(np
->notask_ba
);
5128 * Fill up the tag buffer with tag numbers.
5130 for (i
= 0 ; i
< SYM_CONF_MAX_TASK
; i
++)
5134 * Make the task table available to SCRIPTS,
5135 * And accept tagged commands now.
5137 lp
->head
.itlq_tbl_sa
= cpu_to_scr(vtobus(lp
->itlq_tbl
));
5145 * Queue a SCSI IO to the controller.
5147 int sym_queue_scsiio(struct sym_hcb
*np
, struct scsi_cmnd
*cmd
, struct sym_ccb
*cp
)
5149 struct scsi_device
*sdev
= cmd
->device
;
5157 * Keep track of the IO in our CCB.
5162 * Retrieve the target descriptor.
5164 tp
= &np
->target
[cp
->target
];
5167 * Retrieve the lun descriptor.
5169 lp
= sym_lp(tp
, sdev
->lun
);
5171 can_disconnect
= (cp
->tag
!= NO_TAG
) ||
5172 (lp
&& (lp
->curr_flags
& SYM_DISC_ENABLED
));
5174 msgptr
= cp
->scsi_smsg
;
5176 msgptr
[msglen
++] = IDENTIFY(can_disconnect
, sdev
->lun
);
5179 * Build the tag message if present.
5181 if (cp
->tag
!= NO_TAG
) {
5182 u_char order
= cp
->order
;
5190 order
= M_SIMPLE_TAG
;
5192 #ifdef SYM_OPT_LIMIT_COMMAND_REORDERING
5194 * Avoid too much reordering of SCSI commands.
5195 * The algorithm tries to prevent completion of any
5196 * tagged command from being delayed against more
5197 * than 3 times the max number of queued commands.
5199 if (lp
&& lp
->tags_since
> 3*SYM_CONF_MAX_TAG
) {
5200 lp
->tags_si
= !(lp
->tags_si
);
5201 if (lp
->tags_sum
[lp
->tags_si
]) {
5202 order
= M_ORDERED_TAG
;
5203 if ((DEBUG_FLAGS
& DEBUG_TAGS
)||sym_verbose
>1) {
5205 "ordered tag forced.\n");
5211 msgptr
[msglen
++] = order
;
5214 * For less than 128 tags, actual tags are numbered
5215 * 1,3,5,..2*MAXTAGS+1,since we may have to deal
5216 * with devices that have problems with #TAG 0 or too
5217 * great #TAG numbers. For more tags (up to 256),
5218 * we use directly our tag number.
5220 #if SYM_CONF_MAX_TASK > (512/4)
5221 msgptr
[msglen
++] = cp
->tag
;
5223 msgptr
[msglen
++] = (cp
->tag
<< 1) + 1;
5228 * Build a negotiation message if needed.
5229 * (nego_status is filled by sym_prepare_nego())
5231 cp
->nego_status
= 0;
5232 if (tp
->tgoal
.check_nego
&& !tp
->nego_cp
&& lp
) {
5233 msglen
+= sym_prepare_nego(np
, cp
, msgptr
+ msglen
);
5239 cp
->phys
.head
.go
.start
= cpu_to_scr(SCRIPTA_BA(np
, select
));
5240 cp
->phys
.head
.go
.restart
= cpu_to_scr(SCRIPTA_BA(np
, resel_dsa
));
5245 cp
->phys
.select
.sel_id
= cp
->target
;
5246 cp
->phys
.select
.sel_scntl3
= tp
->head
.wval
;
5247 cp
->phys
.select
.sel_sxfer
= tp
->head
.sval
;
5248 cp
->phys
.select
.sel_scntl4
= tp
->head
.uval
;
5253 cp
->phys
.smsg
.addr
= CCB_BA(cp
, scsi_smsg
);
5254 cp
->phys
.smsg
.size
= cpu_to_scr(msglen
);
5259 cp
->host_xflags
= 0;
5260 cp
->host_status
= cp
->nego_status
? HS_NEGOTIATE
: HS_BUSY
;
5261 cp
->ssss_status
= S_ILLEGAL
;
5262 cp
->xerr_status
= 0;
5264 cp
->extra_bytes
= 0;
5267 * extreme data pointer.
5268 * shall be positive, so -1 is lower than lowest.:)
5274 * Build the CDB and DATA descriptor block
5277 return sym_setup_data_and_start(np
, cmd
, cp
);
5281 * Reset a SCSI target (all LUNs of this target).
5283 int sym_reset_scsi_target(struct sym_hcb
*np
, int target
)
5287 if (target
== np
->myaddr
|| (u_int
)target
>= SYM_CONF_MAX_TARGET
)
5290 tp
= &np
->target
[target
];
5293 np
->istat_sem
= SEM
;
5294 OUTB(np
, nc_istat
, SIGP
|SEM
);
5302 static int sym_abort_ccb(struct sym_hcb
*np
, struct sym_ccb
*cp
, int timed_out
)
5305 * Check that the IO is active.
5307 if (!cp
|| !cp
->host_status
|| cp
->host_status
== HS_WAIT
)
5311 * If a previous abort didn't succeed in time,
5312 * perform a BUS reset.
5315 sym_reset_scsi_bus(np
, 1);
5320 * Mark the CCB for abort and allow time for.
5322 cp
->to_abort
= timed_out
? 2 : 1;
5325 * Tell the SCRIPTS processor to stop and synchronize with us.
5327 np
->istat_sem
= SEM
;
5328 OUTB(np
, nc_istat
, SIGP
|SEM
);
5332 int sym_abort_scsiio(struct sym_hcb
*np
, struct scsi_cmnd
*cmd
, int timed_out
)
5338 * Look up our CCB control block.
5341 FOR_EACH_QUEUED_ELEMENT(&np
->busy_ccbq
, qp
) {
5342 struct sym_ccb
*cp2
= sym_que_entry(qp
, struct sym_ccb
, link_ccbq
);
5343 if (cp2
->cmd
== cmd
) {
5349 return sym_abort_ccb(np
, cp
, timed_out
);
5353 * Complete execution of a SCSI command with extended
5354 * error, SCSI status error, or having been auto-sensed.
5356 * The SCRIPTS processor is not running there, so we
5357 * can safely access IO registers and remove JOBs from
5359 * SCRATCHA is assumed to have been loaded with STARTPOS
5360 * before the SCRIPTS called the C code.
5362 void sym_complete_error(struct sym_hcb
*np
, struct sym_ccb
*cp
)
5364 struct scsi_device
*sdev
;
5365 struct scsi_cmnd
*cmd
;
5372 * Paranoid check. :)
5374 if (!cp
|| !cp
->cmd
)
5379 if (DEBUG_FLAGS
& (DEBUG_TINY
|DEBUG_RESULT
)) {
5380 dev_info(&sdev
->sdev_gendev
, "CCB=%p STAT=%x/%x/%x\n", cp
,
5381 cp
->host_status
, cp
->ssss_status
, cp
->host_flags
);
5385 * Get target and lun pointers.
5387 tp
= &np
->target
[cp
->target
];
5388 lp
= sym_lp(tp
, sdev
->lun
);
5391 * Check for extended errors.
5393 if (cp
->xerr_status
) {
5395 sym_print_xerr(cmd
, cp
->xerr_status
);
5396 if (cp
->host_status
== HS_COMPLETE
)
5397 cp
->host_status
= HS_COMP_ERR
;
5401 * Calculate the residual.
5403 resid
= sym_compute_residual(np
, cp
);
5405 if (!SYM_SETUP_RESIDUAL_SUPPORT
) {/* If user does not want residuals */
5406 resid
= 0; /* throw them away. :) */
5411 printf("XXXX RESID= %d - 0x%x\n", resid
, resid
);
5415 * Dequeue all queued CCBs for that device
5416 * not yet started by SCRIPTS.
5418 i
= (INL(np
, nc_scratcha
) - np
->squeue_ba
) / 4;
5419 i
= sym_dequeue_from_squeue(np
, i
, cp
->target
, sdev
->lun
, -1);
5422 * Restart the SCRIPTS processor.
5424 OUTL_DSP(np
, SCRIPTA_BA(np
, start
));
5426 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5427 if (cp
->host_status
== HS_COMPLETE
&&
5428 cp
->ssss_status
== S_QUEUE_FULL
) {
5429 if (!lp
|| lp
->started_tags
- i
< 2)
5432 * Decrease queue depth as needed.
5434 lp
->started_max
= lp
->started_tags
- i
- 1;
5437 if (sym_verbose
>= 2) {
5438 sym_print_addr(cmd
, " queue depth is now %d\n",
5445 cp
->host_status
= HS_BUSY
;
5446 cp
->ssss_status
= S_ILLEGAL
;
5449 * Let's requeue it to device.
5451 sym_set_cam_status(cmd
, DID_SOFT_ERROR
);
5457 * Build result in CAM ccb.
5459 sym_set_cam_result_error(np
, cp
, resid
);
5461 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5465 * Add this one to the COMP queue.
5467 sym_remque(&cp
->link_ccbq
);
5468 sym_insque_head(&cp
->link_ccbq
, &np
->comp_ccbq
);
5471 * Complete all those commands with either error
5472 * or requeue condition.
5474 sym_flush_comp_queue(np
, 0);
5476 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5478 * Donnot start more than 1 command after an error.
5481 sym_start_next_ccbs(np
, lp
, 1);
5486 * Complete execution of a successful SCSI command.
5488 * Only successful commands go to the DONE queue,
5489 * since we need to have the SCRIPTS processor
5490 * stopped on any error condition.
5491 * The SCRIPTS processor is running while we are
5492 * completing successful commands.
5494 void sym_complete_ok (struct sym_hcb
*np
, struct sym_ccb
*cp
)
5498 struct scsi_cmnd
*cmd
;
5502 * Paranoid check. :)
5504 if (!cp
|| !cp
->cmd
)
5506 assert (cp
->host_status
== HS_COMPLETE
);
5514 * Get target and lun pointers.
5516 tp
= &np
->target
[cp
->target
];
5517 lp
= sym_lp(tp
, cp
->lun
);
5520 * Assume device discovered on first success.
5523 sym_set_bit(tp
->lun_map
, cp
->lun
);
5526 * If all data have been transferred, given than no
5527 * extended error did occur, there is no residual.
5530 if (cp
->phys
.head
.lastp
!= sym_goalp(cp
))
5531 resid
= sym_compute_residual(np
, cp
);
5534 * Wrong transfer residuals may be worse than just always
5535 * returning zero. User can disable this feature in
5536 * sym53c8xx.h. Residual support is enabled by default.
5538 if (!SYM_SETUP_RESIDUAL_SUPPORT
)
5542 printf("XXXX RESID= %d - 0x%x\n", resid
, resid
);
5546 * Build result in CAM ccb.
5548 sym_set_cam_result_ok(cp
, cmd
, resid
);
5550 #ifdef SYM_OPT_SNIFF_INQUIRY
5552 * On standard INQUIRY response (EVPD and CmDt
5553 * not set), sniff out device capabilities.
5555 if (cp
->cdb_buf
[0] == INQUIRY
&& !(cp
->cdb_buf
[1] & 0x3))
5556 sym_sniff_inquiry(np
, cmd
, resid
);
5559 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5561 * If max number of started ccbs had been reduced,
5562 * increase it if 200 good status received.
5564 if (lp
&& lp
->started_max
< lp
->started_limit
) {
5566 if (lp
->num_sgood
>= 200) {
5569 if (sym_verbose
>= 2) {
5570 sym_print_addr(cmd
, " queue depth is now %d\n",
5580 sym_free_ccb (np
, cp
);
5582 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5584 * Requeue a couple of awaiting scsi commands.
5586 if (lp
&& !sym_que_empty(&lp
->waiting_ccbq
))
5587 sym_start_next_ccbs(np
, lp
, 2);
5590 * Complete the command.
5592 sym_xpt_done(np
, cmd
);
5596 * Soft-attach the controller.
5598 int sym_hcb_attach(struct Scsi_Host
*shost
, struct sym_fw
*fw
, struct sym_nvram
*nvram
)
5600 struct sym_hcb
*np
= sym_get_hcb(shost
);
5604 * Get some info about the firmware.
5606 np
->scripta_sz
= fw
->a_size
;
5607 np
->scriptb_sz
= fw
->b_size
;
5608 np
->scriptz_sz
= fw
->z_size
;
5609 np
->fw_setup
= fw
->setup
;
5610 np
->fw_patch
= fw
->patch
;
5611 np
->fw_name
= fw
->name
;
5614 * Save setting of some IO registers, so we will
5615 * be able to probe specific implementations.
5617 sym_save_initial_setting (np
);
5620 * Reset the chip now, since it has been reported
5621 * that SCSI clock calibration may not work properly
5622 * if the chip is currently active.
5627 * Prepare controller and devices settings, according
5628 * to chip features, user set-up and driver set-up.
5630 sym_prepare_setting(shost
, np
, nvram
);
5633 * Check the PCI clock frequency.
5634 * Must be performed after prepare_setting since it destroys
5635 * STEST1 that is used to probe for the clock doubler.
5637 i
= sym_getpciclock(np
);
5638 if (i
> 37000 && !(np
->features
& FE_66MHZ
))
5639 printf("%s: PCI BUS clock seems too high: %u KHz.\n",
5643 * Allocate the start queue.
5645 np
->squeue
= sym_calloc_dma(sizeof(u32
)*(MAX_QUEUE
*2),"SQUEUE");
5648 np
->squeue_ba
= vtobus(np
->squeue
);
5651 * Allocate the done queue.
5653 np
->dqueue
= sym_calloc_dma(sizeof(u32
)*(MAX_QUEUE
*2),"DQUEUE");
5656 np
->dqueue_ba
= vtobus(np
->dqueue
);
5659 * Allocate the target bus address array.
5661 np
->targtbl
= sym_calloc_dma(256, "TARGTBL");
5664 np
->targtbl_ba
= vtobus(np
->targtbl
);
5667 * Allocate SCRIPTS areas.
5669 np
->scripta0
= sym_calloc_dma(np
->scripta_sz
, "SCRIPTA0");
5670 np
->scriptb0
= sym_calloc_dma(np
->scriptb_sz
, "SCRIPTB0");
5671 np
->scriptz0
= sym_calloc_dma(np
->scriptz_sz
, "SCRIPTZ0");
5672 if (!np
->scripta0
|| !np
->scriptb0
|| !np
->scriptz0
)
5676 * Allocate the array of lists of CCBs hashed by DSA.
5678 np
->ccbh
= kcalloc(sizeof(struct sym_ccb
**), CCB_HASH_SIZE
, GFP_KERNEL
);
5683 * Initialyze the CCB free and busy queues.
5685 sym_que_init(&np
->free_ccbq
);
5686 sym_que_init(&np
->busy_ccbq
);
5687 sym_que_init(&np
->comp_ccbq
);
5690 * Initialization for optional handling
5691 * of device queueing.
5693 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5694 sym_que_init(&np
->dummy_ccbq
);
5697 * Allocate some CCB. We need at least ONE.
5699 if (!sym_alloc_ccb(np
))
5703 * Calculate BUS addresses where we are going
5704 * to load the SCRIPTS.
5706 np
->scripta_ba
= vtobus(np
->scripta0
);
5707 np
->scriptb_ba
= vtobus(np
->scriptb0
);
5708 np
->scriptz_ba
= vtobus(np
->scriptz0
);
5711 np
->scripta_ba
= np
->ram_ba
;
5712 if (np
->features
& FE_RAM8K
) {
5714 np
->scriptb_ba
= np
->scripta_ba
+ 4096;
5715 #if 0 /* May get useful for 64 BIT PCI addressing */
5716 np
->scr_ram_seg
= cpu_to_scr(np
->scripta_ba
>> 32);
5724 * Copy scripts to controller instance.
5726 memcpy(np
->scripta0
, fw
->a_base
, np
->scripta_sz
);
5727 memcpy(np
->scriptb0
, fw
->b_base
, np
->scriptb_sz
);
5728 memcpy(np
->scriptz0
, fw
->z_base
, np
->scriptz_sz
);
5731 * Setup variable parts in scripts and compute
5732 * scripts bus addresses used from the C code.
5734 np
->fw_setup(np
, fw
);
5737 * Bind SCRIPTS with physical addresses usable by the
5738 * SCRIPTS processor (as seen from the BUS = BUS addresses).
5740 sym_fw_bind_script(np
, (u32
*) np
->scripta0
, np
->scripta_sz
);
5741 sym_fw_bind_script(np
, (u32
*) np
->scriptb0
, np
->scriptb_sz
);
5742 sym_fw_bind_script(np
, (u32
*) np
->scriptz0
, np
->scriptz_sz
);
5744 #ifdef SYM_CONF_IARB_SUPPORT
5746 * If user wants IARB to be set when we win arbitration
5747 * and have other jobs, compute the max number of consecutive
5748 * settings of IARB hints before we leave devices a chance to
5749 * arbitrate for reselection.
5751 #ifdef SYM_SETUP_IARB_MAX
5752 np
->iarb_max
= SYM_SETUP_IARB_MAX
;
5759 * Prepare the idle and invalid task actions.
5761 np
->idletask
.start
= cpu_to_scr(SCRIPTA_BA(np
, idle
));
5762 np
->idletask
.restart
= cpu_to_scr(SCRIPTB_BA(np
, bad_i_t_l
));
5763 np
->idletask_ba
= vtobus(&np
->idletask
);
5765 np
->notask
.start
= cpu_to_scr(SCRIPTA_BA(np
, idle
));
5766 np
->notask
.restart
= cpu_to_scr(SCRIPTB_BA(np
, bad_i_t_l
));
5767 np
->notask_ba
= vtobus(&np
->notask
);
5769 np
->bad_itl
.start
= cpu_to_scr(SCRIPTA_BA(np
, idle
));
5770 np
->bad_itl
.restart
= cpu_to_scr(SCRIPTB_BA(np
, bad_i_t_l
));
5771 np
->bad_itl_ba
= vtobus(&np
->bad_itl
);
5773 np
->bad_itlq
.start
= cpu_to_scr(SCRIPTA_BA(np
, idle
));
5774 np
->bad_itlq
.restart
= cpu_to_scr(SCRIPTB_BA(np
,bad_i_t_l_q
));
5775 np
->bad_itlq_ba
= vtobus(&np
->bad_itlq
);
5778 * Allocate and prepare the lun JUMP table that is used
5779 * for a target prior the probing of devices (bad lun table).
5780 * A private table will be allocated for the target on the
5781 * first INQUIRY response received.
5783 np
->badluntbl
= sym_calloc_dma(256, "BADLUNTBL");
5787 np
->badlun_sa
= cpu_to_scr(SCRIPTB_BA(np
, resel_bad_lun
));
5788 for (i
= 0 ; i
< 64 ; i
++) /* 64 luns/target, no less */
5789 np
->badluntbl
[i
] = cpu_to_scr(vtobus(&np
->badlun_sa
));
5792 * Prepare the bus address array that contains the bus
5793 * address of each target control block.
5794 * For now, assume all logical units are wrong. :)
5796 for (i
= 0 ; i
< SYM_CONF_MAX_TARGET
; i
++) {
5797 np
->targtbl
[i
] = cpu_to_scr(vtobus(&np
->target
[i
]));
5798 np
->target
[i
].head
.luntbl_sa
=
5799 cpu_to_scr(vtobus(np
->badluntbl
));
5800 np
->target
[i
].head
.lun0_sa
=
5801 cpu_to_scr(vtobus(&np
->badlun_sa
));
5805 * Now check the cache handling of the pci chipset.
5807 if (sym_snooptest (np
)) {
5808 printf("%s: CACHE INCORRECTLY CONFIGURED.\n", sym_name(np
));
5813 * Sigh! we are done.
5822 * Free everything that has been allocated for this device.
5824 void sym_hcb_free(struct sym_hcb
*np
)
5833 sym_mfree_dma(np
->scriptz0
, np
->scriptz_sz
, "SCRIPTZ0");
5835 sym_mfree_dma(np
->scriptb0
, np
->scriptb_sz
, "SCRIPTB0");
5837 sym_mfree_dma(np
->scripta0
, np
->scripta_sz
, "SCRIPTA0");
5839 sym_mfree_dma(np
->squeue
, sizeof(u32
)*(MAX_QUEUE
*2), "SQUEUE");
5841 sym_mfree_dma(np
->dqueue
, sizeof(u32
)*(MAX_QUEUE
*2), "DQUEUE");
5844 while ((qp
= sym_remque_head(&np
->free_ccbq
)) != 0) {
5845 cp
= sym_que_entry(qp
, struct sym_ccb
, link_ccbq
);
5846 sym_mfree_dma(cp
, sizeof(*cp
), "CCB");
5852 sym_mfree_dma(np
->badluntbl
, 256,"BADLUNTBL");
5854 for (target
= 0; target
< SYM_CONF_MAX_TARGET
; target
++) {
5855 tp
= &np
->target
[target
];
5856 for (lun
= 0 ; lun
< SYM_CONF_MAX_LUN
; lun
++) {
5857 lp
= sym_lp(tp
, lun
);
5861 sym_mfree_dma(lp
->itlq_tbl
, SYM_CONF_MAX_TASK
*4,
5864 sym_mfree_dma(lp
, sizeof(*lp
), "LCB");
5866 #if SYM_CONF_MAX_LUN > 1
5871 sym_mfree_dma(np
->targtbl
, 256, "TARGTBL");