2 * linux/arch/arm/mach-versatile/core.c
4 * Copyright (C) 1999 - 2003 ARM Limited
5 * Copyright (C) 2000 Deep Blue Solutions Ltd
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 #include <linux/config.h>
22 #include <linux/init.h>
23 #include <linux/device.h>
24 #include <linux/dma-mapping.h>
25 #include <linux/sysdev.h>
26 #include <linux/interrupt.h>
28 #include <asm/system.h>
29 #include <asm/hardware.h>
33 #include <asm/mach-types.h>
34 #include <asm/hardware/amba.h>
35 #include <asm/hardware/amba_clcd.h>
36 #include <asm/hardware/arm_timer.h>
37 #include <asm/hardware/icst307.h>
39 #include <asm/mach/arch.h>
40 #include <asm/mach/flash.h>
41 #include <asm/mach/irq.h>
42 #include <asm/mach/time.h>
43 #include <asm/mach/map.h>
44 #include <asm/mach/mmc.h>
50 * All IO addresses are mapped onto VA 0xFFFx.xxxx, where x.xxxx
53 * Setup a VA for the Versatile Vectored Interrupt Controller.
55 #define VA_VIC_BASE IO_ADDRESS(VERSATILE_VIC_BASE)
56 #define VA_SIC_BASE IO_ADDRESS(VERSATILE_SIC_BASE)
58 static void vic_mask_irq(unsigned int irq
)
61 writel(1 << irq
, VA_VIC_BASE
+ VIC_IRQ_ENABLE_CLEAR
);
64 static void vic_unmask_irq(unsigned int irq
)
67 writel(1 << irq
, VA_VIC_BASE
+ VIC_IRQ_ENABLE
);
70 static struct irqchip vic_chip
= {
73 .unmask
= vic_unmask_irq
,
76 static void sic_mask_irq(unsigned int irq
)
79 writel(1 << irq
, VA_SIC_BASE
+ SIC_IRQ_ENABLE_CLEAR
);
82 static void sic_unmask_irq(unsigned int irq
)
85 writel(1 << irq
, VA_SIC_BASE
+ SIC_IRQ_ENABLE_SET
);
88 static struct irqchip sic_chip
= {
91 .unmask
= sic_unmask_irq
,
95 sic_handle_irq(unsigned int irq
, struct irqdesc
*desc
, struct pt_regs
*regs
)
97 unsigned long status
= readl(VA_SIC_BASE
+ SIC_IRQ_STATUS
);
100 do_bad_IRQ(irq
, desc
, regs
);
105 irq
= ffs(status
) - 1;
106 status
&= ~(1 << irq
);
108 irq
+= IRQ_SIC_START
;
110 desc
= irq_desc
+ irq
;
111 desc_handle_irq(irq
, desc
, regs
);
116 #define IRQ_MMCI0A IRQ_VICSOURCE22
117 #define IRQ_AACI IRQ_VICSOURCE24
118 #define IRQ_ETH IRQ_VICSOURCE25
119 #define PIC_MASK 0xFFD00000
121 #define IRQ_MMCI0A IRQ_SIC_MMCI0A
122 #define IRQ_AACI IRQ_SIC_AACI
123 #define IRQ_ETH IRQ_SIC_ETH
127 void __init
versatile_init_irq(void)
129 unsigned int i
, value
;
131 /* Disable all interrupts initially. */
133 writel(0, VA_VIC_BASE
+ VIC_INT_SELECT
);
134 writel(0, VA_VIC_BASE
+ VIC_IRQ_ENABLE
);
135 writel(~0, VA_VIC_BASE
+ VIC_IRQ_ENABLE_CLEAR
);
136 writel(0, VA_VIC_BASE
+ VIC_IRQ_STATUS
);
137 writel(0, VA_VIC_BASE
+ VIC_ITCR
);
138 writel(~0, VA_VIC_BASE
+ VIC_IRQ_SOFT_CLEAR
);
141 * Make sure we clear all existing interrupts
143 writel(0, VA_VIC_BASE
+ VIC_VECT_ADDR
);
144 for (i
= 0; i
< 19; i
++) {
145 value
= readl(VA_VIC_BASE
+ VIC_VECT_ADDR
);
146 writel(value
, VA_VIC_BASE
+ VIC_VECT_ADDR
);
149 for (i
= 0; i
< 16; i
++) {
150 value
= readl(VA_VIC_BASE
+ VIC_VECT_CNTL0
+ (i
* 4));
151 writel(value
| VICVectCntl_Enable
| i
, VA_VIC_BASE
+ VIC_VECT_CNTL0
+ (i
* 4));
154 writel(32, VA_VIC_BASE
+ VIC_DEF_VECT_ADDR
);
156 for (i
= IRQ_VIC_START
; i
<= IRQ_VIC_END
; i
++) {
157 if (i
!= IRQ_VICSOURCE31
) {
158 set_irq_chip(i
, &vic_chip
);
159 set_irq_handler(i
, do_level_IRQ
);
160 set_irq_flags(i
, IRQF_VALID
| IRQF_PROBE
);
164 set_irq_handler(IRQ_VICSOURCE31
, sic_handle_irq
);
165 vic_unmask_irq(IRQ_VICSOURCE31
);
167 /* Do second interrupt controller */
168 writel(~0, VA_SIC_BASE
+ SIC_IRQ_ENABLE_CLEAR
);
170 for (i
= IRQ_SIC_START
; i
<= IRQ_SIC_END
; i
++) {
171 if ((PIC_MASK
& (1 << (i
- IRQ_SIC_START
))) == 0) {
172 set_irq_chip(i
, &sic_chip
);
173 set_irq_handler(i
, do_level_IRQ
);
174 set_irq_flags(i
, IRQF_VALID
| IRQF_PROBE
);
179 * Interrupts on secondary controller from 0 to 8 are routed to
181 * Interrupts from 21 to 31 are routed directly to the VIC on
182 * the corresponding number on primary controller. This is controlled
183 * by setting PIC_ENABLEx.
185 writel(PIC_MASK
, VA_SIC_BASE
+ SIC_INT_PIC_ENABLE
);
188 static struct map_desc versatile_io_desc
[] __initdata
= {
189 { IO_ADDRESS(VERSATILE_SYS_BASE
), VERSATILE_SYS_BASE
, SZ_4K
, MT_DEVICE
},
190 { IO_ADDRESS(VERSATILE_SIC_BASE
), VERSATILE_SIC_BASE
, SZ_4K
, MT_DEVICE
},
191 { IO_ADDRESS(VERSATILE_VIC_BASE
), VERSATILE_VIC_BASE
, SZ_4K
, MT_DEVICE
},
192 { IO_ADDRESS(VERSATILE_SCTL_BASE
), VERSATILE_SCTL_BASE
, SZ_4K
* 9, MT_DEVICE
},
193 #ifdef CONFIG_MACH_VERSATILE_AB
194 { IO_ADDRESS(VERSATILE_GPIO0_BASE
), VERSATILE_GPIO0_BASE
, SZ_4K
, MT_DEVICE
},
195 { IO_ADDRESS(VERSATILE_IB2_BASE
), VERSATILE_IB2_BASE
, SZ_64M
, MT_DEVICE
},
197 #ifdef CONFIG_DEBUG_LL
198 { IO_ADDRESS(VERSATILE_UART0_BASE
), VERSATILE_UART0_BASE
, SZ_4K
, MT_DEVICE
},
201 { IO_ADDRESS(VERSATILE_PCI_CORE_BASE
), VERSATILE_PCI_CORE_BASE
, SZ_4K
, MT_DEVICE
},
202 { VERSATILE_PCI_VIRT_BASE
, VERSATILE_PCI_BASE
, VERSATILE_PCI_BASE_SIZE
, MT_DEVICE
},
203 { VERSATILE_PCI_CFG_VIRT_BASE
, VERSATILE_PCI_CFG_BASE
, VERSATILE_PCI_CFG_BASE_SIZE
, MT_DEVICE
},
205 { VERSATILE_PCI_VIRT_MEM_BASE0
, VERSATILE_PCI_MEM_BASE0
, SZ_16M
, MT_DEVICE
},
206 { VERSATILE_PCI_VIRT_MEM_BASE1
, VERSATILE_PCI_MEM_BASE1
, SZ_16M
, MT_DEVICE
},
207 { VERSATILE_PCI_VIRT_MEM_BASE2
, VERSATILE_PCI_MEM_BASE2
, SZ_16M
, MT_DEVICE
},
212 void __init
versatile_map_io(void)
214 iotable_init(versatile_io_desc
, ARRAY_SIZE(versatile_io_desc
));
217 #define VERSATILE_REFCOUNTER (IO_ADDRESS(VERSATILE_SYS_BASE) + VERSATILE_SYS_24MHz_OFFSET)
220 * This is the Versatile sched_clock implementation. This has
221 * a resolution of 41.7ns, and a maximum value of about 179s.
223 unsigned long long sched_clock(void)
225 unsigned long long v
;
227 v
= (unsigned long long)readl(VERSATILE_REFCOUNTER
) * 125;
234 #define VERSATILE_FLASHCTRL (IO_ADDRESS(VERSATILE_SYS_BASE) + VERSATILE_SYS_FLASH_OFFSET)
236 static int versatile_flash_init(void)
240 val
= __raw_readl(VERSATILE_FLASHCTRL
);
241 val
&= ~VERSATILE_FLASHPROG_FLVPPEN
;
242 __raw_writel(val
, VERSATILE_FLASHCTRL
);
247 static void versatile_flash_exit(void)
251 val
= __raw_readl(VERSATILE_FLASHCTRL
);
252 val
&= ~VERSATILE_FLASHPROG_FLVPPEN
;
253 __raw_writel(val
, VERSATILE_FLASHCTRL
);
256 static void versatile_flash_set_vpp(int on
)
260 val
= __raw_readl(VERSATILE_FLASHCTRL
);
262 val
|= VERSATILE_FLASHPROG_FLVPPEN
;
264 val
&= ~VERSATILE_FLASHPROG_FLVPPEN
;
265 __raw_writel(val
, VERSATILE_FLASHCTRL
);
268 static struct flash_platform_data versatile_flash_data
= {
269 .map_name
= "cfi_probe",
271 .init
= versatile_flash_init
,
272 .exit
= versatile_flash_exit
,
273 .set_vpp
= versatile_flash_set_vpp
,
276 static struct resource versatile_flash_resource
= {
277 .start
= VERSATILE_FLASH_BASE
,
278 .end
= VERSATILE_FLASH_BASE
+ VERSATILE_FLASH_SIZE
,
279 .flags
= IORESOURCE_MEM
,
282 static struct platform_device versatile_flash_device
= {
286 .platform_data
= &versatile_flash_data
,
289 .resource
= &versatile_flash_resource
,
292 static struct resource smc91x_resources
[] = {
294 .start
= VERSATILE_ETH_BASE
,
295 .end
= VERSATILE_ETH_BASE
+ SZ_64K
- 1,
296 .flags
= IORESOURCE_MEM
,
301 .flags
= IORESOURCE_IRQ
,
305 static struct platform_device smc91x_device
= {
308 .num_resources
= ARRAY_SIZE(smc91x_resources
),
309 .resource
= smc91x_resources
,
312 #define VERSATILE_SYSMCI (IO_ADDRESS(VERSATILE_SYS_BASE) + VERSATILE_SYS_MCI_OFFSET)
314 unsigned int mmc_status(struct device
*dev
)
316 struct amba_device
*adev
= container_of(dev
, struct amba_device
, dev
);
319 if (adev
->res
.start
== VERSATILE_MMCI0_BASE
)
324 return readl(VERSATILE_SYSMCI
) & mask
;
327 static struct mmc_platform_data mmc0_plat_data
= {
328 .ocr_mask
= MMC_VDD_32_33
|MMC_VDD_33_34
,
329 .status
= mmc_status
,
335 static const struct icst307_params versatile_oscvco_params
= {
344 static void versatile_oscvco_set(struct clk
*clk
, struct icst307_vco vco
)
346 unsigned long sys_lock
= IO_ADDRESS(VERSATILE_SYS_BASE
) + VERSATILE_SYS_LOCK_OFFSET
;
347 #if defined(CONFIG_ARCH_VERSATILE_PB)
348 unsigned long sys_osc
= IO_ADDRESS(VERSATILE_SYS_BASE
) + VERSATILE_SYS_OSC4_OFFSET
;
349 #elif defined(CONFIG_MACH_VERSATILE_AB)
350 unsigned long sys_osc
= IO_ADDRESS(VERSATILE_SYS_BASE
) + VERSATILE_SYS_OSC1_OFFSET
;
354 val
= readl(sys_osc
) & ~0x7ffff;
355 val
|= vco
.v
| (vco
.r
<< 9) | (vco
.s
<< 16);
357 writel(0xa05f, sys_lock
);
358 writel(val
, sys_osc
);
362 static struct clk versatile_clcd_clk
= {
364 .params
= &versatile_oscvco_params
,
365 .setvco
= versatile_oscvco_set
,
371 #define SYS_CLCD_MODE_MASK (3 << 0)
372 #define SYS_CLCD_MODE_888 (0 << 0)
373 #define SYS_CLCD_MODE_5551 (1 << 0)
374 #define SYS_CLCD_MODE_565_RLSB (2 << 0)
375 #define SYS_CLCD_MODE_565_BLSB (3 << 0)
376 #define SYS_CLCD_NLCDIOON (1 << 2)
377 #define SYS_CLCD_VDDPOSSWITCH (1 << 3)
378 #define SYS_CLCD_PWR3V5SWITCH (1 << 4)
379 #define SYS_CLCD_ID_MASK (0x1f << 8)
380 #define SYS_CLCD_ID_SANYO_3_8 (0x00 << 8)
381 #define SYS_CLCD_ID_UNKNOWN_8_4 (0x01 << 8)
382 #define SYS_CLCD_ID_EPSON_2_2 (0x02 << 8)
383 #define SYS_CLCD_ID_SANYO_2_5 (0x07 << 8)
384 #define SYS_CLCD_ID_VGA (0x1f << 8)
386 static struct clcd_panel vga
= {
400 .vmode
= FB_VMODE_NONINTERLACED
,
404 .tim2
= TIM2_BCD
| TIM2_IPC
,
405 .cntl
= CNTL_LCDTFT
| CNTL_LCDVCOMP(1),
409 static struct clcd_panel sanyo_3_8_in
= {
411 .name
= "Sanyo QVGA",
423 .vmode
= FB_VMODE_NONINTERLACED
,
428 .cntl
= CNTL_LCDTFT
| CNTL_LCDVCOMP(1),
432 static struct clcd_panel sanyo_2_5_in
= {
434 .name
= "Sanyo QVGA Portrait",
445 .sync
= FB_SYNC_HOR_HIGH_ACT
| FB_SYNC_VERT_HIGH_ACT
,
446 .vmode
= FB_VMODE_NONINTERLACED
,
450 .tim2
= TIM2_IVS
| TIM2_IHS
| TIM2_IPC
,
451 .cntl
= CNTL_LCDTFT
| CNTL_LCDVCOMP(1),
455 static struct clcd_panel epson_2_2_in
= {
457 .name
= "Epson QCIF",
469 .vmode
= FB_VMODE_NONINTERLACED
,
473 .tim2
= TIM2_BCD
| TIM2_IPC
,
474 .cntl
= CNTL_LCDTFT
| CNTL_LCDVCOMP(1),
479 * Detect which LCD panel is connected, and return the appropriate
480 * clcd_panel structure. Note: we do not have any information on
481 * the required timings for the 8.4in panel, so we presently assume
484 static struct clcd_panel
*versatile_clcd_panel(void)
486 unsigned long sys_clcd
= IO_ADDRESS(VERSATILE_SYS_BASE
) + VERSATILE_SYS_CLCD_OFFSET
;
487 struct clcd_panel
*panel
= &vga
;
490 val
= readl(sys_clcd
) & SYS_CLCD_ID_MASK
;
491 if (val
== SYS_CLCD_ID_SANYO_3_8
)
492 panel
= &sanyo_3_8_in
;
493 else if (val
== SYS_CLCD_ID_SANYO_2_5
)
494 panel
= &sanyo_2_5_in
;
495 else if (val
== SYS_CLCD_ID_EPSON_2_2
)
496 panel
= &epson_2_2_in
;
497 else if (val
== SYS_CLCD_ID_VGA
)
500 printk(KERN_ERR
"CLCD: unknown LCD panel ID 0x%08x, using VGA\n",
509 * Disable all display connectors on the interface module.
511 static void versatile_clcd_disable(struct clcd_fb
*fb
)
513 unsigned long sys_clcd
= IO_ADDRESS(VERSATILE_SYS_BASE
) + VERSATILE_SYS_CLCD_OFFSET
;
516 val
= readl(sys_clcd
);
517 val
&= ~SYS_CLCD_NLCDIOON
| SYS_CLCD_PWR3V5SWITCH
;
518 writel(val
, sys_clcd
);
520 #ifdef CONFIG_MACH_VERSATILE_AB
522 * If the LCD is Sanyo 2x5 in on the IB2 board, turn the back-light off
524 if (fb
->panel
== &sanyo_2_5_in
) {
525 unsigned long versatile_ib2_ctrl
= IO_ADDRESS(VERSATILE_IB2_CTRL
);
528 ctrl
= readl(versatile_ib2_ctrl
);
530 writel(ctrl
, versatile_ib2_ctrl
);
536 * Enable the relevant connector on the interface module.
538 static void versatile_clcd_enable(struct clcd_fb
*fb
)
540 unsigned long sys_clcd
= IO_ADDRESS(VERSATILE_SYS_BASE
) + VERSATILE_SYS_CLCD_OFFSET
;
543 val
= readl(sys_clcd
);
544 val
&= ~SYS_CLCD_MODE_MASK
;
546 switch (fb
->fb
.var
.green
.length
) {
548 val
|= SYS_CLCD_MODE_5551
;
551 val
|= SYS_CLCD_MODE_565_RLSB
;
554 val
|= SYS_CLCD_MODE_888
;
561 writel(val
, sys_clcd
);
564 * And now enable the PSUs
566 val
|= SYS_CLCD_NLCDIOON
| SYS_CLCD_PWR3V5SWITCH
;
567 writel(val
, sys_clcd
);
569 #ifdef CONFIG_MACH_VERSATILE_AB
571 * If the LCD is Sanyo 2x5 in on the IB2 board, turn the back-light on
573 if (fb
->panel
== &sanyo_2_5_in
) {
574 unsigned long versatile_ib2_ctrl
= IO_ADDRESS(VERSATILE_IB2_CTRL
);
577 ctrl
= readl(versatile_ib2_ctrl
);
579 writel(ctrl
, versatile_ib2_ctrl
);
584 static unsigned long framesize
= SZ_1M
;
586 static int versatile_clcd_setup(struct clcd_fb
*fb
)
590 fb
->panel
= versatile_clcd_panel();
592 fb
->fb
.screen_base
= dma_alloc_writecombine(&fb
->dev
->dev
, framesize
,
594 if (!fb
->fb
.screen_base
) {
595 printk(KERN_ERR
"CLCD: unable to map framebuffer\n");
599 fb
->fb
.fix
.smem_start
= dma
;
600 fb
->fb
.fix
.smem_len
= framesize
;
605 static int versatile_clcd_mmap(struct clcd_fb
*fb
, struct vm_area_struct
*vma
)
607 return dma_mmap_writecombine(&fb
->dev
->dev
, vma
,
609 fb
->fb
.fix
.smem_start
,
610 fb
->fb
.fix
.smem_len
);
613 static void versatile_clcd_remove(struct clcd_fb
*fb
)
615 dma_free_writecombine(&fb
->dev
->dev
, fb
->fb
.fix
.smem_len
,
616 fb
->fb
.screen_base
, fb
->fb
.fix
.smem_start
);
619 static struct clcd_board clcd_plat_data
= {
621 .check
= clcdfb_check
,
622 .decode
= clcdfb_decode
,
623 .disable
= versatile_clcd_disable
,
624 .enable
= versatile_clcd_enable
,
625 .setup
= versatile_clcd_setup
,
626 .mmap
= versatile_clcd_mmap
,
627 .remove
= versatile_clcd_remove
,
630 #define AACI_IRQ { IRQ_AACI, NO_IRQ }
631 #define AACI_DMA { 0x80, 0x81 }
632 #define MMCI0_IRQ { IRQ_MMCI0A,IRQ_SIC_MMCI0B }
633 #define MMCI0_DMA { 0x84, 0 }
634 #define KMI0_IRQ { IRQ_SIC_KMI0, NO_IRQ }
635 #define KMI0_DMA { 0, 0 }
636 #define KMI1_IRQ { IRQ_SIC_KMI1, NO_IRQ }
637 #define KMI1_DMA { 0, 0 }
640 * These devices are connected directly to the multi-layer AHB switch
642 #define SMC_IRQ { NO_IRQ, NO_IRQ }
643 #define SMC_DMA { 0, 0 }
644 #define MPMC_IRQ { NO_IRQ, NO_IRQ }
645 #define MPMC_DMA { 0, 0 }
646 #define CLCD_IRQ { IRQ_CLCDINT, NO_IRQ }
647 #define CLCD_DMA { 0, 0 }
648 #define DMAC_IRQ { IRQ_DMAINT, NO_IRQ }
649 #define DMAC_DMA { 0, 0 }
652 * These devices are connected via the core APB bridge
654 #define SCTL_IRQ { NO_IRQ, NO_IRQ }
655 #define SCTL_DMA { 0, 0 }
656 #define WATCHDOG_IRQ { IRQ_WDOGINT, NO_IRQ }
657 #define WATCHDOG_DMA { 0, 0 }
658 #define GPIO0_IRQ { IRQ_GPIOINT0, NO_IRQ }
659 #define GPIO0_DMA { 0, 0 }
660 #define GPIO1_IRQ { IRQ_GPIOINT1, NO_IRQ }
661 #define GPIO1_DMA { 0, 0 }
662 #define RTC_IRQ { IRQ_RTCINT, NO_IRQ }
663 #define RTC_DMA { 0, 0 }
666 * These devices are connected via the DMA APB bridge
668 #define SCI_IRQ { IRQ_SCIINT, NO_IRQ }
669 #define SCI_DMA { 7, 6 }
670 #define UART0_IRQ { IRQ_UARTINT0, NO_IRQ }
671 #define UART0_DMA { 15, 14 }
672 #define UART1_IRQ { IRQ_UARTINT1, NO_IRQ }
673 #define UART1_DMA { 13, 12 }
674 #define UART2_IRQ { IRQ_UARTINT2, NO_IRQ }
675 #define UART2_DMA { 11, 10 }
676 #define SSP_IRQ { IRQ_SSPINT, NO_IRQ }
677 #define SSP_DMA { 9, 8 }
679 /* FPGA Primecells */
680 AMBA_DEVICE(aaci
, "fpga:04", AACI
, NULL
);
681 AMBA_DEVICE(mmc0
, "fpga:05", MMCI0
, &mmc0_plat_data
);
682 AMBA_DEVICE(kmi0
, "fpga:06", KMI0
, NULL
);
683 AMBA_DEVICE(kmi1
, "fpga:07", KMI1
, NULL
);
685 /* DevChip Primecells */
686 AMBA_DEVICE(smc
, "dev:00", SMC
, NULL
);
687 AMBA_DEVICE(mpmc
, "dev:10", MPMC
, NULL
);
688 AMBA_DEVICE(clcd
, "dev:20", CLCD
, &clcd_plat_data
);
689 AMBA_DEVICE(dmac
, "dev:30", DMAC
, NULL
);
690 AMBA_DEVICE(sctl
, "dev:e0", SCTL
, NULL
);
691 AMBA_DEVICE(wdog
, "dev:e1", WATCHDOG
, NULL
);
692 AMBA_DEVICE(gpio0
, "dev:e4", GPIO0
, NULL
);
693 AMBA_DEVICE(gpio1
, "dev:e5", GPIO1
, NULL
);
694 AMBA_DEVICE(rtc
, "dev:e8", RTC
, NULL
);
695 AMBA_DEVICE(sci0
, "dev:f0", SCI
, NULL
);
696 AMBA_DEVICE(uart0
, "dev:f1", UART0
, NULL
);
697 AMBA_DEVICE(uart1
, "dev:f2", UART1
, NULL
);
698 AMBA_DEVICE(uart2
, "dev:f3", UART2
, NULL
);
699 AMBA_DEVICE(ssp0
, "dev:f4", SSP
, NULL
);
701 static struct amba_device
*amba_devs
[] __initdata
= {
723 #define VA_LEDS_BASE (IO_ADDRESS(VERSATILE_SYS_BASE) + VERSATILE_SYS_LED_OFFSET)
725 static void versatile_leds_event(led_event_t ledevt
)
730 local_irq_save(flags
);
731 val
= readl(VA_LEDS_BASE
);
735 val
= val
& ~VERSATILE_SYS_LED0
;
739 val
= val
| VERSATILE_SYS_LED0
;
743 val
= val
^ VERSATILE_SYS_LED1
;
754 writel(val
, VA_LEDS_BASE
);
755 local_irq_restore(flags
);
757 #endif /* CONFIG_LEDS */
759 void __init
versatile_init(void)
763 clk_register(&versatile_clcd_clk
);
765 platform_device_register(&versatile_flash_device
);
766 platform_device_register(&smc91x_device
);
768 for (i
= 0; i
< ARRAY_SIZE(amba_devs
); i
++) {
769 struct amba_device
*d
= amba_devs
[i
];
770 amba_device_register(d
, &iomem_resource
);
774 leds_event
= versatile_leds_event
;
779 * Where is the timer (VA)?
781 #define TIMER0_VA_BASE IO_ADDRESS(VERSATILE_TIMER0_1_BASE)
782 #define TIMER1_VA_BASE (IO_ADDRESS(VERSATILE_TIMER0_1_BASE) + 0x20)
783 #define TIMER2_VA_BASE IO_ADDRESS(VERSATILE_TIMER2_3_BASE)
784 #define TIMER3_VA_BASE (IO_ADDRESS(VERSATILE_TIMER2_3_BASE) + 0x20)
785 #define VA_IC_BASE IO_ADDRESS(VERSATILE_VIC_BASE)
788 * How long is the timer interval?
790 #define TIMER_INTERVAL (TICKS_PER_uSEC * mSEC_10)
791 #if TIMER_INTERVAL >= 0x100000
792 #define TIMER_RELOAD (TIMER_INTERVAL >> 8)
793 #define TIMER_DIVISOR (TIMER_CTRL_DIV256)
794 #define TICKS2USECS(x) (256 * (x) / TICKS_PER_uSEC)
795 #elif TIMER_INTERVAL >= 0x10000
796 #define TIMER_RELOAD (TIMER_INTERVAL >> 4) /* Divide by 16 */
797 #define TIMER_DIVISOR (TIMER_CTRL_DIV16)
798 #define TICKS2USECS(x) (16 * (x) / TICKS_PER_uSEC)
800 #define TIMER_RELOAD (TIMER_INTERVAL)
801 #define TIMER_DIVISOR (TIMER_CTRL_DIV1)
802 #define TICKS2USECS(x) ((x) / TICKS_PER_uSEC)
806 * Returns number of ms since last clock interrupt. Note that interrupts
807 * will have been disabled by do_gettimeoffset()
809 static unsigned long versatile_gettimeoffset(void)
811 unsigned long ticks1
, ticks2
, status
;
814 * Get the current number of ticks. Note that there is a race
815 * condition between us reading the timer and checking for
816 * an interrupt. We get around this by ensuring that the
817 * counter has not reloaded between our two reads.
819 ticks2
= readl(TIMER0_VA_BASE
+ TIMER_VALUE
) & 0xffff;
822 status
= __raw_readl(VA_IC_BASE
+ VIC_IRQ_RAW_STATUS
);
823 ticks2
= readl(TIMER0_VA_BASE
+ TIMER_VALUE
) & 0xffff;
824 } while (ticks2
> ticks1
);
827 * Number of ticks since last interrupt.
829 ticks1
= TIMER_RELOAD
- ticks2
;
832 * Interrupt pending? If so, we've reloaded once already.
834 * FIXME: Need to check this is effectively timer 0 that expires
836 if (status
& IRQMASK_TIMERINT0_1
)
837 ticks1
+= TIMER_RELOAD
;
840 * Convert the ticks to usecs
842 return TICKS2USECS(ticks1
);
846 * IRQ handler for the timer
848 static irqreturn_t
versatile_timer_interrupt(int irq
, void *dev_id
, struct pt_regs
*regs
)
850 write_seqlock(&xtime_lock
);
852 // ...clear the interrupt
853 writel(1, TIMER0_VA_BASE
+ TIMER_INTCLR
);
857 write_sequnlock(&xtime_lock
);
862 static struct irqaction versatile_timer_irq
= {
863 .name
= "Versatile Timer Tick",
864 .flags
= SA_INTERRUPT
| SA_TIMER
,
865 .handler
= versatile_timer_interrupt
,
869 * Set up timer interrupt, and return the current time in seconds.
871 static void __init
versatile_timer_init(void)
876 * set clock frequency:
877 * VERSATILE_REFCLK is 32KHz
878 * VERSATILE_TIMCLK is 1MHz
880 val
= readl(IO_ADDRESS(VERSATILE_SCTL_BASE
));
881 writel((VERSATILE_TIMCLK
<< VERSATILE_TIMER1_EnSel
) |
882 (VERSATILE_TIMCLK
<< VERSATILE_TIMER2_EnSel
) |
883 (VERSATILE_TIMCLK
<< VERSATILE_TIMER3_EnSel
) |
884 (VERSATILE_TIMCLK
<< VERSATILE_TIMER4_EnSel
) | val
,
885 IO_ADDRESS(VERSATILE_SCTL_BASE
));
888 * Initialise to a known state (all timers off)
890 writel(0, TIMER0_VA_BASE
+ TIMER_CTRL
);
891 writel(0, TIMER1_VA_BASE
+ TIMER_CTRL
);
892 writel(0, TIMER2_VA_BASE
+ TIMER_CTRL
);
893 writel(0, TIMER3_VA_BASE
+ TIMER_CTRL
);
895 writel(TIMER_RELOAD
, TIMER0_VA_BASE
+ TIMER_LOAD
);
896 writel(TIMER_RELOAD
, TIMER0_VA_BASE
+ TIMER_VALUE
);
897 writel(TIMER_DIVISOR
| TIMER_CTRL_ENABLE
| TIMER_CTRL_PERIODIC
|
898 TIMER_CTRL_IE
, TIMER0_VA_BASE
+ TIMER_CTRL
);
901 * Make irqs happen for the system timer
903 setup_irq(IRQ_TIMERINT0_1
, &versatile_timer_irq
);
906 struct sys_timer versatile_timer
= {
907 .init
= versatile_timer_init
,
908 .offset
= versatile_gettimeoffset
,