2 * Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com>
3 * Copyright (c) 1999-2000 Grant Erickson <grant@lcse.umn.edu>
5 * Module name: iSeries_setup.c
8 * Architecture- / platform-specific boot-time initialization code for
9 * the IBM iSeries LPAR. Adapted from original code by Grant Erickson and
10 * code by Gary Thomas, Cort Dougan <cort@fsmlabs.com>, and Dan Malek
13 * This program is free software; you can redistribute it and/or
14 * modify it under the terms of the GNU General Public License
15 * as published by the Free Software Foundation; either version
16 * 2 of the License, or (at your option) any later version.
21 #include <linux/config.h>
22 #include <linux/init.h>
23 #include <linux/threads.h>
24 #include <linux/smp.h>
25 #include <linux/param.h>
26 #include <linux/string.h>
27 #include <linux/initrd.h>
28 #include <linux/seq_file.h>
29 #include <linux/kdev_t.h>
30 #include <linux/major.h>
31 #include <linux/root_dev.h>
33 #include <asm/processor.h>
34 #include <asm/machdep.h>
37 #include <asm/pgtable.h>
38 #include <asm/mmu_context.h>
39 #include <asm/cputable.h>
40 #include <asm/sections.h>
41 #include <asm/iommu.h>
42 #include <asm/firmware.h>
45 #include "iSeries_setup.h"
48 #include <asm/cache.h>
49 #include <asm/sections.h>
50 #include <asm/abs_addr.h>
51 #include <asm/iSeries/HvCallHpt.h>
52 #include <asm/iSeries/HvLpConfig.h>
53 #include <asm/iSeries/HvCallEvent.h>
54 #include <asm/iSeries/HvCallSm.h>
55 #include <asm/iSeries/HvCallXm.h>
56 #include <asm/iSeries/ItLpQueue.h>
57 #include <asm/iSeries/IoHriMainStore.h>
58 #include <asm/iSeries/mf.h>
59 #include <asm/iSeries/HvLpEvent.h>
60 #include <asm/iSeries/iSeries_irq.h>
61 #include <asm/iSeries/IoHriProcessorVpd.h>
62 #include <asm/iSeries/ItVpdAreas.h>
63 #include <asm/iSeries/LparMap.h>
65 extern void hvlog(char *fmt
, ...);
68 #define DBG(fmt...) hvlog(fmt)
73 /* Function Prototypes */
74 extern void ppcdbg_initialize(void);
76 static void build_iSeries_Memory_Map(void);
77 static void setup_iSeries_cache_sizes(void);
78 static void iSeries_bolt_kernel(unsigned long saddr
, unsigned long eaddr
);
80 extern void iSeries_pci_final_fixup(void);
82 static void iSeries_pci_final_fixup(void) { }
85 /* Global Variables */
86 static unsigned long procFreqHz
;
87 static unsigned long procFreqMhz
;
88 static unsigned long procFreqMhzHundreths
;
90 static unsigned long tbFreqHz
;
91 static unsigned long tbFreqMhz
;
92 static unsigned long tbFreqMhzHundreths
;
94 int piranha_simulator
;
96 extern int rd_size
; /* Defined in drivers/block/rd.c */
97 extern unsigned long klimit
;
98 extern unsigned long embedded_sysmap_start
;
99 extern unsigned long embedded_sysmap_end
;
101 extern unsigned long iSeries_recal_tb
;
102 extern unsigned long iSeries_recal_titan
;
104 static int mf_initialized
;
107 unsigned long absStart
;
108 unsigned long absEnd
;
109 unsigned long logicalStart
;
110 unsigned long logicalEnd
;
114 * Process the main store vpd to determine where the holes in memory are
115 * and return the number of physical blocks and fill in the array of
118 static unsigned long iSeries_process_Condor_mainstore_vpd(
119 struct MemoryBlock
*mb_array
, unsigned long max_entries
)
121 unsigned long holeFirstChunk
, holeSizeChunks
;
122 unsigned long numMemoryBlocks
= 1;
123 struct IoHriMainStoreSegment4
*msVpd
=
124 (struct IoHriMainStoreSegment4
*)xMsVpd
;
125 unsigned long holeStart
= msVpd
->nonInterleavedBlocksStartAdr
;
126 unsigned long holeEnd
= msVpd
->nonInterleavedBlocksEndAdr
;
127 unsigned long holeSize
= holeEnd
- holeStart
;
129 printk("Mainstore_VPD: Condor\n");
131 * Determine if absolute memory has any
132 * holes so that we can interpret the
133 * access map we get back from the hypervisor
136 mb_array
[0].logicalStart
= 0;
137 mb_array
[0].logicalEnd
= 0x100000000;
138 mb_array
[0].absStart
= 0;
139 mb_array
[0].absEnd
= 0x100000000;
143 holeStart
= holeStart
& 0x000fffffffffffff;
144 holeStart
= addr_to_chunk(holeStart
);
145 holeFirstChunk
= holeStart
;
146 holeSize
= addr_to_chunk(holeSize
);
147 holeSizeChunks
= holeSize
;
148 printk( "Main store hole: start chunk = %0lx, size = %0lx chunks\n",
149 holeFirstChunk
, holeSizeChunks
);
150 mb_array
[0].logicalEnd
= holeFirstChunk
;
151 mb_array
[0].absEnd
= holeFirstChunk
;
152 mb_array
[1].logicalStart
= holeFirstChunk
;
153 mb_array
[1].logicalEnd
= 0x100000000 - holeSizeChunks
;
154 mb_array
[1].absStart
= holeFirstChunk
+ holeSizeChunks
;
155 mb_array
[1].absEnd
= 0x100000000;
157 return numMemoryBlocks
;
160 #define MaxSegmentAreas 32
161 #define MaxSegmentAdrRangeBlocks 128
162 #define MaxAreaRangeBlocks 4
164 static unsigned long iSeries_process_Regatta_mainstore_vpd(
165 struct MemoryBlock
*mb_array
, unsigned long max_entries
)
167 struct IoHriMainStoreSegment5
*msVpdP
=
168 (struct IoHriMainStoreSegment5
*)xMsVpd
;
169 unsigned long numSegmentBlocks
= 0;
170 u32 existsBits
= msVpdP
->msAreaExists
;
171 unsigned long area_num
;
173 printk("Mainstore_VPD: Regatta\n");
175 for (area_num
= 0; area_num
< MaxSegmentAreas
; ++area_num
) {
176 unsigned long numAreaBlocks
;
177 struct IoHriMainStoreArea4
*currentArea
;
179 if (existsBits
& 0x80000000) {
180 unsigned long block_num
;
182 currentArea
= &msVpdP
->msAreaArray
[area_num
];
183 numAreaBlocks
= currentArea
->numAdrRangeBlocks
;
184 printk("ms_vpd: processing area %2ld blocks=%ld",
185 area_num
, numAreaBlocks
);
186 for (block_num
= 0; block_num
< numAreaBlocks
;
188 /* Process an address range block */
189 struct MemoryBlock tempBlock
;
193 (unsigned long)currentArea
->xAdrRangeBlock
[block_num
].blockStart
;
195 (unsigned long)currentArea
->xAdrRangeBlock
[block_num
].blockEnd
;
196 tempBlock
.logicalStart
= 0;
197 tempBlock
.logicalEnd
= 0;
198 printk("\n block %ld absStart=%016lx absEnd=%016lx",
199 block_num
, tempBlock
.absStart
,
202 for (i
= 0; i
< numSegmentBlocks
; ++i
) {
203 if (mb_array
[i
].absStart
==
207 if (i
== numSegmentBlocks
) {
208 if (numSegmentBlocks
== max_entries
)
209 panic("iSeries_process_mainstore_vpd: too many memory blocks");
210 mb_array
[numSegmentBlocks
] = tempBlock
;
213 printk(" (duplicate)");
219 /* Now sort the blocks found into ascending sequence */
220 if (numSegmentBlocks
> 1) {
223 for (m
= 0; m
< numSegmentBlocks
- 1; ++m
) {
224 for (n
= numSegmentBlocks
- 1; m
< n
; --n
) {
225 if (mb_array
[n
].absStart
<
226 mb_array
[n
-1].absStart
) {
227 struct MemoryBlock tempBlock
;
229 tempBlock
= mb_array
[n
];
230 mb_array
[n
] = mb_array
[n
-1];
231 mb_array
[n
-1] = tempBlock
;
237 * Assign "logical" addresses to each block. These
238 * addresses correspond to the hypervisor "bitmap" space.
239 * Convert all addresses into units of 256K chunks.
242 unsigned long i
, nextBitmapAddress
;
244 printk("ms_vpd: %ld sorted memory blocks\n", numSegmentBlocks
);
245 nextBitmapAddress
= 0;
246 for (i
= 0; i
< numSegmentBlocks
; ++i
) {
247 unsigned long length
= mb_array
[i
].absEnd
-
248 mb_array
[i
].absStart
;
250 mb_array
[i
].logicalStart
= nextBitmapAddress
;
251 mb_array
[i
].logicalEnd
= nextBitmapAddress
+ length
;
252 nextBitmapAddress
+= length
;
253 printk(" Bitmap range: %016lx - %016lx\n"
254 " Absolute range: %016lx - %016lx\n",
255 mb_array
[i
].logicalStart
,
256 mb_array
[i
].logicalEnd
,
257 mb_array
[i
].absStart
, mb_array
[i
].absEnd
);
258 mb_array
[i
].absStart
= addr_to_chunk(mb_array
[i
].absStart
&
260 mb_array
[i
].absEnd
= addr_to_chunk(mb_array
[i
].absEnd
&
262 mb_array
[i
].logicalStart
=
263 addr_to_chunk(mb_array
[i
].logicalStart
);
264 mb_array
[i
].logicalEnd
= addr_to_chunk(mb_array
[i
].logicalEnd
);
268 return numSegmentBlocks
;
271 static unsigned long iSeries_process_mainstore_vpd(struct MemoryBlock
*mb_array
,
272 unsigned long max_entries
)
275 unsigned long mem_blocks
= 0;
277 if (cpu_has_feature(CPU_FTR_SLB
))
278 mem_blocks
= iSeries_process_Regatta_mainstore_vpd(mb_array
,
281 mem_blocks
= iSeries_process_Condor_mainstore_vpd(mb_array
,
284 printk("Mainstore_VPD: numMemoryBlocks = %ld \n", mem_blocks
);
285 for (i
= 0; i
< mem_blocks
; ++i
) {
286 printk("Mainstore_VPD: block %3ld logical chunks %016lx - %016lx\n"
287 " abs chunks %016lx - %016lx\n",
288 i
, mb_array
[i
].logicalStart
, mb_array
[i
].logicalEnd
,
289 mb_array
[i
].absStart
, mb_array
[i
].absEnd
);
294 static void __init
iSeries_get_cmdline(void)
298 /* copy the command line parameter from the primary VSP */
299 HvCallEvent_dmaToSp(cmd_line
, 2 * 64* 1024, 256,
300 HvLpDma_Direction_RemoteToLocal
);
305 if (!*p
|| *p
== '\n')
312 static void __init
iSeries_init_early(void)
314 extern unsigned long memory_limit
;
316 DBG(" -> iSeries_init_early()\n");
318 ppc64_firmware_features
= FW_FEATURE_ISERIES
;
322 #if defined(CONFIG_BLK_DEV_INITRD)
324 * If the init RAM disk has been configured and there is
325 * a non-zero starting address for it, set it up
328 initrd_start
= (unsigned long)__va(naca
.xRamDisk
);
329 initrd_end
= initrd_start
+ naca
.xRamDiskSize
* PAGE_SIZE
;
330 initrd_below_start_ok
= 1; // ramdisk in kernel space
331 ROOT_DEV
= Root_RAM0
;
332 if (((rd_size
* 1024) / PAGE_SIZE
) < naca
.xRamDiskSize
)
333 rd_size
= (naca
.xRamDiskSize
* PAGE_SIZE
) / 1024;
335 #endif /* CONFIG_BLK_DEV_INITRD */
337 /* ROOT_DEV = MKDEV(VIODASD_MAJOR, 1); */
340 iSeries_recal_tb
= get_tb();
341 iSeries_recal_titan
= HvCallXm_loadTod();
344 * Cache sizes must be initialized before hpte_init_iSeries is called
345 * as the later need them for flush_icache_range()
347 setup_iSeries_cache_sizes();
350 * Initialize the hash table management pointers
355 * Initialize the DMA/TCE management
357 iommu_init_early_iSeries();
360 * Initialize the table which translate Linux physical addresses to
361 * AS/400 absolute addresses
363 build_iSeries_Memory_Map();
365 iSeries_get_cmdline();
367 /* Save unparsed command line copy for /proc/cmdline */
368 strlcpy(saved_command_line
, cmd_line
, COMMAND_LINE_SIZE
);
370 /* Parse early parameters, in particular mem=x */
374 if (memory_limit
< systemcfg
->physicalMemorySize
)
375 systemcfg
->physicalMemorySize
= memory_limit
;
377 printk("Ignoring mem=%lu >= ram_top.\n", memory_limit
);
382 /* Bolt kernel mappings for all of memory (or just a bit if we've got a limit) */
383 iSeries_bolt_kernel(0, systemcfg
->physicalMemorySize
);
386 lmb_add(0, systemcfg
->physicalMemorySize
);
388 lmb_reserve(0, __pa(klimit
));
390 /* Initialize machine-dependency vectors */
394 if (itLpNaca
.xPirEnvironMode
== 0)
395 piranha_simulator
= 1;
397 /* Associate Lp Event Queue 0 with processor 0 */
398 HvCallEvent_setLpEventQueueInterruptProc(0, 0);
404 /* If we were passed an initrd, set the ROOT_DEV properly if the values
405 * look sensible. If not, clear initrd reference.
407 #ifdef CONFIG_BLK_DEV_INITRD
408 if (initrd_start
>= KERNELBASE
&& initrd_end
>= KERNELBASE
&&
409 initrd_end
> initrd_start
)
410 ROOT_DEV
= Root_RAM0
;
412 initrd_start
= initrd_end
= 0;
413 #endif /* CONFIG_BLK_DEV_INITRD */
415 DBG(" <- iSeries_init_early()\n");
418 struct mschunks_map mschunks_map
= {
419 /* XXX We don't use these, but Piranha might need them. */
420 .chunk_size
= MSCHUNKS_CHUNK_SIZE
,
421 .chunk_shift
= MSCHUNKS_CHUNK_SHIFT
,
422 .chunk_mask
= MSCHUNKS_OFFSET_MASK
,
424 EXPORT_SYMBOL(mschunks_map
);
426 void mschunks_alloc(unsigned long num_chunks
)
428 klimit
= _ALIGN(klimit
, sizeof(u32
));
429 mschunks_map
.mapping
= (u32
*)klimit
;
430 klimit
+= num_chunks
* sizeof(u32
);
431 mschunks_map
.num_chunks
= num_chunks
;
435 * The iSeries may have very large memories ( > 128 GB ) and a partition
436 * may get memory in "chunks" that may be anywhere in the 2**52 real
437 * address space. The chunks are 256K in size. To map this to the
438 * memory model Linux expects, the AS/400 specific code builds a
439 * translation table to translate what Linux thinks are "physical"
440 * addresses to the actual real addresses. This allows us to make
441 * it appear to Linux that we have contiguous memory starting at
442 * physical address zero while in fact this could be far from the truth.
443 * To avoid confusion, I'll let the words physical and/or real address
444 * apply to the Linux addresses while I'll use "absolute address" to
445 * refer to the actual hardware real address.
447 * build_iSeries_Memory_Map gets information from the Hypervisor and
448 * looks at the Main Store VPD to determine the absolute addresses
449 * of the memory that has been assigned to our partition and builds
450 * a table used to translate Linux's physical addresses to these
451 * absolute addresses. Absolute addresses are needed when
452 * communicating with the hypervisor (e.g. to build HPT entries)
455 static void __init
build_iSeries_Memory_Map(void)
457 u32 loadAreaFirstChunk
, loadAreaLastChunk
, loadAreaSize
;
459 u32 hptFirstChunk
, hptLastChunk
, hptSizeChunks
, hptSizePages
;
461 u32 totalChunks
,moreChunks
;
462 u32 currChunk
, thisChunk
, absChunk
;
466 struct MemoryBlock mb
[32];
467 unsigned long numMemoryBlocks
, curBlock
;
469 /* Chunk size on iSeries is 256K bytes */
470 totalChunks
= (u32
)HvLpConfig_getMsChunks();
471 mschunks_alloc(totalChunks
);
474 * Get absolute address of our load area
475 * and map it to physical address 0
476 * This guarantees that the loadarea ends up at physical 0
477 * otherwise, it might not be returned by PLIC as the first
481 loadAreaFirstChunk
= (u32
)addr_to_chunk(itLpNaca
.xLoadAreaAddr
);
482 loadAreaSize
= itLpNaca
.xLoadAreaChunks
;
485 * Only add the pages already mapped here.
486 * Otherwise we might add the hpt pages
487 * The rest of the pages of the load area
488 * aren't in the HPT yet and can still
489 * be assigned an arbitrary physical address
491 if ((loadAreaSize
* 64) > HvPagesToMap
)
492 loadAreaSize
= HvPagesToMap
/ 64;
494 loadAreaLastChunk
= loadAreaFirstChunk
+ loadAreaSize
- 1;
497 * TODO Do we need to do something if the HPT is in the 64MB load area?
498 * This would be required if the itLpNaca.xLoadAreaChunks includes
502 printk("Mapping load area - physical addr = 0000000000000000\n"
503 " absolute addr = %016lx\n",
504 chunk_to_addr(loadAreaFirstChunk
));
505 printk("Load area size %dK\n", loadAreaSize
* 256);
507 for (nextPhysChunk
= 0; nextPhysChunk
< loadAreaSize
; ++nextPhysChunk
)
508 mschunks_map
.mapping
[nextPhysChunk
] =
509 loadAreaFirstChunk
+ nextPhysChunk
;
512 * Get absolute address of our HPT and remember it so
513 * we won't map it to any physical address
515 hptFirstChunk
= (u32
)addr_to_chunk(HvCallHpt_getHptAddress());
516 hptSizePages
= (u32
)HvCallHpt_getHptPages();
517 hptSizeChunks
= hptSizePages
>> (MSCHUNKS_CHUNK_SHIFT
- PAGE_SHIFT
);
518 hptLastChunk
= hptFirstChunk
+ hptSizeChunks
- 1;
520 printk("HPT absolute addr = %016lx, size = %dK\n",
521 chunk_to_addr(hptFirstChunk
), hptSizeChunks
* 256);
523 /* Fill in the hashed page table hash mask */
524 num_ptegs
= hptSizePages
*
525 (PAGE_SIZE
/ (sizeof(hpte_t
) * HPTES_PER_GROUP
));
526 htab_hash_mask
= num_ptegs
- 1;
529 * The actual hashed page table is in the hypervisor,
530 * we have no direct access
535 * Determine if absolute memory has any
536 * holes so that we can interpret the
537 * access map we get back from the hypervisor
540 numMemoryBlocks
= iSeries_process_mainstore_vpd(mb
, 32);
543 * Process the main store access map from the hypervisor
544 * to build up our physical -> absolute translation table
549 moreChunks
= totalChunks
;
552 map
= HvCallSm_get64BitsOfAccessMap(itLpNaca
.xLpIndex
,
554 thisChunk
= currChunk
;
556 chunkBit
= map
>> 63;
560 while (thisChunk
>= mb
[curBlock
].logicalEnd
) {
562 if (curBlock
>= numMemoryBlocks
)
563 panic("out of memory blocks");
565 if (thisChunk
< mb
[curBlock
].logicalStart
)
566 panic("memory block error");
568 absChunk
= mb
[curBlock
].absStart
+
569 (thisChunk
- mb
[curBlock
].logicalStart
);
570 if (((absChunk
< hptFirstChunk
) ||
571 (absChunk
> hptLastChunk
)) &&
572 ((absChunk
< loadAreaFirstChunk
) ||
573 (absChunk
> loadAreaLastChunk
))) {
574 mschunks_map
.mapping
[nextPhysChunk
] =
586 * main store size (in chunks) is
587 * totalChunks - hptSizeChunks
588 * which should be equal to
591 systemcfg
->physicalMemorySize
= chunk_to_addr(nextPhysChunk
);
595 * Set up the variables that describe the cache line sizes
598 static void __init
setup_iSeries_cache_sizes(void)
601 unsigned int procIx
= get_paca()->lppaca
.dyn_hv_phys_proc_index
;
603 systemcfg
->icache_size
=
604 ppc64_caches
.isize
= xIoHriProcessorVpd
[procIx
].xInstCacheSize
* 1024;
605 systemcfg
->icache_line_size
=
606 ppc64_caches
.iline_size
=
607 xIoHriProcessorVpd
[procIx
].xInstCacheOperandSize
;
608 systemcfg
->dcache_size
=
610 xIoHriProcessorVpd
[procIx
].xDataL1CacheSizeKB
* 1024;
611 systemcfg
->dcache_line_size
=
612 ppc64_caches
.dline_size
=
613 xIoHriProcessorVpd
[procIx
].xDataCacheOperandSize
;
614 ppc64_caches
.ilines_per_page
= PAGE_SIZE
/ ppc64_caches
.iline_size
;
615 ppc64_caches
.dlines_per_page
= PAGE_SIZE
/ ppc64_caches
.dline_size
;
617 i
= ppc64_caches
.iline_size
;
619 while ((i
= (i
/ 2)))
621 ppc64_caches
.log_iline_size
= n
;
623 i
= ppc64_caches
.dline_size
;
625 while ((i
= (i
/ 2)))
627 ppc64_caches
.log_dline_size
= n
;
629 printk("D-cache line size = %d\n",
630 (unsigned int)ppc64_caches
.dline_size
);
631 printk("I-cache line size = %d\n",
632 (unsigned int)ppc64_caches
.iline_size
);
636 * Create a pte. Used during initialization only.
638 static void iSeries_make_pte(unsigned long va
, unsigned long pa
,
641 hpte_t local_hpte
, rhpte
;
642 unsigned long hash
, vpn
;
645 vpn
= va
>> PAGE_SHIFT
;
646 hash
= hpt_hash(vpn
, 0);
648 local_hpte
.r
= pa
| mode
;
649 local_hpte
.v
= ((va
>> 23) << HPTE_V_AVPN_SHIFT
)
650 | HPTE_V_BOLTED
| HPTE_V_VALID
;
652 slot
= HvCallHpt_findValid(&rhpte
, vpn
);
654 /* Must find space in primary group */
655 panic("hash_page: hpte already exists\n");
657 HvCallHpt_addValidate(slot
, 0, &local_hpte
);
661 * Bolt the kernel addr space into the HPT
663 static void __init
iSeries_bolt_kernel(unsigned long saddr
, unsigned long eaddr
)
666 unsigned long mode_rw
= _PAGE_ACCESSED
| _PAGE_COHERENT
| PP_RWXX
;
669 for (pa
= saddr
; pa
< eaddr
;pa
+= PAGE_SIZE
) {
670 unsigned long ea
= (unsigned long)__va(pa
);
671 unsigned long vsid
= get_kernel_vsid(ea
);
672 unsigned long va
= (vsid
<< 28) | (pa
& 0xfffffff);
673 unsigned long vpn
= va
>> PAGE_SHIFT
;
674 unsigned long slot
= HvCallHpt_findValid(&hpte
, vpn
);
676 /* Make non-kernel text non-executable */
677 if (!in_kernel_text(ea
))
678 mode_rw
|= HW_NO_EXEC
;
680 if (hpte
.v
& HPTE_V_VALID
) {
681 /* HPTE exists, so just bolt it */
682 HvCallHpt_setSwBits(slot
, 0x10, 0);
683 /* And make sure the pp bits are correct */
684 HvCallHpt_setPp(slot
, PP_RWXX
);
686 /* No HPTE exists, so create a new bolted one */
687 iSeries_make_pte(va
, phys_to_abs(pa
), mode_rw
);
694 static void __init
iSeries_setup_arch(void)
696 unsigned procIx
= get_paca()->lppaca
.dyn_hv_phys_proc_index
;
698 /* Add an eye catcher and the systemcfg layout version number */
699 strcpy(systemcfg
->eye_catcher
, "SYSTEMCFG:PPC64");
700 systemcfg
->version
.major
= SYSTEMCFG_MAJOR
;
701 systemcfg
->version
.minor
= SYSTEMCFG_MINOR
;
703 /* Setup the Lp Event Queue */
704 setup_hvlpevent_queue();
706 /* Compute processor frequency */
707 procFreqHz
= ((1UL << 34) * 1000000) /
708 xIoHriProcessorVpd
[procIx
].xProcFreq
;
709 procFreqMhz
= procFreqHz
/ 1000000;
710 procFreqMhzHundreths
= (procFreqHz
/ 10000) - (procFreqMhz
* 100);
711 ppc_proc_freq
= procFreqHz
;
713 /* Compute time base frequency */
714 tbFreqHz
= ((1UL << 32) * 1000000) /
715 xIoHriProcessorVpd
[procIx
].xTimeBaseFreq
;
716 tbFreqMhz
= tbFreqHz
/ 1000000;
717 tbFreqMhzHundreths
= (tbFreqHz
/ 10000) - (tbFreqMhz
* 100);
718 ppc_tb_freq
= tbFreqHz
;
720 printk("Max logical processors = %d\n",
721 itVpdAreas
.xSlicMaxLogicalProcs
);
722 printk("Max physical processors = %d\n",
723 itVpdAreas
.xSlicMaxPhysicalProcs
);
724 printk("Processor frequency = %lu.%02lu\n", procFreqMhz
,
725 procFreqMhzHundreths
);
726 printk("Time base frequency = %lu.%02lu\n", tbFreqMhz
,
728 systemcfg
->processor
= xIoHriProcessorVpd
[procIx
].xPVR
;
729 printk("Processor version = %x\n", systemcfg
->processor
);
732 static void iSeries_get_cpuinfo(struct seq_file
*m
)
734 seq_printf(m
, "machine\t\t: 64-bit iSeries Logical Partition\n");
741 static int iSeries_get_irq(struct pt_regs
*regs
)
743 /* -2 means ignore this interrupt */
750 static void iSeries_restart(char *cmd
)
758 static void iSeries_power_off(void)
766 static void iSeries_halt(void)
772 * void __init iSeries_calibrate_decr()
775 * This routine retrieves the internal processor frequency from the VPD,
776 * and sets up the kernel timer decrementer based on that value.
779 static void __init
iSeries_calibrate_decr(void)
781 unsigned long cyclesPerUsec
;
782 struct div_result divres
;
784 /* Compute decrementer (and TB) frequency in cycles/sec */
785 cyclesPerUsec
= ppc_tb_freq
/ 1000000;
788 * Set the amount to refresh the decrementer by. This
789 * is the number of decrementer ticks it takes for
792 tb_ticks_per_jiffy
= ppc_tb_freq
/ HZ
;
795 /* TEST CODE FOR ADJTIME */
796 tb_ticks_per_jiffy
+= tb_ticks_per_jiffy
/ 5000;
797 /* END OF TEST CODE */
801 * tb_ticks_per_sec = freq; would give better accuracy
802 * but tb_ticks_per_sec = tb_ticks_per_jiffy*HZ; assures
803 * that jiffies (and xtime) will match the time returned
804 * by do_gettimeofday.
806 tb_ticks_per_sec
= tb_ticks_per_jiffy
* HZ
;
807 tb_ticks_per_usec
= cyclesPerUsec
;
808 tb_to_us
= mulhwu_scale_factor(ppc_tb_freq
, 1000000);
809 div128_by_32(1024 * 1024, 0, tb_ticks_per_sec
, &divres
);
810 tb_to_xs
= divres
.result_low
;
811 setup_default_decr();
814 static void __init
iSeries_progress(char * st
, unsigned short code
)
816 printk("Progress: [%04x] - %s\n", (unsigned)code
, st
);
817 if (!piranha_simulator
&& mf_initialized
) {
819 mf_display_progress(code
);
825 static void __init
iSeries_fixup_klimit(void)
828 * Change klimit to take into account any ram disk
829 * that may be included
832 klimit
= KERNELBASE
+ (u64
)naca
.xRamDisk
+
833 (naca
.xRamDiskSize
* PAGE_SIZE
);
836 * No ram disk was included - check and see if there
837 * was an embedded system map. Change klimit to take
838 * into account any embedded system map
840 if (embedded_sysmap_end
)
841 klimit
= KERNELBASE
+ ((embedded_sysmap_end
+ 4095) &
846 static int __init
iSeries_src_init(void)
848 /* clear the progress line */
849 ppc_md
.progress(" ", 0xffff);
853 late_initcall(iSeries_src_init
);
855 static inline void process_iSeries_events(void)
857 asm volatile ("li 0,0x5555; sc" : : : "r0", "r3");
860 static void yield_shared_processor(void)
864 HvCall_setEnabledInterrupts(HvCall_MaskIPI
|
870 /* Compute future tb value when yield should expire */
871 HvCall_yieldProcessor(HvCall_YieldTimed
, tb
+tb_ticks_per_jiffy
);
874 * The decrementer stops during the yield. Force a fake decrementer
875 * here and let the timer_interrupt code sort out the actual time.
877 get_paca()->lppaca
.int_dword
.fields
.decr_int
= 1;
878 process_iSeries_events();
881 static int iseries_shared_idle(void)
884 while (!need_resched() && !hvlpevent_is_pending()) {
886 ppc64_runlatch_off();
888 /* Recheck with irqs off */
889 if (!need_resched() && !hvlpevent_is_pending())
890 yield_shared_processor();
898 if (hvlpevent_is_pending())
899 process_iSeries_events();
907 static int iseries_dedicated_idle(void)
912 oldval
= test_and_clear_thread_flag(TIF_NEED_RESCHED
);
915 set_thread_flag(TIF_POLLING_NRFLAG
);
917 while (!need_resched()) {
918 ppc64_runlatch_off();
921 if (hvlpevent_is_pending()) {
924 process_iSeries_events();
929 clear_thread_flag(TIF_POLLING_NRFLAG
);
942 void __init
iSeries_init_IRQ(void) { }
945 void __init
iSeries_early_setup(void)
947 iSeries_fixup_klimit();
949 ppc_md
.setup_arch
= iSeries_setup_arch
;
950 ppc_md
.get_cpuinfo
= iSeries_get_cpuinfo
;
951 ppc_md
.init_IRQ
= iSeries_init_IRQ
;
952 ppc_md
.get_irq
= iSeries_get_irq
;
953 ppc_md
.init_early
= iSeries_init_early
,
955 ppc_md
.pcibios_fixup
= iSeries_pci_final_fixup
;
957 ppc_md
.restart
= iSeries_restart
;
958 ppc_md
.power_off
= iSeries_power_off
;
959 ppc_md
.halt
= iSeries_halt
;
961 ppc_md
.get_boot_time
= iSeries_get_boot_time
;
962 ppc_md
.set_rtc_time
= iSeries_set_rtc_time
;
963 ppc_md
.get_rtc_time
= iSeries_get_rtc_time
;
964 ppc_md
.calibrate_decr
= iSeries_calibrate_decr
;
965 ppc_md
.progress
= iSeries_progress
;
967 /* XXX Implement enable_pmcs for iSeries */
969 if (get_paca()->lppaca
.shared_proc
) {
970 ppc_md
.idle_loop
= iseries_shared_idle
;
971 printk(KERN_INFO
"Using shared processor idle loop\n");
973 ppc_md
.idle_loop
= iseries_dedicated_idle
;
974 printk(KERN_INFO
"Using dedicated idle loop\n");