[PATCH] powerpc: trivial: modify comments to refer to new location of files
[linux-2.6/verdex.git] / arch / powerpc / kernel / process.c
blob1201880cab40b15d39b09418748a08e94764baac
1 /*
2 * Derived from "arch/i386/kernel/process.c"
3 * Copyright (C) 1995 Linus Torvalds
5 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6 * Paul Mackerras (paulus@cs.anu.edu.au)
8 * PowerPC version
9 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
17 #include <linux/config.h>
18 #include <linux/errno.h>
19 #include <linux/sched.h>
20 #include <linux/kernel.h>
21 #include <linux/mm.h>
22 #include <linux/smp.h>
23 #include <linux/smp_lock.h>
24 #include <linux/stddef.h>
25 #include <linux/unistd.h>
26 #include <linux/ptrace.h>
27 #include <linux/slab.h>
28 #include <linux/user.h>
29 #include <linux/elf.h>
30 #include <linux/init.h>
31 #include <linux/prctl.h>
32 #include <linux/init_task.h>
33 #include <linux/module.h>
34 #include <linux/kallsyms.h>
35 #include <linux/mqueue.h>
36 #include <linux/hardirq.h>
37 #include <linux/utsname.h>
38 #include <linux/kprobes.h>
40 #include <asm/pgtable.h>
41 #include <asm/uaccess.h>
42 #include <asm/system.h>
43 #include <asm/io.h>
44 #include <asm/processor.h>
45 #include <asm/mmu.h>
46 #include <asm/prom.h>
47 #include <asm/machdep.h>
48 #ifdef CONFIG_PPC64
49 #include <asm/firmware.h>
50 #include <asm/time.h>
51 #endif
53 extern unsigned long _get_SP(void);
55 #ifndef CONFIG_SMP
56 struct task_struct *last_task_used_math = NULL;
57 struct task_struct *last_task_used_altivec = NULL;
58 struct task_struct *last_task_used_spe = NULL;
59 #endif
62 * Make sure the floating-point register state in the
63 * the thread_struct is up to date for task tsk.
65 void flush_fp_to_thread(struct task_struct *tsk)
67 if (tsk->thread.regs) {
69 * We need to disable preemption here because if we didn't,
70 * another process could get scheduled after the regs->msr
71 * test but before we have finished saving the FP registers
72 * to the thread_struct. That process could take over the
73 * FPU, and then when we get scheduled again we would store
74 * bogus values for the remaining FP registers.
76 preempt_disable();
77 if (tsk->thread.regs->msr & MSR_FP) {
78 #ifdef CONFIG_SMP
80 * This should only ever be called for current or
81 * for a stopped child process. Since we save away
82 * the FP register state on context switch on SMP,
83 * there is something wrong if a stopped child appears
84 * to still have its FP state in the CPU registers.
86 BUG_ON(tsk != current);
87 #endif
88 giveup_fpu(current);
90 preempt_enable();
94 void enable_kernel_fp(void)
96 WARN_ON(preemptible());
98 #ifdef CONFIG_SMP
99 if (current->thread.regs && (current->thread.regs->msr & MSR_FP))
100 giveup_fpu(current);
101 else
102 giveup_fpu(NULL); /* just enables FP for kernel */
103 #else
104 giveup_fpu(last_task_used_math);
105 #endif /* CONFIG_SMP */
107 EXPORT_SYMBOL(enable_kernel_fp);
109 int dump_task_fpu(struct task_struct *tsk, elf_fpregset_t *fpregs)
111 if (!tsk->thread.regs)
112 return 0;
113 flush_fp_to_thread(current);
115 memcpy(fpregs, &tsk->thread.fpr[0], sizeof(*fpregs));
117 return 1;
120 #ifdef CONFIG_ALTIVEC
121 void enable_kernel_altivec(void)
123 WARN_ON(preemptible());
125 #ifdef CONFIG_SMP
126 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC))
127 giveup_altivec(current);
128 else
129 giveup_altivec(NULL); /* just enable AltiVec for kernel - force */
130 #else
131 giveup_altivec(last_task_used_altivec);
132 #endif /* CONFIG_SMP */
134 EXPORT_SYMBOL(enable_kernel_altivec);
137 * Make sure the VMX/Altivec register state in the
138 * the thread_struct is up to date for task tsk.
140 void flush_altivec_to_thread(struct task_struct *tsk)
142 if (tsk->thread.regs) {
143 preempt_disable();
144 if (tsk->thread.regs->msr & MSR_VEC) {
145 #ifdef CONFIG_SMP
146 BUG_ON(tsk != current);
147 #endif
148 giveup_altivec(current);
150 preempt_enable();
154 int dump_task_altivec(struct pt_regs *regs, elf_vrregset_t *vrregs)
156 flush_altivec_to_thread(current);
157 memcpy(vrregs, &current->thread.vr[0], sizeof(*vrregs));
158 return 1;
160 #endif /* CONFIG_ALTIVEC */
162 #ifdef CONFIG_SPE
164 void enable_kernel_spe(void)
166 WARN_ON(preemptible());
168 #ifdef CONFIG_SMP
169 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE))
170 giveup_spe(current);
171 else
172 giveup_spe(NULL); /* just enable SPE for kernel - force */
173 #else
174 giveup_spe(last_task_used_spe);
175 #endif /* __SMP __ */
177 EXPORT_SYMBOL(enable_kernel_spe);
179 void flush_spe_to_thread(struct task_struct *tsk)
181 if (tsk->thread.regs) {
182 preempt_disable();
183 if (tsk->thread.regs->msr & MSR_SPE) {
184 #ifdef CONFIG_SMP
185 BUG_ON(tsk != current);
186 #endif
187 giveup_spe(current);
189 preempt_enable();
193 int dump_spe(struct pt_regs *regs, elf_vrregset_t *evrregs)
195 flush_spe_to_thread(current);
196 /* We copy u32 evr[32] + u64 acc + u32 spefscr -> 35 */
197 memcpy(evrregs, &current->thread.evr[0], sizeof(u32) * 35);
198 return 1;
200 #endif /* CONFIG_SPE */
202 #ifndef CONFIG_SMP
204 * If we are doing lazy switching of CPU state (FP, altivec or SPE),
205 * and the current task has some state, discard it.
207 void discard_lazy_cpu_state(void)
209 preempt_disable();
210 if (last_task_used_math == current)
211 last_task_used_math = NULL;
212 #ifdef CONFIG_ALTIVEC
213 if (last_task_used_altivec == current)
214 last_task_used_altivec = NULL;
215 #endif /* CONFIG_ALTIVEC */
216 #ifdef CONFIG_SPE
217 if (last_task_used_spe == current)
218 last_task_used_spe = NULL;
219 #endif
220 preempt_enable();
222 #endif /* CONFIG_SMP */
224 #ifdef CONFIG_PPC_MERGE /* XXX for now */
225 int set_dabr(unsigned long dabr)
227 if (ppc_md.set_dabr)
228 return ppc_md.set_dabr(dabr);
230 mtspr(SPRN_DABR, dabr);
231 return 0;
233 #endif
235 #ifdef CONFIG_PPC64
236 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
237 static DEFINE_PER_CPU(unsigned long, current_dabr);
238 #endif
240 struct task_struct *__switch_to(struct task_struct *prev,
241 struct task_struct *new)
243 struct thread_struct *new_thread, *old_thread;
244 unsigned long flags;
245 struct task_struct *last;
247 #ifdef CONFIG_SMP
248 /* avoid complexity of lazy save/restore of fpu
249 * by just saving it every time we switch out if
250 * this task used the fpu during the last quantum.
252 * If it tries to use the fpu again, it'll trap and
253 * reload its fp regs. So we don't have to do a restore
254 * every switch, just a save.
255 * -- Cort
257 if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP))
258 giveup_fpu(prev);
259 #ifdef CONFIG_ALTIVEC
261 * If the previous thread used altivec in the last quantum
262 * (thus changing altivec regs) then save them.
263 * We used to check the VRSAVE register but not all apps
264 * set it, so we don't rely on it now (and in fact we need
265 * to save & restore VSCR even if VRSAVE == 0). -- paulus
267 * On SMP we always save/restore altivec regs just to avoid the
268 * complexity of changing processors.
269 * -- Cort
271 if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC))
272 giveup_altivec(prev);
273 #endif /* CONFIG_ALTIVEC */
274 #ifdef CONFIG_SPE
276 * If the previous thread used spe in the last quantum
277 * (thus changing spe regs) then save them.
279 * On SMP we always save/restore spe regs just to avoid the
280 * complexity of changing processors.
282 if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE)))
283 giveup_spe(prev);
284 #endif /* CONFIG_SPE */
286 #else /* CONFIG_SMP */
287 #ifdef CONFIG_ALTIVEC
288 /* Avoid the trap. On smp this this never happens since
289 * we don't set last_task_used_altivec -- Cort
291 if (new->thread.regs && last_task_used_altivec == new)
292 new->thread.regs->msr |= MSR_VEC;
293 #endif /* CONFIG_ALTIVEC */
294 #ifdef CONFIG_SPE
295 /* Avoid the trap. On smp this this never happens since
296 * we don't set last_task_used_spe
298 if (new->thread.regs && last_task_used_spe == new)
299 new->thread.regs->msr |= MSR_SPE;
300 #endif /* CONFIG_SPE */
302 #endif /* CONFIG_SMP */
304 #ifdef CONFIG_PPC64 /* for now */
305 if (unlikely(__get_cpu_var(current_dabr) != new->thread.dabr)) {
306 set_dabr(new->thread.dabr);
307 __get_cpu_var(current_dabr) = new->thread.dabr;
310 flush_tlb_pending();
311 #endif
313 new_thread = &new->thread;
314 old_thread = &current->thread;
316 #ifdef CONFIG_PPC64
318 * Collect processor utilization data per process
320 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
321 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
322 long unsigned start_tb, current_tb;
323 start_tb = old_thread->start_tb;
324 cu->current_tb = current_tb = mfspr(SPRN_PURR);
325 old_thread->accum_tb += (current_tb - start_tb);
326 new_thread->start_tb = current_tb;
328 #endif
330 local_irq_save(flags);
331 last = _switch(old_thread, new_thread);
333 local_irq_restore(flags);
335 return last;
338 static int instructions_to_print = 16;
340 #ifdef CONFIG_PPC64
341 #define BAD_PC(pc) ((REGION_ID(pc) != KERNEL_REGION_ID) && \
342 (REGION_ID(pc) != VMALLOC_REGION_ID))
343 #else
344 #define BAD_PC(pc) ((pc) < KERNELBASE)
345 #endif
347 static void show_instructions(struct pt_regs *regs)
349 int i;
350 unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
351 sizeof(int));
353 printk("Instruction dump:");
355 for (i = 0; i < instructions_to_print; i++) {
356 int instr;
358 if (!(i % 8))
359 printk("\n");
361 if (BAD_PC(pc) || __get_user(instr, (unsigned int *)pc)) {
362 printk("XXXXXXXX ");
363 } else {
364 if (regs->nip == pc)
365 printk("<%08x> ", instr);
366 else
367 printk("%08x ", instr);
370 pc += sizeof(int);
373 printk("\n");
376 static struct regbit {
377 unsigned long bit;
378 const char *name;
379 } msr_bits[] = {
380 {MSR_EE, "EE"},
381 {MSR_PR, "PR"},
382 {MSR_FP, "FP"},
383 {MSR_ME, "ME"},
384 {MSR_IR, "IR"},
385 {MSR_DR, "DR"},
386 {0, NULL}
389 static void printbits(unsigned long val, struct regbit *bits)
391 const char *sep = "";
393 printk("<");
394 for (; bits->bit; ++bits)
395 if (val & bits->bit) {
396 printk("%s%s", sep, bits->name);
397 sep = ",";
399 printk(">");
402 #ifdef CONFIG_PPC64
403 #define REG "%016lX"
404 #define REGS_PER_LINE 4
405 #define LAST_VOLATILE 13
406 #else
407 #define REG "%08lX"
408 #define REGS_PER_LINE 8
409 #define LAST_VOLATILE 12
410 #endif
412 void show_regs(struct pt_regs * regs)
414 int i, trap;
416 printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
417 regs->nip, regs->link, regs->ctr);
418 printk("REGS: %p TRAP: %04lx %s (%s)\n",
419 regs, regs->trap, print_tainted(), system_utsname.release);
420 printk("MSR: "REG" ", regs->msr);
421 printbits(regs->msr, msr_bits);
422 printk(" CR: %08lX XER: %08lX\n", regs->ccr, regs->xer);
423 trap = TRAP(regs);
424 if (trap == 0x300 || trap == 0x600)
425 printk("DAR: "REG", DSISR: "REG"\n", regs->dar, regs->dsisr);
426 printk("TASK = %p[%d] '%s' THREAD: %p",
427 current, current->pid, current->comm, task_thread_info(current));
429 #ifdef CONFIG_SMP
430 printk(" CPU: %d", smp_processor_id());
431 #endif /* CONFIG_SMP */
433 for (i = 0; i < 32; i++) {
434 if ((i % REGS_PER_LINE) == 0)
435 printk("\n" KERN_INFO "GPR%02d: ", i);
436 printk(REG " ", regs->gpr[i]);
437 if (i == LAST_VOLATILE && !FULL_REGS(regs))
438 break;
440 printk("\n");
441 #ifdef CONFIG_KALLSYMS
443 * Lookup NIP late so we have the best change of getting the
444 * above info out without failing
446 printk("NIP ["REG"] ", regs->nip);
447 print_symbol("%s\n", regs->nip);
448 printk("LR ["REG"] ", regs->link);
449 print_symbol("%s\n", regs->link);
450 #endif
451 show_stack(current, (unsigned long *) regs->gpr[1]);
452 if (!user_mode(regs))
453 show_instructions(regs);
456 void exit_thread(void)
458 kprobe_flush_task(current);
459 discard_lazy_cpu_state();
462 void flush_thread(void)
464 #ifdef CONFIG_PPC64
465 struct thread_info *t = current_thread_info();
467 if (t->flags & _TIF_ABI_PENDING)
468 t->flags ^= (_TIF_ABI_PENDING | _TIF_32BIT);
469 #endif
471 discard_lazy_cpu_state();
473 #ifdef CONFIG_PPC64 /* for now */
474 if (current->thread.dabr) {
475 current->thread.dabr = 0;
476 set_dabr(0);
478 #endif
481 void
482 release_thread(struct task_struct *t)
487 * This gets called before we allocate a new thread and copy
488 * the current task into it.
490 void prepare_to_copy(struct task_struct *tsk)
492 flush_fp_to_thread(current);
493 flush_altivec_to_thread(current);
494 flush_spe_to_thread(current);
498 * Copy a thread..
500 int copy_thread(int nr, unsigned long clone_flags, unsigned long usp,
501 unsigned long unused, struct task_struct *p,
502 struct pt_regs *regs)
504 struct pt_regs *childregs, *kregs;
505 extern void ret_from_fork(void);
506 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
508 CHECK_FULL_REGS(regs);
509 /* Copy registers */
510 sp -= sizeof(struct pt_regs);
511 childregs = (struct pt_regs *) sp;
512 *childregs = *regs;
513 if ((childregs->msr & MSR_PR) == 0) {
514 /* for kernel thread, set `current' and stackptr in new task */
515 childregs->gpr[1] = sp + sizeof(struct pt_regs);
516 #ifdef CONFIG_PPC32
517 childregs->gpr[2] = (unsigned long) p;
518 #else
519 clear_tsk_thread_flag(p, TIF_32BIT);
520 #endif
521 p->thread.regs = NULL; /* no user register state */
522 } else {
523 childregs->gpr[1] = usp;
524 p->thread.regs = childregs;
525 if (clone_flags & CLONE_SETTLS) {
526 #ifdef CONFIG_PPC64
527 if (!test_thread_flag(TIF_32BIT))
528 childregs->gpr[13] = childregs->gpr[6];
529 else
530 #endif
531 childregs->gpr[2] = childregs->gpr[6];
534 childregs->gpr[3] = 0; /* Result from fork() */
535 sp -= STACK_FRAME_OVERHEAD;
538 * The way this works is that at some point in the future
539 * some task will call _switch to switch to the new task.
540 * That will pop off the stack frame created below and start
541 * the new task running at ret_from_fork. The new task will
542 * do some house keeping and then return from the fork or clone
543 * system call, using the stack frame created above.
545 sp -= sizeof(struct pt_regs);
546 kregs = (struct pt_regs *) sp;
547 sp -= STACK_FRAME_OVERHEAD;
548 p->thread.ksp = sp;
550 #ifdef CONFIG_PPC64
551 if (cpu_has_feature(CPU_FTR_SLB)) {
552 unsigned long sp_vsid = get_kernel_vsid(sp);
553 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
555 sp_vsid <<= SLB_VSID_SHIFT;
556 sp_vsid |= SLB_VSID_KERNEL | llp;
557 p->thread.ksp_vsid = sp_vsid;
561 * The PPC64 ABI makes use of a TOC to contain function
562 * pointers. The function (ret_from_except) is actually a pointer
563 * to the TOC entry. The first entry is a pointer to the actual
564 * function.
566 kregs->nip = *((unsigned long *)ret_from_fork);
567 #else
568 kregs->nip = (unsigned long)ret_from_fork;
569 p->thread.last_syscall = -1;
570 #endif
572 return 0;
576 * Set up a thread for executing a new program
578 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
580 #ifdef CONFIG_PPC64
581 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
582 #endif
584 set_fs(USER_DS);
587 * If we exec out of a kernel thread then thread.regs will not be
588 * set. Do it now.
590 if (!current->thread.regs) {
591 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
592 current->thread.regs = regs - 1;
595 memset(regs->gpr, 0, sizeof(regs->gpr));
596 regs->ctr = 0;
597 regs->link = 0;
598 regs->xer = 0;
599 regs->ccr = 0;
600 regs->gpr[1] = sp;
602 #ifdef CONFIG_PPC32
603 regs->mq = 0;
604 regs->nip = start;
605 regs->msr = MSR_USER;
606 #else
607 if (!test_thread_flag(TIF_32BIT)) {
608 unsigned long entry, toc;
610 /* start is a relocated pointer to the function descriptor for
611 * the elf _start routine. The first entry in the function
612 * descriptor is the entry address of _start and the second
613 * entry is the TOC value we need to use.
615 __get_user(entry, (unsigned long __user *)start);
616 __get_user(toc, (unsigned long __user *)start+1);
618 /* Check whether the e_entry function descriptor entries
619 * need to be relocated before we can use them.
621 if (load_addr != 0) {
622 entry += load_addr;
623 toc += load_addr;
625 regs->nip = entry;
626 regs->gpr[2] = toc;
627 regs->msr = MSR_USER64;
628 } else {
629 regs->nip = start;
630 regs->gpr[2] = 0;
631 regs->msr = MSR_USER32;
633 #endif
635 discard_lazy_cpu_state();
636 memset(current->thread.fpr, 0, sizeof(current->thread.fpr));
637 current->thread.fpscr.val = 0;
638 #ifdef CONFIG_ALTIVEC
639 memset(current->thread.vr, 0, sizeof(current->thread.vr));
640 memset(&current->thread.vscr, 0, sizeof(current->thread.vscr));
641 current->thread.vscr.u[3] = 0x00010000; /* Java mode disabled */
642 current->thread.vrsave = 0;
643 current->thread.used_vr = 0;
644 #endif /* CONFIG_ALTIVEC */
645 #ifdef CONFIG_SPE
646 memset(current->thread.evr, 0, sizeof(current->thread.evr));
647 current->thread.acc = 0;
648 current->thread.spefscr = 0;
649 current->thread.used_spe = 0;
650 #endif /* CONFIG_SPE */
653 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
654 | PR_FP_EXC_RES | PR_FP_EXC_INV)
656 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
658 struct pt_regs *regs = tsk->thread.regs;
660 /* This is a bit hairy. If we are an SPE enabled processor
661 * (have embedded fp) we store the IEEE exception enable flags in
662 * fpexc_mode. fpexc_mode is also used for setting FP exception
663 * mode (asyn, precise, disabled) for 'Classic' FP. */
664 if (val & PR_FP_EXC_SW_ENABLE) {
665 #ifdef CONFIG_SPE
666 tsk->thread.fpexc_mode = val &
667 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
668 return 0;
669 #else
670 return -EINVAL;
671 #endif
674 /* on a CONFIG_SPE this does not hurt us. The bits that
675 * __pack_fe01 use do not overlap with bits used for
676 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits
677 * on CONFIG_SPE implementations are reserved so writing to
678 * them does not change anything */
679 if (val > PR_FP_EXC_PRECISE)
680 return -EINVAL;
681 tsk->thread.fpexc_mode = __pack_fe01(val);
682 if (regs != NULL && (regs->msr & MSR_FP) != 0)
683 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
684 | tsk->thread.fpexc_mode;
685 return 0;
688 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
690 unsigned int val;
692 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
693 #ifdef CONFIG_SPE
694 val = tsk->thread.fpexc_mode;
695 #else
696 return -EINVAL;
697 #endif
698 else
699 val = __unpack_fe01(tsk->thread.fpexc_mode);
700 return put_user(val, (unsigned int __user *) adr);
703 #define TRUNC_PTR(x) ((typeof(x))(((unsigned long)(x)) & 0xffffffff))
705 int sys_clone(unsigned long clone_flags, unsigned long usp,
706 int __user *parent_tidp, void __user *child_threadptr,
707 int __user *child_tidp, int p6,
708 struct pt_regs *regs)
710 CHECK_FULL_REGS(regs);
711 if (usp == 0)
712 usp = regs->gpr[1]; /* stack pointer for child */
713 #ifdef CONFIG_PPC64
714 if (test_thread_flag(TIF_32BIT)) {
715 parent_tidp = TRUNC_PTR(parent_tidp);
716 child_tidp = TRUNC_PTR(child_tidp);
718 #endif
719 return do_fork(clone_flags, usp, regs, 0, parent_tidp, child_tidp);
722 int sys_fork(unsigned long p1, unsigned long p2, unsigned long p3,
723 unsigned long p4, unsigned long p5, unsigned long p6,
724 struct pt_regs *regs)
726 CHECK_FULL_REGS(regs);
727 return do_fork(SIGCHLD, regs->gpr[1], regs, 0, NULL, NULL);
730 int sys_vfork(unsigned long p1, unsigned long p2, unsigned long p3,
731 unsigned long p4, unsigned long p5, unsigned long p6,
732 struct pt_regs *regs)
734 CHECK_FULL_REGS(regs);
735 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->gpr[1],
736 regs, 0, NULL, NULL);
739 int sys_execve(unsigned long a0, unsigned long a1, unsigned long a2,
740 unsigned long a3, unsigned long a4, unsigned long a5,
741 struct pt_regs *regs)
743 int error;
744 char *filename;
746 filename = getname((char __user *) a0);
747 error = PTR_ERR(filename);
748 if (IS_ERR(filename))
749 goto out;
750 flush_fp_to_thread(current);
751 flush_altivec_to_thread(current);
752 flush_spe_to_thread(current);
753 error = do_execve(filename, (char __user * __user *) a1,
754 (char __user * __user *) a2, regs);
755 if (error == 0) {
756 task_lock(current);
757 current->ptrace &= ~PT_DTRACE;
758 task_unlock(current);
760 putname(filename);
761 out:
762 return error;
765 static int validate_sp(unsigned long sp, struct task_struct *p,
766 unsigned long nbytes)
768 unsigned long stack_page = (unsigned long)task_stack_page(p);
770 if (sp >= stack_page + sizeof(struct thread_struct)
771 && sp <= stack_page + THREAD_SIZE - nbytes)
772 return 1;
774 #ifdef CONFIG_IRQSTACKS
775 stack_page = (unsigned long) hardirq_ctx[task_cpu(p)];
776 if (sp >= stack_page + sizeof(struct thread_struct)
777 && sp <= stack_page + THREAD_SIZE - nbytes)
778 return 1;
780 stack_page = (unsigned long) softirq_ctx[task_cpu(p)];
781 if (sp >= stack_page + sizeof(struct thread_struct)
782 && sp <= stack_page + THREAD_SIZE - nbytes)
783 return 1;
784 #endif
786 return 0;
789 #ifdef CONFIG_PPC64
790 #define MIN_STACK_FRAME 112 /* same as STACK_FRAME_OVERHEAD, in fact */
791 #define FRAME_LR_SAVE 2
792 #define INT_FRAME_SIZE (sizeof(struct pt_regs) + STACK_FRAME_OVERHEAD + 288)
793 #define REGS_MARKER 0x7265677368657265ul
794 #define FRAME_MARKER 12
795 #else
796 #define MIN_STACK_FRAME 16
797 #define FRAME_LR_SAVE 1
798 #define INT_FRAME_SIZE (sizeof(struct pt_regs) + STACK_FRAME_OVERHEAD)
799 #define REGS_MARKER 0x72656773ul
800 #define FRAME_MARKER 2
801 #endif
803 unsigned long get_wchan(struct task_struct *p)
805 unsigned long ip, sp;
806 int count = 0;
808 if (!p || p == current || p->state == TASK_RUNNING)
809 return 0;
811 sp = p->thread.ksp;
812 if (!validate_sp(sp, p, MIN_STACK_FRAME))
813 return 0;
815 do {
816 sp = *(unsigned long *)sp;
817 if (!validate_sp(sp, p, MIN_STACK_FRAME))
818 return 0;
819 if (count > 0) {
820 ip = ((unsigned long *)sp)[FRAME_LR_SAVE];
821 if (!in_sched_functions(ip))
822 return ip;
824 } while (count++ < 16);
825 return 0;
827 EXPORT_SYMBOL(get_wchan);
829 static int kstack_depth_to_print = 64;
831 void show_stack(struct task_struct *tsk, unsigned long *stack)
833 unsigned long sp, ip, lr, newsp;
834 int count = 0;
835 int firstframe = 1;
837 sp = (unsigned long) stack;
838 if (tsk == NULL)
839 tsk = current;
840 if (sp == 0) {
841 if (tsk == current)
842 asm("mr %0,1" : "=r" (sp));
843 else
844 sp = tsk->thread.ksp;
847 lr = 0;
848 printk("Call Trace:\n");
849 do {
850 if (!validate_sp(sp, tsk, MIN_STACK_FRAME))
851 return;
853 stack = (unsigned long *) sp;
854 newsp = stack[0];
855 ip = stack[FRAME_LR_SAVE];
856 if (!firstframe || ip != lr) {
857 printk("["REG"] ["REG"] ", sp, ip);
858 print_symbol("%s", ip);
859 if (firstframe)
860 printk(" (unreliable)");
861 printk("\n");
863 firstframe = 0;
866 * See if this is an exception frame.
867 * We look for the "regshere" marker in the current frame.
869 if (validate_sp(sp, tsk, INT_FRAME_SIZE)
870 && stack[FRAME_MARKER] == REGS_MARKER) {
871 struct pt_regs *regs = (struct pt_regs *)
872 (sp + STACK_FRAME_OVERHEAD);
873 printk("--- Exception: %lx", regs->trap);
874 print_symbol(" at %s\n", regs->nip);
875 lr = regs->link;
876 print_symbol(" LR = %s\n", lr);
877 firstframe = 1;
880 sp = newsp;
881 } while (count++ < kstack_depth_to_print);
884 void dump_stack(void)
886 show_stack(current, NULL);
888 EXPORT_SYMBOL(dump_stack);