1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
4 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
16 * You should have received a copy of the GNU General Public
17 * License along with this program; if not, write to the
18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 * Boston, MA 021110-1307, USA.
23 #include <linux/slab.h>
24 #include <linux/highmem.h>
25 #include <linux/pagemap.h>
26 #include <asm/byteorder.h>
27 #include <linux/swap.h>
28 #include <linux/pipe_fs_i.h>
30 #define MLOG_MASK_PREFIX ML_FILE_IO
31 #include <cluster/masklog.h>
38 #include "extent_map.h"
46 #include "buffer_head_io.h"
48 static int ocfs2_symlink_get_block(struct inode
*inode
, sector_t iblock
,
49 struct buffer_head
*bh_result
, int create
)
53 struct ocfs2_dinode
*fe
= NULL
;
54 struct buffer_head
*bh
= NULL
;
55 struct buffer_head
*buffer_cache_bh
= NULL
;
56 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
59 mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode
,
60 (unsigned long long)iblock
, bh_result
, create
);
62 BUG_ON(ocfs2_inode_is_fast_symlink(inode
));
64 if ((iblock
<< inode
->i_sb
->s_blocksize_bits
) > PATH_MAX
+ 1) {
65 mlog(ML_ERROR
, "block offset > PATH_MAX: %llu",
66 (unsigned long long)iblock
);
70 status
= ocfs2_read_block(OCFS2_SB(inode
->i_sb
),
71 OCFS2_I(inode
)->ip_blkno
,
72 &bh
, OCFS2_BH_CACHED
, inode
);
77 fe
= (struct ocfs2_dinode
*) bh
->b_data
;
79 if (!OCFS2_IS_VALID_DINODE(fe
)) {
80 mlog(ML_ERROR
, "Invalid dinode #%llu: signature = %.*s\n",
81 (unsigned long long)le64_to_cpu(fe
->i_blkno
), 7,
86 if ((u64
)iblock
>= ocfs2_clusters_to_blocks(inode
->i_sb
,
87 le32_to_cpu(fe
->i_clusters
))) {
88 mlog(ML_ERROR
, "block offset is outside the allocated size: "
89 "%llu\n", (unsigned long long)iblock
);
93 /* We don't use the page cache to create symlink data, so if
94 * need be, copy it over from the buffer cache. */
95 if (!buffer_uptodate(bh_result
) && ocfs2_inode_is_new(inode
)) {
96 u64 blkno
= le64_to_cpu(fe
->id2
.i_list
.l_recs
[0].e_blkno
) +
98 buffer_cache_bh
= sb_getblk(osb
->sb
, blkno
);
99 if (!buffer_cache_bh
) {
100 mlog(ML_ERROR
, "couldn't getblock for symlink!\n");
104 /* we haven't locked out transactions, so a commit
105 * could've happened. Since we've got a reference on
106 * the bh, even if it commits while we're doing the
107 * copy, the data is still good. */
108 if (buffer_jbd(buffer_cache_bh
)
109 && ocfs2_inode_is_new(inode
)) {
110 kaddr
= kmap_atomic(bh_result
->b_page
, KM_USER0
);
112 mlog(ML_ERROR
, "couldn't kmap!\n");
115 memcpy(kaddr
+ (bh_result
->b_size
* iblock
),
116 buffer_cache_bh
->b_data
,
118 kunmap_atomic(kaddr
, KM_USER0
);
119 set_buffer_uptodate(bh_result
);
121 brelse(buffer_cache_bh
);
124 map_bh(bh_result
, inode
->i_sb
,
125 le64_to_cpu(fe
->id2
.i_list
.l_recs
[0].e_blkno
) + iblock
);
137 static int ocfs2_get_block(struct inode
*inode
, sector_t iblock
,
138 struct buffer_head
*bh_result
, int create
)
141 unsigned int ext_flags
;
142 u64 p_blkno
, past_eof
;
143 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
145 mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode
,
146 (unsigned long long)iblock
, bh_result
, create
);
148 if (OCFS2_I(inode
)->ip_flags
& OCFS2_INODE_SYSTEM_FILE
)
149 mlog(ML_NOTICE
, "get_block on system inode 0x%p (%lu)\n",
150 inode
, inode
->i_ino
);
152 if (S_ISLNK(inode
->i_mode
)) {
153 /* this always does I/O for some reason. */
154 err
= ocfs2_symlink_get_block(inode
, iblock
, bh_result
, create
);
158 err
= ocfs2_extent_map_get_blocks(inode
, iblock
, &p_blkno
, NULL
,
161 mlog(ML_ERROR
, "Error %d from get_blocks(0x%p, %llu, 1, "
162 "%llu, NULL)\n", err
, inode
, (unsigned long long)iblock
,
163 (unsigned long long)p_blkno
);
168 * ocfs2 never allocates in this function - the only time we
169 * need to use BH_New is when we're extending i_size on a file
170 * system which doesn't support holes, in which case BH_New
171 * allows block_prepare_write() to zero.
173 mlog_bug_on_msg(create
&& p_blkno
== 0 && ocfs2_sparse_alloc(osb
),
174 "ino %lu, iblock %llu\n", inode
->i_ino
,
175 (unsigned long long)iblock
);
177 /* Treat the unwritten extent as a hole for zeroing purposes. */
178 if (p_blkno
&& !(ext_flags
& OCFS2_EXT_UNWRITTEN
))
179 map_bh(bh_result
, inode
->i_sb
, p_blkno
);
181 if (!ocfs2_sparse_alloc(osb
)) {
185 "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
186 (unsigned long long)iblock
,
187 (unsigned long long)p_blkno
,
188 (unsigned long long)OCFS2_I(inode
)->ip_blkno
);
189 mlog(ML_ERROR
, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode
), OCFS2_I(inode
)->ip_clusters
);
193 past_eof
= ocfs2_blocks_for_bytes(inode
->i_sb
, i_size_read(inode
));
194 mlog(0, "Inode %lu, past_eof = %llu\n", inode
->i_ino
,
195 (unsigned long long)past_eof
);
197 if (create
&& (iblock
>= past_eof
))
198 set_buffer_new(bh_result
);
209 int ocfs2_read_inline_data(struct inode
*inode
, struct page
*page
,
210 struct buffer_head
*di_bh
)
214 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*)di_bh
->b_data
;
216 if (!(le16_to_cpu(di
->i_dyn_features
) & OCFS2_INLINE_DATA_FL
)) {
217 ocfs2_error(inode
->i_sb
, "Inode %llu lost inline data flag",
218 (unsigned long long)OCFS2_I(inode
)->ip_blkno
);
222 size
= i_size_read(inode
);
224 if (size
> PAGE_CACHE_SIZE
||
225 size
> ocfs2_max_inline_data(inode
->i_sb
)) {
226 ocfs2_error(inode
->i_sb
,
227 "Inode %llu has with inline data has bad size: %u",
228 (unsigned long long)OCFS2_I(inode
)->ip_blkno
, size
);
232 kaddr
= kmap_atomic(page
, KM_USER0
);
234 memcpy(kaddr
, di
->id2
.i_data
.id_data
, size
);
235 /* Clear the remaining part of the page */
236 memset(kaddr
+ size
, 0, PAGE_CACHE_SIZE
- size
);
237 flush_dcache_page(page
);
238 kunmap_atomic(kaddr
, KM_USER0
);
240 SetPageUptodate(page
);
245 static int ocfs2_readpage_inline(struct inode
*inode
, struct page
*page
)
248 struct buffer_head
*di_bh
= NULL
;
249 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
251 BUG_ON(!PageLocked(page
));
252 BUG_ON(!OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
);
254 ret
= ocfs2_read_block(osb
, OCFS2_I(inode
)->ip_blkno
, &di_bh
,
255 OCFS2_BH_CACHED
, inode
);
261 ret
= ocfs2_read_inline_data(inode
, page
, di_bh
);
269 static int ocfs2_readpage(struct file
*file
, struct page
*page
)
271 struct inode
*inode
= page
->mapping
->host
;
272 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
273 loff_t start
= (loff_t
)page
->index
<< PAGE_CACHE_SHIFT
;
276 mlog_entry("(0x%p, %lu)\n", file
, (page
? page
->index
: 0));
278 ret
= ocfs2_meta_lock_with_page(inode
, NULL
, 0, page
);
280 if (ret
== AOP_TRUNCATED_PAGE
)
286 if (down_read_trylock(&oi
->ip_alloc_sem
) == 0) {
287 ret
= AOP_TRUNCATED_PAGE
;
288 goto out_meta_unlock
;
292 * i_size might have just been updated as we grabed the meta lock. We
293 * might now be discovering a truncate that hit on another node.
294 * block_read_full_page->get_block freaks out if it is asked to read
295 * beyond the end of a file, so we check here. Callers
296 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
297 * and notice that the page they just read isn't needed.
299 * XXX sys_readahead() seems to get that wrong?
301 if (start
>= i_size_read(inode
)) {
302 zero_user_page(page
, 0, PAGE_SIZE
, KM_USER0
);
303 SetPageUptodate(page
);
308 ret
= ocfs2_data_lock_with_page(inode
, 0, page
);
310 if (ret
== AOP_TRUNCATED_PAGE
)
316 if (oi
->ip_dyn_features
& OCFS2_INLINE_DATA_FL
)
317 ret
= ocfs2_readpage_inline(inode
, page
);
319 ret
= block_read_full_page(page
, ocfs2_get_block
);
322 ocfs2_data_unlock(inode
, 0);
324 up_read(&OCFS2_I(inode
)->ip_alloc_sem
);
326 ocfs2_meta_unlock(inode
, 0);
334 /* Note: Because we don't support holes, our allocation has
335 * already happened (allocation writes zeros to the file data)
336 * so we don't have to worry about ordered writes in
339 * ->writepage is called during the process of invalidating the page cache
340 * during blocked lock processing. It can't block on any cluster locks
341 * to during block mapping. It's relying on the fact that the block
342 * mapping can't have disappeared under the dirty pages that it is
343 * being asked to write back.
345 static int ocfs2_writepage(struct page
*page
, struct writeback_control
*wbc
)
349 mlog_entry("(0x%p)\n", page
);
351 ret
= block_write_full_page(page
, ocfs2_get_block
, wbc
);
359 * This is called from ocfs2_write_zero_page() which has handled it's
360 * own cluster locking and has ensured allocation exists for those
361 * blocks to be written.
363 int ocfs2_prepare_write_nolock(struct inode
*inode
, struct page
*page
,
364 unsigned from
, unsigned to
)
368 ret
= block_prepare_write(page
, from
, to
, ocfs2_get_block
);
373 /* Taken from ext3. We don't necessarily need the full blown
374 * functionality yet, but IMHO it's better to cut and paste the whole
375 * thing so we can avoid introducing our own bugs (and easily pick up
376 * their fixes when they happen) --Mark */
377 int walk_page_buffers( handle_t
*handle
,
378 struct buffer_head
*head
,
382 int (*fn
)( handle_t
*handle
,
383 struct buffer_head
*bh
))
385 struct buffer_head
*bh
;
386 unsigned block_start
, block_end
;
387 unsigned blocksize
= head
->b_size
;
389 struct buffer_head
*next
;
391 for ( bh
= head
, block_start
= 0;
392 ret
== 0 && (bh
!= head
|| !block_start
);
393 block_start
= block_end
, bh
= next
)
395 next
= bh
->b_this_page
;
396 block_end
= block_start
+ blocksize
;
397 if (block_end
<= from
|| block_start
>= to
) {
398 if (partial
&& !buffer_uptodate(bh
))
402 err
= (*fn
)(handle
, bh
);
409 handle_t
*ocfs2_start_walk_page_trans(struct inode
*inode
,
414 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
415 handle_t
*handle
= NULL
;
418 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
);
425 if (ocfs2_should_order_data(inode
)) {
426 ret
= walk_page_buffers(handle
,
429 ocfs2_journal_dirty_data
);
436 ocfs2_commit_trans(osb
, handle
);
437 handle
= ERR_PTR(ret
);
442 static sector_t
ocfs2_bmap(struct address_space
*mapping
, sector_t block
)
447 struct inode
*inode
= mapping
->host
;
449 mlog_entry("(block = %llu)\n", (unsigned long long)block
);
451 /* We don't need to lock journal system files, since they aren't
452 * accessed concurrently from multiple nodes.
454 if (!INODE_JOURNAL(inode
)) {
455 err
= ocfs2_meta_lock(inode
, NULL
, 0);
461 down_read(&OCFS2_I(inode
)->ip_alloc_sem
);
464 if (!(OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
))
465 err
= ocfs2_extent_map_get_blocks(inode
, block
, &p_blkno
, NULL
,
468 if (!INODE_JOURNAL(inode
)) {
469 up_read(&OCFS2_I(inode
)->ip_alloc_sem
);
470 ocfs2_meta_unlock(inode
, 0);
474 mlog(ML_ERROR
, "get_blocks() failed, block = %llu\n",
475 (unsigned long long)block
);
481 status
= err
? 0 : p_blkno
;
483 mlog_exit((int)status
);
489 * TODO: Make this into a generic get_blocks function.
491 * From do_direct_io in direct-io.c:
492 * "So what we do is to permit the ->get_blocks function to populate
493 * bh.b_size with the size of IO which is permitted at this offset and
496 * This function is called directly from get_more_blocks in direct-io.c.
498 * called like this: dio->get_blocks(dio->inode, fs_startblk,
499 * fs_count, map_bh, dio->rw == WRITE);
501 static int ocfs2_direct_IO_get_blocks(struct inode
*inode
, sector_t iblock
,
502 struct buffer_head
*bh_result
, int create
)
505 u64 p_blkno
, inode_blocks
, contig_blocks
;
506 unsigned int ext_flags
;
507 unsigned char blocksize_bits
= inode
->i_sb
->s_blocksize_bits
;
508 unsigned long max_blocks
= bh_result
->b_size
>> inode
->i_blkbits
;
510 /* This function won't even be called if the request isn't all
511 * nicely aligned and of the right size, so there's no need
512 * for us to check any of that. */
514 inode_blocks
= ocfs2_blocks_for_bytes(inode
->i_sb
, i_size_read(inode
));
517 * Any write past EOF is not allowed because we'd be extending.
519 if (create
&& (iblock
+ max_blocks
) > inode_blocks
) {
524 /* This figures out the size of the next contiguous block, and
525 * our logical offset */
526 ret
= ocfs2_extent_map_get_blocks(inode
, iblock
, &p_blkno
,
527 &contig_blocks
, &ext_flags
);
529 mlog(ML_ERROR
, "get_blocks() failed iblock=%llu\n",
530 (unsigned long long)iblock
);
535 if (!ocfs2_sparse_alloc(OCFS2_SB(inode
->i_sb
)) && !p_blkno
) {
536 ocfs2_error(inode
->i_sb
,
537 "Inode %llu has a hole at block %llu\n",
538 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
539 (unsigned long long)iblock
);
545 * get_more_blocks() expects us to describe a hole by clearing
546 * the mapped bit on bh_result().
548 * Consider an unwritten extent as a hole.
550 if (p_blkno
&& !(ext_flags
& OCFS2_EXT_UNWRITTEN
))
551 map_bh(bh_result
, inode
->i_sb
, p_blkno
);
554 * ocfs2_prepare_inode_for_write() should have caught
555 * the case where we'd be filling a hole and triggered
556 * a buffered write instead.
564 clear_buffer_mapped(bh_result
);
567 /* make sure we don't map more than max_blocks blocks here as
568 that's all the kernel will handle at this point. */
569 if (max_blocks
< contig_blocks
)
570 contig_blocks
= max_blocks
;
571 bh_result
->b_size
= contig_blocks
<< blocksize_bits
;
577 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're
578 * particularly interested in the aio/dio case. Like the core uses
579 * i_alloc_sem, we use the rw_lock DLM lock to protect io on one node from
580 * truncation on another.
582 static void ocfs2_dio_end_io(struct kiocb
*iocb
,
587 struct inode
*inode
= iocb
->ki_filp
->f_path
.dentry
->d_inode
;
590 /* this io's submitter should not have unlocked this before we could */
591 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb
));
593 ocfs2_iocb_clear_rw_locked(iocb
);
595 level
= ocfs2_iocb_rw_locked_level(iocb
);
597 up_read(&inode
->i_alloc_sem
);
598 ocfs2_rw_unlock(inode
, level
);
602 * ocfs2_invalidatepage() and ocfs2_releasepage() are shamelessly stolen
603 * from ext3. PageChecked() bits have been removed as OCFS2 does not
604 * do journalled data.
606 static void ocfs2_invalidatepage(struct page
*page
, unsigned long offset
)
608 journal_t
*journal
= OCFS2_SB(page
->mapping
->host
->i_sb
)->journal
->j_journal
;
610 journal_invalidatepage(journal
, page
, offset
);
613 static int ocfs2_releasepage(struct page
*page
, gfp_t wait
)
615 journal_t
*journal
= OCFS2_SB(page
->mapping
->host
->i_sb
)->journal
->j_journal
;
617 if (!page_has_buffers(page
))
619 return journal_try_to_free_buffers(journal
, page
, wait
);
622 static ssize_t
ocfs2_direct_IO(int rw
,
624 const struct iovec
*iov
,
626 unsigned long nr_segs
)
628 struct file
*file
= iocb
->ki_filp
;
629 struct inode
*inode
= file
->f_path
.dentry
->d_inode
->i_mapping
->host
;
635 * Fallback to buffered I/O if we see an inode without
638 if (OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
)
641 if (!ocfs2_sparse_alloc(OCFS2_SB(inode
->i_sb
))) {
643 * We get PR data locks even for O_DIRECT. This
644 * allows concurrent O_DIRECT I/O but doesn't let
645 * O_DIRECT with extending and buffered zeroing writes
646 * race. If they did race then the buffered zeroing
647 * could be written back after the O_DIRECT I/O. It's
648 * one thing to tell people not to mix buffered and
649 * O_DIRECT writes, but expecting them to understand
650 * that file extension is also an implicit buffered
651 * write is too much. By getting the PR we force
652 * writeback of the buffered zeroing before
655 ret
= ocfs2_data_lock(inode
, 0);
660 ocfs2_data_unlock(inode
, 0);
663 ret
= blockdev_direct_IO_no_locking(rw
, iocb
, inode
,
664 inode
->i_sb
->s_bdev
, iov
, offset
,
666 ocfs2_direct_IO_get_blocks
,
673 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super
*osb
,
678 unsigned int cluster_start
= 0, cluster_end
= PAGE_CACHE_SIZE
;
680 if (unlikely(PAGE_CACHE_SHIFT
> osb
->s_clustersize_bits
)) {
683 cpp
= 1 << (PAGE_CACHE_SHIFT
- osb
->s_clustersize_bits
);
685 cluster_start
= cpos
% cpp
;
686 cluster_start
= cluster_start
<< osb
->s_clustersize_bits
;
688 cluster_end
= cluster_start
+ osb
->s_clustersize
;
691 BUG_ON(cluster_start
> PAGE_SIZE
);
692 BUG_ON(cluster_end
> PAGE_SIZE
);
695 *start
= cluster_start
;
701 * 'from' and 'to' are the region in the page to avoid zeroing.
703 * If pagesize > clustersize, this function will avoid zeroing outside
704 * of the cluster boundary.
706 * from == to == 0 is code for "zero the entire cluster region"
708 static void ocfs2_clear_page_regions(struct page
*page
,
709 struct ocfs2_super
*osb
, u32 cpos
,
710 unsigned from
, unsigned to
)
713 unsigned int cluster_start
, cluster_end
;
715 ocfs2_figure_cluster_boundaries(osb
, cpos
, &cluster_start
, &cluster_end
);
717 kaddr
= kmap_atomic(page
, KM_USER0
);
720 if (from
> cluster_start
)
721 memset(kaddr
+ cluster_start
, 0, from
- cluster_start
);
722 if (to
< cluster_end
)
723 memset(kaddr
+ to
, 0, cluster_end
- to
);
725 memset(kaddr
+ cluster_start
, 0, cluster_end
- cluster_start
);
728 kunmap_atomic(kaddr
, KM_USER0
);
732 * Nonsparse file systems fully allocate before we get to the write
733 * code. This prevents ocfs2_write() from tagging the write as an
734 * allocating one, which means ocfs2_map_page_blocks() might try to
735 * read-in the blocks at the tail of our file. Avoid reading them by
736 * testing i_size against each block offset.
738 static int ocfs2_should_read_blk(struct inode
*inode
, struct page
*page
,
739 unsigned int block_start
)
741 u64 offset
= page_offset(page
) + block_start
;
743 if (ocfs2_sparse_alloc(OCFS2_SB(inode
->i_sb
)))
746 if (i_size_read(inode
) > offset
)
753 * Some of this taken from block_prepare_write(). We already have our
754 * mapping by now though, and the entire write will be allocating or
755 * it won't, so not much need to use BH_New.
757 * This will also skip zeroing, which is handled externally.
759 int ocfs2_map_page_blocks(struct page
*page
, u64
*p_blkno
,
760 struct inode
*inode
, unsigned int from
,
761 unsigned int to
, int new)
764 struct buffer_head
*head
, *bh
, *wait
[2], **wait_bh
= wait
;
765 unsigned int block_end
, block_start
;
766 unsigned int bsize
= 1 << inode
->i_blkbits
;
768 if (!page_has_buffers(page
))
769 create_empty_buffers(page
, bsize
, 0);
771 head
= page_buffers(page
);
772 for (bh
= head
, block_start
= 0; bh
!= head
|| !block_start
;
773 bh
= bh
->b_this_page
, block_start
+= bsize
) {
774 block_end
= block_start
+ bsize
;
776 clear_buffer_new(bh
);
779 * Ignore blocks outside of our i/o range -
780 * they may belong to unallocated clusters.
782 if (block_start
>= to
|| block_end
<= from
) {
783 if (PageUptodate(page
))
784 set_buffer_uptodate(bh
);
789 * For an allocating write with cluster size >= page
790 * size, we always write the entire page.
795 if (!buffer_mapped(bh
)) {
796 map_bh(bh
, inode
->i_sb
, *p_blkno
);
797 unmap_underlying_metadata(bh
->b_bdev
, bh
->b_blocknr
);
800 if (PageUptodate(page
)) {
801 if (!buffer_uptodate(bh
))
802 set_buffer_uptodate(bh
);
803 } else if (!buffer_uptodate(bh
) && !buffer_delay(bh
) &&
805 ocfs2_should_read_blk(inode
, page
, block_start
) &&
806 (block_start
< from
|| block_end
> to
)) {
807 ll_rw_block(READ
, 1, &bh
);
811 *p_blkno
= *p_blkno
+ 1;
815 * If we issued read requests - let them complete.
817 while(wait_bh
> wait
) {
818 wait_on_buffer(*--wait_bh
);
819 if (!buffer_uptodate(*wait_bh
))
823 if (ret
== 0 || !new)
827 * If we get -EIO above, zero out any newly allocated blocks
828 * to avoid exposing stale data.
833 block_end
= block_start
+ bsize
;
834 if (block_end
<= from
)
836 if (block_start
>= to
)
839 zero_user_page(page
, block_start
, bh
->b_size
, KM_USER0
);
840 set_buffer_uptodate(bh
);
841 mark_buffer_dirty(bh
);
844 block_start
= block_end
;
845 bh
= bh
->b_this_page
;
846 } while (bh
!= head
);
851 #if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
852 #define OCFS2_MAX_CTXT_PAGES 1
854 #define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
857 #define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
860 * Describe the state of a single cluster to be written to.
862 struct ocfs2_write_cluster_desc
{
866 * Give this a unique field because c_phys eventually gets
870 unsigned c_unwritten
;
873 static inline int ocfs2_should_zero_cluster(struct ocfs2_write_cluster_desc
*d
)
875 return d
->c_new
|| d
->c_unwritten
;
878 struct ocfs2_write_ctxt
{
879 /* Logical cluster position / len of write */
883 struct ocfs2_write_cluster_desc w_desc
[OCFS2_MAX_CLUSTERS_PER_PAGE
];
886 * This is true if page_size > cluster_size.
888 * It triggers a set of special cases during write which might
889 * have to deal with allocating writes to partial pages.
891 unsigned int w_large_pages
;
894 * Pages involved in this write.
896 * w_target_page is the page being written to by the user.
898 * w_pages is an array of pages which always contains
899 * w_target_page, and in the case of an allocating write with
900 * page_size < cluster size, it will contain zero'd and mapped
901 * pages adjacent to w_target_page which need to be written
902 * out in so that future reads from that region will get
905 struct page
*w_pages
[OCFS2_MAX_CTXT_PAGES
];
906 unsigned int w_num_pages
;
907 struct page
*w_target_page
;
910 * ocfs2_write_end() uses this to know what the real range to
911 * write in the target should be.
913 unsigned int w_target_from
;
914 unsigned int w_target_to
;
917 * We could use journal_current_handle() but this is cleaner,
922 struct buffer_head
*w_di_bh
;
924 struct ocfs2_cached_dealloc_ctxt w_dealloc
;
927 void ocfs2_unlock_and_free_pages(struct page
**pages
, int num_pages
)
931 for(i
= 0; i
< num_pages
; i
++) {
933 unlock_page(pages
[i
]);
934 mark_page_accessed(pages
[i
]);
935 page_cache_release(pages
[i
]);
940 static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt
*wc
)
942 ocfs2_unlock_and_free_pages(wc
->w_pages
, wc
->w_num_pages
);
948 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt
**wcp
,
949 struct ocfs2_super
*osb
, loff_t pos
,
950 unsigned len
, struct buffer_head
*di_bh
)
953 struct ocfs2_write_ctxt
*wc
;
955 wc
= kzalloc(sizeof(struct ocfs2_write_ctxt
), GFP_NOFS
);
959 wc
->w_cpos
= pos
>> osb
->s_clustersize_bits
;
960 cend
= (pos
+ len
- 1) >> osb
->s_clustersize_bits
;
961 wc
->w_clen
= cend
- wc
->w_cpos
+ 1;
965 if (unlikely(PAGE_CACHE_SHIFT
> osb
->s_clustersize_bits
))
966 wc
->w_large_pages
= 1;
968 wc
->w_large_pages
= 0;
970 ocfs2_init_dealloc_ctxt(&wc
->w_dealloc
);
978 * If a page has any new buffers, zero them out here, and mark them uptodate
979 * and dirty so they'll be written out (in order to prevent uninitialised
980 * block data from leaking). And clear the new bit.
982 static void ocfs2_zero_new_buffers(struct page
*page
, unsigned from
, unsigned to
)
984 unsigned int block_start
, block_end
;
985 struct buffer_head
*head
, *bh
;
987 BUG_ON(!PageLocked(page
));
988 if (!page_has_buffers(page
))
991 bh
= head
= page_buffers(page
);
994 block_end
= block_start
+ bh
->b_size
;
996 if (buffer_new(bh
)) {
997 if (block_end
> from
&& block_start
< to
) {
998 if (!PageUptodate(page
)) {
1001 start
= max(from
, block_start
);
1002 end
= min(to
, block_end
);
1004 zero_user_page(page
, start
, end
- start
, KM_USER0
);
1005 set_buffer_uptodate(bh
);
1008 clear_buffer_new(bh
);
1009 mark_buffer_dirty(bh
);
1013 block_start
= block_end
;
1014 bh
= bh
->b_this_page
;
1015 } while (bh
!= head
);
1019 * Only called when we have a failure during allocating write to write
1020 * zero's to the newly allocated region.
1022 static void ocfs2_write_failure(struct inode
*inode
,
1023 struct ocfs2_write_ctxt
*wc
,
1024 loff_t user_pos
, unsigned user_len
)
1027 unsigned from
= user_pos
& (PAGE_CACHE_SIZE
- 1),
1028 to
= user_pos
+ user_len
;
1029 struct page
*tmppage
;
1031 ocfs2_zero_new_buffers(wc
->w_target_page
, from
, to
);
1033 for(i
= 0; i
< wc
->w_num_pages
; i
++) {
1034 tmppage
= wc
->w_pages
[i
];
1036 if (ocfs2_should_order_data(inode
))
1037 walk_page_buffers(wc
->w_handle
, page_buffers(tmppage
),
1039 ocfs2_journal_dirty_data
);
1041 block_commit_write(tmppage
, from
, to
);
1045 static int ocfs2_prepare_page_for_write(struct inode
*inode
, u64
*p_blkno
,
1046 struct ocfs2_write_ctxt
*wc
,
1047 struct page
*page
, u32 cpos
,
1048 loff_t user_pos
, unsigned user_len
,
1052 unsigned int map_from
= 0, map_to
= 0;
1053 unsigned int cluster_start
, cluster_end
;
1054 unsigned int user_data_from
= 0, user_data_to
= 0;
1056 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode
->i_sb
), cpos
,
1057 &cluster_start
, &cluster_end
);
1059 if (page
== wc
->w_target_page
) {
1060 map_from
= user_pos
& (PAGE_CACHE_SIZE
- 1);
1061 map_to
= map_from
+ user_len
;
1064 ret
= ocfs2_map_page_blocks(page
, p_blkno
, inode
,
1065 cluster_start
, cluster_end
,
1068 ret
= ocfs2_map_page_blocks(page
, p_blkno
, inode
,
1069 map_from
, map_to
, new);
1075 user_data_from
= map_from
;
1076 user_data_to
= map_to
;
1078 map_from
= cluster_start
;
1079 map_to
= cluster_end
;
1083 * If we haven't allocated the new page yet, we
1084 * shouldn't be writing it out without copying user
1085 * data. This is likely a math error from the caller.
1089 map_from
= cluster_start
;
1090 map_to
= cluster_end
;
1092 ret
= ocfs2_map_page_blocks(page
, p_blkno
, inode
,
1093 cluster_start
, cluster_end
, new);
1101 * Parts of newly allocated pages need to be zero'd.
1103 * Above, we have also rewritten 'to' and 'from' - as far as
1104 * the rest of the function is concerned, the entire cluster
1105 * range inside of a page needs to be written.
1107 * We can skip this if the page is up to date - it's already
1108 * been zero'd from being read in as a hole.
1110 if (new && !PageUptodate(page
))
1111 ocfs2_clear_page_regions(page
, OCFS2_SB(inode
->i_sb
),
1112 cpos
, user_data_from
, user_data_to
);
1114 flush_dcache_page(page
);
1121 * This function will only grab one clusters worth of pages.
1123 static int ocfs2_grab_pages_for_write(struct address_space
*mapping
,
1124 struct ocfs2_write_ctxt
*wc
,
1125 u32 cpos
, loff_t user_pos
, int new,
1126 struct page
*mmap_page
)
1129 unsigned long start
, target_index
, index
;
1130 struct inode
*inode
= mapping
->host
;
1132 target_index
= user_pos
>> PAGE_CACHE_SHIFT
;
1135 * Figure out how many pages we'll be manipulating here. For
1136 * non allocating write, we just change the one
1137 * page. Otherwise, we'll need a whole clusters worth.
1140 wc
->w_num_pages
= ocfs2_pages_per_cluster(inode
->i_sb
);
1141 start
= ocfs2_align_clusters_to_page_index(inode
->i_sb
, cpos
);
1143 wc
->w_num_pages
= 1;
1144 start
= target_index
;
1147 for(i
= 0; i
< wc
->w_num_pages
; i
++) {
1150 if (index
== target_index
&& mmap_page
) {
1152 * ocfs2_pagemkwrite() is a little different
1153 * and wants us to directly use the page
1156 lock_page(mmap_page
);
1158 if (mmap_page
->mapping
!= mapping
) {
1159 unlock_page(mmap_page
);
1161 * Sanity check - the locking in
1162 * ocfs2_pagemkwrite() should ensure
1163 * that this code doesn't trigger.
1170 page_cache_get(mmap_page
);
1171 wc
->w_pages
[i
] = mmap_page
;
1173 wc
->w_pages
[i
] = find_or_create_page(mapping
, index
,
1175 if (!wc
->w_pages
[i
]) {
1182 if (index
== target_index
)
1183 wc
->w_target_page
= wc
->w_pages
[i
];
1190 * Prepare a single cluster for write one cluster into the file.
1192 static int ocfs2_write_cluster(struct address_space
*mapping
,
1193 u32 phys
, unsigned int unwritten
,
1194 struct ocfs2_alloc_context
*data_ac
,
1195 struct ocfs2_alloc_context
*meta_ac
,
1196 struct ocfs2_write_ctxt
*wc
, u32 cpos
,
1197 loff_t user_pos
, unsigned user_len
)
1199 int ret
, i
, new, should_zero
= 0;
1200 u64 v_blkno
, p_blkno
;
1201 struct inode
*inode
= mapping
->host
;
1203 new = phys
== 0 ? 1 : 0;
1204 if (new || unwritten
)
1211 * This is safe to call with the page locks - it won't take
1212 * any additional semaphores or cluster locks.
1215 ret
= ocfs2_do_extend_allocation(OCFS2_SB(inode
->i_sb
), inode
,
1216 &tmp_pos
, 1, 0, wc
->w_di_bh
,
1217 wc
->w_handle
, data_ac
,
1220 * This shouldn't happen because we must have already
1221 * calculated the correct meta data allocation required. The
1222 * internal tree allocation code should know how to increase
1223 * transaction credits itself.
1225 * If need be, we could handle -EAGAIN for a
1226 * RESTART_TRANS here.
1228 mlog_bug_on_msg(ret
== -EAGAIN
,
1229 "Inode %llu: EAGAIN return during allocation.\n",
1230 (unsigned long long)OCFS2_I(inode
)->ip_blkno
);
1235 } else if (unwritten
) {
1236 ret
= ocfs2_mark_extent_written(inode
, wc
->w_di_bh
,
1237 wc
->w_handle
, cpos
, 1, phys
,
1238 meta_ac
, &wc
->w_dealloc
);
1246 v_blkno
= ocfs2_clusters_to_blocks(inode
->i_sb
, cpos
);
1248 v_blkno
= user_pos
>> inode
->i_sb
->s_blocksize_bits
;
1251 * The only reason this should fail is due to an inability to
1252 * find the extent added.
1254 ret
= ocfs2_extent_map_get_blocks(inode
, v_blkno
, &p_blkno
, NULL
,
1257 ocfs2_error(inode
->i_sb
, "Corrupting extend for inode %llu, "
1258 "at logical block %llu",
1259 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
1260 (unsigned long long)v_blkno
);
1264 BUG_ON(p_blkno
== 0);
1266 for(i
= 0; i
< wc
->w_num_pages
; i
++) {
1269 tmpret
= ocfs2_prepare_page_for_write(inode
, &p_blkno
, wc
,
1270 wc
->w_pages
[i
], cpos
,
1281 * We only have cleanup to do in case of allocating write.
1284 ocfs2_write_failure(inode
, wc
, user_pos
, user_len
);
1291 static int ocfs2_write_cluster_by_desc(struct address_space
*mapping
,
1292 struct ocfs2_alloc_context
*data_ac
,
1293 struct ocfs2_alloc_context
*meta_ac
,
1294 struct ocfs2_write_ctxt
*wc
,
1295 loff_t pos
, unsigned len
)
1299 unsigned int local_len
= len
;
1300 struct ocfs2_write_cluster_desc
*desc
;
1301 struct ocfs2_super
*osb
= OCFS2_SB(mapping
->host
->i_sb
);
1303 for (i
= 0; i
< wc
->w_clen
; i
++) {
1304 desc
= &wc
->w_desc
[i
];
1307 * We have to make sure that the total write passed in
1308 * doesn't extend past a single cluster.
1311 cluster_off
= pos
& (osb
->s_clustersize
- 1);
1312 if ((cluster_off
+ local_len
) > osb
->s_clustersize
)
1313 local_len
= osb
->s_clustersize
- cluster_off
;
1315 ret
= ocfs2_write_cluster(mapping
, desc
->c_phys
,
1316 desc
->c_unwritten
, data_ac
, meta_ac
,
1317 wc
, desc
->c_cpos
, pos
, local_len
);
1333 * ocfs2_write_end() wants to know which parts of the target page it
1334 * should complete the write on. It's easiest to compute them ahead of
1335 * time when a more complete view of the write is available.
1337 static void ocfs2_set_target_boundaries(struct ocfs2_super
*osb
,
1338 struct ocfs2_write_ctxt
*wc
,
1339 loff_t pos
, unsigned len
, int alloc
)
1341 struct ocfs2_write_cluster_desc
*desc
;
1343 wc
->w_target_from
= pos
& (PAGE_CACHE_SIZE
- 1);
1344 wc
->w_target_to
= wc
->w_target_from
+ len
;
1350 * Allocating write - we may have different boundaries based
1351 * on page size and cluster size.
1353 * NOTE: We can no longer compute one value from the other as
1354 * the actual write length and user provided length may be
1358 if (wc
->w_large_pages
) {
1360 * We only care about the 1st and last cluster within
1361 * our range and whether they should be zero'd or not. Either
1362 * value may be extended out to the start/end of a
1363 * newly allocated cluster.
1365 desc
= &wc
->w_desc
[0];
1366 if (ocfs2_should_zero_cluster(desc
))
1367 ocfs2_figure_cluster_boundaries(osb
,
1372 desc
= &wc
->w_desc
[wc
->w_clen
- 1];
1373 if (ocfs2_should_zero_cluster(desc
))
1374 ocfs2_figure_cluster_boundaries(osb
,
1379 wc
->w_target_from
= 0;
1380 wc
->w_target_to
= PAGE_CACHE_SIZE
;
1385 * Populate each single-cluster write descriptor in the write context
1386 * with information about the i/o to be done.
1388 * Returns the number of clusters that will have to be allocated, as
1389 * well as a worst case estimate of the number of extent records that
1390 * would have to be created during a write to an unwritten region.
1392 static int ocfs2_populate_write_desc(struct inode
*inode
,
1393 struct ocfs2_write_ctxt
*wc
,
1394 unsigned int *clusters_to_alloc
,
1395 unsigned int *extents_to_split
)
1398 struct ocfs2_write_cluster_desc
*desc
;
1399 unsigned int num_clusters
= 0;
1400 unsigned int ext_flags
= 0;
1404 *clusters_to_alloc
= 0;
1405 *extents_to_split
= 0;
1407 for (i
= 0; i
< wc
->w_clen
; i
++) {
1408 desc
= &wc
->w_desc
[i
];
1409 desc
->c_cpos
= wc
->w_cpos
+ i
;
1411 if (num_clusters
== 0) {
1413 * Need to look up the next extent record.
1415 ret
= ocfs2_get_clusters(inode
, desc
->c_cpos
, &phys
,
1416 &num_clusters
, &ext_flags
);
1423 * Assume worst case - that we're writing in
1424 * the middle of the extent.
1426 * We can assume that the write proceeds from
1427 * left to right, in which case the extent
1428 * insert code is smart enough to coalesce the
1429 * next splits into the previous records created.
1431 if (ext_flags
& OCFS2_EXT_UNWRITTEN
)
1432 *extents_to_split
= *extents_to_split
+ 2;
1435 * Only increment phys if it doesn't describe
1441 desc
->c_phys
= phys
;
1444 *clusters_to_alloc
= *clusters_to_alloc
+ 1;
1446 if (ext_flags
& OCFS2_EXT_UNWRITTEN
)
1447 desc
->c_unwritten
= 1;
1457 static int ocfs2_write_begin_inline(struct address_space
*mapping
,
1458 struct inode
*inode
,
1459 struct ocfs2_write_ctxt
*wc
)
1462 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1465 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*)wc
->w_di_bh
->b_data
;
1467 page
= find_or_create_page(mapping
, 0, GFP_NOFS
);
1474 * If we don't set w_num_pages then this page won't get unlocked
1475 * and freed on cleanup of the write context.
1477 wc
->w_pages
[0] = wc
->w_target_page
= page
;
1478 wc
->w_num_pages
= 1;
1480 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
);
1481 if (IS_ERR(handle
)) {
1482 ret
= PTR_ERR(handle
);
1487 ret
= ocfs2_journal_access(handle
, inode
, wc
->w_di_bh
,
1488 OCFS2_JOURNAL_ACCESS_WRITE
);
1490 ocfs2_commit_trans(osb
, handle
);
1496 if (!(OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
))
1497 ocfs2_set_inode_data_inline(inode
, di
);
1499 if (!PageUptodate(page
)) {
1500 ret
= ocfs2_read_inline_data(inode
, page
, wc
->w_di_bh
);
1502 ocfs2_commit_trans(osb
, handle
);
1508 wc
->w_handle
= handle
;
1513 int ocfs2_size_fits_inline_data(struct buffer_head
*di_bh
, u64 new_size
)
1515 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*)di_bh
->b_data
;
1517 if (new_size
<= le16_to_cpu(di
->id2
.i_data
.id_count
))
1522 static int ocfs2_try_to_write_inline_data(struct address_space
*mapping
,
1523 struct inode
*inode
, loff_t pos
,
1524 unsigned len
, struct page
*mmap_page
,
1525 struct ocfs2_write_ctxt
*wc
)
1527 int ret
, written
= 0;
1528 loff_t end
= pos
+ len
;
1529 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
1531 mlog(0, "Inode %llu, write of %u bytes at off %llu. features: 0x%x\n",
1532 (unsigned long long)oi
->ip_blkno
, len
, (unsigned long long)pos
,
1533 oi
->ip_dyn_features
);
1536 * Handle inodes which already have inline data 1st.
1538 if (oi
->ip_dyn_features
& OCFS2_INLINE_DATA_FL
) {
1539 if (mmap_page
== NULL
&&
1540 ocfs2_size_fits_inline_data(wc
->w_di_bh
, end
))
1541 goto do_inline_write
;
1544 * The write won't fit - we have to give this inode an
1545 * inline extent list now.
1547 ret
= ocfs2_convert_inline_data_to_extents(inode
, wc
->w_di_bh
);
1554 * Check whether the inode can accept inline data.
1556 if (oi
->ip_clusters
!= 0 || i_size_read(inode
) != 0)
1560 * Check whether the write can fit.
1562 if (mmap_page
|| end
> ocfs2_max_inline_data(inode
->i_sb
))
1566 ret
= ocfs2_write_begin_inline(mapping
, inode
, wc
);
1573 * This signals to the caller that the data can be written
1578 return written
? written
: ret
;
1582 * This function only does anything for file systems which can't
1583 * handle sparse files.
1585 * What we want to do here is fill in any hole between the current end
1586 * of allocation and the end of our write. That way the rest of the
1587 * write path can treat it as an non-allocating write, which has no
1588 * special case code for sparse/nonsparse files.
1590 static int ocfs2_expand_nonsparse_inode(struct inode
*inode
, loff_t pos
,
1592 struct ocfs2_write_ctxt
*wc
)
1595 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1596 loff_t newsize
= pos
+ len
;
1598 if (ocfs2_sparse_alloc(osb
))
1601 if (newsize
<= i_size_read(inode
))
1604 ret
= ocfs2_extend_no_holes(inode
, newsize
, newsize
- len
);
1611 int ocfs2_write_begin_nolock(struct address_space
*mapping
,
1612 loff_t pos
, unsigned len
, unsigned flags
,
1613 struct page
**pagep
, void **fsdata
,
1614 struct buffer_head
*di_bh
, struct page
*mmap_page
)
1616 int ret
, credits
= OCFS2_INODE_UPDATE_CREDITS
;
1617 unsigned int clusters_to_alloc
, extents_to_split
;
1618 struct ocfs2_write_ctxt
*wc
;
1619 struct inode
*inode
= mapping
->host
;
1620 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1621 struct ocfs2_dinode
*di
;
1622 struct ocfs2_alloc_context
*data_ac
= NULL
;
1623 struct ocfs2_alloc_context
*meta_ac
= NULL
;
1626 ret
= ocfs2_alloc_write_ctxt(&wc
, osb
, pos
, len
, di_bh
);
1632 if (ocfs2_supports_inline_data(osb
)) {
1633 ret
= ocfs2_try_to_write_inline_data(mapping
, inode
, pos
, len
,
1645 ret
= ocfs2_expand_nonsparse_inode(inode
, pos
, len
, wc
);
1651 ret
= ocfs2_populate_write_desc(inode
, wc
, &clusters_to_alloc
,
1658 di
= (struct ocfs2_dinode
*)wc
->w_di_bh
->b_data
;
1661 * We set w_target_from, w_target_to here so that
1662 * ocfs2_write_end() knows which range in the target page to
1663 * write out. An allocation requires that we write the entire
1666 if (clusters_to_alloc
|| extents_to_split
) {
1668 * XXX: We are stretching the limits of
1669 * ocfs2_lock_allocators(). It greatly over-estimates
1670 * the work to be done.
1672 ret
= ocfs2_lock_allocators(inode
, di
, clusters_to_alloc
,
1673 extents_to_split
, &data_ac
, &meta_ac
);
1679 credits
= ocfs2_calc_extend_credits(inode
->i_sb
, di
,
1684 ocfs2_set_target_boundaries(osb
, wc
, pos
, len
,
1685 clusters_to_alloc
+ extents_to_split
);
1687 handle
= ocfs2_start_trans(osb
, credits
);
1688 if (IS_ERR(handle
)) {
1689 ret
= PTR_ERR(handle
);
1694 wc
->w_handle
= handle
;
1697 * We don't want this to fail in ocfs2_write_end(), so do it
1700 ret
= ocfs2_journal_access(handle
, inode
, wc
->w_di_bh
,
1701 OCFS2_JOURNAL_ACCESS_WRITE
);
1708 * Fill our page array first. That way we've grabbed enough so
1709 * that we can zero and flush if we error after adding the
1712 ret
= ocfs2_grab_pages_for_write(mapping
, wc
, wc
->w_cpos
, pos
,
1713 clusters_to_alloc
+ extents_to_split
,
1720 ret
= ocfs2_write_cluster_by_desc(mapping
, data_ac
, meta_ac
, wc
, pos
,
1728 ocfs2_free_alloc_context(data_ac
);
1730 ocfs2_free_alloc_context(meta_ac
);
1733 *pagep
= wc
->w_target_page
;
1737 ocfs2_commit_trans(osb
, handle
);
1740 ocfs2_free_write_ctxt(wc
);
1743 ocfs2_free_alloc_context(data_ac
);
1745 ocfs2_free_alloc_context(meta_ac
);
1749 static int ocfs2_write_begin(struct file
*file
, struct address_space
*mapping
,
1750 loff_t pos
, unsigned len
, unsigned flags
,
1751 struct page
**pagep
, void **fsdata
)
1754 struct buffer_head
*di_bh
= NULL
;
1755 struct inode
*inode
= mapping
->host
;
1757 ret
= ocfs2_meta_lock(inode
, &di_bh
, 1);
1764 * Take alloc sem here to prevent concurrent lookups. That way
1765 * the mapping, zeroing and tree manipulation within
1766 * ocfs2_write() will be safe against ->readpage(). This
1767 * should also serve to lock out allocation from a shared
1770 down_write(&OCFS2_I(inode
)->ip_alloc_sem
);
1772 ret
= ocfs2_data_lock(inode
, 1);
1778 ret
= ocfs2_write_begin_nolock(mapping
, pos
, len
, flags
, pagep
,
1779 fsdata
, di_bh
, NULL
);
1790 ocfs2_data_unlock(inode
, 1);
1792 up_write(&OCFS2_I(inode
)->ip_alloc_sem
);
1795 ocfs2_meta_unlock(inode
, 1);
1800 static void ocfs2_write_end_inline(struct inode
*inode
, loff_t pos
,
1801 unsigned len
, unsigned *copied
,
1802 struct ocfs2_dinode
*di
,
1803 struct ocfs2_write_ctxt
*wc
)
1807 if (unlikely(*copied
< len
)) {
1808 if (!PageUptodate(wc
->w_target_page
)) {
1814 kaddr
= kmap_atomic(wc
->w_target_page
, KM_USER0
);
1815 memcpy(di
->id2
.i_data
.id_data
+ pos
, kaddr
+ pos
, *copied
);
1816 kunmap_atomic(kaddr
, KM_USER0
);
1818 mlog(0, "Data written to inode at offset %llu. "
1819 "id_count = %u, copied = %u, i_dyn_features = 0x%x\n",
1820 (unsigned long long)pos
, *copied
,
1821 le16_to_cpu(di
->id2
.i_data
.id_count
),
1822 le16_to_cpu(di
->i_dyn_features
));
1825 int ocfs2_write_end_nolock(struct address_space
*mapping
,
1826 loff_t pos
, unsigned len
, unsigned copied
,
1827 struct page
*page
, void *fsdata
)
1830 unsigned from
, to
, start
= pos
& (PAGE_CACHE_SIZE
- 1);
1831 struct inode
*inode
= mapping
->host
;
1832 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1833 struct ocfs2_write_ctxt
*wc
= fsdata
;
1834 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*)wc
->w_di_bh
->b_data
;
1835 handle_t
*handle
= wc
->w_handle
;
1836 struct page
*tmppage
;
1838 if (OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
) {
1839 ocfs2_write_end_inline(inode
, pos
, len
, &copied
, di
, wc
);
1840 goto out_write_size
;
1843 if (unlikely(copied
< len
)) {
1844 if (!PageUptodate(wc
->w_target_page
))
1847 ocfs2_zero_new_buffers(wc
->w_target_page
, start
+copied
,
1850 flush_dcache_page(wc
->w_target_page
);
1852 for(i
= 0; i
< wc
->w_num_pages
; i
++) {
1853 tmppage
= wc
->w_pages
[i
];
1855 if (tmppage
== wc
->w_target_page
) {
1856 from
= wc
->w_target_from
;
1857 to
= wc
->w_target_to
;
1859 BUG_ON(from
> PAGE_CACHE_SIZE
||
1860 to
> PAGE_CACHE_SIZE
||
1864 * Pages adjacent to the target (if any) imply
1865 * a hole-filling write in which case we want
1866 * to flush their entire range.
1869 to
= PAGE_CACHE_SIZE
;
1872 if (ocfs2_should_order_data(inode
))
1873 walk_page_buffers(wc
->w_handle
, page_buffers(tmppage
),
1875 ocfs2_journal_dirty_data
);
1877 block_commit_write(tmppage
, from
, to
);
1882 if (pos
> inode
->i_size
) {
1883 i_size_write(inode
, pos
);
1884 mark_inode_dirty(inode
);
1886 inode
->i_blocks
= ocfs2_inode_sector_count(inode
);
1887 di
->i_size
= cpu_to_le64((u64
)i_size_read(inode
));
1888 inode
->i_mtime
= inode
->i_ctime
= CURRENT_TIME
;
1889 di
->i_mtime
= di
->i_ctime
= cpu_to_le64(inode
->i_mtime
.tv_sec
);
1890 di
->i_mtime_nsec
= di
->i_ctime_nsec
= cpu_to_le32(inode
->i_mtime
.tv_nsec
);
1891 ocfs2_journal_dirty(handle
, wc
->w_di_bh
);
1893 ocfs2_commit_trans(osb
, handle
);
1895 ocfs2_run_deallocs(osb
, &wc
->w_dealloc
);
1897 ocfs2_free_write_ctxt(wc
);
1902 static int ocfs2_write_end(struct file
*file
, struct address_space
*mapping
,
1903 loff_t pos
, unsigned len
, unsigned copied
,
1904 struct page
*page
, void *fsdata
)
1907 struct inode
*inode
= mapping
->host
;
1909 ret
= ocfs2_write_end_nolock(mapping
, pos
, len
, copied
, page
, fsdata
);
1911 ocfs2_data_unlock(inode
, 1);
1912 up_write(&OCFS2_I(inode
)->ip_alloc_sem
);
1913 ocfs2_meta_unlock(inode
, 1);
1918 const struct address_space_operations ocfs2_aops
= {
1919 .readpage
= ocfs2_readpage
,
1920 .writepage
= ocfs2_writepage
,
1921 .write_begin
= ocfs2_write_begin
,
1922 .write_end
= ocfs2_write_end
,
1924 .sync_page
= block_sync_page
,
1925 .direct_IO
= ocfs2_direct_IO
,
1926 .invalidatepage
= ocfs2_invalidatepage
,
1927 .releasepage
= ocfs2_releasepage
,
1928 .migratepage
= buffer_migrate_page
,