1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
6 * File open, close, extend, truncate
8 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public
12 * License as published by the Free Software Foundation; either
13 * version 2 of the License, or (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
20 * You should have received a copy of the GNU General Public
21 * License along with this program; if not, write to the
22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23 * Boston, MA 021110-1307, USA.
26 #include <linux/capability.h>
28 #include <linux/types.h>
29 #include <linux/slab.h>
30 #include <linux/highmem.h>
31 #include <linux/pagemap.h>
32 #include <linux/uio.h>
33 #include <linux/sched.h>
34 #include <linux/splice.h>
35 #include <linux/mount.h>
36 #include <linux/writeback.h>
37 #include <linux/falloc.h>
39 #define MLOG_MASK_PREFIX ML_INODE
40 #include <cluster/masklog.h>
48 #include "extent_map.h"
58 #include "buffer_head_io.h"
60 static int ocfs2_sync_inode(struct inode
*inode
)
62 filemap_fdatawrite(inode
->i_mapping
);
63 return sync_mapping_buffers(inode
->i_mapping
);
66 static int ocfs2_file_open(struct inode
*inode
, struct file
*file
)
69 int mode
= file
->f_flags
;
70 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
72 mlog_entry("(0x%p, 0x%p, '%.*s')\n", inode
, file
,
73 file
->f_path
.dentry
->d_name
.len
, file
->f_path
.dentry
->d_name
.name
);
75 spin_lock(&oi
->ip_lock
);
77 /* Check that the inode hasn't been wiped from disk by another
78 * node. If it hasn't then we're safe as long as we hold the
79 * spin lock until our increment of open count. */
80 if (OCFS2_I(inode
)->ip_flags
& OCFS2_INODE_DELETED
) {
81 spin_unlock(&oi
->ip_lock
);
88 oi
->ip_flags
|= OCFS2_INODE_OPEN_DIRECT
;
91 spin_unlock(&oi
->ip_lock
);
98 static int ocfs2_file_release(struct inode
*inode
, struct file
*file
)
100 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
102 mlog_entry("(0x%p, 0x%p, '%.*s')\n", inode
, file
,
103 file
->f_path
.dentry
->d_name
.len
,
104 file
->f_path
.dentry
->d_name
.name
);
106 spin_lock(&oi
->ip_lock
);
107 if (!--oi
->ip_open_count
)
108 oi
->ip_flags
&= ~OCFS2_INODE_OPEN_DIRECT
;
109 spin_unlock(&oi
->ip_lock
);
116 static int ocfs2_sync_file(struct file
*file
,
117 struct dentry
*dentry
,
122 struct inode
*inode
= dentry
->d_inode
;
123 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
125 mlog_entry("(0x%p, 0x%p, %d, '%.*s')\n", file
, dentry
, datasync
,
126 dentry
->d_name
.len
, dentry
->d_name
.name
);
128 err
= ocfs2_sync_inode(dentry
->d_inode
);
132 journal
= osb
->journal
->j_journal
;
133 err
= journal_force_commit(journal
);
138 return (err
< 0) ? -EIO
: 0;
141 int ocfs2_should_update_atime(struct inode
*inode
,
142 struct vfsmount
*vfsmnt
)
145 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
147 if (ocfs2_is_hard_readonly(osb
) || ocfs2_is_soft_readonly(osb
))
150 if ((inode
->i_flags
& S_NOATIME
) ||
151 ((inode
->i_sb
->s_flags
& MS_NODIRATIME
) && S_ISDIR(inode
->i_mode
)))
155 * We can be called with no vfsmnt structure - NFSD will
158 * Note that our action here is different than touch_atime() -
159 * if we can't tell whether this is a noatime mount, then we
160 * don't know whether to trust the value of s_atime_quantum.
165 if ((vfsmnt
->mnt_flags
& MNT_NOATIME
) ||
166 ((vfsmnt
->mnt_flags
& MNT_NODIRATIME
) && S_ISDIR(inode
->i_mode
)))
169 if (vfsmnt
->mnt_flags
& MNT_RELATIME
) {
170 if ((timespec_compare(&inode
->i_atime
, &inode
->i_mtime
) <= 0) ||
171 (timespec_compare(&inode
->i_atime
, &inode
->i_ctime
) <= 0))
178 if ((now
.tv_sec
- inode
->i_atime
.tv_sec
<= osb
->s_atime_quantum
))
184 int ocfs2_update_inode_atime(struct inode
*inode
,
185 struct buffer_head
*bh
)
188 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
190 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*) bh
->b_data
;
194 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
);
195 if (handle
== NULL
) {
201 ret
= ocfs2_journal_access(handle
, inode
, bh
,
202 OCFS2_JOURNAL_ACCESS_WRITE
);
209 * Don't use ocfs2_mark_inode_dirty() here as we don't always
210 * have i_mutex to guard against concurrent changes to other
213 inode
->i_atime
= CURRENT_TIME
;
214 di
->i_atime
= cpu_to_le64(inode
->i_atime
.tv_sec
);
215 di
->i_atime_nsec
= cpu_to_le32(inode
->i_atime
.tv_nsec
);
217 ret
= ocfs2_journal_dirty(handle
, bh
);
222 ocfs2_commit_trans(OCFS2_SB(inode
->i_sb
), handle
);
228 static int ocfs2_set_inode_size(handle_t
*handle
,
230 struct buffer_head
*fe_bh
,
236 i_size_write(inode
, new_i_size
);
237 inode
->i_blocks
= ocfs2_inode_sector_count(inode
);
238 inode
->i_ctime
= inode
->i_mtime
= CURRENT_TIME
;
240 status
= ocfs2_mark_inode_dirty(handle
, inode
, fe_bh
);
251 static int ocfs2_simple_size_update(struct inode
*inode
,
252 struct buffer_head
*di_bh
,
256 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
257 handle_t
*handle
= NULL
;
259 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
);
260 if (handle
== NULL
) {
266 ret
= ocfs2_set_inode_size(handle
, inode
, di_bh
,
271 ocfs2_commit_trans(osb
, handle
);
276 static int ocfs2_orphan_for_truncate(struct ocfs2_super
*osb
,
278 struct buffer_head
*fe_bh
,
283 struct ocfs2_dinode
*di
;
288 /* TODO: This needs to actually orphan the inode in this
291 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
);
292 if (IS_ERR(handle
)) {
293 status
= PTR_ERR(handle
);
298 status
= ocfs2_journal_access(handle
, inode
, fe_bh
,
299 OCFS2_JOURNAL_ACCESS_WRITE
);
306 * Do this before setting i_size.
308 cluster_bytes
= ocfs2_align_bytes_to_clusters(inode
->i_sb
, new_i_size
);
309 status
= ocfs2_zero_range_for_truncate(inode
, handle
, new_i_size
,
316 i_size_write(inode
, new_i_size
);
317 inode
->i_ctime
= inode
->i_mtime
= CURRENT_TIME
;
319 di
= (struct ocfs2_dinode
*) fe_bh
->b_data
;
320 di
->i_size
= cpu_to_le64(new_i_size
);
321 di
->i_ctime
= di
->i_mtime
= cpu_to_le64(inode
->i_ctime
.tv_sec
);
322 di
->i_ctime_nsec
= di
->i_mtime_nsec
= cpu_to_le32(inode
->i_ctime
.tv_nsec
);
324 status
= ocfs2_journal_dirty(handle
, fe_bh
);
329 ocfs2_commit_trans(osb
, handle
);
336 static int ocfs2_truncate_file(struct inode
*inode
,
337 struct buffer_head
*di_bh
,
341 struct ocfs2_dinode
*fe
= NULL
;
342 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
343 struct ocfs2_truncate_context
*tc
= NULL
;
345 mlog_entry("(inode = %llu, new_i_size = %llu\n",
346 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
347 (unsigned long long)new_i_size
);
349 fe
= (struct ocfs2_dinode
*) di_bh
->b_data
;
350 if (!OCFS2_IS_VALID_DINODE(fe
)) {
351 OCFS2_RO_ON_INVALID_DINODE(inode
->i_sb
, fe
);
356 mlog_bug_on_msg(le64_to_cpu(fe
->i_size
) != i_size_read(inode
),
357 "Inode %llu, inode i_size = %lld != di "
358 "i_size = %llu, i_flags = 0x%x\n",
359 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
361 (unsigned long long)le64_to_cpu(fe
->i_size
),
362 le32_to_cpu(fe
->i_flags
));
364 if (new_i_size
> le64_to_cpu(fe
->i_size
)) {
365 mlog(0, "asked to truncate file with size (%llu) to size (%llu)!\n",
366 (unsigned long long)le64_to_cpu(fe
->i_size
),
367 (unsigned long long)new_i_size
);
373 mlog(0, "inode %llu, i_size = %llu, new_i_size = %llu\n",
374 (unsigned long long)le64_to_cpu(fe
->i_blkno
),
375 (unsigned long long)le64_to_cpu(fe
->i_size
),
376 (unsigned long long)new_i_size
);
378 /* lets handle the simple truncate cases before doing any more
379 * cluster locking. */
380 if (new_i_size
== le64_to_cpu(fe
->i_size
))
383 down_write(&OCFS2_I(inode
)->ip_alloc_sem
);
385 /* This forces other nodes to sync and drop their pages. Do
386 * this even if we have a truncate without allocation change -
387 * ocfs2 cluster sizes can be much greater than page size, so
388 * we have to truncate them anyway. */
389 status
= ocfs2_data_lock(inode
, 1);
391 up_write(&OCFS2_I(inode
)->ip_alloc_sem
);
397 unmap_mapping_range(inode
->i_mapping
, new_i_size
+ PAGE_SIZE
- 1, 0, 1);
398 truncate_inode_pages(inode
->i_mapping
, new_i_size
);
400 if (OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
) {
401 status
= ocfs2_truncate_inline(inode
, di_bh
, new_i_size
,
402 i_size_read(inode
), 1);
406 goto bail_unlock_data
;
409 /* alright, we're going to need to do a full blown alloc size
410 * change. Orphan the inode so that recovery can complete the
411 * truncate if necessary. This does the task of marking
413 status
= ocfs2_orphan_for_truncate(osb
, inode
, di_bh
, new_i_size
);
416 goto bail_unlock_data
;
419 status
= ocfs2_prepare_truncate(osb
, inode
, di_bh
, &tc
);
422 goto bail_unlock_data
;
425 status
= ocfs2_commit_truncate(osb
, inode
, di_bh
, tc
);
428 goto bail_unlock_data
;
431 /* TODO: orphan dir cleanup here. */
433 ocfs2_data_unlock(inode
, 1);
435 up_write(&OCFS2_I(inode
)->ip_alloc_sem
);
444 * extend allocation only here.
445 * we'll update all the disk stuff, and oip->alloc_size
447 * expect stuff to be locked, a transaction started and enough data /
448 * metadata reservations in the contexts.
450 * Will return -EAGAIN, and a reason if a restart is needed.
451 * If passed in, *reason will always be set, even in error.
453 int ocfs2_do_extend_allocation(struct ocfs2_super
*osb
,
458 struct buffer_head
*fe_bh
,
460 struct ocfs2_alloc_context
*data_ac
,
461 struct ocfs2_alloc_context
*meta_ac
,
462 enum ocfs2_alloc_restarted
*reason_ret
)
466 struct ocfs2_dinode
*fe
= (struct ocfs2_dinode
*) fe_bh
->b_data
;
467 enum ocfs2_alloc_restarted reason
= RESTART_NONE
;
468 u32 bit_off
, num_bits
;
472 BUG_ON(!clusters_to_add
);
475 flags
= OCFS2_EXT_UNWRITTEN
;
477 free_extents
= ocfs2_num_free_extents(osb
, inode
, fe
);
478 if (free_extents
< 0) {
479 status
= free_extents
;
484 /* there are two cases which could cause us to EAGAIN in the
485 * we-need-more-metadata case:
486 * 1) we haven't reserved *any*
487 * 2) we are so fragmented, we've needed to add metadata too
489 if (!free_extents
&& !meta_ac
) {
490 mlog(0, "we haven't reserved any metadata!\n");
492 reason
= RESTART_META
;
494 } else if ((!free_extents
)
495 && (ocfs2_alloc_context_bits_left(meta_ac
)
496 < ocfs2_extend_meta_needed(fe
))) {
497 mlog(0, "filesystem is really fragmented...\n");
499 reason
= RESTART_META
;
503 status
= __ocfs2_claim_clusters(osb
, handle
, data_ac
, 1,
504 clusters_to_add
, &bit_off
, &num_bits
);
506 if (status
!= -ENOSPC
)
511 BUG_ON(num_bits
> clusters_to_add
);
513 /* reserve our write early -- insert_extent may update the inode */
514 status
= ocfs2_journal_access(handle
, inode
, fe_bh
,
515 OCFS2_JOURNAL_ACCESS_WRITE
);
521 block
= ocfs2_clusters_to_blocks(osb
->sb
, bit_off
);
522 mlog(0, "Allocating %u clusters at block %u for inode %llu\n",
523 num_bits
, bit_off
, (unsigned long long)OCFS2_I(inode
)->ip_blkno
);
524 status
= ocfs2_insert_extent(osb
, handle
, inode
, fe_bh
,
525 *logical_offset
, block
, num_bits
,
532 status
= ocfs2_journal_dirty(handle
, fe_bh
);
538 clusters_to_add
-= num_bits
;
539 *logical_offset
+= num_bits
;
541 if (clusters_to_add
) {
542 mlog(0, "need to alloc once more, clusters = %u, wanted = "
543 "%u\n", fe
->i_clusters
, clusters_to_add
);
545 reason
= RESTART_TRANS
;
551 *reason_ret
= reason
;
556 * For a given allocation, determine which allocators will need to be
557 * accessed, and lock them, reserving the appropriate number of bits.
559 * Sparse file systems call this from ocfs2_write_begin_nolock()
560 * and ocfs2_allocate_unwritten_extents().
562 * File systems which don't support holes call this from
563 * ocfs2_extend_allocation().
565 int ocfs2_lock_allocators(struct inode
*inode
, struct ocfs2_dinode
*di
,
566 u32 clusters_to_add
, u32 extents_to_split
,
567 struct ocfs2_alloc_context
**data_ac
,
568 struct ocfs2_alloc_context
**meta_ac
)
570 int ret
= 0, num_free_extents
;
571 unsigned int max_recs_needed
= clusters_to_add
+ 2 * extents_to_split
;
572 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
578 BUG_ON(clusters_to_add
!= 0 && data_ac
== NULL
);
580 mlog(0, "extend inode %llu, i_size = %lld, di->i_clusters = %u, "
581 "clusters_to_add = %u, extents_to_split = %u\n",
582 (unsigned long long)OCFS2_I(inode
)->ip_blkno
, i_size_read(inode
),
583 le32_to_cpu(di
->i_clusters
), clusters_to_add
, extents_to_split
);
585 num_free_extents
= ocfs2_num_free_extents(osb
, inode
, di
);
586 if (num_free_extents
< 0) {
587 ret
= num_free_extents
;
593 * Sparse allocation file systems need to be more conservative
594 * with reserving room for expansion - the actual allocation
595 * happens while we've got a journal handle open so re-taking
596 * a cluster lock (because we ran out of room for another
597 * extent) will violate ordering rules.
599 * Most of the time we'll only be seeing this 1 cluster at a time
602 * Always lock for any unwritten extents - we might want to
603 * add blocks during a split.
605 if (!num_free_extents
||
606 (ocfs2_sparse_alloc(osb
) && num_free_extents
< max_recs_needed
)) {
607 ret
= ocfs2_reserve_new_metadata(osb
, di
, meta_ac
);
615 if (clusters_to_add
== 0)
618 ret
= ocfs2_reserve_clusters(osb
, clusters_to_add
, data_ac
);
628 ocfs2_free_alloc_context(*meta_ac
);
633 * We cannot have an error and a non null *data_ac.
640 static int __ocfs2_extend_allocation(struct inode
*inode
, u32 logical_start
,
641 u32 clusters_to_add
, int mark_unwritten
)
644 int restart_func
= 0;
647 struct buffer_head
*bh
= NULL
;
648 struct ocfs2_dinode
*fe
= NULL
;
649 handle_t
*handle
= NULL
;
650 struct ocfs2_alloc_context
*data_ac
= NULL
;
651 struct ocfs2_alloc_context
*meta_ac
= NULL
;
652 enum ocfs2_alloc_restarted why
;
653 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
655 mlog_entry("(clusters_to_add = %u)\n", clusters_to_add
);
658 * This function only exists for file systems which don't
661 BUG_ON(mark_unwritten
&& !ocfs2_sparse_alloc(osb
));
663 status
= ocfs2_read_block(osb
, OCFS2_I(inode
)->ip_blkno
, &bh
,
664 OCFS2_BH_CACHED
, inode
);
670 fe
= (struct ocfs2_dinode
*) bh
->b_data
;
671 if (!OCFS2_IS_VALID_DINODE(fe
)) {
672 OCFS2_RO_ON_INVALID_DINODE(inode
->i_sb
, fe
);
678 BUG_ON(le32_to_cpu(fe
->i_clusters
) != OCFS2_I(inode
)->ip_clusters
);
680 status
= ocfs2_lock_allocators(inode
, fe
, clusters_to_add
, 0, &data_ac
,
687 credits
= ocfs2_calc_extend_credits(osb
->sb
, fe
, clusters_to_add
);
688 handle
= ocfs2_start_trans(osb
, credits
);
689 if (IS_ERR(handle
)) {
690 status
= PTR_ERR(handle
);
696 restarted_transaction
:
697 /* reserve a write to the file entry early on - that we if we
698 * run out of credits in the allocation path, we can still
700 status
= ocfs2_journal_access(handle
, inode
, bh
,
701 OCFS2_JOURNAL_ACCESS_WRITE
);
707 prev_clusters
= OCFS2_I(inode
)->ip_clusters
;
709 status
= ocfs2_do_extend_allocation(osb
,
719 if ((status
< 0) && (status
!= -EAGAIN
)) {
720 if (status
!= -ENOSPC
)
725 status
= ocfs2_journal_dirty(handle
, bh
);
731 spin_lock(&OCFS2_I(inode
)->ip_lock
);
732 clusters_to_add
-= (OCFS2_I(inode
)->ip_clusters
- prev_clusters
);
733 spin_unlock(&OCFS2_I(inode
)->ip_lock
);
735 if (why
!= RESTART_NONE
&& clusters_to_add
) {
736 if (why
== RESTART_META
) {
737 mlog(0, "restarting function.\n");
740 BUG_ON(why
!= RESTART_TRANS
);
742 mlog(0, "restarting transaction.\n");
743 /* TODO: This can be more intelligent. */
744 credits
= ocfs2_calc_extend_credits(osb
->sb
,
747 status
= ocfs2_extend_trans(handle
, credits
);
749 /* handle still has to be committed at
755 goto restarted_transaction
;
759 mlog(0, "fe: i_clusters = %u, i_size=%llu\n",
760 le32_to_cpu(fe
->i_clusters
),
761 (unsigned long long)le64_to_cpu(fe
->i_size
));
762 mlog(0, "inode: ip_clusters=%u, i_size=%lld\n",
763 OCFS2_I(inode
)->ip_clusters
, i_size_read(inode
));
767 ocfs2_commit_trans(osb
, handle
);
771 ocfs2_free_alloc_context(data_ac
);
775 ocfs2_free_alloc_context(meta_ac
);
778 if ((!status
) && restart_func
) {
791 /* Some parts of this taken from generic_cont_expand, which turned out
792 * to be too fragile to do exactly what we need without us having to
793 * worry about recursive locking in ->prepare_write() and
794 * ->commit_write(). */
795 static int ocfs2_write_zero_page(struct inode
*inode
,
798 struct address_space
*mapping
= inode
->i_mapping
;
802 handle_t
*handle
= NULL
;
805 offset
= (size
& (PAGE_CACHE_SIZE
-1)); /* Within page */
806 /* ugh. in prepare/commit_write, if from==to==start of block, we
807 ** skip the prepare. make sure we never send an offset for the start
810 if ((offset
& (inode
->i_sb
->s_blocksize
- 1)) == 0) {
813 index
= size
>> PAGE_CACHE_SHIFT
;
815 page
= grab_cache_page(mapping
, index
);
822 ret
= ocfs2_prepare_write_nolock(inode
, page
, offset
, offset
);
828 if (ocfs2_should_order_data(inode
)) {
829 handle
= ocfs2_start_walk_page_trans(inode
, page
, offset
,
831 if (IS_ERR(handle
)) {
832 ret
= PTR_ERR(handle
);
838 /* must not update i_size! */
839 ret
= block_commit_write(page
, offset
, offset
);
846 ocfs2_commit_trans(OCFS2_SB(inode
->i_sb
), handle
);
849 page_cache_release(page
);
854 static int ocfs2_zero_extend(struct inode
*inode
,
859 struct super_block
*sb
= inode
->i_sb
;
861 start_off
= ocfs2_align_bytes_to_blocks(sb
, i_size_read(inode
));
862 while (start_off
< zero_to_size
) {
863 ret
= ocfs2_write_zero_page(inode
, start_off
);
869 start_off
+= sb
->s_blocksize
;
872 * Very large extends have the potential to lock up
873 * the cpu for extended periods of time.
882 int ocfs2_extend_no_holes(struct inode
*inode
, u64 new_i_size
, u64 zero_to
)
886 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
888 clusters_to_add
= ocfs2_clusters_for_bytes(inode
->i_sb
, new_i_size
);
889 if (clusters_to_add
< oi
->ip_clusters
)
892 clusters_to_add
-= oi
->ip_clusters
;
894 if (clusters_to_add
) {
895 ret
= __ocfs2_extend_allocation(inode
, oi
->ip_clusters
,
904 * Call this even if we don't add any clusters to the tree. We
905 * still need to zero the area between the old i_size and the
908 ret
= ocfs2_zero_extend(inode
, zero_to
);
916 static int ocfs2_extend_file(struct inode
*inode
,
917 struct buffer_head
*di_bh
,
920 int ret
= 0, data_locked
= 0;
921 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
925 /* setattr sometimes calls us like this. */
929 if (i_size_read(inode
) == new_i_size
)
931 BUG_ON(new_i_size
< i_size_read(inode
));
934 * Fall through for converting inline data, even if the fs
935 * supports sparse files.
937 * The check for inline data here is legal - nobody can add
938 * the feature since we have i_mutex. We must check it again
939 * after acquiring ip_alloc_sem though, as paths like mmap
940 * might have raced us to converting the inode to extents.
942 if (!(oi
->ip_dyn_features
& OCFS2_INLINE_DATA_FL
)
943 && ocfs2_sparse_alloc(OCFS2_SB(inode
->i_sb
)))
944 goto out_update_size
;
947 * protect the pages that ocfs2_zero_extend is going to be
948 * pulling into the page cache.. we do this before the
949 * metadata extend so that we don't get into the situation
950 * where we've extended the metadata but can't get the data
953 ret
= ocfs2_data_lock(inode
, 1);
961 * The alloc sem blocks people in read/write from reading our
962 * allocation until we're done changing it. We depend on
963 * i_mutex to block other extend/truncate calls while we're
966 down_write(&oi
->ip_alloc_sem
);
968 if (oi
->ip_dyn_features
& OCFS2_INLINE_DATA_FL
) {
970 * We can optimize small extends by keeping the inodes
973 if (ocfs2_size_fits_inline_data(di_bh
, new_i_size
)) {
974 up_write(&oi
->ip_alloc_sem
);
975 goto out_update_size
;
978 ret
= ocfs2_convert_inline_data_to_extents(inode
, di_bh
);
980 up_write(&oi
->ip_alloc_sem
);
987 if (!ocfs2_sparse_alloc(OCFS2_SB(inode
->i_sb
)))
988 ret
= ocfs2_extend_no_holes(inode
, new_i_size
, new_i_size
);
990 up_write(&oi
->ip_alloc_sem
);
998 ret
= ocfs2_simple_size_update(inode
, di_bh
, new_i_size
);
1004 ocfs2_data_unlock(inode
, 1);
1010 int ocfs2_setattr(struct dentry
*dentry
, struct iattr
*attr
)
1012 int status
= 0, size_change
;
1013 struct inode
*inode
= dentry
->d_inode
;
1014 struct super_block
*sb
= inode
->i_sb
;
1015 struct ocfs2_super
*osb
= OCFS2_SB(sb
);
1016 struct buffer_head
*bh
= NULL
;
1017 handle_t
*handle
= NULL
;
1019 mlog_entry("(0x%p, '%.*s')\n", dentry
,
1020 dentry
->d_name
.len
, dentry
->d_name
.name
);
1022 if (attr
->ia_valid
& ATTR_MODE
)
1023 mlog(0, "mode change: %d\n", attr
->ia_mode
);
1024 if (attr
->ia_valid
& ATTR_UID
)
1025 mlog(0, "uid change: %d\n", attr
->ia_uid
);
1026 if (attr
->ia_valid
& ATTR_GID
)
1027 mlog(0, "gid change: %d\n", attr
->ia_gid
);
1028 if (attr
->ia_valid
& ATTR_SIZE
)
1029 mlog(0, "size change...\n");
1030 if (attr
->ia_valid
& (ATTR_ATIME
| ATTR_MTIME
| ATTR_CTIME
))
1031 mlog(0, "time change...\n");
1033 #define OCFS2_VALID_ATTRS (ATTR_ATIME | ATTR_MTIME | ATTR_CTIME | ATTR_SIZE \
1034 | ATTR_GID | ATTR_UID | ATTR_MODE)
1035 if (!(attr
->ia_valid
& OCFS2_VALID_ATTRS
)) {
1036 mlog(0, "can't handle attrs: 0x%x\n", attr
->ia_valid
);
1040 status
= inode_change_ok(inode
, attr
);
1044 size_change
= S_ISREG(inode
->i_mode
) && attr
->ia_valid
& ATTR_SIZE
;
1046 status
= ocfs2_rw_lock(inode
, 1);
1053 status
= ocfs2_meta_lock(inode
, &bh
, 1);
1055 if (status
!= -ENOENT
)
1057 goto bail_unlock_rw
;
1060 if (size_change
&& attr
->ia_size
!= i_size_read(inode
)) {
1061 if (attr
->ia_size
> sb
->s_maxbytes
) {
1066 if (i_size_read(inode
) > attr
->ia_size
)
1067 status
= ocfs2_truncate_file(inode
, bh
, attr
->ia_size
);
1069 status
= ocfs2_extend_file(inode
, bh
, attr
->ia_size
);
1071 if (status
!= -ENOSPC
)
1078 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
);
1079 if (IS_ERR(handle
)) {
1080 status
= PTR_ERR(handle
);
1086 * This will intentionally not wind up calling vmtruncate(),
1087 * since all the work for a size change has been done above.
1088 * Otherwise, we could get into problems with truncate as
1089 * ip_alloc_sem is used there to protect against i_size
1092 status
= inode_setattr(inode
, attr
);
1098 status
= ocfs2_mark_inode_dirty(handle
, inode
, bh
);
1103 ocfs2_commit_trans(osb
, handle
);
1105 ocfs2_meta_unlock(inode
, 1);
1108 ocfs2_rw_unlock(inode
, 1);
1117 int ocfs2_getattr(struct vfsmount
*mnt
,
1118 struct dentry
*dentry
,
1121 struct inode
*inode
= dentry
->d_inode
;
1122 struct super_block
*sb
= dentry
->d_inode
->i_sb
;
1123 struct ocfs2_super
*osb
= sb
->s_fs_info
;
1128 err
= ocfs2_inode_revalidate(dentry
);
1135 generic_fillattr(inode
, stat
);
1137 /* We set the blksize from the cluster size for performance */
1138 stat
->blksize
= osb
->s_clustersize
;
1146 int ocfs2_permission(struct inode
*inode
, int mask
, struct nameidata
*nd
)
1152 ret
= ocfs2_meta_lock(inode
, NULL
, 0);
1159 ret
= generic_permission(inode
, mask
, NULL
);
1161 ocfs2_meta_unlock(inode
, 0);
1167 static int __ocfs2_write_remove_suid(struct inode
*inode
,
1168 struct buffer_head
*bh
)
1172 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1173 struct ocfs2_dinode
*di
;
1175 mlog_entry("(Inode %llu, mode 0%o)\n",
1176 (unsigned long long)OCFS2_I(inode
)->ip_blkno
, inode
->i_mode
);
1178 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
);
1179 if (handle
== NULL
) {
1185 ret
= ocfs2_journal_access(handle
, inode
, bh
,
1186 OCFS2_JOURNAL_ACCESS_WRITE
);
1192 inode
->i_mode
&= ~S_ISUID
;
1193 if ((inode
->i_mode
& S_ISGID
) && (inode
->i_mode
& S_IXGRP
))
1194 inode
->i_mode
&= ~S_ISGID
;
1196 di
= (struct ocfs2_dinode
*) bh
->b_data
;
1197 di
->i_mode
= cpu_to_le16(inode
->i_mode
);
1199 ret
= ocfs2_journal_dirty(handle
, bh
);
1204 ocfs2_commit_trans(osb
, handle
);
1211 * Will look for holes and unwritten extents in the range starting at
1212 * pos for count bytes (inclusive).
1214 static int ocfs2_check_range_for_holes(struct inode
*inode
, loff_t pos
,
1218 unsigned int extent_flags
;
1219 u32 cpos
, clusters
, extent_len
, phys_cpos
;
1220 struct super_block
*sb
= inode
->i_sb
;
1222 cpos
= pos
>> OCFS2_SB(sb
)->s_clustersize_bits
;
1223 clusters
= ocfs2_clusters_for_bytes(sb
, pos
+ count
) - cpos
;
1226 ret
= ocfs2_get_clusters(inode
, cpos
, &phys_cpos
, &extent_len
,
1233 if (phys_cpos
== 0 || (extent_flags
& OCFS2_EXT_UNWRITTEN
)) {
1238 if (extent_len
> clusters
)
1239 extent_len
= clusters
;
1241 clusters
-= extent_len
;
1248 static int ocfs2_write_remove_suid(struct inode
*inode
)
1251 struct buffer_head
*bh
= NULL
;
1252 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
1254 ret
= ocfs2_read_block(OCFS2_SB(inode
->i_sb
),
1255 oi
->ip_blkno
, &bh
, OCFS2_BH_CACHED
, inode
);
1261 ret
= __ocfs2_write_remove_suid(inode
, bh
);
1268 * Allocate enough extents to cover the region starting at byte offset
1269 * start for len bytes. Existing extents are skipped, any extents
1270 * added are marked as "unwritten".
1272 static int ocfs2_allocate_unwritten_extents(struct inode
*inode
,
1276 u32 cpos
, phys_cpos
, clusters
, alloc_size
;
1277 u64 end
= start
+ len
;
1278 struct buffer_head
*di_bh
= NULL
;
1280 if (OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
) {
1281 ret
= ocfs2_read_block(OCFS2_SB(inode
->i_sb
),
1282 OCFS2_I(inode
)->ip_blkno
, &di_bh
,
1283 OCFS2_BH_CACHED
, inode
);
1290 * Nothing to do if the requested reservation range
1291 * fits within the inode.
1293 if (ocfs2_size_fits_inline_data(di_bh
, end
))
1296 ret
= ocfs2_convert_inline_data_to_extents(inode
, di_bh
);
1304 * We consider both start and len to be inclusive.
1306 cpos
= start
>> OCFS2_SB(inode
->i_sb
)->s_clustersize_bits
;
1307 clusters
= ocfs2_clusters_for_bytes(inode
->i_sb
, start
+ len
);
1311 ret
= ocfs2_get_clusters(inode
, cpos
, &phys_cpos
,
1319 * Hole or existing extent len can be arbitrary, so
1320 * cap it to our own allocation request.
1322 if (alloc_size
> clusters
)
1323 alloc_size
= clusters
;
1327 * We already have an allocation at this
1328 * region so we can safely skip it.
1333 ret
= __ocfs2_extend_allocation(inode
, cpos
, alloc_size
, 1);
1342 clusters
-= alloc_size
;
1352 static int __ocfs2_remove_inode_range(struct inode
*inode
,
1353 struct buffer_head
*di_bh
,
1354 u32 cpos
, u32 phys_cpos
, u32 len
,
1355 struct ocfs2_cached_dealloc_ctxt
*dealloc
)
1358 u64 phys_blkno
= ocfs2_clusters_to_blocks(inode
->i_sb
, phys_cpos
);
1359 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1360 struct inode
*tl_inode
= osb
->osb_tl_inode
;
1362 struct ocfs2_alloc_context
*meta_ac
= NULL
;
1363 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*)di_bh
->b_data
;
1365 ret
= ocfs2_lock_allocators(inode
, di
, 0, 1, NULL
, &meta_ac
);
1371 mutex_lock(&tl_inode
->i_mutex
);
1373 if (ocfs2_truncate_log_needs_flush(osb
)) {
1374 ret
= __ocfs2_flush_truncate_log(osb
);
1381 handle
= ocfs2_start_trans(osb
, OCFS2_REMOVE_EXTENT_CREDITS
);
1382 if (handle
== NULL
) {
1388 ret
= ocfs2_journal_access(handle
, inode
, di_bh
,
1389 OCFS2_JOURNAL_ACCESS_WRITE
);
1395 ret
= ocfs2_remove_extent(inode
, di_bh
, cpos
, len
, handle
, meta_ac
,
1402 OCFS2_I(inode
)->ip_clusters
-= len
;
1403 di
->i_clusters
= cpu_to_le32(OCFS2_I(inode
)->ip_clusters
);
1405 ret
= ocfs2_journal_dirty(handle
, di_bh
);
1411 ret
= ocfs2_truncate_log_append(osb
, handle
, phys_blkno
, len
);
1416 ocfs2_commit_trans(osb
, handle
);
1418 mutex_unlock(&tl_inode
->i_mutex
);
1421 ocfs2_free_alloc_context(meta_ac
);
1427 * Truncate a byte range, avoiding pages within partial clusters. This
1428 * preserves those pages for the zeroing code to write to.
1430 static void ocfs2_truncate_cluster_pages(struct inode
*inode
, u64 byte_start
,
1433 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1435 struct address_space
*mapping
= inode
->i_mapping
;
1437 start
= (loff_t
)ocfs2_align_bytes_to_clusters(inode
->i_sb
, byte_start
);
1438 end
= byte_start
+ byte_len
;
1439 end
= end
& ~(osb
->s_clustersize
- 1);
1442 unmap_mapping_range(mapping
, start
, end
- start
, 0);
1443 truncate_inode_pages_range(mapping
, start
, end
- 1);
1447 static int ocfs2_zero_partial_clusters(struct inode
*inode
,
1451 u64 tmpend
, end
= start
+ len
;
1452 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1453 unsigned int csize
= osb
->s_clustersize
;
1457 * The "start" and "end" values are NOT necessarily part of
1458 * the range whose allocation is being deleted. Rather, this
1459 * is what the user passed in with the request. We must zero
1460 * partial clusters here. There's no need to worry about
1461 * physical allocation - the zeroing code knows to skip holes.
1463 mlog(0, "byte start: %llu, end: %llu\n",
1464 (unsigned long long)start
, (unsigned long long)end
);
1467 * If both edges are on a cluster boundary then there's no
1468 * zeroing required as the region is part of the allocation to
1471 if ((start
& (csize
- 1)) == 0 && (end
& (csize
- 1)) == 0)
1474 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
);
1475 if (handle
== NULL
) {
1482 * We want to get the byte offset of the end of the 1st cluster.
1484 tmpend
= (u64
)osb
->s_clustersize
+ (start
& ~(osb
->s_clustersize
- 1));
1488 mlog(0, "1st range: start: %llu, tmpend: %llu\n",
1489 (unsigned long long)start
, (unsigned long long)tmpend
);
1491 ret
= ocfs2_zero_range_for_truncate(inode
, handle
, start
, tmpend
);
1497 * This may make start and end equal, but the zeroing
1498 * code will skip any work in that case so there's no
1499 * need to catch it up here.
1501 start
= end
& ~(osb
->s_clustersize
- 1);
1503 mlog(0, "2nd range: start: %llu, end: %llu\n",
1504 (unsigned long long)start
, (unsigned long long)end
);
1506 ret
= ocfs2_zero_range_for_truncate(inode
, handle
, start
, end
);
1511 ocfs2_commit_trans(osb
, handle
);
1516 static int ocfs2_remove_inode_range(struct inode
*inode
,
1517 struct buffer_head
*di_bh
, u64 byte_start
,
1521 u32 trunc_start
, trunc_len
, cpos
, phys_cpos
, alloc_size
;
1522 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1523 struct ocfs2_cached_dealloc_ctxt dealloc
;
1524 struct address_space
*mapping
= inode
->i_mapping
;
1526 ocfs2_init_dealloc_ctxt(&dealloc
);
1531 if (OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
) {
1532 ret
= ocfs2_truncate_inline(inode
, di_bh
, byte_start
,
1533 byte_start
+ byte_len
, 0);
1539 * There's no need to get fancy with the page cache
1540 * truncate of an inline-data inode. We're talking
1541 * about less than a page here, which will be cached
1542 * in the dinode buffer anyway.
1544 unmap_mapping_range(mapping
, 0, 0, 0);
1545 truncate_inode_pages(mapping
, 0);
1549 trunc_start
= ocfs2_clusters_for_bytes(osb
->sb
, byte_start
);
1550 trunc_len
= (byte_start
+ byte_len
) >> osb
->s_clustersize_bits
;
1551 if (trunc_len
>= trunc_start
)
1552 trunc_len
-= trunc_start
;
1556 mlog(0, "Inode: %llu, start: %llu, len: %llu, cstart: %u, clen: %u\n",
1557 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
1558 (unsigned long long)byte_start
,
1559 (unsigned long long)byte_len
, trunc_start
, trunc_len
);
1561 ret
= ocfs2_zero_partial_clusters(inode
, byte_start
, byte_len
);
1569 ret
= ocfs2_get_clusters(inode
, cpos
, &phys_cpos
,
1576 if (alloc_size
> trunc_len
)
1577 alloc_size
= trunc_len
;
1579 /* Only do work for non-holes */
1580 if (phys_cpos
!= 0) {
1581 ret
= __ocfs2_remove_inode_range(inode
, di_bh
, cpos
,
1582 phys_cpos
, alloc_size
,
1591 trunc_len
-= alloc_size
;
1594 ocfs2_truncate_cluster_pages(inode
, byte_start
, byte_len
);
1597 ocfs2_schedule_truncate_log_flush(osb
, 1);
1598 ocfs2_run_deallocs(osb
, &dealloc
);
1604 * Parts of this function taken from xfs_change_file_space()
1606 static int __ocfs2_change_file_space(struct file
*file
, struct inode
*inode
,
1607 loff_t f_pos
, unsigned int cmd
,
1608 struct ocfs2_space_resv
*sr
,
1614 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1615 struct buffer_head
*di_bh
= NULL
;
1617 unsigned long long max_off
= inode
->i_sb
->s_maxbytes
;
1619 if (ocfs2_is_hard_readonly(osb
) || ocfs2_is_soft_readonly(osb
))
1622 mutex_lock(&inode
->i_mutex
);
1625 * This prevents concurrent writes on other nodes
1627 ret
= ocfs2_rw_lock(inode
, 1);
1633 ret
= ocfs2_meta_lock(inode
, &di_bh
, 1);
1639 if (inode
->i_flags
& (S_IMMUTABLE
|S_APPEND
)) {
1641 goto out_meta_unlock
;
1644 switch (sr
->l_whence
) {
1645 case 0: /*SEEK_SET*/
1647 case 1: /*SEEK_CUR*/
1648 sr
->l_start
+= f_pos
;
1650 case 2: /*SEEK_END*/
1651 sr
->l_start
+= i_size_read(inode
);
1655 goto out_meta_unlock
;
1659 llen
= sr
->l_len
> 0 ? sr
->l_len
- 1 : sr
->l_len
;
1662 || sr
->l_start
> max_off
1663 || (sr
->l_start
+ llen
) < 0
1664 || (sr
->l_start
+ llen
) > max_off
) {
1666 goto out_meta_unlock
;
1668 size
= sr
->l_start
+ sr
->l_len
;
1670 if (cmd
== OCFS2_IOC_RESVSP
|| cmd
== OCFS2_IOC_RESVSP64
) {
1671 if (sr
->l_len
<= 0) {
1673 goto out_meta_unlock
;
1677 if (file
&& should_remove_suid(file
->f_path
.dentry
)) {
1678 ret
= __ocfs2_write_remove_suid(inode
, di_bh
);
1681 goto out_meta_unlock
;
1685 down_write(&OCFS2_I(inode
)->ip_alloc_sem
);
1687 case OCFS2_IOC_RESVSP
:
1688 case OCFS2_IOC_RESVSP64
:
1690 * This takes unsigned offsets, but the signed ones we
1691 * pass have been checked against overflow above.
1693 ret
= ocfs2_allocate_unwritten_extents(inode
, sr
->l_start
,
1696 case OCFS2_IOC_UNRESVSP
:
1697 case OCFS2_IOC_UNRESVSP64
:
1698 ret
= ocfs2_remove_inode_range(inode
, di_bh
, sr
->l_start
,
1704 up_write(&OCFS2_I(inode
)->ip_alloc_sem
);
1707 goto out_meta_unlock
;
1711 * We update c/mtime for these changes
1713 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
);
1714 if (IS_ERR(handle
)) {
1715 ret
= PTR_ERR(handle
);
1717 goto out_meta_unlock
;
1720 if (change_size
&& i_size_read(inode
) < size
)
1721 i_size_write(inode
, size
);
1723 inode
->i_ctime
= inode
->i_mtime
= CURRENT_TIME
;
1724 ret
= ocfs2_mark_inode_dirty(handle
, inode
, di_bh
);
1728 ocfs2_commit_trans(osb
, handle
);
1732 ocfs2_meta_unlock(inode
, 1);
1734 ocfs2_rw_unlock(inode
, 1);
1736 mutex_unlock(&inode
->i_mutex
);
1741 int ocfs2_change_file_space(struct file
*file
, unsigned int cmd
,
1742 struct ocfs2_space_resv
*sr
)
1744 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
1745 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);;
1747 if ((cmd
== OCFS2_IOC_RESVSP
|| cmd
== OCFS2_IOC_RESVSP64
) &&
1748 !ocfs2_writes_unwritten_extents(osb
))
1750 else if ((cmd
== OCFS2_IOC_UNRESVSP
|| cmd
== OCFS2_IOC_UNRESVSP64
) &&
1751 !ocfs2_sparse_alloc(osb
))
1754 if (!S_ISREG(inode
->i_mode
))
1757 if (!(file
->f_mode
& FMODE_WRITE
))
1760 return __ocfs2_change_file_space(file
, inode
, file
->f_pos
, cmd
, sr
, 0);
1763 static long ocfs2_fallocate(struct inode
*inode
, int mode
, loff_t offset
,
1766 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1767 struct ocfs2_space_resv sr
;
1768 int change_size
= 1;
1770 if (!ocfs2_writes_unwritten_extents(osb
))
1773 if (S_ISDIR(inode
->i_mode
))
1776 if (mode
& FALLOC_FL_KEEP_SIZE
)
1780 sr
.l_start
= (s64
)offset
;
1781 sr
.l_len
= (s64
)len
;
1783 return __ocfs2_change_file_space(NULL
, inode
, offset
,
1784 OCFS2_IOC_RESVSP64
, &sr
, change_size
);
1787 static int ocfs2_prepare_inode_for_write(struct dentry
*dentry
,
1793 int ret
= 0, meta_level
= 0;
1794 struct inode
*inode
= dentry
->d_inode
;
1795 loff_t saved_pos
, end
;
1798 * We start with a read level meta lock and only jump to an ex
1799 * if we need to make modifications here.
1802 ret
= ocfs2_meta_lock(inode
, NULL
, meta_level
);
1809 /* Clear suid / sgid if necessary. We do this here
1810 * instead of later in the write path because
1811 * remove_suid() calls ->setattr without any hint that
1812 * we may have already done our cluster locking. Since
1813 * ocfs2_setattr() *must* take cluster locks to
1814 * proceeed, this will lead us to recursively lock the
1815 * inode. There's also the dinode i_size state which
1816 * can be lost via setattr during extending writes (we
1817 * set inode->i_size at the end of a write. */
1818 if (should_remove_suid(dentry
)) {
1819 if (meta_level
== 0) {
1820 ocfs2_meta_unlock(inode
, meta_level
);
1825 ret
= ocfs2_write_remove_suid(inode
);
1832 /* work on a copy of ppos until we're sure that we won't have
1833 * to recalculate it due to relocking. */
1835 saved_pos
= i_size_read(inode
);
1836 mlog(0, "O_APPEND: inode->i_size=%llu\n", saved_pos
);
1841 end
= saved_pos
+ count
;
1844 * Skip the O_DIRECT checks if we don't need
1847 if (!direct_io
|| !(*direct_io
))
1851 * There's no sane way to do direct writes to an inode
1854 if (OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
) {
1860 * Allowing concurrent direct writes means
1861 * i_size changes wouldn't be synchronized, so
1862 * one node could wind up truncating another
1865 if (end
> i_size_read(inode
)) {
1871 * We don't fill holes during direct io, so
1872 * check for them here. If any are found, the
1873 * caller will have to retake some cluster
1874 * locks and initiate the io as buffered.
1876 ret
= ocfs2_check_range_for_holes(inode
, saved_pos
, count
);
1889 ocfs2_meta_unlock(inode
, meta_level
);
1895 static ssize_t
ocfs2_file_aio_write(struct kiocb
*iocb
,
1896 const struct iovec
*iov
,
1897 unsigned long nr_segs
,
1900 int ret
, direct_io
, appending
, rw_level
, have_alloc_sem
= 0;
1902 ssize_t written
= 0;
1903 size_t ocount
; /* original count */
1904 size_t count
; /* after file limit checks */
1905 loff_t old_size
, *ppos
= &iocb
->ki_pos
;
1907 struct file
*file
= iocb
->ki_filp
;
1908 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
1909 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1911 mlog_entry("(0x%p, %u, '%.*s')\n", file
,
1912 (unsigned int)nr_segs
,
1913 file
->f_path
.dentry
->d_name
.len
,
1914 file
->f_path
.dentry
->d_name
.name
);
1916 if (iocb
->ki_left
== 0)
1919 vfs_check_frozen(inode
->i_sb
, SB_FREEZE_WRITE
);
1921 appending
= file
->f_flags
& O_APPEND
? 1 : 0;
1922 direct_io
= file
->f_flags
& O_DIRECT
? 1 : 0;
1924 mutex_lock(&inode
->i_mutex
);
1927 /* to match setattr's i_mutex -> i_alloc_sem -> rw_lock ordering */
1929 down_read(&inode
->i_alloc_sem
);
1933 /* concurrent O_DIRECT writes are allowed */
1934 rw_level
= !direct_io
;
1935 ret
= ocfs2_rw_lock(inode
, rw_level
);
1941 can_do_direct
= direct_io
;
1942 ret
= ocfs2_prepare_inode_for_write(file
->f_path
.dentry
, ppos
,
1943 iocb
->ki_left
, appending
,
1951 * We can't complete the direct I/O as requested, fall back to
1954 if (direct_io
&& !can_do_direct
) {
1955 ocfs2_rw_unlock(inode
, rw_level
);
1956 up_read(&inode
->i_alloc_sem
);
1966 * To later detect whether a journal commit for sync writes is
1967 * necessary, we sample i_size, and cluster count here.
1969 old_size
= i_size_read(inode
);
1970 old_clusters
= OCFS2_I(inode
)->ip_clusters
;
1972 /* communicate with ocfs2_dio_end_io */
1973 ocfs2_iocb_set_rw_locked(iocb
, rw_level
);
1976 ret
= generic_segment_checks(iov
, &nr_segs
, &ocount
,
1981 ret
= generic_write_checks(file
, ppos
, &count
,
1982 S_ISBLK(inode
->i_mode
));
1986 written
= generic_file_direct_write(iocb
, iov
, &nr_segs
, *ppos
,
1987 ppos
, count
, ocount
);
1993 written
= generic_file_aio_write_nolock(iocb
, iov
, nr_segs
,
1998 /* buffered aio wouldn't have proper lock coverage today */
1999 BUG_ON(ret
== -EIOCBQUEUED
&& !(file
->f_flags
& O_DIRECT
));
2001 if ((file
->f_flags
& O_SYNC
&& !direct_io
) || IS_SYNC(inode
)) {
2003 * The generic write paths have handled getting data
2004 * to disk, but since we don't make use of the dirty
2005 * inode list, a manual journal commit is necessary
2008 if (old_size
!= i_size_read(inode
) ||
2009 old_clusters
!= OCFS2_I(inode
)->ip_clusters
) {
2010 ret
= journal_force_commit(osb
->journal
->j_journal
);
2017 * deep in g_f_a_w_n()->ocfs2_direct_IO we pass in a ocfs2_dio_end_io
2018 * function pointer which is called when o_direct io completes so that
2019 * it can unlock our rw lock. (it's the clustered equivalent of
2020 * i_alloc_sem; protects truncate from racing with pending ios).
2021 * Unfortunately there are error cases which call end_io and others
2022 * that don't. so we don't have to unlock the rw_lock if either an
2023 * async dio is going to do it in the future or an end_io after an
2024 * error has already done it.
2026 if (ret
== -EIOCBQUEUED
|| !ocfs2_iocb_is_rw_locked(iocb
)) {
2033 ocfs2_rw_unlock(inode
, rw_level
);
2037 up_read(&inode
->i_alloc_sem
);
2039 mutex_unlock(&inode
->i_mutex
);
2042 return written
? written
: ret
;
2045 static ssize_t
ocfs2_file_splice_write(struct pipe_inode_info
*pipe
,
2052 struct inode
*inode
= out
->f_path
.dentry
->d_inode
;
2054 mlog_entry("(0x%p, 0x%p, %u, '%.*s')\n", out
, pipe
,
2056 out
->f_path
.dentry
->d_name
.len
,
2057 out
->f_path
.dentry
->d_name
.name
);
2059 inode_double_lock(inode
, pipe
->inode
);
2061 ret
= ocfs2_rw_lock(inode
, 1);
2067 ret
= ocfs2_prepare_inode_for_write(out
->f_path
.dentry
, ppos
, len
, 0,
2074 ret
= generic_file_splice_write_nolock(pipe
, out
, ppos
, len
, flags
);
2077 ocfs2_rw_unlock(inode
, 1);
2079 inode_double_unlock(inode
, pipe
->inode
);
2085 static ssize_t
ocfs2_file_splice_read(struct file
*in
,
2087 struct pipe_inode_info
*pipe
,
2092 struct inode
*inode
= in
->f_path
.dentry
->d_inode
;
2094 mlog_entry("(0x%p, 0x%p, %u, '%.*s')\n", in
, pipe
,
2096 in
->f_path
.dentry
->d_name
.len
,
2097 in
->f_path
.dentry
->d_name
.name
);
2100 * See the comment in ocfs2_file_aio_read()
2102 ret
= ocfs2_meta_lock(inode
, NULL
, 0);
2107 ocfs2_meta_unlock(inode
, 0);
2109 ret
= generic_file_splice_read(in
, ppos
, pipe
, len
, flags
);
2116 static ssize_t
ocfs2_file_aio_read(struct kiocb
*iocb
,
2117 const struct iovec
*iov
,
2118 unsigned long nr_segs
,
2121 int ret
= 0, rw_level
= -1, have_alloc_sem
= 0, lock_level
= 0;
2122 struct file
*filp
= iocb
->ki_filp
;
2123 struct inode
*inode
= filp
->f_path
.dentry
->d_inode
;
2125 mlog_entry("(0x%p, %u, '%.*s')\n", filp
,
2126 (unsigned int)nr_segs
,
2127 filp
->f_path
.dentry
->d_name
.len
,
2128 filp
->f_path
.dentry
->d_name
.name
);
2137 * buffered reads protect themselves in ->readpage(). O_DIRECT reads
2138 * need locks to protect pending reads from racing with truncate.
2140 if (filp
->f_flags
& O_DIRECT
) {
2141 down_read(&inode
->i_alloc_sem
);
2144 ret
= ocfs2_rw_lock(inode
, 0);
2150 /* communicate with ocfs2_dio_end_io */
2151 ocfs2_iocb_set_rw_locked(iocb
, rw_level
);
2155 * We're fine letting folks race truncates and extending
2156 * writes with read across the cluster, just like they can
2157 * locally. Hence no rw_lock during read.
2159 * Take and drop the meta data lock to update inode fields
2160 * like i_size. This allows the checks down below
2161 * generic_file_aio_read() a chance of actually working.
2163 ret
= ocfs2_meta_lock_atime(inode
, filp
->f_vfsmnt
, &lock_level
);
2168 ocfs2_meta_unlock(inode
, lock_level
);
2170 ret
= generic_file_aio_read(iocb
, iov
, nr_segs
, iocb
->ki_pos
);
2172 mlog(ML_ERROR
, "generic_file_aio_read returned -EINVAL\n");
2174 /* buffered aio wouldn't have proper lock coverage today */
2175 BUG_ON(ret
== -EIOCBQUEUED
&& !(filp
->f_flags
& O_DIRECT
));
2177 /* see ocfs2_file_aio_write */
2178 if (ret
== -EIOCBQUEUED
|| !ocfs2_iocb_is_rw_locked(iocb
)) {
2185 up_read(&inode
->i_alloc_sem
);
2187 ocfs2_rw_unlock(inode
, rw_level
);
2193 const struct inode_operations ocfs2_file_iops
= {
2194 .setattr
= ocfs2_setattr
,
2195 .getattr
= ocfs2_getattr
,
2196 .permission
= ocfs2_permission
,
2197 .fallocate
= ocfs2_fallocate
,
2200 const struct inode_operations ocfs2_special_file_iops
= {
2201 .setattr
= ocfs2_setattr
,
2202 .getattr
= ocfs2_getattr
,
2203 .permission
= ocfs2_permission
,
2206 const struct file_operations ocfs2_fops
= {
2207 .read
= do_sync_read
,
2208 .write
= do_sync_write
,
2210 .fsync
= ocfs2_sync_file
,
2211 .release
= ocfs2_file_release
,
2212 .open
= ocfs2_file_open
,
2213 .aio_read
= ocfs2_file_aio_read
,
2214 .aio_write
= ocfs2_file_aio_write
,
2215 .ioctl
= ocfs2_ioctl
,
2216 #ifdef CONFIG_COMPAT
2217 .compat_ioctl
= ocfs2_compat_ioctl
,
2219 .splice_read
= ocfs2_file_splice_read
,
2220 .splice_write
= ocfs2_file_splice_write
,
2223 const struct file_operations ocfs2_dops
= {
2224 .read
= generic_read_dir
,
2225 .readdir
= ocfs2_readdir
,
2226 .fsync
= ocfs2_sync_file
,
2227 .ioctl
= ocfs2_ioctl
,
2228 #ifdef CONFIG_COMPAT
2229 .compat_ioctl
= ocfs2_compat_ioctl
,