V4L/DVB (6926): tda18271: consolidate table lookup functions
[linux-2.6/verdex.git] / fs / ocfs2 / journal.c
blob8d81f6c1b877e98a6e9b6a1ad2f5bf6ea5d43a0c
1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
4 * journal.c
6 * Defines functions of journalling api
8 * Copyright (C) 2003, 2004 Oracle. All rights reserved.
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public
12 * License as published by the Free Software Foundation; either
13 * version 2 of the License, or (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
20 * You should have received a copy of the GNU General Public
21 * License along with this program; if not, write to the
22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23 * Boston, MA 021110-1307, USA.
26 #include <linux/fs.h>
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/kthread.h>
32 #define MLOG_MASK_PREFIX ML_JOURNAL
33 #include <cluster/masklog.h>
35 #include "ocfs2.h"
37 #include "alloc.h"
38 #include "dir.h"
39 #include "dlmglue.h"
40 #include "extent_map.h"
41 #include "heartbeat.h"
42 #include "inode.h"
43 #include "journal.h"
44 #include "localalloc.h"
45 #include "slot_map.h"
46 #include "super.h"
47 #include "vote.h"
48 #include "sysfile.h"
50 #include "buffer_head_io.h"
52 DEFINE_SPINLOCK(trans_inc_lock);
54 static int ocfs2_force_read_journal(struct inode *inode);
55 static int ocfs2_recover_node(struct ocfs2_super *osb,
56 int node_num);
57 static int __ocfs2_recovery_thread(void *arg);
58 static int ocfs2_commit_cache(struct ocfs2_super *osb);
59 static int ocfs2_wait_on_mount(struct ocfs2_super *osb);
60 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
61 int dirty);
62 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
63 int slot_num);
64 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
65 int slot);
66 static int ocfs2_commit_thread(void *arg);
68 static int ocfs2_commit_cache(struct ocfs2_super *osb)
70 int status = 0;
71 unsigned int flushed;
72 unsigned long old_id;
73 struct ocfs2_journal *journal = NULL;
75 mlog_entry_void();
77 journal = osb->journal;
79 /* Flush all pending commits and checkpoint the journal. */
80 down_write(&journal->j_trans_barrier);
82 if (atomic_read(&journal->j_num_trans) == 0) {
83 up_write(&journal->j_trans_barrier);
84 mlog(0, "No transactions for me to flush!\n");
85 goto finally;
88 journal_lock_updates(journal->j_journal);
89 status = journal_flush(journal->j_journal);
90 journal_unlock_updates(journal->j_journal);
91 if (status < 0) {
92 up_write(&journal->j_trans_barrier);
93 mlog_errno(status);
94 goto finally;
97 old_id = ocfs2_inc_trans_id(journal);
99 flushed = atomic_read(&journal->j_num_trans);
100 atomic_set(&journal->j_num_trans, 0);
101 up_write(&journal->j_trans_barrier);
103 mlog(0, "commit_thread: flushed transaction %lu (%u handles)\n",
104 journal->j_trans_id, flushed);
106 ocfs2_kick_vote_thread(osb);
107 wake_up(&journal->j_checkpointed);
108 finally:
109 mlog_exit(status);
110 return status;
113 /* pass it NULL and it will allocate a new handle object for you. If
114 * you pass it a handle however, it may still return error, in which
115 * case it has free'd the passed handle for you. */
116 handle_t *ocfs2_start_trans(struct ocfs2_super *osb, int max_buffs)
118 journal_t *journal = osb->journal->j_journal;
119 handle_t *handle;
121 BUG_ON(!osb || !osb->journal->j_journal);
123 if (ocfs2_is_hard_readonly(osb))
124 return ERR_PTR(-EROFS);
126 BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE);
127 BUG_ON(max_buffs <= 0);
129 /* JBD might support this, but our journalling code doesn't yet. */
130 if (journal_current_handle()) {
131 mlog(ML_ERROR, "Recursive transaction attempted!\n");
132 BUG();
135 down_read(&osb->journal->j_trans_barrier);
137 handle = journal_start(journal, max_buffs);
138 if (IS_ERR(handle)) {
139 up_read(&osb->journal->j_trans_barrier);
141 mlog_errno(PTR_ERR(handle));
143 if (is_journal_aborted(journal)) {
144 ocfs2_abort(osb->sb, "Detected aborted journal");
145 handle = ERR_PTR(-EROFS);
147 } else {
148 if (!ocfs2_mount_local(osb))
149 atomic_inc(&(osb->journal->j_num_trans));
152 return handle;
155 int ocfs2_commit_trans(struct ocfs2_super *osb,
156 handle_t *handle)
158 int ret;
159 struct ocfs2_journal *journal = osb->journal;
161 BUG_ON(!handle);
163 ret = journal_stop(handle);
164 if (ret < 0)
165 mlog_errno(ret);
167 up_read(&journal->j_trans_barrier);
169 return ret;
173 * 'nblocks' is what you want to add to the current
174 * transaction. extend_trans will either extend the current handle by
175 * nblocks, or commit it and start a new one with nblocks credits.
177 * This might call journal_restart() which will commit dirty buffers
178 * and then restart the transaction. Before calling
179 * ocfs2_extend_trans(), any changed blocks should have been
180 * dirtied. After calling it, all blocks which need to be changed must
181 * go through another set of journal_access/journal_dirty calls.
183 * WARNING: This will not release any semaphores or disk locks taken
184 * during the transaction, so make sure they were taken *before*
185 * start_trans or we'll have ordering deadlocks.
187 * WARNING2: Note that we do *not* drop j_trans_barrier here. This is
188 * good because transaction ids haven't yet been recorded on the
189 * cluster locks associated with this handle.
191 int ocfs2_extend_trans(handle_t *handle, int nblocks)
193 int status;
195 BUG_ON(!handle);
196 BUG_ON(!nblocks);
198 mlog_entry_void();
200 mlog(0, "Trying to extend transaction by %d blocks\n", nblocks);
202 #ifdef OCFS2_DEBUG_FS
203 status = 1;
204 #else
205 status = journal_extend(handle, nblocks);
206 if (status < 0) {
207 mlog_errno(status);
208 goto bail;
210 #endif
212 if (status > 0) {
213 mlog(0, "journal_extend failed, trying journal_restart\n");
214 status = journal_restart(handle, nblocks);
215 if (status < 0) {
216 mlog_errno(status);
217 goto bail;
221 status = 0;
222 bail:
224 mlog_exit(status);
225 return status;
228 int ocfs2_journal_access(handle_t *handle,
229 struct inode *inode,
230 struct buffer_head *bh,
231 int type)
233 int status;
235 BUG_ON(!inode);
236 BUG_ON(!handle);
237 BUG_ON(!bh);
239 mlog_entry("bh->b_blocknr=%llu, type=%d (\"%s\"), bh->b_size = %zu\n",
240 (unsigned long long)bh->b_blocknr, type,
241 (type == OCFS2_JOURNAL_ACCESS_CREATE) ?
242 "OCFS2_JOURNAL_ACCESS_CREATE" :
243 "OCFS2_JOURNAL_ACCESS_WRITE",
244 bh->b_size);
246 /* we can safely remove this assertion after testing. */
247 if (!buffer_uptodate(bh)) {
248 mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n");
249 mlog(ML_ERROR, "b_blocknr=%llu\n",
250 (unsigned long long)bh->b_blocknr);
251 BUG();
254 /* Set the current transaction information on the inode so
255 * that the locking code knows whether it can drop it's locks
256 * on this inode or not. We're protected from the commit
257 * thread updating the current transaction id until
258 * ocfs2_commit_trans() because ocfs2_start_trans() took
259 * j_trans_barrier for us. */
260 ocfs2_set_inode_lock_trans(OCFS2_SB(inode->i_sb)->journal, inode);
262 mutex_lock(&OCFS2_I(inode)->ip_io_mutex);
263 switch (type) {
264 case OCFS2_JOURNAL_ACCESS_CREATE:
265 case OCFS2_JOURNAL_ACCESS_WRITE:
266 status = journal_get_write_access(handle, bh);
267 break;
269 case OCFS2_JOURNAL_ACCESS_UNDO:
270 status = journal_get_undo_access(handle, bh);
271 break;
273 default:
274 status = -EINVAL;
275 mlog(ML_ERROR, "Uknown access type!\n");
277 mutex_unlock(&OCFS2_I(inode)->ip_io_mutex);
279 if (status < 0)
280 mlog(ML_ERROR, "Error %d getting %d access to buffer!\n",
281 status, type);
283 mlog_exit(status);
284 return status;
287 int ocfs2_journal_dirty(handle_t *handle,
288 struct buffer_head *bh)
290 int status;
292 mlog_entry("(bh->b_blocknr=%llu)\n",
293 (unsigned long long)bh->b_blocknr);
295 status = journal_dirty_metadata(handle, bh);
296 if (status < 0)
297 mlog(ML_ERROR, "Could not dirty metadata buffer. "
298 "(bh->b_blocknr=%llu)\n",
299 (unsigned long long)bh->b_blocknr);
301 mlog_exit(status);
302 return status;
305 int ocfs2_journal_dirty_data(handle_t *handle,
306 struct buffer_head *bh)
308 int err = journal_dirty_data(handle, bh);
309 if (err)
310 mlog_errno(err);
311 /* TODO: When we can handle it, abort the handle and go RO on
312 * error here. */
314 return err;
317 #define OCFS2_DEFAULT_COMMIT_INTERVAL (HZ * 5)
319 void ocfs2_set_journal_params(struct ocfs2_super *osb)
321 journal_t *journal = osb->journal->j_journal;
323 spin_lock(&journal->j_state_lock);
324 journal->j_commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL;
325 if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER)
326 journal->j_flags |= JFS_BARRIER;
327 else
328 journal->j_flags &= ~JFS_BARRIER;
329 spin_unlock(&journal->j_state_lock);
332 int ocfs2_journal_init(struct ocfs2_journal *journal, int *dirty)
334 int status = -1;
335 struct inode *inode = NULL; /* the journal inode */
336 journal_t *j_journal = NULL;
337 struct ocfs2_dinode *di = NULL;
338 struct buffer_head *bh = NULL;
339 struct ocfs2_super *osb;
340 int meta_lock = 0;
342 mlog_entry_void();
344 BUG_ON(!journal);
346 osb = journal->j_osb;
348 /* already have the inode for our journal */
349 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
350 osb->slot_num);
351 if (inode == NULL) {
352 status = -EACCES;
353 mlog_errno(status);
354 goto done;
356 if (is_bad_inode(inode)) {
357 mlog(ML_ERROR, "access error (bad inode)\n");
358 iput(inode);
359 inode = NULL;
360 status = -EACCES;
361 goto done;
364 SET_INODE_JOURNAL(inode);
365 OCFS2_I(inode)->ip_open_count++;
367 /* Skip recovery waits here - journal inode metadata never
368 * changes in a live cluster so it can be considered an
369 * exception to the rule. */
370 status = ocfs2_meta_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
371 if (status < 0) {
372 if (status != -ERESTARTSYS)
373 mlog(ML_ERROR, "Could not get lock on journal!\n");
374 goto done;
377 meta_lock = 1;
378 di = (struct ocfs2_dinode *)bh->b_data;
380 if (inode->i_size < OCFS2_MIN_JOURNAL_SIZE) {
381 mlog(ML_ERROR, "Journal file size (%lld) is too small!\n",
382 inode->i_size);
383 status = -EINVAL;
384 goto done;
387 mlog(0, "inode->i_size = %lld\n", inode->i_size);
388 mlog(0, "inode->i_blocks = %llu\n",
389 (unsigned long long)inode->i_blocks);
390 mlog(0, "inode->ip_clusters = %u\n", OCFS2_I(inode)->ip_clusters);
392 /* call the kernels journal init function now */
393 j_journal = journal_init_inode(inode);
394 if (j_journal == NULL) {
395 mlog(ML_ERROR, "Linux journal layer error\n");
396 status = -EINVAL;
397 goto done;
400 mlog(0, "Returned from journal_init_inode\n");
401 mlog(0, "j_journal->j_maxlen = %u\n", j_journal->j_maxlen);
403 *dirty = (le32_to_cpu(di->id1.journal1.ij_flags) &
404 OCFS2_JOURNAL_DIRTY_FL);
406 journal->j_journal = j_journal;
407 journal->j_inode = inode;
408 journal->j_bh = bh;
410 ocfs2_set_journal_params(osb);
412 journal->j_state = OCFS2_JOURNAL_LOADED;
414 status = 0;
415 done:
416 if (status < 0) {
417 if (meta_lock)
418 ocfs2_meta_unlock(inode, 1);
419 if (bh != NULL)
420 brelse(bh);
421 if (inode) {
422 OCFS2_I(inode)->ip_open_count--;
423 iput(inode);
427 mlog_exit(status);
428 return status;
431 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
432 int dirty)
434 int status;
435 unsigned int flags;
436 struct ocfs2_journal *journal = osb->journal;
437 struct buffer_head *bh = journal->j_bh;
438 struct ocfs2_dinode *fe;
440 mlog_entry_void();
442 fe = (struct ocfs2_dinode *)bh->b_data;
443 if (!OCFS2_IS_VALID_DINODE(fe)) {
444 /* This is called from startup/shutdown which will
445 * handle the errors in a specific manner, so no need
446 * to call ocfs2_error() here. */
447 mlog(ML_ERROR, "Journal dinode %llu has invalid "
448 "signature: %.*s",
449 (unsigned long long)le64_to_cpu(fe->i_blkno), 7,
450 fe->i_signature);
451 status = -EIO;
452 goto out;
455 flags = le32_to_cpu(fe->id1.journal1.ij_flags);
456 if (dirty)
457 flags |= OCFS2_JOURNAL_DIRTY_FL;
458 else
459 flags &= ~OCFS2_JOURNAL_DIRTY_FL;
460 fe->id1.journal1.ij_flags = cpu_to_le32(flags);
462 status = ocfs2_write_block(osb, bh, journal->j_inode);
463 if (status < 0)
464 mlog_errno(status);
466 out:
467 mlog_exit(status);
468 return status;
472 * If the journal has been kmalloc'd it needs to be freed after this
473 * call.
475 void ocfs2_journal_shutdown(struct ocfs2_super *osb)
477 struct ocfs2_journal *journal = NULL;
478 int status = 0;
479 struct inode *inode = NULL;
480 int num_running_trans = 0;
482 mlog_entry_void();
484 BUG_ON(!osb);
486 journal = osb->journal;
487 if (!journal)
488 goto done;
490 inode = journal->j_inode;
492 if (journal->j_state != OCFS2_JOURNAL_LOADED)
493 goto done;
495 /* need to inc inode use count as journal_destroy will iput. */
496 if (!igrab(inode))
497 BUG();
499 num_running_trans = atomic_read(&(osb->journal->j_num_trans));
500 if (num_running_trans > 0)
501 mlog(0, "Shutting down journal: must wait on %d "
502 "running transactions!\n",
503 num_running_trans);
505 /* Do a commit_cache here. It will flush our journal, *and*
506 * release any locks that are still held.
507 * set the SHUTDOWN flag and release the trans lock.
508 * the commit thread will take the trans lock for us below. */
509 journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN;
511 /* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not
512 * drop the trans_lock (which we want to hold until we
513 * completely destroy the journal. */
514 if (osb->commit_task) {
515 /* Wait for the commit thread */
516 mlog(0, "Waiting for ocfs2commit to exit....\n");
517 kthread_stop(osb->commit_task);
518 osb->commit_task = NULL;
521 BUG_ON(atomic_read(&(osb->journal->j_num_trans)) != 0);
523 if (ocfs2_mount_local(osb)) {
524 journal_lock_updates(journal->j_journal);
525 status = journal_flush(journal->j_journal);
526 journal_unlock_updates(journal->j_journal);
527 if (status < 0)
528 mlog_errno(status);
531 if (status == 0) {
533 * Do not toggle if flush was unsuccessful otherwise
534 * will leave dirty metadata in a "clean" journal
536 status = ocfs2_journal_toggle_dirty(osb, 0);
537 if (status < 0)
538 mlog_errno(status);
541 /* Shutdown the kernel journal system */
542 journal_destroy(journal->j_journal);
544 OCFS2_I(inode)->ip_open_count--;
546 /* unlock our journal */
547 ocfs2_meta_unlock(inode, 1);
549 brelse(journal->j_bh);
550 journal->j_bh = NULL;
552 journal->j_state = OCFS2_JOURNAL_FREE;
554 // up_write(&journal->j_trans_barrier);
555 done:
556 if (inode)
557 iput(inode);
558 mlog_exit_void();
561 static void ocfs2_clear_journal_error(struct super_block *sb,
562 journal_t *journal,
563 int slot)
565 int olderr;
567 olderr = journal_errno(journal);
568 if (olderr) {
569 mlog(ML_ERROR, "File system error %d recorded in "
570 "journal %u.\n", olderr, slot);
571 mlog(ML_ERROR, "File system on device %s needs checking.\n",
572 sb->s_id);
574 journal_ack_err(journal);
575 journal_clear_err(journal);
579 int ocfs2_journal_load(struct ocfs2_journal *journal, int local)
581 int status = 0;
582 struct ocfs2_super *osb;
584 mlog_entry_void();
586 if (!journal)
587 BUG();
589 osb = journal->j_osb;
591 status = journal_load(journal->j_journal);
592 if (status < 0) {
593 mlog(ML_ERROR, "Failed to load journal!\n");
594 goto done;
597 ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num);
599 status = ocfs2_journal_toggle_dirty(osb, 1);
600 if (status < 0) {
601 mlog_errno(status);
602 goto done;
605 /* Launch the commit thread */
606 if (!local) {
607 osb->commit_task = kthread_run(ocfs2_commit_thread, osb,
608 "ocfs2cmt");
609 if (IS_ERR(osb->commit_task)) {
610 status = PTR_ERR(osb->commit_task);
611 osb->commit_task = NULL;
612 mlog(ML_ERROR, "unable to launch ocfs2commit thread, "
613 "error=%d", status);
614 goto done;
616 } else
617 osb->commit_task = NULL;
619 done:
620 mlog_exit(status);
621 return status;
625 /* 'full' flag tells us whether we clear out all blocks or if we just
626 * mark the journal clean */
627 int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full)
629 int status;
631 mlog_entry_void();
633 BUG_ON(!journal);
635 status = journal_wipe(journal->j_journal, full);
636 if (status < 0) {
637 mlog_errno(status);
638 goto bail;
641 status = ocfs2_journal_toggle_dirty(journal->j_osb, 0);
642 if (status < 0)
643 mlog_errno(status);
645 bail:
646 mlog_exit(status);
647 return status;
651 * JBD Might read a cached version of another nodes journal file. We
652 * don't want this as this file changes often and we get no
653 * notification on those changes. The only way to be sure that we've
654 * got the most up to date version of those blocks then is to force
655 * read them off disk. Just searching through the buffer cache won't
656 * work as there may be pages backing this file which are still marked
657 * up to date. We know things can't change on this file underneath us
658 * as we have the lock by now :)
660 static int ocfs2_force_read_journal(struct inode *inode)
662 int status = 0;
663 int i;
664 u64 v_blkno, p_blkno, p_blocks, num_blocks;
665 #define CONCURRENT_JOURNAL_FILL 32ULL
666 struct buffer_head *bhs[CONCURRENT_JOURNAL_FILL];
668 mlog_entry_void();
670 memset(bhs, 0, sizeof(struct buffer_head *) * CONCURRENT_JOURNAL_FILL);
672 num_blocks = ocfs2_blocks_for_bytes(inode->i_sb, inode->i_size);
673 v_blkno = 0;
674 while (v_blkno < num_blocks) {
675 status = ocfs2_extent_map_get_blocks(inode, v_blkno,
676 &p_blkno, &p_blocks, NULL);
677 if (status < 0) {
678 mlog_errno(status);
679 goto bail;
682 if (p_blocks > CONCURRENT_JOURNAL_FILL)
683 p_blocks = CONCURRENT_JOURNAL_FILL;
685 /* We are reading journal data which should not
686 * be put in the uptodate cache */
687 status = ocfs2_read_blocks(OCFS2_SB(inode->i_sb),
688 p_blkno, p_blocks, bhs, 0,
689 NULL);
690 if (status < 0) {
691 mlog_errno(status);
692 goto bail;
695 for(i = 0; i < p_blocks; i++) {
696 brelse(bhs[i]);
697 bhs[i] = NULL;
700 v_blkno += p_blocks;
703 bail:
704 for(i = 0; i < CONCURRENT_JOURNAL_FILL; i++)
705 if (bhs[i])
706 brelse(bhs[i]);
707 mlog_exit(status);
708 return status;
711 struct ocfs2_la_recovery_item {
712 struct list_head lri_list;
713 int lri_slot;
714 struct ocfs2_dinode *lri_la_dinode;
715 struct ocfs2_dinode *lri_tl_dinode;
718 /* Does the second half of the recovery process. By this point, the
719 * node is marked clean and can actually be considered recovered,
720 * hence it's no longer in the recovery map, but there's still some
721 * cleanup we can do which shouldn't happen within the recovery thread
722 * as locking in that context becomes very difficult if we are to take
723 * recovering nodes into account.
725 * NOTE: This function can and will sleep on recovery of other nodes
726 * during cluster locking, just like any other ocfs2 process.
728 void ocfs2_complete_recovery(struct work_struct *work)
730 int ret;
731 struct ocfs2_journal *journal =
732 container_of(work, struct ocfs2_journal, j_recovery_work);
733 struct ocfs2_super *osb = journal->j_osb;
734 struct ocfs2_dinode *la_dinode, *tl_dinode;
735 struct ocfs2_la_recovery_item *item, *n;
736 LIST_HEAD(tmp_la_list);
738 mlog_entry_void();
740 mlog(0, "completing recovery from keventd\n");
742 spin_lock(&journal->j_lock);
743 list_splice_init(&journal->j_la_cleanups, &tmp_la_list);
744 spin_unlock(&journal->j_lock);
746 list_for_each_entry_safe(item, n, &tmp_la_list, lri_list) {
747 list_del_init(&item->lri_list);
749 mlog(0, "Complete recovery for slot %d\n", item->lri_slot);
751 la_dinode = item->lri_la_dinode;
752 if (la_dinode) {
753 mlog(0, "Clean up local alloc %llu\n",
754 (unsigned long long)le64_to_cpu(la_dinode->i_blkno));
756 ret = ocfs2_complete_local_alloc_recovery(osb,
757 la_dinode);
758 if (ret < 0)
759 mlog_errno(ret);
761 kfree(la_dinode);
764 tl_dinode = item->lri_tl_dinode;
765 if (tl_dinode) {
766 mlog(0, "Clean up truncate log %llu\n",
767 (unsigned long long)le64_to_cpu(tl_dinode->i_blkno));
769 ret = ocfs2_complete_truncate_log_recovery(osb,
770 tl_dinode);
771 if (ret < 0)
772 mlog_errno(ret);
774 kfree(tl_dinode);
777 ret = ocfs2_recover_orphans(osb, item->lri_slot);
778 if (ret < 0)
779 mlog_errno(ret);
781 kfree(item);
784 mlog(0, "Recovery completion\n");
785 mlog_exit_void();
788 /* NOTE: This function always eats your references to la_dinode and
789 * tl_dinode, either manually on error, or by passing them to
790 * ocfs2_complete_recovery */
791 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
792 int slot_num,
793 struct ocfs2_dinode *la_dinode,
794 struct ocfs2_dinode *tl_dinode)
796 struct ocfs2_la_recovery_item *item;
798 item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS);
799 if (!item) {
800 /* Though we wish to avoid it, we are in fact safe in
801 * skipping local alloc cleanup as fsck.ocfs2 is more
802 * than capable of reclaiming unused space. */
803 if (la_dinode)
804 kfree(la_dinode);
806 if (tl_dinode)
807 kfree(tl_dinode);
809 mlog_errno(-ENOMEM);
810 return;
813 INIT_LIST_HEAD(&item->lri_list);
814 item->lri_la_dinode = la_dinode;
815 item->lri_slot = slot_num;
816 item->lri_tl_dinode = tl_dinode;
818 spin_lock(&journal->j_lock);
819 list_add_tail(&item->lri_list, &journal->j_la_cleanups);
820 queue_work(ocfs2_wq, &journal->j_recovery_work);
821 spin_unlock(&journal->j_lock);
824 /* Called by the mount code to queue recovery the last part of
825 * recovery for it's own slot. */
826 void ocfs2_complete_mount_recovery(struct ocfs2_super *osb)
828 struct ocfs2_journal *journal = osb->journal;
830 if (osb->dirty) {
831 /* No need to queue up our truncate_log as regular
832 * cleanup will catch that. */
833 ocfs2_queue_recovery_completion(journal,
834 osb->slot_num,
835 osb->local_alloc_copy,
836 NULL);
837 ocfs2_schedule_truncate_log_flush(osb, 0);
839 osb->local_alloc_copy = NULL;
840 osb->dirty = 0;
844 static int __ocfs2_recovery_thread(void *arg)
846 int status, node_num;
847 struct ocfs2_super *osb = arg;
849 mlog_entry_void();
851 status = ocfs2_wait_on_mount(osb);
852 if (status < 0) {
853 goto bail;
856 restart:
857 status = ocfs2_super_lock(osb, 1);
858 if (status < 0) {
859 mlog_errno(status);
860 goto bail;
863 while(!ocfs2_node_map_is_empty(osb, &osb->recovery_map)) {
864 node_num = ocfs2_node_map_first_set_bit(osb,
865 &osb->recovery_map);
866 if (node_num == O2NM_INVALID_NODE_NUM) {
867 mlog(0, "Out of nodes to recover.\n");
868 break;
871 status = ocfs2_recover_node(osb, node_num);
872 if (status < 0) {
873 mlog(ML_ERROR,
874 "Error %d recovering node %d on device (%u,%u)!\n",
875 status, node_num,
876 MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
877 mlog(ML_ERROR, "Volume requires unmount.\n");
878 continue;
881 ocfs2_recovery_map_clear(osb, node_num);
883 ocfs2_super_unlock(osb, 1);
885 /* We always run recovery on our own orphan dir - the dead
886 * node(s) may have voted "no" on an inode delete earlier. A
887 * revote is therefore required. */
888 ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL,
889 NULL);
891 bail:
892 mutex_lock(&osb->recovery_lock);
893 if (!status &&
894 !ocfs2_node_map_is_empty(osb, &osb->recovery_map)) {
895 mutex_unlock(&osb->recovery_lock);
896 goto restart;
899 osb->recovery_thread_task = NULL;
900 mb(); /* sync with ocfs2_recovery_thread_running */
901 wake_up(&osb->recovery_event);
903 mutex_unlock(&osb->recovery_lock);
905 mlog_exit(status);
906 /* no one is callint kthread_stop() for us so the kthread() api
907 * requires that we call do_exit(). And it isn't exported, but
908 * complete_and_exit() seems to be a minimal wrapper around it. */
909 complete_and_exit(NULL, status);
910 return status;
913 void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num)
915 mlog_entry("(node_num=%d, osb->node_num = %d)\n",
916 node_num, osb->node_num);
918 mutex_lock(&osb->recovery_lock);
919 if (osb->disable_recovery)
920 goto out;
922 /* People waiting on recovery will wait on
923 * the recovery map to empty. */
924 if (!ocfs2_recovery_map_set(osb, node_num))
925 mlog(0, "node %d already be in recovery.\n", node_num);
927 mlog(0, "starting recovery thread...\n");
929 if (osb->recovery_thread_task)
930 goto out;
932 osb->recovery_thread_task = kthread_run(__ocfs2_recovery_thread, osb,
933 "ocfs2rec");
934 if (IS_ERR(osb->recovery_thread_task)) {
935 mlog_errno((int)PTR_ERR(osb->recovery_thread_task));
936 osb->recovery_thread_task = NULL;
939 out:
940 mutex_unlock(&osb->recovery_lock);
941 wake_up(&osb->recovery_event);
943 mlog_exit_void();
946 /* Does the actual journal replay and marks the journal inode as
947 * clean. Will only replay if the journal inode is marked dirty. */
948 static int ocfs2_replay_journal(struct ocfs2_super *osb,
949 int node_num,
950 int slot_num)
952 int status;
953 int got_lock = 0;
954 unsigned int flags;
955 struct inode *inode = NULL;
956 struct ocfs2_dinode *fe;
957 journal_t *journal = NULL;
958 struct buffer_head *bh = NULL;
960 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
961 slot_num);
962 if (inode == NULL) {
963 status = -EACCES;
964 mlog_errno(status);
965 goto done;
967 if (is_bad_inode(inode)) {
968 status = -EACCES;
969 iput(inode);
970 inode = NULL;
971 mlog_errno(status);
972 goto done;
974 SET_INODE_JOURNAL(inode);
976 status = ocfs2_meta_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
977 if (status < 0) {
978 mlog(0, "status returned from ocfs2_meta_lock=%d\n", status);
979 if (status != -ERESTARTSYS)
980 mlog(ML_ERROR, "Could not lock journal!\n");
981 goto done;
983 got_lock = 1;
985 fe = (struct ocfs2_dinode *) bh->b_data;
987 flags = le32_to_cpu(fe->id1.journal1.ij_flags);
989 if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) {
990 mlog(0, "No recovery required for node %d\n", node_num);
991 goto done;
994 mlog(ML_NOTICE, "Recovering node %d from slot %d on device (%u,%u)\n",
995 node_num, slot_num,
996 MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
998 OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters);
1000 status = ocfs2_force_read_journal(inode);
1001 if (status < 0) {
1002 mlog_errno(status);
1003 goto done;
1006 mlog(0, "calling journal_init_inode\n");
1007 journal = journal_init_inode(inode);
1008 if (journal == NULL) {
1009 mlog(ML_ERROR, "Linux journal layer error\n");
1010 status = -EIO;
1011 goto done;
1014 status = journal_load(journal);
1015 if (status < 0) {
1016 mlog_errno(status);
1017 if (!igrab(inode))
1018 BUG();
1019 journal_destroy(journal);
1020 goto done;
1023 ocfs2_clear_journal_error(osb->sb, journal, slot_num);
1025 /* wipe the journal */
1026 mlog(0, "flushing the journal.\n");
1027 journal_lock_updates(journal);
1028 status = journal_flush(journal);
1029 journal_unlock_updates(journal);
1030 if (status < 0)
1031 mlog_errno(status);
1033 /* This will mark the node clean */
1034 flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1035 flags &= ~OCFS2_JOURNAL_DIRTY_FL;
1036 fe->id1.journal1.ij_flags = cpu_to_le32(flags);
1038 status = ocfs2_write_block(osb, bh, inode);
1039 if (status < 0)
1040 mlog_errno(status);
1042 if (!igrab(inode))
1043 BUG();
1045 journal_destroy(journal);
1047 done:
1048 /* drop the lock on this nodes journal */
1049 if (got_lock)
1050 ocfs2_meta_unlock(inode, 1);
1052 if (inode)
1053 iput(inode);
1055 if (bh)
1056 brelse(bh);
1058 mlog_exit(status);
1059 return status;
1063 * Do the most important parts of node recovery:
1064 * - Replay it's journal
1065 * - Stamp a clean local allocator file
1066 * - Stamp a clean truncate log
1067 * - Mark the node clean
1069 * If this function completes without error, a node in OCFS2 can be
1070 * said to have been safely recovered. As a result, failure during the
1071 * second part of a nodes recovery process (local alloc recovery) is
1072 * far less concerning.
1074 static int ocfs2_recover_node(struct ocfs2_super *osb,
1075 int node_num)
1077 int status = 0;
1078 int slot_num;
1079 struct ocfs2_slot_info *si = osb->slot_info;
1080 struct ocfs2_dinode *la_copy = NULL;
1081 struct ocfs2_dinode *tl_copy = NULL;
1083 mlog_entry("(node_num=%d, osb->node_num = %d)\n",
1084 node_num, osb->node_num);
1086 mlog(0, "checking node %d\n", node_num);
1088 /* Should not ever be called to recover ourselves -- in that
1089 * case we should've called ocfs2_journal_load instead. */
1090 BUG_ON(osb->node_num == node_num);
1092 slot_num = ocfs2_node_num_to_slot(si, node_num);
1093 if (slot_num == OCFS2_INVALID_SLOT) {
1094 status = 0;
1095 mlog(0, "no slot for this node, so no recovery required.\n");
1096 goto done;
1099 mlog(0, "node %d was using slot %d\n", node_num, slot_num);
1101 status = ocfs2_replay_journal(osb, node_num, slot_num);
1102 if (status < 0) {
1103 mlog_errno(status);
1104 goto done;
1107 /* Stamp a clean local alloc file AFTER recovering the journal... */
1108 status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy);
1109 if (status < 0) {
1110 mlog_errno(status);
1111 goto done;
1114 /* An error from begin_truncate_log_recovery is not
1115 * serious enough to warrant halting the rest of
1116 * recovery. */
1117 status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy);
1118 if (status < 0)
1119 mlog_errno(status);
1121 /* Likewise, this would be a strange but ultimately not so
1122 * harmful place to get an error... */
1123 ocfs2_clear_slot(si, slot_num);
1124 status = ocfs2_update_disk_slots(osb, si);
1125 if (status < 0)
1126 mlog_errno(status);
1128 /* This will kfree the memory pointed to by la_copy and tl_copy */
1129 ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy,
1130 tl_copy);
1132 status = 0;
1133 done:
1135 mlog_exit(status);
1136 return status;
1139 /* Test node liveness by trylocking his journal. If we get the lock,
1140 * we drop it here. Return 0 if we got the lock, -EAGAIN if node is
1141 * still alive (we couldn't get the lock) and < 0 on error. */
1142 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
1143 int slot_num)
1145 int status, flags;
1146 struct inode *inode = NULL;
1148 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1149 slot_num);
1150 if (inode == NULL) {
1151 mlog(ML_ERROR, "access error\n");
1152 status = -EACCES;
1153 goto bail;
1155 if (is_bad_inode(inode)) {
1156 mlog(ML_ERROR, "access error (bad inode)\n");
1157 iput(inode);
1158 inode = NULL;
1159 status = -EACCES;
1160 goto bail;
1162 SET_INODE_JOURNAL(inode);
1164 flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE;
1165 status = ocfs2_meta_lock_full(inode, NULL, 1, flags);
1166 if (status < 0) {
1167 if (status != -EAGAIN)
1168 mlog_errno(status);
1169 goto bail;
1172 ocfs2_meta_unlock(inode, 1);
1173 bail:
1174 if (inode)
1175 iput(inode);
1177 return status;
1180 /* Call this underneath ocfs2_super_lock. It also assumes that the
1181 * slot info struct has been updated from disk. */
1182 int ocfs2_mark_dead_nodes(struct ocfs2_super *osb)
1184 int status, i, node_num;
1185 struct ocfs2_slot_info *si = osb->slot_info;
1187 /* This is called with the super block cluster lock, so we
1188 * know that the slot map can't change underneath us. */
1190 spin_lock(&si->si_lock);
1191 for(i = 0; i < si->si_num_slots; i++) {
1192 if (i == osb->slot_num)
1193 continue;
1194 if (ocfs2_is_empty_slot(si, i))
1195 continue;
1197 node_num = si->si_global_node_nums[i];
1198 if (ocfs2_node_map_test_bit(osb, &osb->recovery_map, node_num))
1199 continue;
1200 spin_unlock(&si->si_lock);
1202 /* Ok, we have a slot occupied by another node which
1203 * is not in the recovery map. We trylock his journal
1204 * file here to test if he's alive. */
1205 status = ocfs2_trylock_journal(osb, i);
1206 if (!status) {
1207 /* Since we're called from mount, we know that
1208 * the recovery thread can't race us on
1209 * setting / checking the recovery bits. */
1210 ocfs2_recovery_thread(osb, node_num);
1211 } else if ((status < 0) && (status != -EAGAIN)) {
1212 mlog_errno(status);
1213 goto bail;
1216 spin_lock(&si->si_lock);
1218 spin_unlock(&si->si_lock);
1220 status = 0;
1221 bail:
1222 mlog_exit(status);
1223 return status;
1226 struct ocfs2_orphan_filldir_priv {
1227 struct inode *head;
1228 struct ocfs2_super *osb;
1231 static int ocfs2_orphan_filldir(void *priv, const char *name, int name_len,
1232 loff_t pos, u64 ino, unsigned type)
1234 struct ocfs2_orphan_filldir_priv *p = priv;
1235 struct inode *iter;
1237 if (name_len == 1 && !strncmp(".", name, 1))
1238 return 0;
1239 if (name_len == 2 && !strncmp("..", name, 2))
1240 return 0;
1242 /* Skip bad inodes so that recovery can continue */
1243 iter = ocfs2_iget(p->osb, ino,
1244 OCFS2_FI_FLAG_ORPHAN_RECOVERY);
1245 if (IS_ERR(iter))
1246 return 0;
1248 mlog(0, "queue orphan %llu\n",
1249 (unsigned long long)OCFS2_I(iter)->ip_blkno);
1250 /* No locking is required for the next_orphan queue as there
1251 * is only ever a single process doing orphan recovery. */
1252 OCFS2_I(iter)->ip_next_orphan = p->head;
1253 p->head = iter;
1255 return 0;
1258 static int ocfs2_queue_orphans(struct ocfs2_super *osb,
1259 int slot,
1260 struct inode **head)
1262 int status;
1263 struct inode *orphan_dir_inode = NULL;
1264 struct ocfs2_orphan_filldir_priv priv;
1265 loff_t pos = 0;
1267 priv.osb = osb;
1268 priv.head = *head;
1270 orphan_dir_inode = ocfs2_get_system_file_inode(osb,
1271 ORPHAN_DIR_SYSTEM_INODE,
1272 slot);
1273 if (!orphan_dir_inode) {
1274 status = -ENOENT;
1275 mlog_errno(status);
1276 return status;
1279 mutex_lock(&orphan_dir_inode->i_mutex);
1280 status = ocfs2_meta_lock(orphan_dir_inode, NULL, 0);
1281 if (status < 0) {
1282 mlog_errno(status);
1283 goto out;
1286 status = ocfs2_dir_foreach(orphan_dir_inode, &pos, &priv,
1287 ocfs2_orphan_filldir);
1288 if (status) {
1289 mlog_errno(status);
1290 goto out_cluster;
1293 *head = priv.head;
1295 out_cluster:
1296 ocfs2_meta_unlock(orphan_dir_inode, 0);
1297 out:
1298 mutex_unlock(&orphan_dir_inode->i_mutex);
1299 iput(orphan_dir_inode);
1300 return status;
1303 static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb,
1304 int slot)
1306 int ret;
1308 spin_lock(&osb->osb_lock);
1309 ret = !osb->osb_orphan_wipes[slot];
1310 spin_unlock(&osb->osb_lock);
1311 return ret;
1314 static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb,
1315 int slot)
1317 spin_lock(&osb->osb_lock);
1318 /* Mark ourselves such that new processes in delete_inode()
1319 * know to quit early. */
1320 ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
1321 while (osb->osb_orphan_wipes[slot]) {
1322 /* If any processes are already in the middle of an
1323 * orphan wipe on this dir, then we need to wait for
1324 * them. */
1325 spin_unlock(&osb->osb_lock);
1326 wait_event_interruptible(osb->osb_wipe_event,
1327 ocfs2_orphan_recovery_can_continue(osb, slot));
1328 spin_lock(&osb->osb_lock);
1330 spin_unlock(&osb->osb_lock);
1333 static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb,
1334 int slot)
1336 ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
1340 * Orphan recovery. Each mounted node has it's own orphan dir which we
1341 * must run during recovery. Our strategy here is to build a list of
1342 * the inodes in the orphan dir and iget/iput them. The VFS does
1343 * (most) of the rest of the work.
1345 * Orphan recovery can happen at any time, not just mount so we have a
1346 * couple of extra considerations.
1348 * - We grab as many inodes as we can under the orphan dir lock -
1349 * doing iget() outside the orphan dir risks getting a reference on
1350 * an invalid inode.
1351 * - We must be sure not to deadlock with other processes on the
1352 * system wanting to run delete_inode(). This can happen when they go
1353 * to lock the orphan dir and the orphan recovery process attempts to
1354 * iget() inside the orphan dir lock. This can be avoided by
1355 * advertising our state to ocfs2_delete_inode().
1357 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
1358 int slot)
1360 int ret = 0;
1361 struct inode *inode = NULL;
1362 struct inode *iter;
1363 struct ocfs2_inode_info *oi;
1365 mlog(0, "Recover inodes from orphan dir in slot %d\n", slot);
1367 ocfs2_mark_recovering_orphan_dir(osb, slot);
1368 ret = ocfs2_queue_orphans(osb, slot, &inode);
1369 ocfs2_clear_recovering_orphan_dir(osb, slot);
1371 /* Error here should be noted, but we want to continue with as
1372 * many queued inodes as we've got. */
1373 if (ret)
1374 mlog_errno(ret);
1376 while (inode) {
1377 oi = OCFS2_I(inode);
1378 mlog(0, "iput orphan %llu\n", (unsigned long long)oi->ip_blkno);
1380 iter = oi->ip_next_orphan;
1382 spin_lock(&oi->ip_lock);
1383 /* Delete voting may have set these on the assumption
1384 * that the other node would wipe them successfully.
1385 * If they are still in the node's orphan dir, we need
1386 * to reset that state. */
1387 oi->ip_flags &= ~(OCFS2_INODE_DELETED|OCFS2_INODE_SKIP_DELETE);
1389 /* Set the proper information to get us going into
1390 * ocfs2_delete_inode. */
1391 oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED;
1392 spin_unlock(&oi->ip_lock);
1394 iput(inode);
1396 inode = iter;
1399 return ret;
1402 static int ocfs2_wait_on_mount(struct ocfs2_super *osb)
1404 /* This check is good because ocfs2 will wait on our recovery
1405 * thread before changing it to something other than MOUNTED
1406 * or DISABLED. */
1407 wait_event(osb->osb_mount_event,
1408 atomic_read(&osb->vol_state) == VOLUME_MOUNTED ||
1409 atomic_read(&osb->vol_state) == VOLUME_DISABLED);
1411 /* If there's an error on mount, then we may never get to the
1412 * MOUNTED flag, but this is set right before
1413 * dismount_volume() so we can trust it. */
1414 if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) {
1415 mlog(0, "mount error, exiting!\n");
1416 return -EBUSY;
1419 return 0;
1422 static int ocfs2_commit_thread(void *arg)
1424 int status;
1425 struct ocfs2_super *osb = arg;
1426 struct ocfs2_journal *journal = osb->journal;
1428 /* we can trust j_num_trans here because _should_stop() is only set in
1429 * shutdown and nobody other than ourselves should be able to start
1430 * transactions. committing on shutdown might take a few iterations
1431 * as final transactions put deleted inodes on the list */
1432 while (!(kthread_should_stop() &&
1433 atomic_read(&journal->j_num_trans) == 0)) {
1435 wait_event_interruptible(osb->checkpoint_event,
1436 atomic_read(&journal->j_num_trans)
1437 || kthread_should_stop());
1439 status = ocfs2_commit_cache(osb);
1440 if (status < 0)
1441 mlog_errno(status);
1443 if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){
1444 mlog(ML_KTHREAD,
1445 "commit_thread: %u transactions pending on "
1446 "shutdown\n",
1447 atomic_read(&journal->j_num_trans));
1451 return 0;
1454 /* Look for a dirty journal without taking any cluster locks. Used for
1455 * hard readonly access to determine whether the file system journals
1456 * require recovery. */
1457 int ocfs2_check_journals_nolocks(struct ocfs2_super *osb)
1459 int ret = 0;
1460 unsigned int slot;
1461 struct buffer_head *di_bh;
1462 struct ocfs2_dinode *di;
1463 struct inode *journal = NULL;
1465 for(slot = 0; slot < osb->max_slots; slot++) {
1466 journal = ocfs2_get_system_file_inode(osb,
1467 JOURNAL_SYSTEM_INODE,
1468 slot);
1469 if (!journal || is_bad_inode(journal)) {
1470 ret = -EACCES;
1471 mlog_errno(ret);
1472 goto out;
1475 di_bh = NULL;
1476 ret = ocfs2_read_block(osb, OCFS2_I(journal)->ip_blkno, &di_bh,
1477 0, journal);
1478 if (ret < 0) {
1479 mlog_errno(ret);
1480 goto out;
1483 di = (struct ocfs2_dinode *) di_bh->b_data;
1485 if (le32_to_cpu(di->id1.journal1.ij_flags) &
1486 OCFS2_JOURNAL_DIRTY_FL)
1487 ret = -EROFS;
1489 brelse(di_bh);
1490 if (ret)
1491 break;
1494 out:
1495 if (journal)
1496 iput(journal);
1498 return ret;